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ABSTRACT

In the last decade, the development of software based on artificial intelligence has
increased exponentially. The adoption of techniques based on the use of machine
learning and deep learning in particular, has made it possible to develop applications
and create previously unthinkable solutions. The evolution led by the use of ma-
chine learning over classical software development has required new guidelines for
the software development lifecycle. While DevOps (a blend of the words "DEVelop-
ment" and "it OPerationS") has traditionally been the standard guideline for software
development, it lacks certain steps required by machine learning. This led to the rise
of its natural evolution: MLOps (a combination of the words "Machine Learning"
and "it OPerationS").

This thesis investigates the application of MLOps in the Cognitive Cloud Con-
tinuum by exploiting both empirical methodologies and practical applications in the
field of machine learning for software engineering. To do so the primary objective
is to identify the risk of embedding open source libraries when developing machine
learning-based applications, in particular when following theMLOps principles. Sec-
ondly, we aim at investigating what is the Cognitive Cloud Continuum and what are
the future implications. Finally, by showing different use cases we compare the dif-
ferences between the development of software not based on machine learning and
the development of software following the MLOps guidelines.

The results show that it is possible to compute the risk of embedding open-source
software (and therefore libraries) when developingmachine learning-based code. The
analysis of the literature has identified an increased interest in the concept of Cog-
nitive Cloud Continuum, which has resulted in the development of tools aimed at
increasing the level of automation in order to comply with the new requirements
of this concept. The results achieved have been showing that the concepts provide
promising results. The thesis has successfully demonstrated how to develop a model
based on an MLOps pipeline.
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This thesis contributes to the state of the research by increasing awareness of
the concept of Cognitive Cloud Continuum and emphasizing the importance of
following MLOps guidelines when developing ML-based software. In the future,
devices will be capable of exploiting the computational power of other entities being
part of the same environment to carry out multiple tasks such as continuous training
and deployment. The required level of automation in the software development
lifecycle will be based on the guidelines defined by MLOps.
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1 INTRODUCTION

In the last decade, we have witnessed a revolution in the software development pro-
cess. In the specific, the Software Development Life Cycle (SDLC) [27], originally
composed of its four specific phases, has once again evolved. After the introduction
of Agile, DevOps was introduced [7], but nowadays we need an additional con-
cept. The necessity of such evolution came into play with the broad development of
Machine Learning (ML) based applications. ML-based applications have substituted
conventional applications due to their capability in solving challenges based on the
use of data [56]. Therefore, as a new approach to creating applications required dif-
ferent steps, an evolution of DevOps (which stands for Software Developers and IT
operations working collaboratively) adapted to ML has become necessary. Such an
evolutionary approach has been defined as MLOps as it stands for Machine Learn-
ing and IT operations. This new approach has increased the accuracy of the results
achieved by the software and decreased the time necessary for its creation [18].

In this thesis, we will refer to ML-based software/applications when describing
the process of creating applications that do not need to be deployed but can also
run locally. On the contrary, we will refer to MLOps as an extension of ML-based
software that also includes the build and deployment of the software and all Ops
phases.

The creation of ML-based software has been made possible by the maturation
of new technologies and, in particular, the availability of new and more powerful
hardware. The widespread availability of open-source, ready-to-integrate libraries to
simplify code development has also been an important factor. This resulted in the
creation of new applications for multiple fields e.g. self-driving cars or video frame
enhancements (also known as frame reconstruction) in Computer Vision [73] or
fault detection in Software Engineering [51].

The newly developed hardware opened multiple possibilities not only for what
concerns the computational power of the devices but also its portability. The dif-
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Figure 1.1 Illustration of the contributions of the thesis.

ferent boundaries that were once creating prominent clusters of devices based on
the tradeoff between computational power and portability have nowadays been bro-
ken. The result is a new concept defined as the Cognitive Cloud Continuum (CO-
CLCON) based on the definitions of Cognitive Cloud [64] and Cloud Contin-
uum [65].

The aim of this thesis is to provide insight into the development of ML-based
software and the risk of embedding open source libraries in its development. In
particular, the focus is on providing examples of how to develop software following
the MLOps guidelines. We are also interested in software that can be deployed along
the COCLCON, ensuring both portability and computational power. To this end,
a clear definition of the COCLCON is one of the main objectives of this work.

1.1 Goal and Research Questions

The goal of this thesis is bivalent. On one side our goal is to guide users in the process
of creating MLOps-based software. Once detected the main phases composing
MLOps, we aim at exploiting tools to simplify the software development for each
step of the MLOps pipeline.

In parallel, we aim to define the concept of the Cognitive Cloud Continuum.
After identifying the main characteristics of the COCLCON we aim at exploiting
them to provide guidelines to develop ML-based software along the COCLCON.

To achieve such goals we answer multiple research questions (RQ𝑠):

RQ1 - What are the potential issues of embedding Open Source Libraries in

MLOps?

2



The first research question aims at assessing the risk of embedding libraries when
developingML-based code. By treatingML libraries asOpen Source Software (OSS),
first, the factors and metrics used for OSS selection will be studied. Following, a
model for predicting the risk of abandonment of OSS will be presented.

RQ2 - What is the Cognitive Cloud Continuum?

The second research question aims at providing insights into the development of
software in the COCLCON. To properly study the process of development along
the whole COCLCON it is important to understand first what are the main require-
ments to develop software in the COCLCON. For this reason a clear and unified
definition of the COCLCON will be presented.

RQ3 - How does the software development process change when doingMLOps?

As a last research question, we will develop a use case not based on ML and
therefore defined as "static". Subsequently, such a static use case will be compared
with a "dynamic" use case. The dynamic use case will be developed according to the
MLOps guidelines.

1.2 Research Methods and Contributions

The research conducted in this thesis includes both empirical methodology and use
cases. The empirical methodology includes systematic literature reviews, case studies,
surveys, and interviews. The use cases are developed to validate the studies presented
in the empirical methodology. More specifically, this thesis contributes to increas-
ing knowledge about the risk of embedding open source libraries when developing
ML-based applications. In addition, we pay special attention to the development of
ML-based software following the MLOps guidelines as well as the definition of the
COCLCON and its requirements.

In this thesis, after analyzing what are the most common factors and metrics used
to select OSS, we propose a model to calculate the risk of embedding OSS. We then
propose our vision on the concept of the Cognitive Cloud Continuum. Finally,
using two different use cases, we show the differences in developing software based
on AI and MLOps pipelines. The pipeline consists of tools aimed at simplifying the
software development process that can be used to maximize the environment.

3



1.3 Thesis Structure

The remainder of the thesis is structured as follows. In Chapter 2, we present the
background of the concepts presented in the thesis. Starting from the concept of
the Software Development Lifecycle, we present its evolution focusing on DevOps.
Later, to ease the transition from DevOps to MLOps, we present the basic con-
cepts of ML. Following the main focus is placed on MLOps. From the proposed
pipelines, the tools and their mapping to the different MLOps phases are presented.
The second part of Chapter 2 focuses on Software Architecture and how to perform
Computation Distribution, concepts that are useful in the definition of the Cognitive
Cloud Continuum.

Chapter 3 describes the different research methods used in the different publica-
tions.

Chapter 4, introduces the results and research contribution of the work. The
chapter is divided based on the different research questions that this work aims at
answering.

Chapter 5 discusses the previously presented results.
Chapter 6 concludes the work and presents future challenges and works.
The peer-reviewed works are attached at the end of the thesis to help the reader

in connecting the works to the research questions of the work.
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2 BACKGROUND

In this chapter, we investigate the background of the concepts analyzed in this thesis.
This is supported by articles in the literature. In Section 2.1.1, we describe the
evolution of the SDLF, focusing specifically on DevOps. To ease the transition to
the MLOps concept, in Section 2.1.2 we review the basics of ML and how nowadays
the creation of ML-based applications is based on the use of Open Source Libraries.

2.1 Software Development Lifecycle

The Software Development Lifecycle (SDLC) is a methodology employed by soft-
ware development teams to create software in a systematic and cost-efficient manner,
ensuring high quality. The SDLC approach is implemented by software organiza-
tions of all sizes, utilizing various development models, such as agile, lean, waterfall,
and others. Since 1960, the SDLC enables organizations to create effective software
starting from the collection of initial product requirements by providing a structured
and sequential method.

Initially, the model was devised by major corporations to handle intricate business
systems that necessitated extensive data analysis and processing. With the passage of
time, modified versions of this framework have been embraced for creating hardware
and software technology products and other multifaceted projects [27]. Nowadays
a very common practice when developing software is to compose software via the
adoption of components off the shelf (COTS) [15]. Due to the integration of various
embedded components, COTS can be considered as OSS, where by OSS we refer
to software that is not commercial or proprietary in license. [34]. In particular
these days, OSS is widely utilized and integrated into many commercial products.
Nonetheless, selecting OSS projects for integration is not an easy task, primarily due
to the absence of distinct selection models and insufficient information available on
the OSS portals. Researchers have been investigating the selection and evaluation of
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OSS from various angles. They have devised methods to assess, compare, and choose
OSS projects, utilizing various approaches such as manual data extraction from OSS
portals, as well as a range of tools and techniques.

However, software Development (Dev) is only part of the process of delivering a
complete product. Security, deployment, monitoring, and feedback are only some of
the processes that are not taken into account by the Dev team. Such responsibilities
are performed by the Operations team (Ops).

Based on the ISO/IEC standards, we can divide the activities of software devel-
opment from those of software operations:

• Software Development: software requirements analysis, software architec-
tural design, software detailed design, software construction, software integra-
tion, and software qualification testing

• Software Operations: release and activation of the software product for oper-
ational use and establishing procedures for testing the software product in the
operational environment, recording and resolving problems and modification
requests of software product

2.1.1 DevOps

The importance of collaboration between the Dev and Ops entities is emphasized by
the term DevOps. Different definitions of the DevOps concept have been presented
and, even if no unicum exists, all of these definitions agree on the importance of such
collaboration [7, 26, 78, 88, 33, 38]. The definition of DevOps used in this thesis
is:
"DevOps is a set of practices that combines software development (Dev) and informa-

tion technology operations (Ops) to enable organizations to deliver software products and
services more quickly, reliably, and efficiently".

DevOps emphasizes collaboration and communication between development and
operations teams, as well as the use of automation tools and agile methodologies
to streamline the development and deployment process. The goal of DevOps is
to create a culture of continuous integration, continuous delivery, and continuous
improvement so that software development and deployment can be done rapidly,
reliably, and with high quality [44, 37, 104, 52].

The continuous nature of DevOps is represented by the infinity loop employed

6
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Figure 2.1 The DevOps Lifecycle infinite loop

by its practitioners (Figure 2.1). This loop illustrates the interrelatedness of the var-
ious phases in the DevOps lifecycle. Although the phases may seem to follow a
linear sequence, the loop signifies the essential requirement for continuous collabo-
ration and iterative enhancement throughout the entire lifecycle. The infinite loop
is composed of 8 different phases, half of them representing Dev and half of them
representing the Ops [23]. The phases are:

• Dev:

– Plan: Before the Dev team commences writing code, the Plan stage en-
compasses all the activities that occur, and it is at this stage where the
Product Manager or Project Manager demonstrates their value. The
planning phase aims at creating a roadmap that outlines the project goals
and deciding on the software and tools to be used are essential aspects of
planning. This includes planning for the project’s technology, environ-
ment, structure, and architecture.

– Code: Once the planning has been completed the Dev team can start cod-
ing. This is a great opportunity to leverage automation tools as we pre-
pare to build a testable product. Although coding can be time-consuming,
automating certain tasks can help us optimize our time and resources.
Developers use a variety of tools and techniques to write code, includ-

7



ing version control systems, code editors, and integrated development
environments (IDEs). During this phase, developers also conduct code
reviews and collaborate with other teammembers to ensure that the code
is high-quality and meets the project’s requirements.

– Build: Upon completion of a task, a developer shares their code by com-
mitting it to a shared code repository. There are various methods of doing
this, but typically, the developer initiates a pull request - a request to inte-
grate their fresh code with the shared codebase. During the Build phase,
we compile the provided code in a development environment specifically
for testing purposes. This allows us to identify and fix any issues or bugs
in the code, ensuring that the software is stable and reliable.

– Test: After a successful build, it is automatically deployed to a staging en-
vironment for thorough out-of-band testing. Automated testing is imple-
mented to verify that the project is operating as intended and to identify
and report any bugs or issues with its behavior. Such testing includes unit
testing, integration testing, and system testing. Test automation tools are
often used to speed up the testing process and improve the accuracy of
test results.

• Ops:

– Release: After undergoing a set of manual and automated tests, each
code modification can be deemed reliable, and the operations team can
have confidence that there is minimal possibility of breaking issues or
regressions. At this stage, we have the first milestone of the project:
the Release Phase. Organizations may opt to automatically deploy any
build that reaches this stage of the pipeline, depending on their DevOps
maturity level. On the other hand, an organizationmay prefer to exercise
authority over the timing of releasing builds to production. They may
wish to adhere to a fixed release schedule or launch new features only
after achieving a significant milestone. To achieve this, a manual approval
process can be implemented during the release stage, which only permits
specific individuals within the organization to authorize a production
release.

– Deploy: The deployment phase involves releasing the software to pro-
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duction. This phase involves a series of steps to deploy the software,
including configuring servers, installing software dependencies, and de-
ploying the code. Continuous delivery and deployment (CD/CD) tools
are often used to automate the deployment process and reduce the risk of
errors. Different deployment techniques can be used, among these, there
are rolling deployment, blue-green deployment, canary deployment, and
A/B Testing [86]. In the first, all nodes are incrementally updated in N
batches. In the second, two identical environments are created, and once
all tests are complete, traffic is moved from the working environment
(green) to the test environment (blue). In the canary deployment, the
new services are incrementally released to a subset of users, while in the
A/B testing different versions of the same service run simultaneously as
experiments in the same environment.

– Operate: At this state the freshly deployed release is live and available
to the customers. The operations team is currently engaged in ensuring
that everything runs seamlessly. Depending on the hosting service’s con-
figuration, the environment can automatically adjust to accommodate
fluctuations in the number of active users, by scaling up or down as nec-
essary. An essential part of the release phase is the feedback loop as the
customer, being the world’s best testing team, has a better understanding
of their own needs and desires than anyone else.

– Monitor: The last phase of the pipeline leverages the feedback obtained
from customers in the Operate phase, by gathering data and generating
analytics on customer behavior, performance, errors, and other metrics.
The gathered information is then shared with the whole team to complete
the cycle of the process. This causes a new planning phase and, therefore,
the loop to start again.

Following such guidelines has been proven to provide clear benefits to practition-
ers. Some of these benefits are [94]:

• Faster time to market: DevOps allows organizations to release software up-
dates more frequently and with greater speed, which can lead to faster time to
market and improved competitiveness.

• Improved collaboration: DevOps encourages collaboration between develop-
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ers, testers, and IT operations teams, which can lead to improved communi-
cation, faster problem-solving, and better teamwork.

• Increased agility: DevOps enables organizations to respond more quickly to
changing market conditions, customer needs, and technological advancements
by allowing them to make changes to software more quickly and with greater
efficiency.

• Enhanced quality: DevOps processes include continuous testing and integra-
tion, which can lead to higher-quality software releases with fewer bugs and
errors.

• Improved security: DevOps practices include security testing and monitor-
ing, which can help organizations identify and address security vulnerabilities
in their software before they become a problem [47].

• Cost savings: By reducing manual processes and automating routine tasks,
DevOps can help organizations save time and money.

Overall, DevOps can help organizations become more efficient, innovative, and
responsive to changing business needs, which can lead to increased competitiveness
and customer satisfaction. Such benefits are counterbalanced by challenges. Some of
them are:

• Cultural shift: DevOps requires a cultural shift in how organizations ap-
proach software development, testing, and deployment. This can be a chal-
lenge, especially if the organization has a history of siloed teams and a lack of
collaboration.

• Toolchain complexity: DevOps requires a range of tools and technologies,
which can be complex to set up and manage. Organizations may need to
invest in new infrastructure, tools, and training to support a DevOps culture.

• Security concerns: While DevOps can improve software security, it can also
introduce new security risks if security is not integrated into the DevOps
process from the beginning. Organizations must prioritize security through-
out the DevOps process to ensure that software is secure and protected from
threats.

• Legacy systems: Legacy systems may not be compatible with DevOps prac-
tices, which can create roadblocks to implementation. Organizations may
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need to invest in modernizing legacy systems before implementing DevOps.

• Lack of expertise: DevOps requires specialized expertise in areas such as au-
tomation, testing, and continuous delivery. Organizations may need to invest
in training or hiring new staff to build this expertise.

• Resistance to change: Resistance to change is a common challenge when im-
plementing DevOps. Teams may be resistant to new processes, tools, and ways
of working, which can slow down adoption and create roadblocks.

The last one in particular is a well-known challenge. Due to such resistance in the
latest years multiple alternatives to DevOps have been proposed, some of them are
AIOps, DevSecOps, and, last, MLOps [22, 70]. While some of them have been de-
veloped to simplify the development process, some others have been a clear evolution
of the concept of DevOps. As an example, while AIOps uses artificial intelligence
(AI) to simplify IT operations management and accelerate and automate problem
resolution in complex modern IT environments [85], MLOps has been introduced
to include the figure of the ML developer in parallel with the figure of the software
developer.

2.1.2 Machine Learning

The field of data science has undergone several revolutions. Some of its subfields,
such as image and signal processing and analysis, have undergone a transition from
classical techniques, such as those based on signal transforms [68, 57], to AI and its
subcategories.

Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) are
related terms that are often used interchangeably, but they refer to different concepts
and technologies in the field of Data Science (Figure 2.2).

AI refers to the broader concept of creating machines or systems that can perform
tasks that typically require human intelligence, such as speech recognition, natural
language processing, decision-making, and image recognition. AI includes various
subfields among which there is ML.

ML involves training algorithms to recognize patterns in data and make predic-
tions or decisions based on that data and patterns. Machine learning algorithms learn
from historical data to make predictions or decisions without being explicitly pro-
grammed to do so. Machine learning is commonly used in applications such as image
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Figure 2.2 The differences between AI, ML, and DL in Data Science

recognition, natural language processing, and predictive analytics [56].
DL is a subset of ML that uses neural networks with multiple layers to recognize

patterns in data. Deep learning algorithms learn from large volumes of data and can
perform complex tasks such as speech recognition, image recognition, and (advanced)
natural language processing [58]. Deep learning is often used in applications such as
self-driving cars, recommendation systems, and facial recognition.

Libraries play a crucial role in AI and ML by providing pre-written code, al-
gorithms, and tools that can be used to build and train machine learning models.
These libraries save time and effort for developers, as they don’t have to write every-
thing from scratch. Some popular libraries used in AI and ML include TensorFlow,
Keras, PyTorch, Scikit-learn, and Pandas. In addition, libraries provide access to vast
amounts of data, which is essential for training and testing machine learning models.
Many libraries also offer visualization tools that help developers and researchers un-
derstand the data and model results. Furthermore, libraries facilitate collaboration
among developers and researchers by providing a shared foundation for building and
testing AI and ML models. They also enable developers to keep up with the latest
research and advancements in the field.

Most of such libraries are open source, and like OSS it is important to understand
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what are the consequences of embedding open source components in the chosen de-
velopment pipeline [24]. For example, a common problem in ML is the requirement
to install a particular version of libraries due to Dependency Conflict [81]. One alter-
native might be to version lock your project but this will prevent the implementation
of new features [93]. This is because many of these libraries may not be compatible
with future updates. This can lead to incompatibilities and the inability of the older
system version to work seamlessly with newer iterations. [45].

2.1.3 MLOps

The growing prevalence of software based on Machine Learning (ML) has led to
the need for a new approach to develop software effectively. In parallel, there has
been a growing need to apply DevOps practices to different areas of focus within the
software development ecosystem. These areas of focus may include the development
of ML-based software. To address these specific needs, new sets of practices have
emerged that combine DevOps with the unique requirements of these areas.

The evolutions of DevOps aim at providing a tailored approach to software de-
velopment that takes into account the specific challenges and considerations of these
different entities. As the use of these specialized practices continues to grow, they
are receiving increasing attention and becoming a key aspect of modern software
development practices. Some of these evolutions are schematized in Figure 2.3.

As an example, DataOps, like its predecessors, does not have a clear definition
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among those proposed. The one that seems to include all its characteristics is the one
proposed by Ereth, who defines DataOps as "set of practices, processes, and technologies
that combines an integrated and process-oriented perspective on data with automation
andmethods from agile software engineering to improve quality, speed, and collaboration
and promote a culture of continuous improvement" [30].

This definition aims at highlighting the importance of creating and versioning
valuable data for every possible application, from data science [59, 35] to deep learn-
ing [60, 50].

The previously introduced concepts did not consider the development and de-
ployment of applications based on the resulting data. Therefore, a separate set of
practices have emerged that focus on the lifecycle management of data-driven appli-
cations. This set of practices is called MLOps.

MLOps as it provides a framework for managing the data used in ML projects.
For this reason, MLOps is heavily dependent on the concepts proper of DataOps.
As MLOps involves the entire machine learning lifecycle, from data preparation
to model training, deployment, and maintenance, it is crucial to have a streamlined
process for data management that ensures data quality, consistency, and reliability. In
particular, the data must be representative of the environment and the problem that
the ML-based system is trying to solve. However, as we live in a dynamic world, the
model trained on a particular dataset may decay over time. When this happens, we
may be faced with data drift (in some cases also defined as covariate shift) or concept
drift [53, 105]. Data drift occurs when changes in the data lead to poor performance
of the model, whereas concept drift occurs when the relationship between the data
and the labels changes, meaning that the goal of the prediction changes. Whereas
in the first case it is due to a different input, in the second case it is the interaction
between the input and the output that is different. To mitigate this severe problem
detectors have been proposed [80].

Different definitions focus on different stages and phases of MLOps. Among
these definitions one of the most famous is the one fromGoogle [18] which describes
different levels ofMLOps based on the automation level. Following their definition it
is possible to start with a completely manual MLOps pipeline (defined as level 0) and,
building on top of it by increasing the levels of automation it is possible to achieve a
level 2 of automation which includes CI, CD, and Continuous Training (CT). On
the opposite side, in [62] the focus has been placed on proposing an MLOps loop
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that highlights the differences between the original DevOps loop (Figure 2.1) and
the process of developing ML-based software. The proposed infinite loop is depicted
in Figure 2.4.

From this, it is possible to see that the side of the loop related to Ops is mostly
unchanged. Starting from the Planning phase, it encompasses all activities that occur
prior to the development team beginning to write code, such as gathering require-
ments and designing the system’s architecture. Specifically forML, planning involves
identifying the problem to be solved and everything that is related to the data (in-
cluding preprocessing and filtering). This information is then used to determine the
most appropriate data analysis methods, such as classification or regression, and to
select suitable algorithms, such as Random Forest or Deep Learning. Additionally,
supervised algorithms may require a data labeling step.

During the Coding phase, the development teams are responsible for implement-
ing both the system’s code and the machine learning algorithms. Once the code has
been written, it undergoes local validation to ensure that it is functioning correctly.
In traditional DevOps, the Validation phase typically involves running local tests to
verify the code’s functionality before committing it. In the context of ML, however,
validation refers to evaluating the performance of the ML model using previously
unseen data. If the validation process indicates that the ML-based approach is not
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appropriate for the data or algorithms, the development team needs to return to the
planning phase to optimize the model for better problem-solving. Once the ML op-
timizations have been made and the system has been locally tested, the ML code is
integrated into the system code. This integration ensures that the system is equipped
with the necessary ML capabilities to perform its designated tasks effectively.

Following, starting from the build phase, everything is performed similarly to
DevOps.

Another similarity with DevOps is the high exploitation of automation tools for
accomplishing automation of the wholeMLOps pipeline [11, 6, 16, 75]. Someworks
also concentrate on the integration of tools used in DevOps and MLOps [9, 39]. In
[83], the authors conducted a Multivocal Literature Review (MLR) to accomplish
two objectives, the identification of tools that enable and facilitate the development
of MLOps pipelines, and the identification of their key characteristics and features
in order to offer a comprehensive understanding of their significance. The work
thoroughly investigated 13 MLOps tools and their main features which have been
divided into 3 main categories: General Features, Data Management Features, and
Model Management Features.

At a later stage, the work has been extended in [67] passing from 13 to 84 tools.
In the work, the focus has been placed on the question: which phase of the MLOps
infinite pipeline each tool contributes to? Together with the main phases of the MLOps
pipeline, some of the tools have been covering more than one phase, starting from
the End-to-End Full-Stack MLOps Tools (covering all the phases) to the different
levels of automation phases (CT, CD, CI).

2.2 Software Architectures

Service-oriented architecture (SOA) is a software design approach that promotes the
reusability of software components through service interfaces that use a common
communication language over a network. In SOA, a service is an autonomous unit
of software functionality, or a set of functionalities, created to accomplish a specific
task such as retrieving specific information or performing an operation [31].

The earlier model of software development was referred to as monolithic since
the entire code for the application was integrated into a single deployment. If there
was any issue with a particular feature of the application, the entire system had to be
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temporarily shut down to address the issue and then redeployed as a new version.
To overcome such problem in SOA, services interact with each other through

a system of loose coupling. This allows the components, or elements, of a system
or network to exchange information or coordinate a business process without hav-
ing strong dependencies between them. Some of the benefits achieved compared to
the monolithic approach are: flexibility, scalability, lower costs, faster time to the
market [98, 21].

A further step from monolith has been taken with the development of Microser-
vices (MSs). Like SOA, MSs are based on loosely coupled connections with a higher
degree of freedom. Such approach to development makes the software, web or mo-
bile applications, a suite of independent services [32, 71]. The independent services
composing an MS communicate between each other via APIs to build specific ap-
plications that perform business functionality in a more agile, scalable, and resilient
manner.

As MLOps aims at building and deploying applications as microservices it is im-
portant to understand not only the importance of microservices for software archi-
tectures but also what is the relation between AI and microservices.

Different works have been studying the relationship between AI and Microser-
vices. In [66], an SLR has been performed with the goal of investigating how AI has
been used to support the design, development, and operations of MSs.

2.2.1 Computation Distribution

The hardware device that is currently receiving the most attention in relation to
the further advancement of ML is the edge. In this thesis, we will refer to the edge
as those devices which are capable of performing computation at the edge of the
network [102]. This can be attributed to the reduced latency when providing real-
time results compared to the cloud. The availability of devices capable of providing
high storage and computation resources has inevitably reduced the necessity of being
connected to centralized servers in the cloud. However, this is not always the case.
In situations where the computational power available on the edge devices is not
enough, the connection to the cloud cannot be avoided and the use of tools capable of
distributing computational tasks between edge devices and cloud resources becomes
vital.

We can separate those tools capable of moving the computation vertically (or
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edge-to-cloud tools) [25] from those capable only of moving the computation hor-
izontally (or edge-only tools) [96]. Edge-to-cloud tools encompass a range of hard-
ware, software, and services that are utilized to collect, process, and analyze data
from various edge devices such as sensors and machines. The data collected by these
devices is transmitted to cloud platforms for further processing and analysis. "A
cloud-based system capable of sensing its environment, learning from it, and oppor-
tunistically and dynamically adapt its computational load as well as its outcome" is
defined as a Cognitive Cloud [64].

With the increasing demand for real-time data processing and analysis, edge-to-
cloud tools have emerged as a crucial technological solution. The combination of
edge devices, cloud platforms, and software services has enabled the collection, pro-
cessing, and analysis of data from distributed edge devices in real time. This has
paved the way for enhanced data insights and analytics, enabling businesses to make
more informed decisions based on real-time data. The availability of edge-to-cloud
tools has transformed data processing and analysis from a centralized approach to a
distributed approach, allowing for greater flexibility, scalability, and efficiency. By
leveraging the power of edge-to-cloud tools, businesses can stay ahead of the compe-
tition and gain a competitive edge in the market.

In [69], a list of 40 different tools capable of performing offload, orchestration,
or other computational tasks in the cloud continuum has been provided.
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3 RESEARCH METHODS

This chapter presents the research methods used in the different publications.

3.1 Publication I - Survey

In PUBLICATION I [48] the main research method used to answer the different RQs
has been a survey [43]. In particular, the work has been conducted in 3 main steps:

1. Step 1: Interviews among 23 experienced software developers and project man-
agers have been performed to investigate the factors and metrics that have been
influencing the selection of OSS, as well as the source of information

2. Step 2: Analysis of the APIs of the source of information identified

3. Step 3: Evaluation of the accessibility of metrics gathered in the preceding
phases via public APIs of information sources that practitioners use, among a
pool of 100k projects.

In the first step, we created and conducted a semi-structured interview using a
questionnaire to investigate the factors considered by practitioners during the selec-
tion of OSS in the software product development process. The interviews utilized
a questionnaire that was previously employed in other studies to identify the fac-
tors deemed significant for assessing OSS [12, 92]. To establish the profile of the
respondents, we gathered demographic information pertaining to their experience
with OSS. This included their years of experience in selecting OSS components for
integration into the software they develop. Additionally, we collected relevant de-
tails about their roles, predominant experience, and company information such as
the application domain, organizational size (number of employees), and the number
of employees within the respondents’ own team. The population identified for the
interview was based on 4 main criteria:

1. Currently developing software
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2. At least 5 years of software development experience

3. At least 3 years in the specific domain

4. At least 3 years of experience in OSS selection.

Once identified the population, we requested the respondents to compile a list of
factors that are known to be generally taken into account when adopting OSS soft-
ware for integration into the products they develop. They were then asked to rank
these factors based on their perceived importance, using a scale ranging from 0 to 5.
In this scale, a rating of 0 indicated the factor as "totally irrelevant," while a rating
of 5 indicated the factor as "fundamental". The open-ended questions regarding the
application domain, additionally reported factors, platforms used for information
extraction, and metrics employed for factor evaluation were subjected to analysis
through open and selective coding [101].

The complete list of questions has been reported in a replication package [84].
Due to time limitations and the inability to conduct face-to-face interviews at pub-
lic events, interviewees were chosen using a convenience sampling approach, also
referred to as Haphazard Sampling or Accidental Sampling [8]. Despite this, we
made efforts to ensure diversity among the interviewees by inviting an equal number
of developers from both large and medium-sized companies, representing various
domains.

The responses were interpreted by extracting distinct sets of similar answers and
organizing them according to their perceived similarity. Two authors employed the
open coding methodology to manually generate a hierarchical set of codes based on
all the transcribed answers. Any coding discrepancies were discussed and resolved
between the authors before applying the axial coding methodology [101].

During the interviews, the respondents identified a total of nine distinct sources
of information and portals that they typically consult when selecting OSS. In the
second step, we manually analyzed the APIs of such portals looking for APIs that
allowed us to assess the information needed to measure the factors reported by the
interviewees. The initial analysis of all the portals and the search for specific pieces
of information were conducted independently by the first two authors of the work.
The obtained results were subsequently compared. In the event of any discrepancies,
all the authors participated in comprehensive discussions to address and resolve any
inconsistencies, ensuring a unanimous consensus was reached. In this step some of
the factors were not directly analyzable while some of the metrics could not have
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been extracted.
The last step was divided into 3 substeps:

1. Project selection: The top 100K GitHub projects, based on the number of
stars were selected.

2. Information extraction: Only the information needed to evaluate the factors
was extracted (ex. for Popularity we extracted Number of Watch, Number of
Stars, Number of Forks, Number of Downloads).

3. Analysis of the information available: Analysis of which information is actu-
ally available for each project.

The results obtained in this work, even if they are aimed at OSS, can also be
applied to ML libraries, since they are generally categorized as open source.

3.2 Publication II - Model development

In PUBLICATION II [46] a model to assess the risk of abandonment for OSS compo-
nents has been developed. The classic risk assessment notion is applied to calculate
the abandonment risk of each component [14]. This involves evaluating the proba-
bility and impact of a risk event. When assessing the risk of embedding software we
refer specifically to Qualitative and Quantitative Risk [49]. For Qualitative Risk, we
refer to the probability that different risks will occur, while with Quantitative with
the overall effect of the different risks. The abandonment risk of OSS components
within a software system is determined by considering two main factors. Firstly, the
likelihood of each component losing maintenance support during a specified period
is taken into account. This likelihood can be influenced by several factors such as the
component’s age, popularity, level of activity in the community, and the number of
contributors. By analyzing these factors, practitioners can estimate the probability
of each component being abandoned (Qualitative Risk).

Secondly, the importance of each component for the main system is evaluated.
This importance can be assessed based on factors such as the component’s functional-
ity, criticality to the system’s operation, and ease of replacement. Components that
are critical to the system’s operation and are difficult to replace are considered more
important and have a higher impact on the system’s overall risk level (Quantitative
Risk).
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In the context of OSS components, the probability of an OSS component being
abandoned represents the likelihood of a risk event, while the importance of the
component for the main system reflects its impact on the system’s overall risk level.
By combining these two factors, practitioners can determine the abandonment risk
of each component and prioritize their maintenance or replacement accordingly.

To mitigate the abandonment risk of OSS components, practitioners can im-
plement various strategies such as monitoring the community activity around the
component, seeking alternative components or solutions, contributing to the com-
ponent’s development, or developing custom solutions. By proactively managing
the abandonment risk of OSS components, practitioners can minimize the impact
of potential failures and disruptions in the software system.

TheOSSARA process is depicted in Figure 3.1. Beginning with a software system
that incorporates multiple OSS components (e.g. 14 components), the first step is to
determine the abandonment probability and weight of each component within the
given time frame. The abandonment probability is represented by a color code while
the weight is denoted by the size of the box. These two pieces of information are
then combined to calculate the overall risk of the software system being abandoned
within the specified period. The overall abandonment risk 𝑅𝑎 for a system that
integrates 𝑘 OSS components is calculated as:

𝑅𝑎 =
𝑘∑︁

𝑚=1
𝑤(𝑂𝑚) ∗ 𝑟 (𝑂𝑚), (3.1)

where 𝑤(𝑂𝑚) represents the weight of the OSS component 𝑂𝑚, while 𝑟 (𝑂𝑚) the
risk that 𝑂𝑚 will be abandoned.

Predicting the risk of an OSS component being abandoned is a complex issue that
involves multiple factors, such as poor performance and insufficient maintainability.
Traditionally, the number of commits performed on the system repository within a
specific time interval has been used as the sole predictor of abandonment. However,
this approach oversimplifies the problem and fails to account for other critical factors
that may influence the abandonment risk.

It is possible that an OSS community might not focus on committing, but the
contributors remain active in handling pull requests and discussing relevant issues. In
such cases, other measures such as the daily number of commits, issue comments and
closed pull requests should be considered to assess the risk of abandonment. Thus,
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Figure 3.1 The OSSARA process. Reprinted with permission from PUBLICATION II.
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predicting the abandonment risk of OSS components is a multi-concern assurance
problem that requires a comprehensive approach to account for all the relevant fac-
tors.

The proposed model applies supervised techniques to predict the abandonment
of OSS components. This could be achieved following a 3-step pipeline:

1. Data crawling: At first data from a selected source needs to be gathered. The
metrics chosen for evaluation include the number of commits, commit com-
ments, unique committers, issues, issue comments, watchers, and open/closed
pull requests.

2. Data preprocessing: To generate training data for each OSS project, we adhered
to the criteria established by our case company. We classified projects as "ac-
tive" if they met the following criteria: 1) had more than 2, 000 commits, 2)
had more than 1, 000 days of activity (from the creation day to the final com-
mit day), 3) had at least one commit in the previous six months, and 4) had
days with zero commits that account for less than 50% of the days of activity.
We also ensured that the labeled training data aligned with the target predic-
tion period (e.g., one, two, or three months) and that their dimensions were
optimized to yield the highest accuracy possible.

3. Data prediction: We utilized the labeled and preprocessed data to train classi-
fiers that exhibit optimal performance for the designated prediction periods.
Once trained, the classifier was tasked with predicting whether a given OSS
component was active or abandoned, based on the input data. The accuracy
of the classifier was then used as an indicator of the probability that the OSS
is either active or abandoned, as it reflects the likelihood of the prediction is
correct.

The model has been validated by performing a preliminary evaluation on 12,208
OSS projects that contain at least 1,000 commits from at least five unique contribu-
tors and are watched by at least 100 users [97]. The dataset has been extracted from
GHTorrent and labelled following the procedure described in the Data Preprocess-
ing step. The classification described in the Data Prediction step has been performed
using 4 different classification algorithms: decision tree, support vector machine,
logistic regression, and naive Bayes.
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3.3 Publication III - Systematic Mapping Study

In PUBLICATION III [65], the main research method used to define the concept of
Cloud Continuum has been a systematic mapping study. The systematic mapping
study has been carried out by taking into account the guidelines proposed by Petersen
et al. [79].

The primary objective of a systematic mapping study is to systematically and im-
partially summarize and categorize the gathered information concerning the RQs.
In this particular publication, the aim has been not only to describe all existing def-
initions of the "cloud continuum" and other pertinent concepts but also to examine
the evolution of these definitions over time.

The approach encompassed four main steps. First, we established the research
questions. Second, we formulated the search strategy. Third, we defined the data ex-
traction strategy. Finally, we synthesized and visually presented the results obtained.

The objective of conducting a systematic mapping study is to establish a search
query capable of retrieving a comprehensive collection of studies containing the de-
sired definitions [42]. To achieve this, the search strategy entailed several steps, in-
cluding defining the search string, identifying key sources, selecting primary studies,
extracting data, and synthesizing the results.

The search strategy encompassed outlining themost relevant bibliographic sources
and search terms, defining the criteria for inclusion and exclusion, as well as estab-
lishing a selection process to determine which studies should be included.

In this specific work, the search string has been:

( cloud AND ( edgeOR fog ) AND continuum )

It has been performed on four bibliographic sources: Scopus1, IEEEXplore Dig-
ital Library2, the ACM Digital Library3, and Web of Science4. The adoption of
four databases ensured the completeness of the search results. The search has been
conducted on March 1st, 2022, retrieving 378 non-duplicated papers from the four
sources.

To identify the primary studies from the initial search results, specific inclusion

1SCOPUS, https://www.scopus.com.
2IEEEXPLORE DIGITAL LIBRARY https://ieeexplore.ieee.org/.
3ACM DIGITAL LIBRARY: https://dl.acm.org.
4WEB OF SCIENCE database: https://www.webofscience.com/.
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and exclusion criteria need to be established. In this specific work, research papers
published in journals or conferences that discussed the Cloud Continuum concept
were included. Conversely, papers not in English, duplicates, unrelated to the defined
research questions, non-peer-reviewed, as well as work plans, roadmaps, posters, and
vision papers have been excluded.

With the inclusion and exclusion criteria in place, the selection of primary stud-
ies involved two steps. Initially, two authors independently reviewed the titles and
abstracts of each paper to determine whether it met the criteria for exclusion or re-
quired further examination. In cases where there was disagreement between the two
authors, a third person intervened to make the final decision. In this publication,
out of the 378 papers screened, 93 had disagreements, resulting in a Cohen’s kappa
coefficient of 0.51, indicating a moderate level of agreement [28]. Consequently, 181
papers that needed to be considered for the subsequent step were identified. Subse-
quently, a snowballing process that involved incorporating all the papers referenced
within the 181 identified papers was initiated. It involved applying the same inclu-
sion and exclusion criteria to the titles and abstracts of the additional papers. As a
result, we were able to include two more papers that met the criteria.

Then, based on the inclusion and exclusion criteria, the 6 authors of the work
had to independently read and thoroughly evaluate each of the papers (183 in this
particular work). The result of the evaluation process is the ultimately selected list of
papers that met the criteria for further analysis defined as Selected Papers (SPs). The
different SPs from this publication can be consulted in Appendix A of PUBLICATION
III.

Relevant data from the selected papers that provided insights into our research
questions was extracted. Specifically, the focus has been placed on extracting defini-
tions related to the "continuum," the year of publication, and information regarding
the continuation of the cloud. In addition, extracted information about the type
of publication, such as whether it was a conference paper or a journal article, was
extracted.

A qualitative analysis among the authors to identify similarities and differences
among these definitions was conducted. To address the research questions, a collab-
orative coding process was employed.

From each paper, the definition was extracted and transcribed onto a Post-it note
to address the first RQ. One author affixed each Post-it note onto a whiteboard
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while the other authors read the definitions proposed in the other papers. Through
extensive discussion, the authors examined the similarities and differences among
each definition, deciding whether to group them together or create new ones.

Subsequently, the authors rearranged the Post-it notes to reflect groups of similar
definitions and their key differences. For each definition, the authors followed a
consistent process to identify shared elements.

Finally, the authors used different colored markers to highlight the extensions of
the continuum to the cloud, addressing the third RQ.

3.4 Publication IV - Algorithm Development

In PUBLICATION IV [63] a smart scheduling algorithm has been proposed and after
validation, it has been deployed in production. Given two files related to Topology
(TN) and to the temporal evolution of the traffic (TS), the developed algorithm is
composed of 3 different contribution factors:

1. Static Weight: factor pertaining to information that will remain constant in
the immediate future and is thus static over time. It is computed by considering
the topology of the system. In particular, the static weight 𝑠𝑤 of each location
as a weighted sum of this different information is:

𝑠𝑤 = 𝛼 ∗𝑊𝐸 + 𝛽 ∗𝑊𝐿, (3.2)

The weights𝑊𝐸 and𝑊𝐿 are computed based on different factors assigned to
them, represented by 𝛼 and 𝛽 respectively.𝑊𝐸 captures the weight determined
by the number of edges within a single location, while 𝑊𝐿 represents the
weight derived from the connections between two distinct locations. More
in particular𝑊𝐸 for a specific edge location 𝑥𝐸 is:

𝑊𝐸 (𝑥𝐸 ) =
𝑛∑︁
𝑖=1

[𝑙𝑖 = 𝑥𝐸 ], (3.3)

where 𝑙𝑖 is the list of the unique edges, having the location as the prefix.

𝑊𝐿 is:

𝑊𝐿 (𝑥𝐸 ) =
𝑛∑︁
𝑖=1

[𝑙 𝑆𝑖 = 𝑥𝐸 |𝑙𝐷𝑖 = 𝑥𝐸 ], (3.4)
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where 𝑙 𝑆𝑖 is the list of all source locations and 𝑙𝐷𝑖 is the list of all destination
locations.

2. Dynamic Weight: factor that encompasses all information that is subject to
change over time and is thus linked to throughput between different nodes.
More specifically, in this model, the Dynamic weight corresponds to the num-
ber of active connections each location has during different time slots.

3. Cluster ID: ID related to location-related clusters.

for 𝑙𝑖 in 𝑇𝑁 do

𝑊𝐸 (𝑥𝐸 ) =
∑︁𝑛

𝑖=1 [𝑙𝑖 = 𝑥𝐸 ];
𝑊𝐿 (𝑥𝐸 ) =

∑︁𝑛
𝑖=1 [𝑙 𝑆𝑖 = 𝑥𝐸 |𝑙𝐷𝑖 = 𝑥𝐸 ];

𝑠𝑤 (𝑥𝐸 ) = 𝛼 ∗𝑊𝐸 (𝑥𝐸 ) + 𝛽 ∗𝑊𝐿 (𝑥𝐸 );
end

𝐶 = 𝑁 𝑒𝑡𝑤𝑜𝑟𝑘𝑋 (𝑊𝐿)
𝐷𝑊 = 𝐴𝑠𝑠𝑖 𝑔𝑛𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑊 𝑒𝑖 𝑔ℎ𝑡 𝑠(𝑇 𝑆)
𝑆𝑊 = 𝑠𝑜𝑟𝑡 (𝑠𝑤) ⊲ From lowest to highest value of 𝑥𝐸
for 𝑥𝐸 in 𝑆𝑊 do

𝑇 𝐹 (𝑥𝐸 ) ← max(𝐷𝑊 (𝑥𝐸 ))
if 𝑆𝐶 (𝐶 (𝑇 𝐹 )) is empty then

𝑆𝐶 (𝐶 (𝑇 𝐹 )) = 𝑇 𝐹 (𝑥𝐸 )
else

𝑇 𝐹 2(𝑥𝐸 ) ← max(𝐷𝑊 (𝑥𝐸 ), 2)
if 𝑆𝐶 (𝐶 (𝑇 𝐹 2)) is empty then

𝑆𝐶 (𝐶 (𝑇 𝐹 2)) = 𝑇 𝐹 2(𝑥𝐸 )
else

𝑇 𝐹 3(𝑥𝐸 ) ← max(𝐷𝑊 (𝑥𝐸 ), 3)
if 𝑆𝐶 (𝐶 (𝑇 𝐹 3)) is empty then

𝑆𝐶 (𝐶 (𝑇 𝐹 )) = 𝑇 𝐹 (𝑥𝐸 )
end

end

end

end

Algorithm 1: Smart Edge Provisioning Algorithm. Reprinted with permission
from PUBLICATION IV. ©Springer Nature 2023.

The developed algorithm is summarized in algorithm 1. In more specific terms,

1. For each possible location (𝑙𝑖) in TN, the Edge-Based weight (𝑊𝐸 ) and the
location-based weight (𝑊𝐿) were calculated as described in Equation 3.3 and
3.4, respectively.
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2. Once both weights are computed, the static weight 𝑠𝑤 for each location is
obtained.

3. Through𝑊𝐿, the cluster numbers are determined using NetworkX.

4. For each specific location, the dynamic weights (𝐷𝑊 ) are assigned by identi-
fying the minima (first, second, and third) in 𝑇 𝑆 . This means that the time
frame with the least amount of data sent will be assigned the highest dynamic
weight (3), the second least will receive the second-highest dynamic weight (2),
and so on until all weights are assigned.

5. 𝑠𝑤 is sorted in ascending order. This approach prioritizes locations with fewer
edges and connections, as they will have fewer opportunities for redirecting
connections to adjacent edges, thus impacting fewer users.

6. For each location 𝑥𝐸 in 𝑠𝑤, the maxima in 𝐷𝑊 are searched and the corre-
sponding time frame (𝑇 𝐹 (𝑥𝐸 )) when the maxima occurs are identified.

7. For every location within the same cluster 𝐶 , if the time frame is available, it is
assigned to 𝑥𝐸 . If not, the same procedure for the second and third maxima is
repeated. If all the detected time frames have already been reserved, we move
on to the next location.

Once all the locations were assigned, we had a clear schedule indicating which
location should perform provisioning at each time frame (𝑇 𝐹 ). Additionally, we had
a list specifying the correct time frame for provisioning at each location. However, it
is possible that some locations could not identify a suitable time frame. In such cases
(usually less than 5% of locations), these locations could be assigned to empty time
frames within their respective clusters (𝐶) without causing any significant impact.

For model validation two different metrics were proposed. The intra-edge impact
measured the algorithm’s capability of preserving dense active connections during
periods of high throughput, while also significantly penalizing situations where sug-
gested scheduling was not feasible. On the other hand, as the proposed algorithm
aimed at minimizing the amount of data lost during the provisioning through opti-
mal scheduling, the traffic impact measured the ability of the algorithm to perform
handovers.
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Figure 3.2 The data pipeline. Reprinted with permission from PUBLICATION V.

3.5 Publication V - MLOps Pipeline Creation

In PUBLICATION V [61] the model presented in PUBLICATION II has been devel-
oped following MLOps guidelines. The process of establishing an MLOps pipeline
presents a distinct approach compared to both basic ML applications and classic soft-
ware development.

In this case, the selection of tools used throughout the entire process becomes
a crucial step that must be considered during the planning phase. Furthermore,
as part of the planning phase, this tool selection might undergo variations as the
development process unfolds.

The starting point of the work was the list of tools presented at first in [83] and
then extended in [67], both based on the MLOps pipeline first presented in [62].
Following the list of MLOps tools, Dags-Hub, DVC, and MLFlow were selected as
the tools for building this particular pipeline. As MLFlow is categorized as an "Ops"
tool, DagsHub andDVC need to fulfill all the requirements for project development.
Further, while both systems are classified as build tools, their collaboration can also
encompass the planning phase, providing also a visual representation as shown in
Figure 3.2.

One of the main objectives of this development was to enable a CT setup. To
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accomplish this, the dataset utilized inOSSARA [97] has been preprocessed, dividing
it into distinct time frames.

The creation of these individual data frames was designed in a manner where the
initial frame encompassed a span of 2 and a half years, serving as the basis for the
first training. Subsequently, each subsequent frame extended the time period by an
additional 3.5 years, resulting in a total of 18 different training sets.

The project began by initializing a DagsHub repository and configuring the DVC
storage according to the instructions outlined in the DagsHub repository. As part of
the planning phase of the MLOps pipeline, a "dvc.yaml" file was created to represent
the data pipeline within the DagsHub repository.

For what concerns the Code/ML phase, the code was implemented in Python,
specifically utilizing the scikit-learn library. The PyCharm integrated development
environment (IDE)was chosen for development, and it was connected to theDagsHub
repository to facilitate seamless commit and push operations.

Following, in the Build phase DagsHub and DVC were utilized. Since the ap-
plication only requires an API, testing was handled by the deploying tool through
automated testing prior to deployment. As for the data, since we are using a pre-
viously used dataset, there was no need for testing or performing drift analysis on
it.

MLflow was utilized for all the Operations phases. Integration of MLflow was
performed during the code development process, following the MLflow guidelines
provided in the DagsHub repository.

After the development of the full MLOps pipeline, the automated process has
been deployed. A complete training phase of a single dataset included four distinct
algorithms. Once the training has been completed the ID from the best run was
detected and used to perform a deployment based on REST API through MLflow.
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4 RESULTS AND RESEARCH CONTRIBUTION

4.1 RQ1: What are the potential issues of embedding Open Source
Libraries in MLOps?

PUBLICATION I - PUBLICATION II

In PUBLICATION I, we investigated and determined the criteria that practitioners
presently take into account while choosing OSS, to pinpoint the sources (portals)
that can be utilized for evaluating the aforementioned criteria, and to verify the vi-
ability of public APIs that enable the automated evaluation of those factors from
the sources and portals. From the process described in Section 3.1, we identified
8 main factors and 46 sub-factors summarized in Table 4.1. In the table, RQ1 of
PUBLICATION I focused on the number of times that a specific factor was mentioned
by practitioners as well as the importance assigned by them, while RQ2 of PUBLI-
CATION I reported the count of Metrics for each factor. The complete list of metrics
can be consulted in the Appendix of PUBLICATION I.

More into detail, the most frequently mentioned factor by the interviewees is the
License, which held a median importance rating of 4 out of 5. Interestingly, this was
not the highest median importance value. Factors such as Community Support and
Adoption, Performance, and Perceived Risk all received a median importance value
of 4.5 out of 5. It’s noteworthy that none of the participants discussed economic
aspects and related sub-factors like license expenses or training costs.

Another important information that we aimed to extract in this work was which
of the factor could be extracted automatically. To do this, previously in RQ3 of
PUBLICATION I we extracted which sources of information and portals have been
commonly used by practitioners. Once identified, a subset of the 4 most used portals
have been used to extract the information needed to measure the factors through API
among 100K projects in GitHub.

From the results of this work, it was emphasized the importance of having anOSS
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RQ1 RQ2

Factor # Median #Metrics
Community Support and Adoption 10 4.5
Popularity 9 3 4
Community reputation 11 3 3
Community size 13 3 5
Communication 6 3.5 5
Involvement 9 3 1
Sustainability 11 3 1
Product Team 5 3 2
Responsiveness 1 5 1

Documentation 14 4
Usage documentation 4 4 5
Software requirements 11 3 1
Hardware requirements 8 3.5 1
Software Quality Documentation 5 3 3

License 21 4 7
Operational SW Characteristics 6 4
Trialability 5 3 2
Independence from other SW 11 3 4
Development language 5 4 3
Portability 1 4 1
Standard compliance 5 4 0
Testability 6 3.5 0

Maturity 6 3.5 11
Quality 6 3.5
Reliability 3 4 6
Performances 4 4.5 1
Security 15 4 6
Modularity 3 3 1
Portability 3 4 2
Flexibility/Exploitability 3 3 3
Code Quality 13 4 6
Coding conventions 9 3 0
Maintainability 3 4 0
Testability 2 4 0
Existence of benchmark/test 4 3.5 4
Changeability 2 3.5 0
Update/Upgrade/Add-ons/Plugin 3 4 1
Architectural quality 5 3 0

Risk (Perceived risks) 7 4.5
Perceived lack of confidentiality 5 1 0
Perceived lack of integrity 5 3 0
Perceived high availability 5 4 3
Perceived high structural assurance 5 2 0
Strategic risks 5 3 0
Operational risks 5 1 1
Financial risks 5 2 0
Hazard risks 5 4 5

Trustworthiness 6 4
Component 4 3.5 3
Architecture 4 3 2
System 4 3.5 3
OSS provider reputation 4 3.5 0
Collaboration with other product 4 2.5 3
Assessment results from 3rd parties 2 3.75 0

Table 4.1 High-level factors considered during the adoption of OSS. Reprinted with permission from
PUBLICATION I.
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which is continuously maintained in order to the targeted level of stability, security,
and quality. The risk of embedding software which might not be maintained and
updated in the future could cause a heavy impact on the future of the developed
software.

The potential consequences of the abandonment of OSS components cannot be
overstated, as it can lead to a cascade of failures throughout a system, resulting in its
complete inoperability. This "domino effect" can have severe implications, including
financial losses, data breaches, and reputational damage. Moreover, the significance
of this statement lies in the fact that in the event that an embedded software compo-
nent is inaccessible or outdated, it can trigger a cascade of consequences throughout
the entire system, potentially jeopardizing the overall functionality and security of
the project. Therefore, it is crucial to maintain and regularly update OSS compo-
nents to avoid such risks and ensure the system’s reliability and performance. For
this reason, in PUBLICATION II we introduced the OSS Abandonment Risk Assess-
ment model (OSSARA).

The model introduced in section 3.2 is based on two main factor risks: the prob-
ability of each component losing maintenance support in a given time period, and
the importance of each component to the main system, from which it is possible to
compute the overall abandonment risk (Equation 3.1).

The objective of the model is to evaluate the likelihood of an OSS component
being abandoned and its level of significance within a software system. By utilizing
OSSARA, professionals have the ability to keep track of the system’s risk level and
decide whether to continue using or substitute OSS components.

The importance of reliability of specific libraries in ML is most important during
the planning phase where the choice of the architecture to build is essential and
during the coding phase where it is actually imported. This division provides clear
similarity with the DevOps practices discussed in subsection 2.1.1, and provides the
basis for the development of DevOps for ML-based software: MLOps.

Moreover, the model supports continuous adaptation and customization, en-
abling practitioners to achieve optimized predictions using current OSS activity data
and selectively efficient, and even personalized algorithms. The model was requested
by one company, which responded positively and incorporated it into its continuous
integration/continuous deployment pipeline.
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4.2 RQ2: What is the Cognitive Cloud Continuum?
PUBLICATION III

Since SOA has been adopted in cloud computing, the software development process
has been significantly transformed [100]. The cloud is often considered an infinite
resource pool on which applications can be developed and expanded for different
objectives. Nevertheless, modern cloud systems are inherently complicated and may
include a range of components and computational resources located at the network’s
edge, stretching from public to private cloud and potentially spanning across multiple
regions.

The ability to scale up in cloud computing is achieved by creating and distributing
multiple computing instances. Traditionally, containers have served as the basis for
implementing architectures based on MSs. Nonetheless, the latest developments in
serverless computing and Functions as a Service (Faas) underscore the role of the
cloud as a platform that abstracts the underlying infrastructure resources [74, 5].

The widely accepted definition of Cloud Computing was coined by the National
Institute of Standards and Technology (NIST) in 2011. According to such definition,
Cloud Computing is "amodel for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction." [54].

The computation that happens at the edge of the network is defined as Edge
Computing [103]. Due to its proximity to the user, it is characterized by short
latency which makes it a better candidate for real-time applications in contrast to
cloud computing where transmission of data, and allocation of resources typically
includes delays. However, this quality comes with a price as edge devices do not
present high computation capacities.

Everything that is between the Cloud and the Edge nodes is referred to as the Fog.
Fog nodes aim to reduce the workload on the cloud and can host certain services that
would normally be on the cloud, leading to faster response times and less network
traffic to the cloud [17].

Edge and fog computing can provide advantages in terms of cost savings related
to data transfer, storage, and processing for applications that require the processing
of large amounts of data. Such applications can include, for instance, the processing
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2016 2017 2018 2019 2020 2021 2022

Continuum of resources available 
from the network edge to the 
cloud/datacenter 

[SP1]

The continuum collaboration of 
devices from fog to servers

[SP3]

Fluid ecosystem where 
distributed resources and 
services are aggregated on 
demand to support emerging 
data-driven application workflows

[SP5]

The whole set of resources 
from the edge up to the cloud, 
coined as IoT continuum

[SP6]

Data processing and storage 
may be local to an end-device 
at the edge of a network, located 
in  the cloud, or somewhere in 
between, in “the fog”

[SP7]

Next evolutionary step of cloud 
applications, incorporating other 
compute facilities such as data-
generating nodes (IoT) and 
intermediaries (edges, fogs)

[SP11]

Hierarchical network where 
service providers can place 
compute resources anywhere 
in the network

[SP12]

Extreme geographic distribution 
of infrastructure from the cloud to 
the device

[SP13]

Continuum that runs from 
specialized embedded devices to 
highly capable, standards-based 
individual terminals 

[SP8]

Set of operations that are 
required to fulfil, in an automated 
way, user and application 
requirements, taking into 
consideration networking features

[SP9]

Digital infrastructure jointly used 
by complex application workflows 
typically combining real-time 
data generation, processing 
and computation

[SP10]

Complex collective of 
components that varies in 
capabilities and numbers

Fog and cloud complement each 
other to form a service continuum 
between the cloud and the 
endpoints by providing mutually 
beneficial and interdependent 
services to make computing, 
storage, control, and 
communication possible 
anywhere along the continuum

[SP2]

Large digital ecosystem 
comprising IoT, Edge, Fog, and 
Cloud Computing, data cycles 
from data gathering, 
processing and analysis to 
knowledge generation and 
decision making

[SP27]

Sensor devices deployed in the 
Industrial Internet of Things (IIoT)

[SP28]

From cloud services to data 
sources including fog and edge 
computing

[SP25]

From cloud services to data sources 
including fog and edge computing

[SP20]

Simultaneously involving both on-
premises and public Cloud 
platforms to process data 
captured at the edge

[SP17]

A landscape of infrastructure 
including gateway servers, local 
compute infrastructure, and 
centralized clouds

[SP16]

Combination of several edge 
and fog devices, with multi-cloud 
infrastructure and platform 
services

[SP18]

Multi-cloud resources with local 
devices, including resource-
constrained (mobile) edges and 
fogs

[SP19]

The aggregation of 
heterogeneous resources 
along the data path from 
the Edge to the Cloud[SP24]

Aggregation of heterogeneous 
resources along the data path 
from the Edge to the Cloud

[SP21]

set of processing units, such as 
fog servers and edge devices, 
located between the IoT and the 
Cloud

[SP30]

Set of processing units located 
between the IoT and the Cloud, 
optimize response times and 
bandwidth consumption in time-
sensitive applications

[SP31]


Digital services across multiple 
physical infrastructures and 
administrative boundaries

[SP33]

Digital services across multiple 
physical infrastructures and 
administrative boundaries

[SP32]

The extension of the Cloud with 
distributed micro-data centers 
and mobile Edge servers

[SP22]


Extends the cloud computing IoT 
via edge computing systems

[SP29]

Combination of the cloud and the 
edge

[SP15]

Fog continuum expands the 
computational capabilities from 
the edge network to the cloud 
layer

[SP23]

Enables the deployment, 
upgrading, and migration of fog 
services running on various 
nodes located between IoT 
devices and the cloud

[SP34]

Systems that are simultaneously 
executed on the Edge, Fog, and 
Cloud computing tiers

[SP35]

Novel abstraction layer to 
express a continuous range of 
capacities

[SP36]

An infrastructure where 
computing resources are 
distributed from endpoint devices 
at the edge of the network to data 
centers or HPC systems at its 
core

[SP26]

The Fog and Cloud are a natural 
continuum of one another; thus, 
the marriage of these two killer 
technologies would offer an ideal 
IoT data provisioning of 
resources

[SP4]
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Figure 4.1 Definitions of cloud computing grouped by year and concepts. Each column represents
a different year while the colored blocks represent different aspects. Arrows between two
blocks indicate that there is a direct citation to the definition. Reprinted with permission
from PUBLICATION III.
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of data from thousands of sensors, audio, and video streams, as well as emerging ML-
based solutions pushing the next stage of research in fields such as Computer Vision
or Software Engineering.

In this scenario, it is hard to understand where to properly perform computation
making the most of the available devices. As a consequence, in recent years, there has
been a growing trend among researchers to concentrate on the concept of the cloud
continuum paradigm, resulting in the presentation of several surveys and reviews on
the topic [87, 76, 13, 72, 10, 82, 90, 4, 36, 40, 89, 77, 41]. However, its precise
definition remains unclear, and the notion of cloud continuum is being described
inconsistently in various papers.

The process performed in PUBLICATION III and described in Section 3.3 re-
sulted in the identification of 36 SPs aiming at providing a valuable definition of the
concept of the Cloud Continuum. The analysis performed investigated the evolution
of the concept itself and categorized the works in the literature based on six different
keywords that delineate the detected characteristics.

In 2016, the term "continuum" was first used to describe the area between the
cloud and the edge, where computing, storage, control, and communication services
could be provided. From 2017 to 2018, the term "continuum" continued to be
used to describe the combination of fog and cloud and its potential to provide ideal
Internet of Things (IoT) data provisioning. In 2019, the concept of the "computing
continuum" was defined as a fluid ecosystem with aggregated resources and services,
without emphasizing its positioning between the cloud and the edge. Also in 2019,
the term "IoT continuum" was introduced and defined as the whole set of resources
between the edge and the cloud.

Since 2020, more studies have provided definitions for the cloud continuum.
Studies in 2020 placed the concept as the services between the cloud and the end
devices (i.e., edge). In 2021, some studies mentioned fog as a critical entity in the
definition of the continuum, and many of these studies anchored the continuum con-
cept as the combination or aggregation of several fog, edge, IoT devices or services,
or the extension of the cloud. Some studies also indicate that IoT is a crucial part
of the cloud continuum concept, but the interpretation of the term differs slightly.
Until February 2022, two studies also provided definitions for cloud continuum,
one of which emphasized that it is a system simultaneously executed on the edge,
fog, and cloud computing tiers, and the other defined it as a novel abstraction layer
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to express a continuous range of capacities.
During the evolution, the detected keywords were:

• Multi-Cloud: definitions that pertain to multiple entities within the cloud

• Fog: definitions specifically mentioning or referencing Fog

• IoT: definitions pertaining to the IoT and connected devices

• Anywhere: definitions explicitly reporting that the computation can be exe-
cuted everywhere

• Micro Datacenter: definitions that clearly state the utilization of micro data
centers with the aim of offering data processing and storage with low-latency
access.

• Simultaneous: definitions that specifically mention the ability to perform
computation on multiple nodes simultaneously.

These categories are reported by different color blocks in Figure 4.1 which maps
the different SPs to the different categories. The different SPs can be consulted in
Appendix A of PUBLICATION III.

The result of PUBLICATION III is a unified definition of Cloud Continuum as "an
extension of the traditional Cloud towards multiple entities (e.g., Edge, Fog,

IoT) that provide analysis, processing, storage, and data generation capabilities".

4.2.1 Cognitive Cloud

Advancements in computer technology, big data, and Artificial Intelligence (AI) have
led to the emergence of the term "cognitive" in the field of computer science [19].
Cognitive informatics, which originated in the early 21st century, investigates the
inner workings of the brain and their application in computing and the IT indus-
try [99]. In the 2010s, cognitive computing gained popularity as a research area,
aiming to develop learning systems that can analyze vast amounts of data from vari-
ous sources using a unified mechanism inspired by the human brain [55]. Cognitive
computing employs algorithms rooted in cognitive science to enable machines to
exhibit brain-like intelligence, particularly in processing and analyzing unstructured
data [2]. This interdisciplinary approach, along with other technologies such as IoT,
big data analysis, and cloud computing, holds significant potential for various appli-
cations [19].
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Cloud computing plays a crucial role in supporting cognitive computing, which
leverages shared and configurable computing resources on-demand [54, 3]. Cogni-
tive computing, along with data mining and analysis, is predominantly conducted
on cloud computing platforms. Moreover, cognitive computing can also enhance
cloud computing in various domains. For example, edge cognitive computing archi-
tectures have been proposed to provide dynamic storage and computing services with
cognitive capabilities at the network’s edge [20]. Cognitive computing has also been
utilized to detect attacks on IoT devices using fog-to-things computing [1]. How-
ever, despite the exploration of applying cognitive computing in cloud architectures,
there is currently no established definition or theoretical framework for cognitive
cloud. A definition has been proposed in [64], by means of a systematic mapping
study similar to the one described in Section 3.3.

4.2.2 Cognitive Cloud Continuum

Following the outcomes of the previous sections, we can provide a unified definition
for the COgnitive CLoudCONtinuum (COCLCON) by combining the previously
introduced definitions. Specifically, we can inherit the extension proper of the Cloud
Continuum PUBLICATION III and associate it with the sensing, learning, and adapting
proper of the Cognitive Cloud [64]. We, therefore, define the COCLCON as:

¤Cognitive Cloud Continuum is an extension of the traditional Cloud towards
multiple entities (e.g., Edge, Fog, IoT) capable of sensing its environment, learning
from it, and opportunistically and dynamically adapting its computational load as
well as its outcome.

The Cognitive Cloud Continuum revolution has already started. Researchers and
practitioners are already starting to evolve their SDLC to cope with the requirements
and needs of this new concept to take their implementations to the next level [95].

4.3 RQ3: How does the software development process change
when doing MLOPs?

PUBLICATION IV - PUBLICATION V

To answer this research question, two different use cases have been developed. The
first one in PUBLICATION IV is defined as a static case as an intelligent scheduler for
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Figure 4.2 Example of a system with multiple locations (L1, L2, and L3), each with multiple edge
nodes (E1, E2, ..), and a variety of IoT devices connected to the the edge nodes of the
closest location (squares with same colors as locations). Moreover, the lines connecting
edge nodes of different locations indicate the possibility to handover the connections of the
IoT devices. Reprinted with permission from PUBLICATION IV. ©Springer Nature 2023.

updating edge services has been implemented using available data, while the second
one, as it is based on an MLOps pipeline, implements a CT and can therefore be
defined as a dynamic case.

4.3.1 Static Case

In PUBLICATION IV an intelligent scheduler for updating edge services within a SOA
has been designed. The research involved examining a scenario where a significant
Nordic enterprise operated a service-oriented system on edge nodes, delivering ser-
vices to 270K IoT devices; an example of such a system is depicted in Figure 4.2.
The scheduler, designed to reduce downtime during updates, recommended the most
optimal update schedule that minimizes disruptions to connections for IoT devices.

The environment of the SOAwithin such an enterprise followed an agile method-
ology for the continuous development of the system, which necessitated deploying
a fresh code version daily. However, deploying the new version entailed restarting
every location, a process that took roughly 30 minutes on average, and had a sig-
nificant impact on all connected IoT devices and related services provided by edge
nodes. During this period, end-users connected to edge nodes in the location must
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be redirected to another edge node in a different location to minimize the number of
service calls that are dropped. This process was complicated by the fact that IoT de-
vices can only access neighboring locations due to the wireless technology employed.
With the number of nodes and the daily upgrade time frame, it was not feasible to
follow a sequential upgrade schedule as it would take over 405 hours (around 16
days).

The algorithm developed has been presented in Section 3.4. After deployment,
the organization successfully achieved the capability to deploy fresh updates continu-
ously, with only a single daily disruption of 30 minutes, resulting in a 20% reduction
in service API calls.

4.3.2 Dynamic Case

Compared to the previous case, in PUBLICATION V the development of an MLOps
pipeline is described. The goal of the work was to show what to consider when
choosing the tools for each step of a pipeline. To create a valuable use case the
OSSARA model from Section 3.1 has been developed using OSS tools forming an
MLOps pipeline. One of the goals of the work was to perform CT, to this goal, the
original dataset used in PUBLICATION II has been preprocessed and divided in order
to simulate the act of continuously retrieving and creating data for the CT.

The creation of the pipeline presented in Section 3.5 highlighted the importance
of data when developing an MLOps pipeline which is a direct consequence of the
evolution from DataOps and the possibility to easily build and deploy ML-based
software using MLflow.

In particular, the versioning of data increases the replicability and traceability of
the work. The use of DVC in collaboration with DagsHub takes care of all that
is necessary for data storage, versioning, and also for data planning. The simpli-
fied deployment provided by MLFlow through REST API not only allows to make
any device to work as a server but also simplifies and speeds up the act of building
and deploying the ML-based code. This means that in the COCLCON any device
with enough computational power to build the network and perform the deploy-
ment could retrieve the weights from previous training and act as a server. More
importantly, this does not mean the training needs to be performed on such a device
allowing a computational offloading on a more powerful device.

In the work, the tools employed were kept to a minimum to ensure a straight-
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forward yet comprehensive MLOps pipeline. It is worth noticing that the current
state of tool development relies heavily on the intended application to be developed,
thus smaller pipelines can be developed for different use cases.
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5 DISCUSSION

This Chapter presents the outcomes of this thesis, therefore answers the Research
Questions presented in Section 1.1 and summarized in Table 5.1. Based on such
outcomes, the discussion is presented.

5.1 Answers to research questions

RQ1 - What are the potential issues of embedding Open Source Libraries in

MLOps? In order to answer RQ1, the Open Source nature of the different libraries
composing ML-based code, and therefore MLOps, has been analyzed. First, the
criteria that practitioners take into account while choosing OSS have been investi-
gated (PUBLICATION I). Once the targeted OSSs have been identified it is important
to be sure that such OSS is maintained and regularly updated to maintain its level
of reliability and performance. The aim of PUBLICATION II is to provide a model
for assessing the risk of embedding OSS (in this case libraries) into their software
system, to help practitioners decide whether or not to select a particular OSS. The
potential issues of embedding Open Source Libraries can be analyzed by making use
of the proposed model, which can be used to measure the risk of embedding open
source libraries when developing ML-based software, and thus MLOps pipelines.

RQ2 - What is the Cognitive Cloud Continuum? For the goal of answering
RQ2, a clear definition of the concepts of Cloud Continuum was identified (PUB-
LICATION III). Following, such definition has been connected to another definition
in literature [64] to clearly define what is the Cognitive Cloud Continuum. This
resulted in defining the Cognitive Cloud Continuum as: "an extension of the tradi-
tional Cloud towardsmultiple entities (e.g., Edge, Fog, IoT) capable of sensing its

environment, learning from it, and opportunistically and dynamically adapting

its computational load as well as its outcome". Such a definition has been provided
to clearly state the main characteristics required for the elements composing such an
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RQ1: What are the potential issues of embedding Open Source Libraries in MLOps?
OSSARA model to measure the risk of embedding open source libraries when developing ML-based software.

RQ2: What is the Cognitive Cloud Continuum?
Definition of the Cognitive Cloud Continuum.

RQ3: How does the software development process change when doing MLOps?
Use of MLops tools to perform Continuous Training, data versioning and full automation.

Table 5.1 Research Questions summary: RQs and the results achieved.

environment.

RQ3 - How does the software development process change when doingMLOps?

To answer RQ3 we developed two use cases validating the research previously per-
formed. This is because, in the process of building the MLOps pipeline, it is essential
not only to consider the risk associated with incorporating open source libraries dur-
ing the coding phase, as specified in RQ1, but also to align with the criteria outlined
in RQ2, relating to the development of a dynamic system that can be retrained and
redeployed opportunistically.

In particular, 2 different use cases have been developed, the first has been based on
the development of a single AI algorithm (PUBLICATION IV), while the peculiarity of
the last use case has been the development of a model based on continuous training
and therefore following the MLOps guideline (PUBLICATION V).

The first work has been an example of a scheduling system where multiple edge
devices connected were receiving the time at which the update was starting. The
developed system was taking care of the scheduling and the other devices were only
receiving the information, therefore, the edge devices were not actively participating
in the process. For this reason, the use case has been classified as "static".

On the contrary, the dynamic case has been specifically tailored to compare how
the process of Continuous Training, Continuous Integration, and Continuous De-
velopment influence software development. For this goal, the use of MLOps tools
has been vital. More importantly, the use case selected for replication with MLOps
as a software development process is a pre-developed use case with no automation. In
developing the MLOps pipeline, special emphasis was placed on the process of filter-
ing, preprocessing, and versioning the data, creating a first major difference from the
previous model. Following, even if both systems have been developed in Python,
the use of the different tools has allowed an increased knowledge of the different
available models based on the different versions of the data.
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5.2 Discussion of the results

To summarize, the results obtained in this thesis and in the publications from which
they are derived, show the need for guidelines when developing ML-based software.
Firstly, it is important to understand the risk of choosing one library over another.
Highly available alternatives are not always positive, as some libraries may not be
maintained and therefore may not be compatible with future updates of other em-
bedded libraries. This will inevitably lead to problems and will make it impossible
to deploy the software. In this particular situation, the presence of models such as
OSSARA (PUBLICATION II), which have the ability to continuously monitor the
risk associated with the inclusion of certain libraries, becomes fundamental.

On a different aspect, the different definitions focus on different aspects ofMLOps
creating confusion. The best example is to compare the guidelines provided by
Google in [18] focusing on the levels of automation and other definitions such as
[91] focusing on adding more stages to the DevOps pipeline. This thesis agrees on
the importance of the automation proposition of [18] and the importance of includ-
ing an ML-related part in the infinite DevOps loop.

The increased levels of automation provided by the use of MLOps tools and the
possibility of connecting them into forming fully automated pipelines have been
shown as a promising yet already established approach. On the same side, the evolu-
tion of the concept of the Cognitive Cloud Continuum has allowed the creation of
environments based on different devices capable of communicating at different levels
from the Cloud to the far edge. The latter, however, even if being mentioned in the
cloud computing domain and funding agencies, did not have a clear definition or a
set of interpretations agreeing on common characteristics as happened for DevOps.

The environment theorized in the definition of the Cognitive Cloud Continuum
could potentially create powerful ecosystems capable not only of ensuring a more
thoughtful use of computational power but also ensuring the ability of adapting to
different circumstances within the environment such as data acquisition from differ-
ent devices, reacting to anomalies in the data or reacting to devices unavailability.

The two concepts of MLOps and Cognitive Cloud Continuum have been shown
as not only capable of coexisting but also benefiting from each other. This is because
whenever a device in the Cognitive Cloud Continuum would not have the computa-
tional power to train a model, it could still exploit other devices in the environment
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and retrieve the weights of the model to perform the deployment at a later stage.
The use case provided in (PUBLICATION V) is a clear example of the possible

improvements that could be achieved when using MLOps guidelines and pipelines
over static ML-based applications. The proposed system has been a simulation of
continuous data crawling, which is a continuous generation of data. According to
the guidelines provided, this continuous flow of data needs to be versioned in the
same way that code is versioned in DevOps. Subsequently, the data flow allows the
system to perform continuous training, providing new versions of the model that
could lead to more accurate models. These models can be compared at any stage,
allowing the model with the highest selected metric to be automatically deployed,
thus achieving full automation.

However, such full automation must be monitored on the basis of the application
for which it is defined, proving that the 10 levels of automation (LOA) theorized in
1999 are increasingly relevant [29].

5.3 Threats to Validity

The work is subject to threats to validity. First of all, it is important to state those
threats due to the empirical studies performed in this thesis. To this extent, the
outcomes of the literature reviews could potentially be influenced by diverse factors
of bias or error, encompassing inaccuracies in data extraction, and subjectivity in
defining and implementing inclusion and exclusion criteria.

Following it is also important to separate those threats related to the development
of ML-based software and those related to the Cognitive Cloud Continuum. In the
first case, the main threat to validity is related to the generality of the study made.
In order to give the best possible overview of the different phases composing the
MLOps as well as the tools contributing to automating them the work does not focus
on a single application (such as Computer Vision). For a particular application, a
specific tool or a pipeline composed of a group of tools might be more efficient
than a combination used for a different application (such as the use case provided in
PUBLICATION V).

In the second case, the main threat to validity is the fast-evolving state of the
art for task offloading. Adapting the software dynamically requires an environment
such as the one theorized in the Cognitive Cloud Continuum, in its absence an or-
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chestrator becomes necessary in the system and its presence makes the offloading
nothing more than a sophisticated orchestration mechanism. The increased aware-
ness in the Cognitive Cloud Continuum itself will allow the refinement of already
existing algorithms and the development of new AI-based algorithms.
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6 CONCLUSION

MLOps and the Cognitive Cloud Continuum are two concepts that are receiving
increased interest nowadays. One commonality they share is the absence of a precise
definition and a definitive list of tools that can be utilized.

This thesis explores and compares these two concepts to promote their widespread
adoption in software development practices. At first, the importance of Open Source
Libraries when developing ML-based code is explored. Following, the differences be-
tween DevOps and MLOps are emphasized to provide a vision of the different stages
of machine learning-based software development and the role of the machine learning
developer.

In the second ResearchQuestion, a clear definition of the concept of the Cognitive
Cloud Continuum is provided.

The results from the different works composing this thesis have been validated
through the development of use cases with the goal of showing differences in the
process of software development before and after the development of MLOps guide-
lines.

This thesis contributes to the state of the research by increasing awareness of
the concept of Cognitive Cloud Continuum and emphasizing the importance of
following MLOps guidelines when developing ML-based software.

From the analysis performed in this work, it is possible to state that in the future
the MLOps practices will become the new de-facto standard for software develop-
ment. Moreover, the need to have such applications always available and on any
device will make it necessary for the development of architectures supporting the
Cognitive Cloud Continuum. The research performed will also allow practitioners
and researchers to confidently select the proper set of tools when developing smart
environments.
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APPENDIX A PUBLICATION SUMMARY

PUBLICATION I - The work explores the factors considered by companies when
selecting OSS for software development and analyzes their availability in OSS portals
using APIs. We identified 8 factors, 74 sub-factors, and 170 metrics commonly used
to evaluate and select OSS. However, only a small part of the factors can be evaluated
automatically, and out of 170 metrics, only 40 are available from project portals
APIs. The extraction of information from the 100K most starred GitHub projects
revealed that only 22 metrics out of 40 returned information for all the projects.
The paper provides an updated list of factors and metrics that practitioners can use
to select OSS and can also benefit researchers, OSS producers, and repositories to
ease the evaluation of OSS projects.

PUBLICATION II - The work presents OSSARA, the OSS Abandonment Risk
Assessment model. The model aims at predicting the risk of abandonment for each
embedded OSS component and evaluate their criticality in a software system. The
prediction is performed based on two factors the probability of each component los-
ing maintenance support during a given timeframe and the significance of each com-
ponent for the overall system. This enables practitioners to monitor the risk level
of the system and decide whether to maintain or replace the OSS components. To
validate the model a preliminary assessment was carried out on 12,208 OSS projects
that meet the following criteria: contain at least 1,000 commits from at least five
unique contributors and are watched by at least 100 users. The four classification
algorithms selected were decision tree, support vector machine, logistic regression,
and naive Bayes.

PUBLICATION III - The work presents a systematic mapping study on Cloud
Continuum definitions. From 36 identified definitions we performed an analysis and
categorization to propose a new definition. The proposed definition is "an extension
of the traditional Cloud towards multiple entities (e.g., Edge, Fog, IoT) that provide
analysis, processing, storage, and data generation capabilities." The new definition,
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based on the concepts of extension of the resources and extension of computational
capabilities, can help practitioners and researchers better understand the concept of
cloud continuum and advanced service-oriented computing.

PUBLICATION IV - The work introduces a smart edge provisioning algorithm
that minimizes the number of service drops and maximizes service quality in a
service-oriented architecture. The service-oriented system runs on edge nodes and
provides services to 270K IoT devices. The algorithm is designed to optimize the
environment provided, resulting in a reduced time required to upgrade network com-
ponents without affecting service availability during peak demand hours. The algo-
rithm has been validated through the use of metrics to compute the performance of
the network. The adoption of the algorithm has allowed the company to deploy
new updates in a continuous manner while only experiencing a daily drop of 20%
of service API calls for a period of 30 minutes.

PUBLICATION V - The work discusses the process of creating an MLOps pipeline
leveraging open source tools. The proposal has been supported by illustrating a
developed use case scenario, specifically the OSSARAmodel from Publication II has
been used. The main aim has been placed on creating a model capable of performing
continuous training. By integratingOSS tools such as DugsHub, DVC, andMLflow,
it was possible to create a fully automated system that keeps track of different data,
models, and experiments when deploying the risk assestment model.
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a b s t r a c t

Context: Open Source Software (OSS) is nowadays used and integrated in most of the commercial
products. However, the selection of OSS projects for integration is not a simple process, mainly due
to a of lack of clear selection models and lack of information from the OSS portals.
Objective: We investigate the factors and metrics that practitioners currently consider when selecting
OSS. We also investigate the source of information and portals that can be used to assess the factors,
as well as the possibility to automatically extract such information with APIs.
Method: We elicited the factors and the metrics adopted to assess and compare OSS performing
a survey among 23 experienced developers who often integrate OSS in the software they develop.
Moreover, we investigated the APIs of the portals adopted to assess OSS extracting information for
the most starred 100K projects in GitHub.
Result: We identified a set consisting of 8 main factors and 74 sub-factors, together with 170 related
metrics that companies can use to select OSS to be integrated in their software projects. Unexpectedly,
only a small part of the factors can be evaluated automatically, and out of 170 metrics, only 40 are
available, of which only 22 returned information for all the 100K projects. Therefore, we recommend
project maintainers and project repositories to pay attention to provide information for the project
they are hosting, so as to increase the likelihood of being adopted.
Conclusion: OSS selection can be partially automated, by extracting the information needed for the
selection from portal APIs. OSS producers can benefit from our results by checking if they are providing
all the information commonly required by potential adopters. Developers can benefit from our results,
using the list of factors we selected as a checklist during the selection of OSS, or using the APIs we
developed to automatically extract the data from OSS projects.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Open Source Software (OSS) has become mainstream in the
software industry, and different OSS projects are now considered
as good as closed source ones (Robles et al., 2019; Kilamo et al.,
2020). However, selecting a new OSS project requires special
attention, and companies are still struggling to understand how
to better select them (Lenarduzzi et al., 2020).

One of the main issues during the selection of OSS projects,
is the lack of clear information provided by OSS providers about
the software quality assessment, and in particular the lack of
automated tools that help the selection (Lenarduzzi et al., 2020).
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A local company hired our research group to ease and stan-
dardize the OSS selection process and to automate it as much
as possible, to reduce the subjectivity and the effort needed for
the evaluation phase. Currently, the company does not prescribe
any selection model, and reported us that their developers com-
monly struggle to understand what they need to consider when
comparing OSS projects.

In this paper, we investigate the first steps towards the defi-
nition of a semi-automated OSS evaluation model. Therefore, we
extend our previous work (Lenarduzzi et al., 2020) by conducting
a survey investigating the factors commonly considered by the
companies when selecting OSS, the source of information that
can be used to analyze these factors, and the availability of such
information on the portals.

The goal of our work is to investigate and determine the fac-
tors that practitioners are currently considering when selecting
OSS, to identify the sources (portals) that can be used to evaluate
such factors mentioned by the practitioners, and to validate the
public APIs that can be accessed to automatically evaluate those
factors from the sources and portals.

https://doi.org/10.1016/j.jss.2022.111255
0164-1212/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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The research community has been studying OSS selection and
evaluation from different perspectives.

Researchers developed methods to evaluate, compare, and
select OSS projects. Such methods and tools exploit different
types of approaches, including manual extraction of data from
OSS portals (e.g. OMM Petrinja et al., 2009, OpenBQR Taibi et al.,
2007a, PSS-PAL Wasserman et al., 2017).

Researchers also proposed platforms for mining data from OSS
repositories, that can also be used as the sources of information
for the evaluation and comparison of OSS (e.g., The SourceForge
Research Data Archive (SRDA) Madey, 2008, FLOSSmole Anon,
2020a, FLOSSMetrics Anon, 2020b, tools to provide dump of ex-
isting OSS portals (e.g. GHArchive Anon, 2020c, GitTorrent Anon,
2020d, . . . ), and tools to extract information from OSS portals
(e.g. PyDriller Spadini et al., 2018, CVSAnaly Robles et al., 2004...).

Moreover, different approaches to evaluate software qual-
ity, often applied to OSS, have been proposed in research, in-
cluding software metrics (e.g. Chidamber and Kemerer’s met-
rics suite Chidamber and Kemerer, 1994, Cyclomatic Complex-
ity McCabe, 1976), tools to detect technical debt Avgeriou et al.,
2020 or to measure other quality aspects (e.g. Software Quality
Index Dixon, 2016, Architectural Debt Index Roveda et al., 2018).

Though the previous work provided a significant amount of
results on OSS quality evaluation, OSS development data crawl-
ing, and OSS selection and adoption models, such works are
still limited and not easy to apply in industry for selecting OSS
because of various reasons:

• OSS selection models

– Limited application in industry of the previous OSS
selection models Lenarduzzi et al., 2020. The vast ma-
jority of models have never been adopted massively
by industries with neither case studies nor success
stories on the usage of these models therein. One of the
potential reasons is that it is nearly not possible to have
a generally accepted set of OSS selection criteria to use.
The companies must adopt the criteria for their specific
needs and constraints to achieve their business objec-
tives. Another reason for such limited adoption of the
selection models can be related to the lack of maturity
of the models. The models lack clarity and guides about
which metrics would offer the most relevant insights
into the selection criteria.

• OSS Mining Platforms such as The SourceForge Research
Data Archive (SRDA) (Madey, 2008), GHArchive, GitTor-
rent (Gousios, 2013a)

– They are designed for research purposes and are com-
plex to use and often have different dependencies for
developers that simply need to get data for an OSS
project. As an example, GitArchive (Anon, 2020c) does
not allow to directly query the data with an API, but
needs to be accessed through Google Big Query or
dumping the files. Moreover, the collection of all the
information needed by the users to evaluate an OSS
project requires to use several platforms. This study
aims to provide an overview on what information is
important to the companies and from what platforms
to extract it when evaluating OSS projects.

– They are often not maintained in the long term. As
an example, The SourceForge Research Data Archive
(SRDA) (Madey, 2008) is not available anymore. The
GHTorrent (Gousios, 2013a) was created in 2013 with
the last activity reported in 2019. More information on
these platforms is available in Table 1.

• Tools to evaluate software quality

– They are complex to use and often require effort for
manual configuration and analysis on the target soft-
ware.

– Most tools require expertise to understand which met-
rics should be used in which context, and how to inter-
pret the evaluation results. They often provide an over-
load of information, but not always useful for every
context. As an example, tools for assessing the quality
and technical debt of software, such as SonarQube,2
include more than 500 different rules to validate the
source code, but only a limited amount of the rules that
are commonly associated to specific qualities.

– When existing tools focus on a specific set of quality
metrics to do the evaluation, there is a lack of a tool
that can aggregate the factors commonly considered
during the selection of OSS.

– The existence of an OSS project community and of a
health ecosystem is an informative indicator of the
maturity of a software and its propensity for growth.
Even though there are many community-related fac-
tors and metrics identified in the OSS selection model,
some metrics cannot be accessed directly from the
project’s repository and existing tools provide very
limited support to analyze the data associated with
the OSS project community and its support in OSS
evaluation.

• Existing Software Quality Models and Metrics such as the
Architectural Quality index (Roveda et al., 2018), but also
metrics such as the Cyclomatic complexity (McCabe, 1976)
or the presence of Code Smells (Fowler, 1999) or anti-
patterns (Brown et al., 1998).

– Are usually targeting mainly on quality, while compa-
nies might be interested in other aspects while select-
ing OSS (e.g. Costs, licenses, features, . . . ).

– Lack of comparison of the magnitude of the observed
effect: different models return different outputs. As
an example, previous works indicated that high levels
of cyclomatic complexity might result in less read-
able source code. While besides that, the presence of
some smells can be more harmful than others, but the
analysis did not take into account the magnitude of
such observed phenomenon. As an example, it is not
clear if a piece of code with a cyclomatic complexity
equals to 10 is twice more complex to read than the
same piece of code with that of 5. The same applies to
the comparison of several other metrics, including the
presence of different amount of code smells. Thus, the
comparison of the results of the metrics, increases the
complexity of the analysis and comparison between
projects.

– Lack of complex and historical analysis. A complete
comparison of an OSS might require not only the anal-
ysis of the latest snapshots of a project, but a historical
analysis, thus increasing the complexity and the effort
required to perform an analysis.

In addition, lack of expertise in companies, in particular on soft-
ware quality, hinders practitioners to select the most suitable
quality models for comparing the projects.

To cope with the aforementioned issues, this paper aims at
corroborating and extending previous empirical research on OSS

2 SonarQube http://www.sonarqube.org.
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Table 1
OSS source of information and portals reported in the literature.
Portal Created on Last activity Information stored

OSS aggregators

(Anon, 2020p) Software Heritage 2018 2020 Source Code
(Anon, 2020f) OpenHub 2004 2020 OSS tracker
(Anon, 2020g) FlossHub 2008 2018 Research portal
(Anon, 2020e) SourceForge Research Data 2005 2008 Statistics
(Anon, 2020c) GH Archive 2012 2020 Timeline Record
(Anon, 2020d) GH Torrent 2013 2019 GH event monitoring
(Anon, 2020a) FLOSSMole 2004 2017 Project data
(Anon, 2020q) PROMISE 2005 2006 Donated SE data
(Anon, 2020b) FLOSSMetrics 2006 2010 Metrics and Benchmarking

Audit and analysis tools

(Anon, 2020k) WhiteSource 2011 2020 Security
(Anon, 2020r) FossID 2016 2020 OS Compliance and Security
(Anon, 2020j) Synopsys (formerly BlackDuck) 2012 2020 legal, security, and quality risks
(Anon, 2020l) SonarQube 2006 2020 Code quality and security
(Anon, 2020n) WhiteHat 2001 2020 Software composition analysis
(Anon, 2020l) SonarCloud 2008 2020 Software quality analysis

OSS mining data tools

(Anon, 2020s) BOA 2015 2019 Source code mining
(Anon, 2020h) Candoia 2016 2017 Software repository mining
(Anon, 2020i) RepoGrams 2016 2020 OSS Comparison

Questions and answers portal

(Anon, 2020t) Stack Exchange 2009 2020 Q&A
(Anon, 2020u) Reddit 2009 2020 Q&A

selection and adoption, so as to enable, not only our target
company to assess and compare OSS but also other companies.
More specifically, this study aims at extending our previous
work (Lenarduzzi et al., 2020) from different point of views:

• We performed a survey to update the common factors that
are currently considering when selecting OSS and we com-
pared them with the factors considered in the past (elicited
in the Euromicro/SEAA SLR Lenarduzzi et al., 2020)

• We analyzed the source of information and portals that can
be used to assess the aforementioned factors

• We analyzed the public APIs that can be accessed to auto-
matically assess the factors from the aforementioned portals

• We extracted the information for 100K projects, to validate
their availability.

The source of information associated with the factors and metrics
adopted to measure them will help developers to understand
and adopt OSS selection models for their specific needs and
constraints. Moreover, they will help to remind OSS producers to
provide information commonly expected by the potential users
of the software.

Together with the validated APIs to automatically extract the
assessment information, the result of the work forms a critical
step towards developing semi-automatic tools to facilitate the
practice of OSS selection.

The remainder of this paper is structured as follows. Section 2
presents related works. Section 3 describes the research method
we adopted to achieve our goals. Section 4 reports the results
while Section 5 discuss them. Section 6 finally draws conclusions
and future works.

2. Related work

To cope with the need of selecting valuable OSS projects,
several evaluation models have been proposed (e.g. Duijnhouwer
and Widdows (2003), Golden (2008), Taibi et al. (2007b) and
Semeteys (2008)). At the same time, different research groups
proposed project aggregators to ease the access of different in-
formation on OSS, measures and other information. Last, but

not least, research in mining software repositories also evolved
in parallel, and different researchers provided datasets of OSS
projects, portals and tools to extract information from OSS
projects.

In the remainder of this Section, we summarize related work
on the factors adopted to evaluate OSS, OSS evaluation and se-
lection models, OSS aggregator portals, tools for OSS repository
mining and tools for OSS analysis and audit.

2.1. The factors considered during the adoption of OSS

In the systematic literature review (SLR) on OSS selection and
adoption models (Lenarduzzi et al., 2020) that we are extending
in this work, we analyzed 60 empirical studies, including 20
surveys, 5 lessons learned on OSS adoption motivation and 35 OSS
evaluation models.

Regarding the common factors of OSS selection and adoption,
eight main categories were reported by the selected studies, in-
cluding, Community and Adoption, Development process, Economic,
Functionality, License, Operational software characteristics, Quality,
Support and Service. For each category, sub-factors or metrics
are reported. Results show that not all factors were considered
equally important according to evaluation models and to surveys
and lessons learned. For example, factor cost is considered much
more important by the surveys than by the models when, on the
contrary, the importance of factor maturity is seen oppositely.
Furthermore, certain factors are considered important by both
groups, such as, Support and Service, Code Quality, Reliability, etc.

Table 1 lists sources of information mentioned in the re-
lated works to assess the common factors considered during the
adoption of OSS. The table only reports the indirect sources of
information. Direct sources of information such as the official
portal, or the versioning system (e.g. GitHub, GitLab) are not
mentioned in the table.

2.2. OSS evaluation and selection models

Within the 35 OSS models identified in our previous literature
review (Lenarduzzi et al., 2020), 21 (60%) were built via case
study, with 5 via interview, 5 via experience and the other 4 via
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the combination of interview and case study. All proposed models
provide either checklist (13 models) or measurement (8 models)
or both (14 models) as their working approaches. On the other
hand, regarding the studies with surveys and lesson learned,
the majority (13) target at adoption motivation identification
with the remainders on other scopes. Furthermore, 12 tools are
introduced in 22 of the given studies; however, only two out of
the 12 are properly maintained.

All the models propose to evaluate OSS with a similar ap-
proach:

• Identification of OSS candidates. In this step, companies need
to identify a set of possible candidates based on their needs.

• Factors evaluation A list of factors are then assessed, by ex-
tracting the information or measures from the OSS portals,
or by measuring/running the project candidates

• Project scoring The final score is then normalized based on
the importance of each factor and the final evaluation is
computed.

The Open Source Maturity Model (OSMM), was the first model
proposed (Duijnhouwer and Widdows, 2003; Golden, 2008) in
the literature. OSMM is an open standard that aims at facilitating
the evaluation and adoption of OSS. The evaluation is based
on the assumption that the overall quality of the software is
proportional to its maturity. The evaluation is performed in three
steps:

1. Evaluation of the maturity of each aspect. The consid-
ered aspects are: the software product, the documentation,
the support and training provided, the integration, the
availability of professional services.

2. Every aspect is weighted for importance. The default is:
4 for software, 2 for the documentation, 1 for the other
factors.

3. The overall maturity index is computed as the weighted
sum of the aspects’ maturity.

The OSMM has the advantage of being simple. It allows fast
(subjective) evaluations. However, the simplicity of the approach
is also a limit: several potentially important characteristics of the
products are not considered. For instance, one could be interested
in the availability of professional services and training, in details
of the license, etc. All these factors have to be ‘squeezed’ into the
five aspects defined in the model.

The Open Business Readiness Rating (OpenBRR) (Wasserman
et al., 2006) is an OSS evaluation method aiming at providing
software professionals with an index applicable to all the current
OSS development initiatives, reflecting the points of view of large
organizations, SMEs, universities, private users, etc. The OpenBRR
is a relevant step forward with respect to the OSMM, since it
includes more indicators, the idea of the target usage, and the
possibility to customize evaluations performed by other, just by
providing personalized weights. With respect to the latter char-
acteristics, the OpenBRR has however some limits: one is that for
many products it is difficult to choose a ‘‘reference application’’
that reflects the needs of the users; another is that there are lots
of possible target usages, each with its own requirements; finally,
the evaluation performed by a user could be not applicable to
other users. In any case, the final score is a synthetic indicator
to represent the complex set of qualities of a software product.
On the official OpenBRR site several evaluations were available,
and originally provided as spreadsheet. However the OpenBRR
website and tools are not available anymore.

The Qualification and Selection of Open Source Software (QSOS)
(Semeteys, 2008) works similarly as OpenBRR, but requires first
to create an Identity Card (IC) of each project, reporting general

information (name of the product, release date, type of applica-
tion, description, type of license, project URL, compatible OS, . . . ),
then to evaluate the available services, functional and technical
specifications and grade them (in the 0..2 range). Then, evaluators
can specify the importance of the criteria and their constraints.
Finally a normalized score is computed to compare the selected
project candidates. Although the method is effectively applicable
to most OSS, the QSOS approach does not represent a relevant
step forward with respect to other evaluation methods. Its main
contribution is the set of characteristics explicitly stated which
compose the IC, and the provision of a guideline for the consistent
evaluation of these characteristics. The evaluation procedure is
rigid. For instance, it requires to define the IC of each OSS under
evaluation, even if they are not completely matching the require-
ments. Such a procedure is justified when the ICs of products
are available from the OS community before a user begins the
evaluation. However even in this case it may happen that the
user needs to consider aspects not included in the IC: this greatly
decreases the utility of ready-to-use ICs. The strict guidelines for
the evaluation of the IC, necessary to make other users’ scoring
reusable, can be ill suited for a specific product or user. Finally,
even though in the selection criteria it is possible to classify
requirements as needed or optional, there is no proper weighting
of features with respect to the intended usage of the software.

OpenBQR (Taibi et al., 2007a) works in a similar way as Open-
BRR, but requires the evaluators to first specify the importance
of the factors, and then to assess the projects, so as to avoid to
invest time evaluating factors that are not relevant for the specific
context. OpenBQR is an important step forward in terms of effort
required to evaluate the projects.

OSS-PAL (Wasserman et al., 2017) works similarly as QSOS, but
proposed to introduce a semi-automated evaluation, supported
by an online portal. Unfortunately, the portal seems to be only a
research prototype, and does not collect any data automatically.

All the aforementioned models have some drawbacks:

• Existing methods usually focus on specific aspects of OSS.
For example, the OSMM focuses on software maturity, but
misses some potentially interesting characteristics like li-
cense compliance or security for the quality assessment. On
the other hand, methods like OpenBRR, QSOS, OpenBQR,
etc. provide a set of indicators reflecting a wide range of
potential users’ viewpoints for the quality assessment. This
requires individuals to identify the importance of assess-
ment factors according to their needs and introduces extra
effort and complexity to adopt a method for practice.

• The OSS evaluation requires effort to run the software and
to extract information from the OSS portals. The assess-
ment process of existing methods is not optimized. Methods
such as QSOS proceed to evaluate indicators before they are
weighted, so some factors may be measured or assessed
even if they are later given a very low weight or even a null
one. This results in unnecessary waste of time and effort.

• The dependence of the users of OSS is not adequately as-
sessed, especially the availability of support over time and
the cost of proprietary modules developed by third parties.

2.3. OSS aggregators

Many platforms have been developed to collect and share OSS-
related data, enabling a quick extraction of the information on
different OSS projects.

Ohloh was one of the first project aggregators (Bruntink, 2014;
Allen et al., 2009) on the market (2004) aimed at indexing sev-
eral projects from different platforms (GitHub, SurceForge, . . . ).
In 2009, Ohloh was acquired by Geeknet, owners of Source-
Forge (Anon, 2020e) that then sold it to Black Duck Software in
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2010. Black Duck, was already developing a product for OSS audit,
with a particular focus on the analysis of the license compatibility,
and integrated Ohloh’s functionality with their products. In 2014,
Ohloh became ’’Black Duck Open Hub’’ (Anon, 2020f). Finally, Syn-
opsys acquired Black Duck and renamed the Black Duck Open Hub
into ’’Synopsys Open Hub’’. Synopsis Open Hub is currently the
only continuously updated OSS aggregator that include informa-
tion of different OSS projects from different sources (versioning
control systems, issue tracking systems, vulnerability databases).
On January 2021, OpenHub indexed nearly 500K projects, and
more than 30 billions of lines of code. It provides flexibility for
users to select the metrics to compare project statistics, lan-
guages, repositories, etc. However, it lacks the OSS evaluation
facilities that allow to adjust the importance of selected metrics
according to users’ needs for automatically scoring the candidate
software. In addition, it lacks information related to the com-
munity popularity, documentation, availability of questions and
answers and other information.

Other OSS aggregators have been proposed so far. FlossHub
(Anon, 2020g) and FLOSSMole (Anon, 2020a) had similar goal of
OpenHub. However, they have not been updated in the last years.
FlossMetrics (Anon, 2020b) had the goal of providing software
metrics on a set of OSS. However, it has also been abandoned in
2010.

The Software Heritage (Di Cosmo and Zacchiroli, 2017), dif-
ferently than the previously mentioned platforms, has the goal
of collecting and preserving the history of software projects, and
is not meant to enable the comparison or to provide support for
selecting OSS. The project is sponsored by different companies
and foundations, including the UNESCO foundation. The Software
Heritage could be used as a source of information to analyze the
activity of a project. However, its access is not immediate, and
users need to use APIs to get detailed data on the projects.

Other platforms, designed for supporting mining software ac-
tivities, might also be used for obtaining relevant information
from OSS. In particular, the Sourceforge research data archives
(Madey, 2008) shared the SourceForge.net data with academic
researchers studying the OSS software phenomenon; GH Archive
(Anon, 2020c) records the public GitHub timeline and makes it ac-
cessible for further analysis; and the GHTorrent project (Gousios,
2013b) creates a mirror of data offered through the Github REST
API to monitor the event timeline, the event contents, and the
dependencies.

2.4. OSS repository mining tools

Besides the platforms that aggregate heterogeneous metric
providers to track repositories associated with a wide range of
OSS projects, there are also research prototypes or projects to
mine information from given repositories. In particular, BOA (Dyer
et al., 2013, 2015) provide support to mine source code and
development history from project repositories using the domain-
specific language. Candoia (Anon, 2020h) also provided a plat-
form for mining and sharing information from OSS projects.
RepoGrams (Rozenberg et al., 2016; Anon, 2020i) allows to visu-
ally compare projects based on the history of the activity of their
git repositories.

Other groups developed tools not aimed at supporting the
selection of OSS, but that can be used as valuable sources of
information. As an example, PyDriller (Spadini et al., 2018) can
be used to obtain detailed information from commits.

Surprisingly, none of the previously mentioned papers cited
other tools such as Cauldron or SourceCred. Cauldron3 is a free
open source software that is used to collect information from

3 Cauldron: https://cauldron.io.

multiple sources as different information are retrieved. Source-
Cred4 is an OSS technology which analyzes a project and deter-
mines the contributions of individuals in it. It is built on the idea
that communities matters but also that the work of singles need
to be visible and rewardables.

The Community Health Analytics Open Source Software
(CHAOSS)5 project. CHAOSS, a Linux Foundation project, also de-
veloped tools to measure OSS projects, and in particular to mea-
sure community health, to analyze software community develop-
ment and to develop programs for the deployment of metrics not
attainable through online trace data.

Different European projects also developed tools for min-
ing data from OSS repositories. The EU H2020 CROSSMINER
project6 (Rocco et al., 2021) includes techniques and tools for
extracting knowledge from existing open source components
generating relevant recommendations for the development of
user’s projects. The recommendation system focuses on 4 main
activities:

• Data Preprocessing: containing tools to extract metadata
from repositories

• Capturing Context: uses metadata to generate knowledge
for mining functionalities

• Producing Recommendation: IDE to generate recommen-
dations.

• Presenting Recommendation: IDE to show recommenda-
tions.

QUALOSS (Quality in Open Source Software) (Soto and
Ciolkowski, 2009) and QualiSPo (Quality Platform for Open Source
Software) (Del Bianco et al., 2010) projects aimed at identifying
quality models to evaluate the quality and the trustworthiness
of OSS. Both projects proposed different tools for extracting data
from repositories, to calculate software metrics and to identify
possible issues in the code or in the community activity. How-
ever, none of the tools developed is currently active, and several
of them are not available anymore (e.g., QualiSPo Del Bianco et al.,
2010)

2.5. OSS audit and analysis tools

Companies like Synopsys (formerly BlackDuck) (Anon, 2020j)
and WhiteSource (Anon, 2020k) provide solutions to software
composition analysis and offer services of the assessment of OSS
quality and code security. Synopsis focuses on their professional
services of the license compatibility while WhiteSource empha-
sizes the open source management to offer services such as
viewing the state of OSS components, their license compliance,
and the dependencies; prioritizing components’ vulnerabilities
based on how the proprietary code is utilizing them; analyzing
the impact of the vulnerabilities, etc.

Different tools to assess specific qualities are also available
on the market. As an example, companies can use tools such as
SonarQube (Anon, 2020l) or Sonatype (Anon, 2020m) to evaluate
different code-related qualities such as the standard compliance
or the technical debt. Or Security-specific tools such a White-
Hat Security (Anon, 2020n), Kiuwan (Anon, 2020o) or others to
evaluate the security vulnerabilities.

4 SourceCred: https://sourcecred.io/docs/.
5 CHAOSS project: https://chaoss.community/about/.
6 CROSSMINER project: https://www.crossminer.org.
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2.6. Gaps of the current OSS assessment models

The different OSS assessment models, tools and platforms
provide a possibility to assess OSS projects mainly from the
perspectives of license obligation, application security, code qual-
ity, etc. They are about the state of software and its quality
and comprise an essential part of the assessment model for
OSS selection and adoption (Sbai et al., 2018; Lenarduzzi et al.,
2020). Besides, activities, supports, or other projects surround-
ing a project form an important perspective demonstrating if a
project exists in a lively ecosystem (Jansen, 2014). In particular,
metrics such as response times in Q&A forums and bug trackers,
the active contributors and their satisfaction, the user’s usage
and their satisfaction, the number of downloads, the number
of forks, bug-fix time, etc. are informative references indicating
the productivity and a propensity for growth of the OSS project
community. Some of the measures can be cross-referenced from
different data sources, while some need further analysis based on
the collected data. To the best of our knowledge, no portal has
effectively taken these community-related factors into account
when providing service to evaluate and compare OSS projects.

Furthermore, companies have their distinct strategies, needs,
and constraints to adopt OSS projects in software development
(Lenarduzzi et al., 2020). After practitioners identify a list of
candidates that cover the expected features, meet requirements,
and fit with the existing technical solution, they specify the im-
portance of the selection criteria , complying with the company’s
needs and restrictions. As highlighted in our previous systematic
literature review (Lenarduzzi et al., 2020), it is impractical for
companies to study every software assessment model to select
the one that fits their needs best. Therefore, there is a need
to call for the OSS evaluation and selection tools that not only
guides developers to adapt OSS assessment criteria by identifying
and weighing the ones fitting in a specific scenario, but also
automates the process of assessing and comparing among a set
of selected software based on information which can be extracted
from the public APIs of available portals.

3. Research method

3.1. Goal and research questions

Our goal is to investigate and determine the factors that practi-
tioners are currently considering when selecting OSS, to identify
the sources (portals) that can be used to evaluate such factors
mentioned by the practitioners, and to validate the public APIs
that can be accessed to automatically evaluate those factors from
the sources and portals.

To achieve the aforementioned goals, we defined four main
research questions(RQs).

RQ1. What factors are practitioners considering when selecting
OSS projects to be integrated in the software they develop?
In this RQ we aim at collecting the information adopted by
practitioners when selecting projects to be integrated in the
software they develop. We are not considering OSS products
supporting software development process and the man-
agement such as IDEs, Office Suites, but software libraries,
frameworks or any other tool that will be integrated and
packaged as part of the product developed by the company.

RQ2 Which metrics are used by practitioners to evaluate the
factors adopted during the selection of OSS?
In this RQ we aim at identifying the metrics adopted by
practitioners to evaluate the factors they are interested to
assess. As an example, practitioners might assess the size
of the community checking the number of committer in
the repository, or might check the size of the project by

checking the number of commits in the repository or even
downloading the software and measuring its size in lines of
code.

RQ3 Which source of information and portals are used to assess
OSS?
In this RQ we aim at understanding which portals or other
sources are used by practitioners to evaluate the factors
identified in RQ1, based on the metrics reported in RQ2.

RQ4 Which factor can be extracted automatically from OSS por-
tals?
In this RQ, we aim to systematically analyze the common
portals hosting OSS, to identify the information that can be
extracted via APIs.

In order to answer our RQs, we conducted our work in three main
steps:

Step 1: Interviews among experienced software developers and
project managers to elicit the factors affecting the OSS selec-
tion (RQ1), the metrics (RQ2) and the sources of information
they adopt (RQ3).

Step 2: Analysis of the APIs of the source of information (portals)
identified in RQ3.

Step 3: Analysis of the availability of the metrics collected in
the previous step (RQ2) in the public API of the sources
of information adopted by practitioners (RQ3) among 100k
projects (RQ4).

Fig. 1 depicts the process adopted in this work. The detailed
process is reported in the remainder of this section.

3.2. Step 1: Interviews on the factors considered when selecting OSS

In order to elicit the factors adopted by practitioners when
selecting an OSS in the software product development process,
we designed and conducted a semi-structured interview based
on a questionnaire.

3.2.1. The interview population
We identified the population for our interviews considering

participants who can best provide the information needed in
order to answer our RQs. We selected participants that fulfilled
the following criteria:

• Currently developing software projects. With this criteria,
we aim at selecting participants that are still working on
software projects. This criteria will exclude persons that had
a long experience but are not working anymore in software
development projects (e.g. upper managers)

• At least 5 years of experience in developing software
projects. We aim at including only practitioners with a min-
imum level of experience, excluding freshman and newly
graduated ones.

• At least 3 years of experience in the domain they are work-
ing. We want to consider only practitioners that have a
minimum level of experience in the domain they are work-
ing, to avoid incongruences due to the lack of knowledge of
the domain.

• At least 3 years of experience in deciding which OSS com-
ponent integrate in the product they develop.

3.2.2. The questionnaire
The interviews were based on the same questionnaire adopted

in our previous works to elicit the factors considered important
for evaluating OSS (Del Bianco et al., 2009; Taibi, 2015). We
organized the questions in the questionnaire adopted for the
interviews two sections, according to the types of information we
sought to collect:
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Fig. 1. The study process.

• Demographic information: In order to define the respon-
dents’ profile, we collected demographic background infor-
mation in relation to OSS, including the number of years
of experience in selecting OSS components to be integrated
in the software they develop. This information considered
predominant roles and relative experience. We also col-
lected company information such as application domain,
organization’s size via number of employees, and number
of employees in the respondents’ own team.

• Factors considered during the adoption of OSS: Here we
asked to list and rank the factors considered during the
adoption of OSS software to be integrated in the prod-
ucts they develop, based on their importance, on a 0-to-
5 scale, where 0 meant ‘‘totally irrelevant’’ and 5 meant
‘‘fundamental’’.

– We first asked to list the factors the respondents con-
sider when adopting an OSS in the software product
they develop, and to rank the them on the 0-to-5
scale. This open question is to encourage respondents
to identify the important factors which might not be
clarified in our Euromicro/SEAA SLR (Lenarduzzi et al.,
2020).

– Then, we asked to rank other possible factors not men-
tioned in the previous step, on the 0-to −5 scale.
Please note that the interviewer listed the remaining
factors identified in our Euromicro/SEAA SLR and not
mentioned by the participant (Lenarduzzi et al., 2020).
The factors identified in the Euromicro/SEAA SLR are
reported below.

∗ Community & Support
∗ Documentation
∗ Economic
∗ License
∗ Operational SW Characteristics
∗ Maturity
∗ Quality

∗ Risk
∗ Trustworthiness

– For each factor ranked higher or equal than 3, we asked
to:

∗ Report the related sub-factors and their associ-
ated metrics with the importance ranking on the
0-to −5 scale

∗ Report the source they commonly use to evaluate
them (e.g. GitHub, Jira, manual inspection, . . . )

∗ Report the metrics they adopt to measure the
factor

– We finally asked if they think the factors they reported
enable a reasoned selection of OSS or if they would
still need some piece of information to have a complete
picture of the assessment.

The complete questionnaire adopted in the interviews is re-
ported in the replication package (Anon, 2021).

3.2.3. Interviews execution
The interviews were conducted online, using different video-

conferencing tools (Zoom, Skype and Microsoft Teams), based on
the tool preferred by the interviewed participant. Interviews were
carried out from September 2020 to December 2020.

Because of time constraint, and of the impossibility to conduct
face-to-face interviews during public events, interviewees were
selected using a convenience sampling approach (also known as
Haphazard Sampling or Accidental Sampling) (Battaglia, 2008).
However, we tried to maximize the diversity of the intervie-
wees, inviting an equal number of developers from large and
medium companies, and from companies in different domains.
The selected participants are experienced developers or project
managers, and have been involved in the OSS selection process or
the software integration and configuration management process.
We did not consider any profiles coming from academia, such as
researchers or students, nor any inexperienced or junior profiles.
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3.2.4. Interviews data analysis
Nominal data on the factor importance is determined by the

proportion of responses in the according category. In order to
avoid bias, the interviewees are asked to recall the important
factors without being provided with options. Thus, the proportion
of interviewees who mentioning a factor shall reflect its impor-
tance fairly. Ordinal data, such as 5-point Likert scales, was not
converted into numerical equivalents to prevent the risk of mis-
leading to subsequent analysis. Apparently when the deviation of
the responses is large, such a phenomenon will be overlooked. In
this way, we can better identify the potential distribution of the
interviewees’ responses.

Open questions (application domain, other factors reported,
platforms adopted to extract the information and metrics adopted
to evaluate the factors) were analyzed via open and selective
coding (Wuetherick, 2010). The answers were interpreted by
extracting concrete sets of similar answers and grouping them
based on their perceived similarity. Two authors manually pro-
vided a hierarchical set of codes from all the transcribed answers,
applying the open coding methodology (Wuetherick, 2010). The
authors discussed and resolved coding discrepancies and then
applied the axial coding methodology (Wuetherick, 2010).

3.3. Step 2: Analysis of the APIs of the OSS portals

We manually analyzed the APIs of the portals identified in
RQ3, looking for APIs that allowed to assess the information
needed to measure the factors reported by the interviewees (RQ1
and RQ2). The first two authors independently analyzed all the
portals seeking for these pieces of information, and then com-
pared the results obtained. In case of discrepancies, all the in-
congruities were discussed by all the authors, reaching a 100%
consensus.

Some factors were not directly analyzable. For example, the re-
sponsiveness of an OSS community cannot be directly measured;
hence, a proxy metric, i.e., the average time spans between the
created time of issues and the first actions, is adopted. Therefore,
the first two authors proposed a list of proxy metrics, considering
both the metrics adopted by the interviewees and metrics avail-
able in the literature. Then, all metrics were discussed by all the
authors until we reach a consensus.

However, as expected, not all the metrics can be automat-
ically extracted, and some of them require a manual assess-
ment. An example of a factor that cannot be automatically ex-
tracted is the availability of complete and updated architectural
documentation.

3.4. Step 3: Analysis of projects that provide information to assess
the factors

3.4.1. Validation of the factors analyzability on the OSS portals
This step was based on three sub-steps:

• Project selection. We selected the top 100K GitHub projects,
based on the number of stars. The list of selected projects
were determined on 2020-11-10. The number of projects
was limited to the time available. In particular, the different
APIs limit the number of queries that can be executed in
one hour, and therefore we limited the study to 100k most
starred projects to ensure that the data can be extracted
in 2 months. We are aware that some projects might not
be code-based projects, and some repositories might only
have the purpose to collect resources. However, since it is
not possible to automatically exclude non-code projects, we
consider them all.

• Information extraction. We extracted the selected informa-
tion from the APIs. We decided to extract only the in-
formation needed to evaluate the factors. Other informa-
tion are available, but requires to run a higher number
of queries, and therefore would have reduced the num-
ber of projects that we can extract. The extraction process
started on 2020-11-16 with data collected gradually till
2020-12-29. As an example, it would be possible to extract
all the details on project issues (issue title, author, date,
comments, . . . ), but this would have required to run a num-
ber of additional queries, without providing any information
considered valuable by our interviewees.

• Analysis of the information available. In this step we analyzed
which information is actually available for each project.
As an example, not all the projects might use different
issue trackers instead of using the one provided by GitHub,
or some projects might not be listed by the NIST NVD
database, or more, some project might not have questions
and answers available in StackOverflow or Reddit.

3.5. Replication

In order to ease the replication of this work we provide
the complete replication package including the questionnaire
adopted for the interviews, the results obtained in the interviews,
the data crawling script and the results of the data analysis (Anon,
2021).

4. Results

Here we first provide information about the sample of re-
spondents, which can be used to better interpret the results and
then, we show the collected results with a concise analysis of the
responses obtained, with insights gained by statistical analysis.

We collected 23 interviews from experienced practitioners.
Fig. 2 contains the distribution of company sizes where our in-
terviewees belong, Fig. 3 shows the percentage for organizational
roles identified in the questionnaire while Fig. 4 shows the
distribution of the experience of our interviewees in selecting OSS
components to be integrated in the projects they develop.

4.1. RQ1: Factors considered by practitioners when selecting OSS

Our interviewees consider 8 main factors and 46 sub-factors
when they select OSS, reporting an average of 2.35 factors per
interviewee, a minimum of 1 and a maximum of 21 factors.

The factor that is mentioned more frequently from the inter-
viewees is License which has received a median importance of 4
out of 5. Surprisingly, this is not the value which has received
the highest median value of importance as Community Support
and Adoption, Performances and Perceived Risk received a median
value of importance of 4.5 out of 5. It is interesting to note that no
participant mentioned economic and its related sub-factors such
as license costs, or cost for training. So this factor is not reported
in our results.

In Table 2, we report the list of factors and sub-factors together
with the number of participants who mentioned them (column
RQ1- #) and the median of the importance reported by the
interviewees (column RQ1 - Median).

4.2. RQ2: Metrics used by practitioners to evaluate factors during
OSS selection

When we asked practitioners to report the metrics they use
to evaluate the factors they mentioned in RQ1, and to rank their
usefulness, practitioners mentioned 110 different metrics.
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Fig. 2. Distribution of company sizes of our interviewees.

Fig. 3. Distribution of roles of our interviewees.

Fig. 4. Number of years of experience of the participants in selecting OSS components to be integrated in the products they develop.

The complete list of metrics reported for each factor is re-
ported in Appendix.

In Table 2 (Column RQ2 - #Metrics) we report the count of
metrics considered as useful by practitioners (likert scale ≥ 3,
where 0 means ’’This metric is useless to evaluate this factor’’ and
5 means that the metric is extremely useful).

Surprisingly, the factor where practitioners provided the high-
est number of metrics to assess it, is Maturity, which has been
mentioned only 6 times compared to the License, mentioned 21
times, where practitioners provided 7 metrics instead. This indi-
cates a wide variety of interpretations onMaturity, and practition-
ers use different metrics to evaluate this factor. The careful reader
can also observe that for some factors considered as relevant in
RQ1 such as Perceived risks, no metrics have been mentioned.
This result proves that in some cases, some of the most im-
portant factors in an OSS cannot be objectively measured and
the interviewees do not know how to retrieve such information
appropriately.

4.3. RQ3: Sources of information and portals used to assess OSS

Our interviewees mentioned 9 different source of information
and portals they commonly consider when they select OSS.

In Table 3 we list the sources of information adopted by
the practitioners to evaluate OSS, together with the number of
participants who mentioned it (columns # and % of mentions).
To increase the readability, we grouped the source of information
in five main categories: version control systems, issue tracking
systems, Question and Answer portals (Q&A), forum and blogs and
security related platforms.

The 5 most reported sources of information are GitHub (and
GitHub Issue tracker), StackOverflow, Reddit, and NIST Security
Vulnerability (NVD) with respectively: 23, 19, 12, 12 and 14 men-
tions. All of these are mentioned from more than 20% of the inter-
viewees and are therefore those which prove to be the most use-
ful when retrieving information related to OSS. Other platforms
such as Bitbucket or Jira were rarely mentioned. The results pre-
sented in Table 3 could also be useful to other OSS stakeholders
such as software administrators and software operators.

4.4. RQ4: Factors that can be extracted automatically from the por-
tals

We focused our attention to the four most used sources of
information reported in RQ3: GitHub (Anon, 2020v), StackOver-
flow (Anon, 2020w), Reddit (Anon, 2020u) and the NIST National
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Table 2
High-level Factors considered during the adoption of OSS.
RQ1 RQ2

Factor # Median #Metrics

Community support and adoption 10 4.5
Popularity 9 3 4
Community reputation 11 3 3
Community size 13 3 5
Communication 6 3.5 5
Involvement 9 3 1
Sustainability 11 3 1
Product Team 5 3 2
Responsiveness 1 5 1

Documentation 14 4
Usage documentation 4 4 5
Software requirements 11 3 1
Hardware requirements 8 3.5 1
Software Quality Documentation 5 3 3

License 21 4 7

Operational SW characteristics 6 4
Trialability 5 3 2
Independence from other SW 11 3 4
Development language 5 4 3
Portability 1 4 1
Standard compliance 5 4 0
Testability 6 3.5 0

Maturity 6 3.5 11

Quality 6 3.5
Reliability 3 4 6
Performances 4 4.5 1
Security 15 4 6
Modularity 3 3 1
Portability 3 4 2
Flexibility/Exploitability 3 3 3
Code Quality 13 4 6
Coding conventions 9 3 0
Maintainability 3 4 0
Testability 2 4 0
Existence of benchmark/test 4 3.5 4
Changeability 2 3.5 0
Update/Upgrade/Add-ons/Plugin 3 4 1
Architectural quality 5 3 0

Risk (Perceived risks) 7 4.5
Perceived lack of confidentiality 5 1 0
Perceived lack of integrity 5 3 0
Perceived high availability 5 4 3
Perceived high structural assurance 5 2 0
Strategic risks 5 3 0
Operational risks 5 1 1
Financial risks 5 2 0
Hazard risks 5 4 5

Trustworthiness 6 4
Component 4 3.5 3
Architecture 4 3 2
System 4 3.5 3
OSS provider reputation 4 3.5 0
Collaboration with other product 4 2.5 3
Assessment results from 3rd parties 2 3.75 0

Vulnerability Database (Anon, 2020x). For such purpose, we first
identified the APIs that can be adopted to extract the information
needed to measure the factors, and then we extracted the data
from the 100k with more stars in GitHub.

The extraction of the information for 100K projects took a
total of 5 days for GitHub, 53 days for StackOverflow, 4 days for
Reddit and 2 Days for the NIST National Vulnerability Database.
The long processing time is due to the limit of queries that can
be performed on the APIs for different IP addresses.

Considering the projects extracted (Fig. 6(a)), more than half
of these projects (53.3%) have been active for 2–6 years. Around
12.1% of these projects are active for one year or less when only
3.9% of them are active for more than 10 years. Majority of these

Table 3
The source of information reported by the interviewees (RQ3).
ID Source of information # % of mentions

Version control systems:

R GitHub Anon (2020v) 23 100
R GitLab Battaglia (2008) 1 4.3
R SourceForge Wuetherick (2010) 1 4.3
R Bitbucket Anon (2020v) 1 4.3

Issue tracking systems:

I GitHub Issues Anon (2020v) 19 82.6
I Jira Anon (2020w) 1 4.3

Question and answer portals:

Q StackOverflow Anon (2020w) 12 51.2
Q Reddit Anon (2020u) 12 51.2

Forum and blogs:

F Medium Cai and Zhu (2016) 5 5
F Hackernews Hu et al. (2012) 5 5

Security:

S CVE Anon (2020y) 1 4.3
S CVSS Anon (2020y) 2 8.7
S CWE Anon (2020z) 1 4.3
S NVD Anon (2020x) 14 21.7

projects (87.0%) have less than 500 issues during their life cycle
when around 3.4% of them have more than 1k issues (Fig. 6(b)).
Furthermore, there are 1791 projects being very popular having
more than 10k stars when 25.9% projects having stars ranging
from 1k to 10k (Fig. 6(c)) with 46.7% having less than 500 stars.
On the other hand, regarding project size, more than half of
them (52.8%) have lines of code (LOC) ranging from 20k to 500k.
6.1% projects contain more than 5 m LOC when only 0.9% of
them have less than 1k LOC (Fig. 6(d)). Regarding developing
languages, Javascript is the most popular being the primary lan-
guage of OSS projects (17k projects) with Python and Java at 2nd
and 3rd (Fig. 6(e)). They are the primary languages for 40.9% of
the projects. However, regarding LOC by languages, C language
(57.6b) and Javascript (57.2b) rank at the top. Both have almost
doubled the amount of C++ language (31.7b) which ranks the 3rd
in terms of total LOC (Fig. 6(f)). Regarding release numbers, 58.1%
projects do not have any specific release recorded. 37.6% have
less than 50 releases when only the rest 4.3% have more than
50 releases. All the previously mentioned data is always available
from GitHub, and queries to the GitHub APIs will always return a
valid information.

Regarding the adopted open source licenses, 23.7% projects did
not specify the licenses they adopt. As for the other projects, MIT,
Apache 2.0 and GNU GPL v3.0 are the most popular licenses with
53.2% projects adopting one of them (Fig. 6(h)). Therein, 13.6%
projects adopted non-mainstream license (identified as ‘Other’).

We also validate the APIs of Reddit and StackOverflow by
finding the amount of discussion threads on each of the 100k
OSS projects. As shown in Fig. 5, 14.5% projects are generally
discussed in Reddit with only 5.8% projects having more than 100
posts (Fig. 5(a)). On the other hand, 13.0% projects are discussed
(raised technical questions) in StackOverflow (Fig. 5(b)). Therein,
3.6% projects have more than 100 questions raised on. In general,
such results show that it is hard to find sufficient generic or
technical discussion regarding specific OS projects from Reddit
and StackOverflow.

Based on the interview results, especially the obtained factors
that are considered important by the practitioners (shown in
Table 2), we further validate whether such factors can be an-
alyzed via the automatically obtained data from the previously
mentioned portals with the results shown in Table 4.

According to the investigation on automatic OSS data extrac-
tion on the Top 100k OSS projects on Github via the APIs of
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Fig. 5. Stats for Top 100k Github Projects in Reddit and StackOverflow.

the five public portals, we find that the majority of the met-
rics towards the Community Support and Adoption factor can
be automatically done via data extractions from such APIs. To
be noted, regarding Communication, the question and answer
sources (i.e., StackOverflow) contain information on limited num-
ber of OSS projects, which limits the availability towards the
evaluation on such category. In addition, we also find, despite
the availability of automatic data extraction and measuring via
APIs, many of the metrics require further calculation and learning,
as well as multiple queries to obtain. For example, in order to
measure the Number of Independent Developers, we must get the
list of contributors of a particular project via multiple queries
first (max items per page for Github API is 100), and check the
‘‘Independentness’’ of each contributor via further investigating
his/her organization status. Thus, such process shall be, to some
extent, time-consuming, when the limit rate of the API usage shall
be also taken into account.

Another category can be automatically measured is License,
as shown in the data, 76.6% of the projects contain specific Li-
cense information. On the other hand, for the other categories,
automatic data extraction and full-grained evaluation is hindered
by the limited availability of the according data, as only very
limited percentage of the metrics can be automatically done via
data extraction (shown in Table 2). And amongst these categories,
the evaluation of Maturity category depends on the availability of
the release data from repository dataset, when for the obtained
100k projects only 42.2% provide such information. Measuring the
availability of Documentation shall also depend on the informa-
tion extracted from project description and homepage, while only
around 40% of projects provide those.

As for the security vulnerability evaluation, the NVD Dataset
provide information for 12838 projects (12.8%). However, it is
not clear if the projects not reported in NVD do not contain
security vulnerabilities at all, or simply are not indexed by the
NVD dataset. However, it is important to note that the NVD
performs analysis on CVEs published to the CVE Dictionary. Every
CVE has a CVE ID which is used by cybersecurity product/service
vendors and researchers for identifying vulnerabilities and for
cross-linking with other repositories that also use the CVE ID.
However, it is possible that some security vulnerabilities are not
publicly reported with assigned CVE IDs.

As shown in Table 4, amongst the 170 metrics identified, 40
of them are potentially available to be extracted automatically.
In addition, License type and Development Language, though seen
as sub-factors, can be automatically measured as well. Therein,
the number of automatic measurable metrics for all 100k projects
(#full-auto) and that for part of them (#part-auto) are also shown.
Only 22 metrics out of 170 can be obtained automatically for
all 100k projects when the others are only available for part
of the projects. In addition, 22 metrics require multi-queries to
complete when 21 require further calculation and/or learning to
determine.

5. Discussion

In this Section, we discuss the results of our RQs and we
present the threats to validity of our work.

The factors and the metrics adopted to evaluate and select
OSS (RQ1–RQ2) evolved over time. While in 2015 (Taibi, 2015;
Lenarduzzi et al., 2020) factors such as Customization easiness
and Ethic were the most important, nowadays we cannot state
the same. Already in 2020 (Lenarduzzi et al., 2020) such factors
have been incorporated inside other more valuable factors such
as Quality, while today are not mentioned anymore. On the other
side License and Documentation, which are the most mentioned
factors nowadays were side factors in 2020. As a matter of fact
the latter was a sub-section of Development Process, while both
were not even considered in 2015. Moreover, ethical principles,
that were very relevant in 2015, are not even mentioned in 2020.

Nowadays the trend is to search for OSSs which are ready to
be integrated as is. In order to incorporate OSSs without falling
into lawsuit particular attention needs to be put into the License
type, while to guarantee the correct functioning the focus needs to
be put in the documentation. A clear example is the necessity of
a clear definition of the system requirements when incorporating
libraries.

Another factor which gained a lot of importance over time
is Security. While in 2015 was a factor with medium relevance,
nowadays it is a keypoint for measuring quality of an OSS. The
growing number of portals dedicated to ensure absence of vul-
nerabilities proves that people are concerned of the use of OSSs
when embedded in their system. In particular they strongly rely
on such portals to check the history of the OSSs to incorporate
and in some cases also to ensure that proper reports are delivered
when a new vulnerability is discovered.

Also, the importance of a factor is not necessarily proportional
to the number of metrics. When specifying the importance of
the assessment factors, we may see that some measurable factors
are perhaps just eliminated, while some important factors cannot
be automatically evaluated using the extracted information and
require a manual assessment. Moreover, it is important to note
that the lack of concrete metrics for some factors, such as com-
munity reputation or community sustainability might be because
these factors are too abstract. Some researchers already addressed
some of these aspects. As an example, Cai and Zhu (2016) and
Hu et al. (2012) already proposed some metrics to evaluate the
community reputation while Gamalielsson and Lundell (2014)
also identified approaches for contributing to the community
sustainability. However, these models are not yet diffused in
industry, and this might be the reason why our interviewees were
not aware of them.

The source of information adopted to evaluate OSS (RQ3)
did not change completely from the previous years. Users are
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Fig. 6. General Stats for Top 100k Github Projects.

still adopting project repositories and issue trackers as main
source of information. Moreover, an effect of the newly intro-
duced factor security, is that now the selection also require secu-
rity related information, that are commonly fetched from secu-
rity databases such as the NIST NVD (Anon, 2020x), CVE (Anon,
2020y), and CWE (Anon, 2020z). In addition, many vendors like
Synopsys (Anon, 2020j) and WhiteSource (Anon, 2020k) offer

software composition analysis solutions that facilitate licence risk
management, vulnerability identification and management, risk
reporting, etc.

Unexpectedly, even nowadays, not all the portals can provide
complete information for evaluating the information needed by
the practitioners (RQ4). The analysis of the 100K most starred
projects in GitHub showed that only the information coming from
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Table 4
Factor information availability stats for top 100K projects.
Factor (#part-auto/#full-auto/#metrics) Portal # %

Community Support and Adoption (5/16/41)
Popularity R

Number of Watch R 100000 100.00%
Number of Stars R 100000 100.00%
Number of Forks R 100000 100.00%
Number of Downloads R 42260 42.26%

Community reputation I+*
Fast response to issues (△) I+* 100000 100.00%

Community size R+*
Number of Contributors R* 100000 100.00%
Number of Subscribers R 100000 100.00%
Community age R+ 100000 100.00%
Number of Involved developers per company R+* 100000 100.00%
Number of Independent developers R+* 100000 100.00%

Community support R+*, Q+*
Activeness (△) R+* 100000 100.00%
Responsiveness (△) R+*, Q+* 14474 14.47%

Communication I+*, Q+*
Availability of questions/answers I, Q 100000 100.00%
Availability of forum Q 14474 14.47%
Responsiveness of postings I+*, Q+* 14474 14.47%
Quality of postings (△) Q+* 14474 14.47%

Sustainability I+*
Existence of maintainer I+* 100000 100.00%

Product Team R+*
Developer quality (△) R+* 100000 100.00%
Developer Productivity (△) R+* 100000 100.00%

Responsiveness I+*
Avg. bug fixing time I+* 100000 100.00%
Avg time to implement new issues I+* 100000 100.00%

Documentation (3/0/12)
Usage documentation R*, F+

Availability of updated documentation (△) R* 42260 42.26%
Availability of documentation/books/online docs (△) R 39499 39.50%
Availability of Tutorial or Examples (△) R 39499 39.50%

License (1/0/9) R
License type R 76576 76.58%

Operational SW Characteristics (1/0/9) R
Development language R 93148 93.15%

Maturity (4/3/11) R+*
Number of forks R 100000 100.00%
Release frequency R+* 42260 42.26%
Number of releases R 42260 42.26%
Age (in Years) R+ 100000 100.00%
Number of commits R 100000 100.00%
Development versions R* 42260 42.26%
New feature integration R+* 42260 42.26%

Quality (5/3/47)
Reliability I+*

Average bug age I+* 100000 100.00%
Avg. bug fixing time I+* 100000 100.00%

Security R+*, Q+*, S+*
Number security vulnerabilities S 12838 12.84%
Number of Vulnerabilities reported on the NVD portal S 12838 12.84%
Vulnerability Resolving time (△) R+*, S+ 12838 12.84%
Community concern towards security (△) R+*, Q+*, S+* 12838 12.84%
Vulnerability impact (△) S 12838 12.84%

Code Quality R
Code size R 100000 100.00%

Trustworthiness (1/0/22) R+*
Consistent release updates pace (△) R+* 42260 42.26%

Repository(R), Issue Tracker(I), Questions and Answer portals(Q), Forum & Blogs(F), Security(S)
Calculation Required(+), Multi-queries Required(*), Proxy Metrics(△).

the project repositories (e.g GitHub) are always available, except
for the license information (76.6%). Considering other factors such
as the communication, the situation does not improve, and only
in 14.5% of projects we were able to automatically extract the
relevant information from their APIs. For example, it is noticeable
that the APIs of StackOverflow enable the extraction of other
information, e.g., the textual content of questions and answers,
the users’ reputation, and so on. However, it requires further
learning and calculation to elicit additional information from such
textual content. The possibilities towards such directions shall be

studied further in our future studies. Furthermore, some of the
Github views, though providing valuable information but being
inaccessible directly from APIs, (e.g., the GitHub insight view) are
not covered herein. Due to the diversity of application domains,
organizational needs, and constraints, practitioners in different
organizations may explain the factors from their own perspective
and may adopt different metrics in the OSS evaluation. A good
example are the metrics associated with the factor of Maturity.
Metrics such as the number of releases and the system growth
in the roadmap were commonly concerned in the evaluation
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of software maturity; besides, some practitioners also took the
number of commits and the number of forks as important metric
in the evaluation. The total number of commits itself might not
be enough when evaluating software maturity. The prevalence of
commits over time and the types of commits could be additional
and useful information in the evaluation. Therefore, how the
metrics help with the evaluation of the factors could have been
clarified.

The results of this work show a discrepancy between the
information required by the practitioners to evaluate OSS and the
information actually available on the portals, confirming that the
collection of the factors required to evaluate an OSS project is
very time-consuming, mainly because most of the information
required is not commonly available on the OSS project (Kamei
et al., 2018; Lenarduzzi et al., 2020; Del Bianco et al., 2010).

The automation of the data extraction, using portal APIs might
help practitioners reducing the collection time and the subjec-
tivity. The result of this work could be highly beneficial for OSS
producers, since they could check if they are providing all the
information commonly required by who is evaluating their prod-
ucts, and maximize the likelihood of being selected. The result
can also be useful to potential OSS adopters, who will speed-up
the collection of the information needed for the evaluation of the
product.

Even in case OSS producers do not enhance their portals by
providing the information required by the practitioners to assess
OSS, the results of this work could be useful for practitioners that
need to evaluate an OSS product. The list of factors can be effec-
tively used as checklist to verify if all the potentially important
characteristics of OSS have been duly evaluated. For instance, a
practitioner could have forgotten to evaluate the trend of the
community activity and he/she could adopt an OSS product that
has a ‘‘dissolving’’ community: this could create problems in the
future because of the lack of maintenance and updates. The usage
of checklist would allow practitioners to double check if they
considered all factors, thus reducing the potential unexpected
issues that could come up after the adoption.

5.1. Future research directions

As a result of our findings, we propose the following directions
for future research in this area.

Focus on the definition of a common tool to automatically ex-
tract information needed for the evaluation of OSS, investigating
proxy metrics in case direct metrics are not available.

Definition of refined and customizable models (which may be
obtained by merging multiple available approaches) and favor its
adoption through rigorous and extensive validation in industrial
settings. This could increase the validity of the model and thus its
dissemination in industry, where OSS is still not widely adopted.
Several models already exist but, according to the results of our
previous literature review (Lenarduzzi et al., 2020), they have not
been strongly validated and, as a consequence, adoption has been
limited.

Try to target the models at quality factors that are of real
interest for stakeholders. Most of the available models focus on
the overall quality of the product, but few of them are able to
adequately assess each single factor that composes the overall
quality of the OSS product. This can complicate the assessment
of OSS products by stakeholders, who are interested in specific
quality factors: e.g., developers are likely more interested in reli-
ability or testability aspects, while business people may be more
interested in cost or maintenance factors, etc..

In the studies, we identified 170 metrics to measure the fac-
tors for OSS evaluation and selection, based on which we shall
conduct an in-depth analysis to gain a better understanding of

the rationale for the metrics. The rationale explains why a metric
helps gain insights into the factors, and the assumption or other
information useful in evaluating an OSS. It helps to identify the
needed data to extract from the available portals and to automate
the OSS analysis and assessment process. With the explanation
of why the metrics are needed, practitioners can also better
understand the factors and their assessment, which further eases
the process to adopt the OSS selection models and tools in the
software development practice.

Furthermore, besides the common evaluation metrics identi-
fied in this study that suits targeting any OSS, it is noticeable that
the domain fitness of such targeting OSS is also of great impor-
tance. Though this study focuses on the general quality attributes
of OSS, the assessment of domain fitness should be taken into
account with the domain-fitting OSS candidates limited so that
the evaluation effort can be largely reduced.

Develop tools that support the research directions listed above
(i.e., tools able to support and simplify the applicability of the
proposed models during the evaluation of OSS products).

Disseminate the information that should be provided on OSS
portals, so as to enable OSS producers to consider them as part of
their marketing and communication strategies (Del Bianco et al.,
2012).

5.2. Threats to validity

We applied the structure suggested by Yin (2009) to report
threats to the validity of this study and measures for mitigating
them. We report internal validity, external validity, construct
validity, and reliability.

Internal Validity. One limitation that is always a part of sur-
vey research is that surveys can only reveal the perceptions of
the respondents which might not fully represent reality. How-
ever, our analysis was performed by means of semi-structured
interviews, which gave the interviewers the possibility to request
additional information regarding unclear or imprecise statements
by the respondents. The responses were analyzed and quality-
checked by a team of four researchers.

External Validity. Overall, a total of 23 practitioners were
interviewed. We considered only experienced respondents and
did not accept any interviewees with an academic background.
However, we are aware that the convenience sampling approach
we adopted could be biased, even if we tried to maximize the
diversity. For example, practitioners from different domains, such
as those developing real-time or safety-critical systems, might
have provided a different set of answers. As for the projects we
selected to validate the presence of information in OSS portals, we
are aware that the 100K most starred GitHub projects might not
represent the whole OSS ecosystem, but we believe they might
be a good representative of them. We also think that less popular
projects, might only perform worst than the selected ones.

We therefore think that threats to external validity are rea-
sonable. However, additional responses and additional projects
should be analyzed in the future.

Construct Validity. The interview guidelines were developed
on the basis of the previously performed surveys (Del Bianco
et al., 2009; Taibi, 2015). Therefore, the questions are aligned with
standard terminology and cover the most relevant characteristics
and metrics. In addition, the survey was conducted in interviews,
which allowed both the interviewees and the interviewer to ask
questions if something was unclear.

Reliability. The survey design, its execution, and the analysis
followed a strict protocol, which allows replication of the survey.
However, the open questions were analyzed qualitatively, which
is always subjective to some extent, but the resulting codes were
documented.
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Table A.1
Results from the interviews.
Factor Measure # Median

Community support and adoption 10 4.5

Popularity 9 3
# Watch 4 3
# Stars 13 3
# Fork 4 3
# Downloads 13 3

Community reputation 11 3
Member of a foundation 1 4
Complete administration mechanism 1 5
Fast response to issues 1 5

Community size 13 3
# Contributors 11 4
# Subscribers 3 3
Community age 12 3
# Involved developers per company 3 3
# Independent developers 3 3
Activeness 3 3
Responsiveness 2 3.5

Communication 6 3.5
Availability of questions/answers 11 3
Availability of forum 4 2.5
# Mailing lists 3 3
Traffic on the mailing list 3 3
Responsiveness of postings 4 4
Friendliness 6 2.5
Quality of postings 3 3

Involvement 9 3
Clear project management 1 5

Sustainability 11 3
Existence of maintainer 11 3

Product Team 5 3
Developer quality 3 4
Developer Productivity 2 3

Responsiveness 1 5
Scheduled updates 1 2.5
Fast respond to user’s needs 1 2.5

Documentation 14 4

Avail. of documentation/books/online docs 5 3
Avg time to implement new issues 1 4
Avail. of updated documentation 9 4

Avail. of development process documentation 4 3
Avail. of getting started tutorial 1 5

Avail. of Tutorial or Examples 5 5
Usage documentation 4 4
Avail. of best practices 4 4

4 3
Software requirements 11 3

Complete doc. on SW requirements 1 5
Hardware requirements 8 3.5

Complete doc. on HW requirements 1 5
Roadmap 7 3
Test case documentation 4 3

License 21 4

License type 20 5
Law conformance 9 5
License Compatibility 10 3
OSS obligation fulfillment 1 5
Existence of malicious OS obligation 1 5
Contagiousness 1 5
Multiple license option 1 2.5
Dual License with limited features 7 4

(continued on next page)

This work was based on information extracted from OSS por-
tals and the available APIs, and therefore, reliability of the as-
sessment depends partly on the availability and reliability of
the portals. Some projects might be managed and discussed on
different platforms like the different issue tracking systems, the
extracted information from the available APIs might be incom-
plete, which may affect the assessment results. On the other hand,

we identified from the interviews the most used portals in each
category of the sources of information. This helps mitigate the
threat to some extent. Moreover, some projects might serve the
purpose of providing resources, and not source code. However,
Github API does not provide filtering functions towards excluding
such projects. We believe that, this threat could be mitigated by
the large amount of projects we selected.
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Table A.1 (continued).
Factor Measure # Median

Operational SW characteristics 6 4

Trialability 5 3
Available for independent verification and compile 1 5
Provide demo for quick evaluation 1 4

Independence from other SW 11 3
Run independently 1 5
Supports independent libraries 1 5
Fewer dependences 7 4

Development language 5 4
Mainstream dev Lang 4 4
Language know in the company 2 4.5
Programming language uniformity 5 4

Multiplatform support 5 3
Standard compliance 5 4

Testability 6 3.5

Maturity 6 3.5

# forks 3 3
Stability 7 5
Release version stability 1 5
# releases 10 4
Release frequency 7 4
# releases 3 4
Age (#Years) 4 4
# commits 3 3
Development versions 6 4
System growth 9 4
New feature integration 1 5

Risk (Perceived risks) 7 4.5

Perceived lack of integrity 5 3
Perceived high availability 5 4

Test according to context 1 4
Analysis and pre-examination 1 5
Comply with business requirements 1 5

Strategic risks 5 3
Influence of operation specified 1 4

Hazard risks 5 4
consequences specified 1 5
Code security 1 4
Virus scanning 1 4
Risk of no maintenance 1 2.5

Quality 6 3.5

Reliability 3 4
Component reliability 2 5
Architecture reliability 7 4
System reliability 2 4.5
# Bugs (open, closed, . . . )/bug density 8 4
Average bug age 2 4.5
Mean time between software failure (MTBF) 8 4

Performances 4 4.5
Main functionality external performance standards 1 5
Based on business 1 2.5
Construct verification environment 1 2.5
Comparison with similar software 1 2.5

Security 15 4
# security vulnerabilities 12 3
#Vulnerabilities reported on the NVD portal 14 4
Security report 7 5
Vulnerability Resolving time 2 5
Community concern towards security 1 5
Vulnerability impact 1 5

Modularity 3 3
Select OSS based on module 1 5

Portability 3 4
Adaptability 2 4.5
Installability 2 4.5

Flexibility/Exploitability 3 3
Support usage patterns 1 2.5
Reasonable function wrapper 1 2.5

(continued on next page)
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Table A.1 (continued).
Factor Measure # Median

Code Quality 13 4
Code complexity (class, methods, ..) 10 3
Change proneness 3 3
Fault proneness 3 4
Test coverage 4 4.5
Code size 7 3
Technical difficulty 3 4

Coding conventions 9 3
Usage of linters for checking coding
conventions compliance

7 3

Maintainability 3 4
Testability 2 4
Changeability 2 3.5
Update/Upgrade/Add-ons/Plugin 3 4

Update capability between versions 1 2.5
Easy to update to new version 5 3
API compatibility between versions 1 2.5

Architectural quality 5 3

Trustworthiness 6 4

Component 4 3.5
Functionality 1 5

Architecture 4 3
Difference with reality 1 4

System 4 3.5
Percentage of system failure 1 5

OSS provider reputation 4 3.5
Existence of benchmark/test 4 3.5

Fast responsiveness to malicious
affairs

1 5

Transparency 1 4
Test cases availability 1 4

Collaboration with other product 4 2.5
Even distribution among code
submitters

1 2.5

Consistent release updates pace 1 2.5
In-time vulnerability publishing 1 2.5
Measure-related information (i.e.
measure possibility)

1 2.5

Assessment results from 3rd parties 2 3.75

6. Conclusion

In this paper, we investigated the factors considered by com-
panies when selecting OSS to be integrated in the software they
develop, and we analyzed their availability in the OSS portals, in
particular using OSS portal APIs.

We identified a set 8 factors and 74 sub-factors, together
with 170 metrics that companies commonly use to evaluate and
select OSS. Unexpectedly, only a small part of the factors can
be evaluated automatically, and out of 170 metrics, only 40 are
available from project portals APIs.

The automated extraction of the information from the 100K
most starred GitHub projects showed that only 22 metrics out of
40 returned information for all the 100K projects. 2 metrics re-
turned information for around 80% of the projects while another
7 for around 40%. The other 4 metrics returned information for
below 15%.

It is important to note that the extraction consider some of
the most famous OSS projects. Therefore, we can speculate that
the vast majority of less common and less used projects might
provide even less information.

The result of this work enable us to create a list of up-
dated factors and metrics, together with the list of automatically
collectable ones, that practitioners can use to select OSS.

Results can be used also by researchers to further validate the
factors and metrics, or providing frameworks or tools to ease the
selection of OSS. Moreover, OSS producers, and repositories might
also benefit of this results to understand which information they
should provide from their APIs, so as to ease the evaluation of OSS
projects, and increase the adoption likelihood.

Future work include the validation of the factors and metrics
in industrial settings, reducing the subjectivity of the decisions.
Moreover, we are planning to develop a tool and portal to auto-
matically collect the information and enable the comparison of
OSS projects, so as to ease the OSS selection phase.
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SOFTWARE NEEDS TO be con-
tinuously updated and maintained 
to continue being useful.1 This is 

particularly true for open source 
software (OSS) components and li-
braries, which are more and more 

often integrated into large and com-
plex systems. For companies develop-
ing long-term projects, all embedded 
OSS components should guarantee 
lengthy life expectancies and be main-
tained as long as systems are in ser-
vice. Embedding abandoned OSS in 
critical systems could expose compa-
nies to severe risks. For example, new 
security vulnerabilities could be ex-
ploited, bugs and issues might never 
be resolved, and functions could be-
come obsolete and inadequate for 
new environments. Metaphorically, 
systems embedding abandoned OSSs 
are like vehicles with rusted gears or 
human bodies with malignant tu-
mors. Indeed, the abandonment of 
OSS components might produce a 
“domino effect” that results in the 
inoperability of full systems. The im-
portance of such a statement is in the 
fact that even if a single embedded 
software component is unavailable, a 
whole project can be compromised.

In this respect, we were recently 
asked by a local branch of a global 
company, which operates in different 
domains and with more than 200,000 
employees in 150-plus countries, to 
devise a methodology aimed at iden-
tifying components embedded in its 
software products that were the most 
likely to be abandoned soon. To meet 
the requirements, we designed the 
OSS Abandonment Risk Assessment 
(OSSARA) model, which we present 
in this article. The model aims to as-
sess the abandonment risk of a software 
system through prediction for every 
embedded OSS component and the crit-
icality that each component represents. 
With OSSARA, practitioners can mon-
itor a system’s risk level and choose to 
maintain or replace OSS components.

Related Work
During the past decade, research-
ers have been paying great attention 
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to  software sustainability. Samoladas 
et al.2 successfully exploited survival 
analysis methods to predict the sur-
vivability of software projects. Bus-
inge et al.3 analyzed the survivability 
of 1,447 versions of 467 Eclipse third-
party plug-ins and classified them into 
two categories: those relying on stable 
dependencies and those with at least 
one potentially unstable dependency. 
They observed that plug-ins that use 
only stable dependencies are like-
lier to maintain a higher source com-
patibility rate through time. Coelho 
et  al.4 leveraged machine learning to 
build a model to identify unmain-
tained GitHub projects, based on a 
set of 13 process metrics, achieving 
promising results. Afterward, they 
presented an extended version of the 
work,5 defining a metric to indicate 
how risky it would be to depend on a 
given GitHub project.

Valiev et al.6 assessed open source 
Python projects’ sustainability based 
on ecosystem-level factors, i.e., those 
describing interdependencies among 
packages. They calculated sustain-
ability by the mean of dormancy, i.e., 
the period of inactivity for a project 
repository. The results indicated that 
the number of connections as well as 
the dependency network position are 
significant factors affecting the proj-
ects’ sustainability. Later, Mujahid 
et al.7 proposed a scalable approach 
that relies on the package centrality 
in an ecosystem to identify packages 
in decline. The results of an evalua-
tion conducted on the Node Package 
Manager ecosystem showed strong 
prediction capabilities, thus indicat-
ing centrality as an important factor 
for forecasting project abandonment.

In previous work,8 we investigated 
approaches to automate the evalua-
tion of information from OSS proj-
ects, although we did not propose 
an assessment and risk model. In 

contrast to the related literature, 
we are introducing a method to cal-
culate abandonment risk based on 
the probability of embedded system 
components losing maintenance sup-
port. Moreover, thanks to the as-
sistance we received from our case 
company, our method is suitable for 
real industrial applications.

Software Composition 
Using OSS
Software composition via the adoption 
of components off the shelf (COTS) 
has long been considered an effective 
practice.9 Despite the disadvantages 
of COTS in terms of uneven perfor-
mance, a lack of evolution control, 
and insufficient interoperating capa-
bilities, using the components enables 
practitioners to avoid “reinventing the 
wheel.” OSS can be viewed as COTS 
since most of the embedded compo-
nents, e.g., libraries and plug-ins, are 
usually integrated as is. The main ad-
vantages of OSS components are the 
open licenses, which usually permit ac-
cess to the source code and, eventually, 
making extensions. Moreover, OSS is 
often accessible without paying license 
fees, thus reducing adoption costs.

When developing a software proj-
ect, the most common practice is to 
integrate several components and 
combine them by writing custom code. 
The amount of custom code is usually 
minimal compared to the size of the 
components. Developing all com-
ponents as custom software might 
require significant effort, not only for 
the process itself but also for main-
tenance. However, creating a system 
consisting of several OSS components 
introduces risks since the maintenance 
of each one is usually delegated to 
the developer community. There may 
be cases where the community does 
not continue the upkeep. Companies 
with integrated unmaintained OSS 

components need to find alternatives, 
either deciding to maintain the com-
ponents themselves or replacing them.

OSSARA
We propose OSSARA to assess a sys-
tem’s abandonment risk on the basis 
of embedded OSS components. The 
abandonment risk is calculated based 
on 1) the likelihood of each com-
ponent losing maintenance support 
during a certain period and 2) the 
importance that each component has 
for the main system, following the 
classic risk assessment notion Risk = 
Prob (Loss) # Size (Loss).10 Figure 1 
depicts the OSSARA process. Start-
ing from a software system that em-
beds several OSS components (14 in 
the example), we first calculate for 
each component the abandonment 
probability in the given time and the 
weight (abandonment probability 
and weight are represented by colors 
and box sizes, respectively). Then, 
we combine these two pieces of in-
formation to calculate the risk that 
the main system will be abandoned 
within the considered period.

More formally, the overall abandon-
ment risk Ra for a system ( [ , ])R 0 1a !  
that integrates k OSS components is 
calculated as follows:

( ) ( ),R w O r Oa
m

k

m m
1

)=
=

|

where ( ) [ , ]w O 0 1m !  represents the 
weight of the OSS component Om and 
( ) [ , ]r O 0 1m !  conveys the risk that 

Om will be abandoned. The weight of 
a component ( )w Om  can be quanti-
fied by counting the number of invo-
cations (e.g., the number of imports in 
the code).

Predicting OSS 
Abandonment
Identifying inactive and abandoned 
OSS could be easily performed by 
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directly checking for the presence of 
specific tags on SourceForge (https://
sourceforge.net). However, by then, 
it would be too late for a company 
to find proper alternatives. Thus, it is 
necessary to find a way to foresee po-
tential abandonment.

Predicting the abandonment risk 
for a software component is a mul-
ticoncern assurance problem since 
it could depend on several aspects, 
such as poor performance, insuf-
ficient maintainability, and so on. 
Commonly, an OSS component is 
considered abandoned based only on 
the number of commits performed on 
the system repository in a given time 
interval.2,11,12 Therefore, one could 
trivially think to use this information 
as a sole predictor to foresee aban-
donment; i.e., if the number of com-
mits on a certain project repository 
falls below a predefined threshold 
within a certain period, the compo-
nent is considered abandoned. How-
ever, the process for determining the 
threshold or period length will vary 
among practitioners.

Our case company considers an 
OSS project abandoned if the software 
has not had any releases or com-
mits within the previous six months, 
which is a comparatively stricter 
threshold than that suggested by 
Khondhu et  al.11 Furthermore, it 
is also possible that when an OSS 
community does not focus on com-
mitting, the contributors remain ac-
tive in handling pull requests and 
discussing relevant issues. In this 
case, the suggestion from our case 
company is that measures regarding 
committing (e.g., the daily number 
of commits), communication (e.g., 
the daily issue comments), and is-
sue handling activities (e.g., the daily 
closed pull requests) be taken into 
account. For these reasons, we pro-
pose to apply supervised techniques 
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to predict the abandonment likeli-
hood for an OSS component on the 
basis of key activities (e.g., commits, 
issues, pull requests, and so on). This 
would overcome the problem of sub-
jective thresholds: rather than relying 
on predefined thresholds, prediction 
can be adapted to a component.

In detail, to predict the abandon-
ment of an OSS component, we pro-
pose the following pipeline:

• Step 1—Data crawling: 
We gather data from all 
125,486,232 GitHub projects 
by using the GHTorrent data 
set (https://ghtorrent.org). The 
selected metrics consist of the 
number of commits, commit 
comments, unique committers, 
issues, issue comments, watch-
ers, and open and closed pull 
requests.

• Step 2—Data preprocessing: We 
create training data for each OSS 
project that fulfill the criteria 
specified by our case company, 
labeling projects active on the ba-
sis of 1) having more than 2,000 
commits, 2) having more than 
1,000 days of activity (from the 
day of creation to the final com-
mit day), 3) having at least one 
commit in the past six months, 
and 4) having days with zero 
commits equal less than 50% of 
the days of activity. Furthermore, 
labeled training data are prepared 
based on the target prediction 
period (e.g., one, two, or three 
months), with their dimensions 
set to provide the best accuracy.

• Step 3—Prediction: Using the 
labeled and preprocessed data, 
we train the classifiers with the 
best performance for the target 
prediction periods. With the 
target OSS component data as 
input, the classifier predicts 

whether a component is active or 
abandoned. Its accuracy is used 
as the probability of the OSS 
being active or abandoned, as it 
indicates the likelihood that the 
prediction is correct.

Validation
To validate the proposed methodol-
ogy, we conduct a preliminary evalu-
ation on 12,208 OSS projects that 
contain at least 1,000 commits from 
at least five unique contributors and 
are watched by at least 100 users 
(the data set is shared at https://doi.
org/10.6084/m9.figshare.16944001.
v1). Such criteria ensure the popu-
larity and longevity of the candi-
dates. The data set is extracted from 
GHTorrent (until the 1 June 2019 
dump) and labeled according to the 
preceding guidelines (see step 2). 
Among the four classification al-
gorithms we selected, i.e., decision 
tree, support vector machine, logis-
tic regression, and naive Bayes, we 
find that logistic regression has the 
highest accuracy with the data set. 
We also apply a 10-fold cross-vali-
dation strategy to assess the predic-
tion capabilities of the model. The 
results of the validation indicate an 
F1 score of ≈ 0.86 (a ±0.01 estimated 
error), with the Matthews correla-
tion coefficient being 0.73; hence, 
we conclude that the proposed meth-
odology is reliable enough.

Working Example
This section presents a working ex-
ample of the proposed method. Due 
to a nondisclosure agreement with 
our case company, we cannot pro-
vide details about the real industrial 
application of our technique. How-
ever, to demonstrate OSSARA at 
work, we apply it to an open source 
software project. We take Keras as 

an example of software developed 
in-house that needs to integrate 
various OSS components. Keras is 
an OSS project providing a Python-
written deep learning application 
programming interface for Tensor-
Flow libraries. For our analysis, we 
chose release 2.7.0 RC1 (https://
github.com/keras-team/keras/re
leases/tag/v2.7.0-rc1), accessed on 
26 October 2021. 

We conduct our analysis by fo-
cusing only on the 536 Python files 
from the repository and detect the 
OSS components (i.e., packages) 
imported within each file. Further-
more, to ease the computation as 
well as the explanation of the re-
sults, we consider the 20 packages 
most frequently imported in Keras. 
We examine only the five most com-
monly imported OSS components 
in Keras, namely, TensorFlow, CPy-
thon, Numpy, abseil-py, and h5py. 
The packages, e.g., re, random, col-
lections, and so on, belong to the 
CPython component and will be 
considered together. The weight of 
each component is calculated by the 
percentage of files importing it.

We conduct our analysis using 
three time frames to predict the aban-
donment risk of embedded OSS 
components in one, two, and three 
months. The same approach can be 
applied to longer periods. To sim-
plify the process, we quantify the 
weight of each imported Python 
package by counting the number of 
imports across all the project files. 
Figure 2 summarizes the results. 
They show that for one month, all 
components are safe from abandon-
ment. When considering a two-
month time frame, the abseil-py 
package appears to have a high risk 
of being abandoned (i.e., 85.8%). 
Finally, for the three-month analy-
sis, the risk that the h5py package 
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will be abandoned rises. The three 
key components, namely, Tensor-
Flow, Cpython, and Numpy, remain 
active throughout. Based on our 
calculation, the overall abandon-
ment risk for Keras grows from 
0.138 in one month to 0.215 in two 
months and 0.248 in three months. 
From the repository history of ab-
seil-py and h5py, we observe that 
since 2020, both projects have had 
very low committing and issue han-
dling rates from a small group of 
contributors, which legitimizes the 
risks assessment.

This example shows that OSSARA 
predicts the abandonment risk to soft-
ware systems that embed OSS compo-
nents. However, this oversimplified 

demonstration aims only to explain 
how our method works when prob-
ability-based conclusions might not 
reflect reality. Please note that we 
did not consider hierarchical rela-
tions. For example, the 20 selected 
packages might use other compo-
nents that have a high abandonment 
risk. Meanwhile, although the model 
meets real industrial needs—its main 
strength—its generalizability can be 
limited. Furthermore, the application 
of risk prediction toward component 
replacement and integration requires 
the support of software engineering 
assessment and decision making.13

Finally, other metrics might have dif-
ferent prediction power for abandon-
ment risk.

I ntegrating abandoned OSS in 
software-intensive systems is 
hazardous and could result in 

severe consequences, which con-
cerns practitioners. Especially when 
functions from abandoned compo-
nents are integrated into highly criti-
cal modules, the consequences from 
abandoned OSS that lacks mainte-
nance can be unbearable. To foresee 
such risks, we proposed OSSARA to 
provide an assessment and predic-
tion pipeline. The model also sup-
ports continuous adaptation and 
customization through which prac-
titioners can conduct optimized pre-
diction via up-to-date OSS activity 
data, with selectively effective and 
even customized algorithms. The 
model was positively received by our 
case company, which is adopting 
and integrating it into its continuous 
integration/continuous deployment 
pipeline. Future work will explore 
other analysis techniques, the inclu-
sion of different metrics in the pre-
diction model, and the integration 
of various types of OSS risk assess-
ment, e.g., security assessment, li-
cense compliance assessment, and so 
on, as well as dependency and hier-
archy analysis. 
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ABSTRACT The cloud continuum concept has drawn increasing attention from practitioners, academics,
and funding agencies and been adopted progressively. However, the concept remains mired in various
definitions with different studies providing contrasting descriptions. Therefore, to understand the concept
of cloud continuum and to provide its definition, in this work we conduct a systematic mapping study of the
literature investigating the different definitions, how they evolved, and where does the cloud continue. The
main outcome of this work is a complete definition that merges all the common aspects of cloud continuum,
which enables practitioners and researchers to better understand what cloud continuum is.

INDEX TERMS Cloud continuum, edge, Fog.

I. INTRODUCTION
The adoption of service-oriented architecture in cloud com-
puting has profoundly changed the way how software, espe-
cially large-scale distributed systems, are built [24]. The
cloud is often viewed as an endless pool of resources,
on which we build and scale applications for various
purposes. Modern cloud systems, however, are inherently
complex spanning public cloud to private cloud, possibly
co-located across different regions, and may also include
components and compute resources at the edge of the
network.

Cloud continuum is one of the most recent hypes in the
cloud computing domain and has raised interests of funding
agencies of EU and US [1], [2], [3]. However, while the hype
is increasing, its definition is still not clear, and various papers
are describing the concept of cloud continuum inconsistently.

In order to understand the differences between the dis-
parate definitions of cloud continuum, we propose a system-
atic mapping study of the literature.

In this work, we investigate the existing definitions and
common characteristics of ‘‘cloud continuum’’ as well as
their evolution through the time.

We formulate three main Research Questions (RQs) as
follows.

The associate editor coordinating the review of this manuscript and

approving it for publication was Rodrigo S. Couto .

• RQ1: What are the definitions of cloud continuum?
With this RQ we aim at understanding whether there are
different definitions of cloud continuum.

• RQ2: How has the definition of cloud continuum
evolved?
Via the comparison amongst the different definitions,
we shall observe the changes from the earliest to
the latest. In this way, we shall identify what are
the new aspects taken into account regarding ‘‘cloud
continuum’’.

• RQ3: Where does the cloud continue?
As cloud is ‘‘continued’’ into other infrastructures,
we expect to find cloud-to-* extensions, where * could
be on premise servers, but also edge, or other infras-
tructures. In this RQ we aim at understanding which are
these extensions, so as to clarify where the cloud could
be continued.

The remainder of this paper is structured as follows.
Section 2 presents related reviews. Section 3 describes the
research method adopted. Section 4 presents the results
answering the RQs. Section 5 discusses the results while
Section 6 draws the conclusion and highlights future works.

II. BACKGROUND AND RELATED WORK
A. CLOUD, FOG, EDGE, AND MORE
Cloud computing builds on the promise of economies of
scale in leveraging scalability and reliability. Scaling up is

131876 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022
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made possible by creating multiple compute instances and
distributing them. Containers have long been the basis for
implementing microservices based architectures but recent
advancement towards serverless and Functions as a Service
further emphasize the role of the cloud as a platform abstract-
ing underlying infrastructure resources [6], [18].

Fog computing can be simplified as the cloud brought
closer to the use case applications. Fog nodes minimize load
on the cloud and are able to host some services from the cloud,
and thus respond faster and also reduce networking to the
cloud [9]. Chiange et al. [10] define that ‘‘fog is inclusive of
cloud, core, metro, edge, clients, and things,’’ and ‘‘fog seeks
to realize a seamless continuum of computing services from
the cloud to the things’’ instead of independent application
resource pools.

Edge computing takes place at the edge of the network
close to IoT devices, however, not necessarily on the IoT
devices themselves but as close as one hop to them [25]. Edge
computing has been pushed heavily by the telecommunica-
tion industry but it has also emerged from the need to perform
computation closer the applications or with independence
from cloud computing. Edge computing is characterised by
short latency in contrast to cloud computing where transmis-
sion of data, allocation of resources typically includes delays.

For applications where large amounts of data needs to be
processed both fog and edge computing can introduce bene-
fits as cost savings in transfer, storage and processing. This
includes, for example, data from thousands of sensors, audio
and video streams, and emerging machine learning (ML)
based solutions. In Virtual Reality (VR) and Augmented
Reality (AR) edge computing together with low latency com-
munication is claimed to enable cutting the cord, and it has
been shown to achieveminimumgains of up to 30% reduction
in end-to-end delay and even more for most parts of the
communication [11].

B. RELATED WORK
Over the last few years, more and more researchers have been
focusing on the cloud continuum paradigm. Therefore, some
surveys/reviews on the subject have already been presented.
In the following, we report an overview of the most relevant
works available in the literature and discuss the differences
with our work.

Al-Sharafi et al. [4] presented a literature review on the
adoption of cloud computing services at the organizational
level, with a focus on the elements that contribute to long-
term adoption.

Pahl et al. [19] performed a literature review to identify,
catalog, and compare the corpus of existing research on con-
tainers, their orchestration, and particularly the use of this
technology in the cloud.

Bittencourt et al. [8] presented a literature review on IoT-
Fog-Cloud continuum with the aim of understanding (i) what
are the best types of infrastructures to deploy the entire
ecosystem, (ii) what are the required mechanisms to allow

orchestration, data exchange, and resource management,
and (iii) what are the types of applications that can benefit
most from this ecosystem.

Nguyen et al. [17] surveyed the current landscape of the
existing approaches and tools that attempt to cope with this
edge and cloud heterogeneity, scalability and dynamicity.

Bendechache et al. [7] surveyed the list of suitable meth-
ods, algorithms, and simulation approaches for resourceman-
agement in cloud-to-thing continuum.

Ramanathan et al. [21] conducted a survey to retrieve all
the resource allocation techniques that have been developed
for the cloud continuum.

Svorobej et al. [23] reviewed the orchestration mecha-
nisms along the cloud-to-thing continuum with a focus on
container-based orchestration and orchestration architectures
tailored for fog.

Asim et al. [5] provided a summary of research issues in
Cloud computing and Edge computing, as well as current
developments in resolving them with CI approaches.

Ghobaei-Arani et al. [13] provided a literature analy-
sis aiming to identify the state-of-the-art mechanisms on
resource management approaches in the fog computing
environments.

Kampars et al. [14] reviewed application layer protocols
that can be used for the communication between the IoT, edge
and cloud layers.

Spataru [22] surveyed the applications of Blockchain or
Smart Contracts for computing resources management, data
storage, and services operation in the context of Cloud
continuum.

Kansal et al. [15] presented a systematic literature review
of the resource management approaches in fog/edge
paradigm.

Compared to our work, the previous literature reviews
spent a noticeable effort in understanding technical and man-
agerial aspects of the cloud continuum (Table 1). Instead,
our work focuses on identifying the definition of the
cloud continuum, how it evolved, and where the cloud
continues.

III. RESEARCH METHODOLOGY
In this study, we conducted a systematic mapping study of
the literature, by taking into account the guidelines proposed
by Petersen et al. [20]. The main aim was to systematically
and impartially summarize and classify the collected infor-
mation regarding the research questions. Specifically herein,
we aimed to not only characterize all the existing definitions
of the ‘‘cloud continuum’’ and other relevant concepts, but
also to investigate the evolution of such definitions through
time.

The process of the study included four main steps. Firstly,
we established the research questions. Secondly, we defined
the search strategy. Thirdly, we defined the data extraction
strategy. Fourthly, we synthesized and visualized the obtained
results.
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TABLE 1. Summary of the related literature reviews.

FIGURE 1. The Search and Selection Process.

A. SEARCH STRATEGY
The aim as well as the challenge for a systematic mapping
study was to define the search query that enables the retrieval
of a complete set of studies that contain the definitions [16].
For such a purpose, the search strategy encompassed a set of
steps, namely, defining search string, identifying key sources,
selecting primary studies, extracting data and synthesizing
the results.

The search strategy involved the outline of the most rele-
vant bibliographic sources and search terms, the definition of
the inclusion and exclusion criteria, and the selection process
relevant for the inclusion decision. Our search strategy can be
depicted in Fig. 1.

As for the search terms, we included cloud concepts, Fog,
Edge, and Continuum:

( cloud AND ( edge OR fog ) AND continuum )

We searched for scientific literature in four bibliographic
sources: Scopus,1 IEEEXplore Digital Library,2 the ACM
Digital Library,3 and Web of Science.4 The adoption of four
databases ensured the completeness of the search results.

We conducted our search on March 1st 2022, retrieving
378 non-duplicated papers from the four sources. The number
of papers retrieved for each source is reported in Table 2.

B. PRIMARY STUDIES SELECTION
In order to select the primary studies from the preliminary
search results, we defined the inclusion and exclusion criteria

1Scopus, https://www.scopus.com
2IEEEXplore Digital Library https://ieeexplore.ieee.org/
3ACM Digital Library: https://dl.acm.org
4Web of Science database: https://www.webofscience.com/

TABLE 2. Initial search results by sources.

shown in Table 3. We included the research papers published
in journals or conferences, defining CloudContinuum.On the
other hand, we excluded the research papers that are not in
English, duplicated, not discussing the topic connected to the
defined research questions. Furthermore, we also excluded
the papers that are not peer-reviewed, as well as the work
plans or roadmap, posters and vision papers.

With the inclusion and exclusion criteria defined,
we selected the primary studies via two steps. Firstly, two of
the authors read the title and abstract of each paper separately
to determine whether it should be excluded or be read fully.
Whenever there was disagreement between them, a third
person assert the decision by the inclusion and exclusion.
Out of 378 papers screened, we had 93 disagreement with
a Cohen’s kappa coefficient of 0.51, indicating a moderate
agreement [12]. As a result, we identified 181 papers that
need to be considered for the next step.

We then ran a snowballing process including all the papers
referenced by the 181 papers. We then followed the same
process by applying inclusion and exclusion criteria to their
titles and abstracts. As a result, we included two more papers:
one peer-reviewed, and one grey literature [SP1]. The reason
for including this specific non-peer-reviewed work [SP1] is
due to its large amount of citations; especially when many
of our selected papers referred to it as the first definition of
cloud continuum. Though belonging to the gray literature,
this study represents an important milestone for the definition
of cloud continuum that has evolved over time with the
addition/removal of other keywords. It is also important to
notice that no other grey literature works are mentioned by
the selected studies.

Each of the 183 papers (181 from the initial search, and
2 from snowballing), was fully read by one of the authors
independently and evaluated by the inclusion and exclusion
criteria. As a result, we selected 36 papers.
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TABLE 3. Inclusion/Exclusion criteria.

C. DATA EXTRACTION STRATEGY
From the 36 Selected Papers (SP), we extracted the data that
answers our research questions. Importantly, we extract the
definitions on ‘‘continuum’’, the year of the publication, and
the information on where the cloud is ‘‘continued’’. In addi-
tion to the key data mentioned above, we also extracted the
type of publication (e.g. conference paper, or journal article).

TABLE 4. The information extracted from the selected papers.

The description of the information extracted, together with
their motivation and the mapping to the RQs, is reported in
Table 3.

D. KEYWORDING
The different definitions were written in natural language.
Therefore, we needed to run a qualitative analysis among the
authors, to identify similar definitions and different ones.

For this purpose, we applied a collective coding process to
answer our RQs:

The manual identification of the aforementioned informa-
tion was extracted collaboratively. From each paper, we first
extracted the definition and print it to a post-it note (RQ1).
Then, one author attached it to a whiteboard, and the other
authors read all the other definitions proposed by the papers.
All the authors discussed one by one the similarities and
differences of each of the definitions, so as to decide whether
to group them into a single definition or to create a new one.

Finally, the authors re-position the post-it notes reporting
groups of similar definitions, and their key differences. For
each definition, all the authors follow the same process to
identify common aspects.

Last, authors highlighted with different colors the contin-
uum extension to the cloud (RQ3)

IV. RESULTS
As expected, publications on Cloud Continuum are contin-
uously growing in the recent years. The first definitions of
cloud continuum were presented in [SP1] and [SP2] in 2016.
For the following three years only four papers are identified

FIGURE 2. Selected papers by types.

FIGURE 3. Selected Papers by Years.

as related to the definition of cloud continuum. The interest
in the topic started to grow in 2020. As depicted in Fig. 3 the
majority of paper identified are from 2021. In the remainder
of this Section, we answer our RQs.

A. THE DEFINITIONS OF CLOUD CONTINUUM (RQ1)
The first definitions of Cloud Continuumwere both presented
in 2016. Gupta et al. [SP1] defined cloud continuum as ‘‘a
continuum of resources available from the network edge
to the cloud/datacenter’’ while Chiang et al. [SP2] defined
cloud continuum explicitly mentioning computational-
related aspects, for instance, where and how the computation
is performed.

We identify three main groups of definitions, with respect
to their main aspects. Each group is represented by a block of
a different colour in Fig. 4. The first and larger group contains
all those sources defining cloud continuum as an aggrega-
tion/combination of different elements such as IoT devices,
fog and edge nodes. In this case, cloud continuum only refers
to the continuumof resources, but not of the computation. The
second block contains all the sources defining cloud contin-
uum with a particular focus on the processing/computation.
Finally, we group together all those sources that do not belong
to these two blocks.

Fig. 4 also shows that the definition of cloud continuum
has two different origins. Both of the papers which gave
origin to the definition, as presented previously, have been
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FIGURE 4. Definitions of cloud computing grouped by year and concepts. Each column represent a different year while the coloured blocks represents
different aspects. Arrows between two blocks indicate that there is a direct citation to the definition.
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published in 2016 but each of these focused on a different
aspect. While the definition in [SP1] focused on the elements
composing the system, the one proposed in [SP2] was cen-
tered around the concept of ‘‘where happens what’’.

The definition provided in [SP1] has been extended in
2019 from Kahvazadeh et al. [SP6] where the continuum of
resources has been extended to ‘the whole set of resources
from the edge up to the cloud’. In parallel to this, Balouek-
Thomert et al. [SP5], centered their definition on the concept
of ‘‘distributed resources services on demand’’.

Within these groups we can identify some clusters. Each
cluster combine multiple work within the same year defying
the concept of cloud continuum in the same fashion. It is
important to notice that each cluster is year-based as the
definition evolved during the years (even when the author
is the same). The highest amount of cluster can be found in
the first group of work, those related to the distribution of
resources.

Within this group we can find 3 different clusters. The
first one includes 5 different work agreeing on the same def-
inition which puts the concept of continuum strictly related
to the concept of fog. The second cluster is composed of
3 works which stress the importance of having a combination
of multiple edge and fog devices. The third cluster defines
the cloud continuum as an aggregation of heterogeneous
resources from the Edge to the cloud. The latter even tho it
is composed of only two works, has a definition that focuses
on the data path with a bottom-up design.

The other two clusters can be found one per each group.
The first one, in the group ‘‘extension of the processing’’,
includes two works defying cloud continuum as a Set of
processing units located between the IoT and the Cloud. The
other one, also including two works, focuses on the different
services across multiple infrastructures.

B. THE EVOLUTION OF THE CLOUD CONTINUUM
DEFINITION (RQ2)
In order to answer RQ2, we firstly extract the commonly
adopted keywords of the cloud continuum definitions of the
selected papers. Herein, based on the opinions of two domain
experts, we extract six different keywords that delineate the
characteristics (i.e., how, when and where) of cloud con-
tinuum and specify the entities (i.e., what) it connects. The
keywords include:

• Multi-Cloud: definitions referring to multiple cloud
entities;

• Fog: definitions explicitly referring to Fog;
• IoT: definitions referring to internet of things, IoT,
things;

• Anywhere: definitions explicitly reporting that the com-
putation can be executed everywhere;

• Micro Datacenters: definitions explicitly reporting
the use of micro datacenters to the goal of provid-
ing low-latency access to data processing and data
storage.

• Simultaneous: definitions explicitly reporting that the
computation can be simultaneously executed on multi-
ple nodes.

Therefore, by summarizing the adoptions of these key-
words by the selected papers in chronological order (reported
in TABLE 5), we can observe the evolution of the cloud
continuum definition.
The two earliest definitions, [SP1] and [SP2] in 2016,

both anchored the concept of fog between cloud and edge,
where the term ‘‘continuum’’ was firstly used by its literal
meaning in this context. Specially, Chiang and Zhang [SP2]
emphasized that within such continuum, services like com-
puting, storage, control and communication could be pro-
vided anywhere between cloud and edge. From 2017 to 2018,
the two studies, [SP3] and [SP4] continued adopting the
term ‘‘continuum’’ describing the combination of fog and
cloud, when Peng et al. [SP4] indicated that the continuum
of fog and cloud could provide ideal IoT data provision-
ing. In 2019, Balouek-Thomert et al. [SP5] also mentioned
‘‘computing continuum’’ as a fluid ecosystem with aggre-
gated resources and services but didn’t emphasized its posi-
tioning between cloud and edge. Meanwhile, also in 2019,
Kahvazadeh et al. [SP6] proposed the term ‘‘IoT continuum’’
but similarly coined the definition as a whole set of resources
between edge and cloud.
Since 2020, the number of studies that provided def-

initions to cloud continuum has been growing sharply.
In 2020, eight studies mentioned the concept of ‘‘continuum’’
and similarly placed the concept as the services between
cloud and the end-devices (i.e., edge). However, though
five studies, [SP7], [SP8], [SP11], [SP12], and [SP14],
mentioned ‘‘fog’’ when defining continuum, none of the
studies have clearly distinguish them; when some studies,
e.g., [SP8], [SP12], indicate continuum is between cloud and
fog. Meanwhile, four studies mentioned IoT when defin-
ing continuum [SP11]-[SP14]; however, the relation between
continuum and IoT is not clearly delineate either. On the
other hand, Kassir et al. [SP12] also indicate that compute
resources can be placed anywhere in the network when
citing [SP2]. Furthermore, Spillner et al. [SP11] emphasize
that continuum is more than simply a ‘‘multi-cloud’’ but
incorporating other compute facilities, e.g., mobile devices,
IoT sensor nodes, edges and fogs, which is the first time
continuum is connected with the notion of ‘‘multi-cloud’’.
In 2021, nine studies mentioned ‘‘fog’’ as a critical entity

in the definition of continuum. Different from previously,
many of these studies, e.g., [SP18]-[SP20], [SP22], [SP23],
have anchored the continuum concept as the combination
or aggregation of several fog, edge, IoT devices or services,
or the extension of the cloud.Meanwhile, four studies [SP16]-
[SP19] also indicate that cloud continuum is a ‘‘multi-cloud’’
infrastructure. On the other hand, eight studies indicate that
IoT is a crucial part of the cloud continuum concept when,
however, the interpretation of the term differs slightly. For
example, Xhafa and Krause [SP27] define cloud continuum
as a large digital ecosystem comprising IoT, Edge, Fog, and
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TABLE 5. Initial search results by sources.

etc., where IoT is the individual entity/device providing ser-
vices; Zeiner and Unterberger [SP28] defines edge-to-cloud
continuum as a data-driven Internet of Things combines the
physical world with the world of information, where IoT is
referred to as the assembly instead of the individual. Spe-
cially, Mehran et al. [SP22] define cloud continuum as the
extension of the cloud with distributed micro-datacenters and
mobile edge servers, which is the first and only time when
micro-datacenter is used.

Until February 2022, two studies also provided defini-
tions to cloud continuum. Dustdar et al. [SP35] define it by
emphasizing it is the system that is ‘‘simultanously’’ exe-
cuted on the edge, fog, and cloud computing tiers. Similarly,
in 2021, Risco et al. [SP17] also mentioned the term ‘‘simul-
tanously’’ by indicating cloud continuum ‘‘simultaneously
involves both on-premises and public Cloud platforms to
process data captured at the edge’’. The other definition given
by Spillner et al. did not specify the entities that cloud con-
tinuum aggregating but emphasize it is an ‘‘novel abstraction
layer to express a continuous range of capacities’’.

C. WHERE DOES THE CLOUD CONTINUE (RQ3)
Among the 36 SPs, nine of them mention the contin-
uum as ‘‘cloud-to-thing(s) continuum’’. Therein, these stud-
ies indicate that cloud continuum connects or is placed
between cloud(s) and the IoT-connected devices (i.e., things).

Specially, Kassir et al. [SP12] state that ‘‘cloud-to-thing(s)
continuum’’ is equivalent to ‘‘Fog-to-Cloud continuum’’.
Meanwhile, two studies, [SP22] and [SP23], use ‘‘Cloud-fog
continuum’’ or ‘‘fog continuum’’ indicating the continuum
extends the cloud towards fog, which could either refer to fog
nodes (i.e., also things) or fog in general.

On the other hand, seven papers amongst the 36 SPs use
the term ‘‘Edge-to-Cloud continuum’’ (or Cloud-edge con-
tinuum, or edge/cloud continuum) indicating the cloud ‘‘con-
tinues’’ towards edge nodes. Kahvazadeh et al. [SP6] use the
term ‘‘IoT continuum’’ but describe the same connection
between cloud and edge. Three studies use directly the term
‘‘cloud continuum’’ but also define it as combination of cloud
and edge.

Furthermore, ten studies use ‘‘Computing Continuum’’ to
emphasize the computing capability instead of the connection
of entities. Within these definitions, the ‘‘continuum’’ can be
used connecting any entities, e.g., edge, fog, local devices
(i.e., IoT or things), data centers, etc. Specially, Balouek-
Thomert et al. [SP5] do not describe the specific nodes being
connected by continuum but defines ‘‘computing contin-
uum’’ as ‘‘a digital infrastructure jointly used by complex
application workflows’’. Beckman et al. [SP14] provide a
similar definition as ‘‘a collective of components with various
capabilities and numbers in aggregate’’. Spillner et al. [SP36]
provide a high-level abstracted definition of computing
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FIGURE 5. Architecture of Cloud Continuum.

continuum as ‘‘novel abstraction layer to express a continuous
range of capacities’’

Comparatively, early studies, e.g., [SP1] and [SP2], did
not try to provide distinguishable terms but only use the
term ‘‘continuum’’ literally trying to describe the conceptual
idea. Similarly, these two studies also place the ‘‘continuum’’
between cloud to edge or cloud to fog.

V. DISCUSSION
Several definitions of Cloud Continuum have been proposed
in the last six years. However, only few have been used or
extended.

It is interesting to notice the two main types of definitions,
one considering the continuum as distribution of resources in
different network elements, including IoT, Fog, Edge, but also
HPC, while the other definition considering the continuum as
an extension of the processing power to different nodes, often
mentioning the possibility of executing also AI.

The investigation of the different cloud continuum con-
cepts allowed us to draw an overall architecture of the cloud
continuum (Figure 5)

Based on the analysis conducted in this work, we can
propose a new definition of cloud continuum, combining the
most frequently mentioned aspects.

Cloud Continuum is an extension of the traditional
Cloud towards multiple entities (e.g., Edge, Fog, IoT) that
provide analysis, processing, storage, and data generation
capabilities.

A. FUTURE CHALLENGES
The results of this work enabled us to distill a set of challenges
for the cloud continuum. Therein, the majority of the SPs
point out the challenges concerning the dynamic allocation
of the computation([SP31], [SP22]), and in particular of
the execution of the AI, and the related resource orchestra-
tion, network partitioning ([SP30]) and support for context-
awareness ([SP9]).

As part of the resource orchestration, job scheduling
is also identified as one of the most common challenges

that need to be addressed in the future ([SP4], [SP13],
[SP14], [SP16], [SP24]). Tools such as Kafka-ML ([SP30])
and network virtualization ([SP1]) are proposed towards
such an end. Furthermore, other techniques, e.g., adopt-
ing APIs ([SP16]) and game theory ([SP20]), are pro-
posed as promising solutions for application deployment and
orchestration.

The robustness of the cloud continuum is also considered
a critical aspect for the future. For example, [SP11] high-
lights the complexity of the awareness of application deploy-
ment towards the adaptation for higher resilience. [SP23]
and [SP15] also indicate that tolerant IoT services and self-
healing components shall serve for the future steps towards
structural and behavioral optimization of cloud continuum
system.

Furthermore, security of the cloud continuum sys-
tems ([SP2], [SP4]) is also a key aspect when specific
techniques, e.g., Information-Centric Network integra-
tion ([SP9]), and Hybrid key distribution ([SP6]) are seen as
future works.

Other performance characteristics, e.g., scalability
([SP28]), mobility ([SP23]) and consistency ([SP2]), together
with the correspondingways of acquisition ([SP11]), compar-
ison ([SP29]) and benchmark ([SP26]) are also mentioned as
the challenges.

Meanwhile, other future challenges include high-level
abstraction models and architectural trade-off ([SP2],
[SP10]), [SP14]), interfaces and user experience ([SP1],
[SP2]), positioning and localization, ([SP4]) and the Incen-
tives of device participation ([SP2]). The researchers shall
consider contributing to the solutions to the above challenges
in order to enrich the domain knowledge of cloud continuum
research.

B. THREATS TO VALIDITY
We are aware that our work is subject to threats to validity.
The terms Cloud, Fog, IoT, and Edge are sufficiently stable to
be used as search strings. In order to assure the retrieval of all
papers on the selected topic, we searched broadly in general
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publication databases, which index most well-reputed publi-
cations. To improve the reliability of this work, we defined
search terms and applied procedures that can be replicated
by others. Since this is a mapping study and no systematic
review, the inclusion/exclusion criteria are only related to
whether the topic of Cloud Continuum is present in a paper
or not, as suggested by [20]. As for the analysis procedure,
since our analysis only uses descriptive statistics, the threats
are minimal. However, we are aware that the synthesis of
the definition might be subjective. To mitigate this threat, the
analysis was done collaboratively, using a collecting coding
methods, and discussing with all the authors about incon-
sistencies. The Kohen K index about our disagreement also
confirms the quality of the qualitative analysis performed.

VI. CONCLUSION
In this work, we proposed a systematic mapping study on the
definition of Cloud Continuum to obtain an overview of its
existing definitions and how the concept has been evolved.

We identified 36 studies which proposed definitions to
Cloud Continuum dated from 2016. All these definitions are
summarized in Figure 4. We organized all the 36 existing
definitions in chronological order.

In conclusion, we propose to complement existing defini-
tions into a common one that merges explicitly two aspects:
the continuum as extension of the resources, and as exten-
sion of computational capabilities.

As a result, we formulated the definition of cloud
continuum as ’’an extension of the traditional Cloud
towards multiple entities (e.g., Edge, Fog, IoT) that pro-
vide analysis, processing, storage, and data generation
capabilities.’’

The new definition enables both practitioners and
researchers to better understand the concept of cloud contin-
uum and to gain insights into the potential advance in service-
oriented computing.

As regards futurework, we are planning to extend this work
in the context of cognitive continuum.
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Abstract. Software systems need to be maintained and frequently up-
dated to provide the best possible service to the end-users. However,
updates sometimes, cause the system or part of it to restart and discon-
nect, causing downtime and potentially reducing the quality of service.
In this work we studied and analyzed the case of a large Nordic company
running a service-oriented system running on edge nodes, and providing
services to 270K IoT devices. To update the system while minimizing
downtime, we develop a smart edge service update scheduler for a service-
oriented architecture, which suggests the best possible update schedule
that minimizes the loss of connections for IoT devices.
Our approach was validated by applying the scheduling algorithm to the
whole system counting 270k edge nodes distributed among 800 locations.
By taking into account the topology of the software system and its real-
time utilization, it is possible to optimize the updates in a way that
substantially minimizes downtime.

Keywords: Edge computing · provisioning · update scheduling · service-
oriented · IoT.

1 Introduction

Software systems constantly need to be updated. Modern agile methods allow the
continuous development and deployment of changes. However, the deployment
of updates can require the restart of the system or part of it.

When considering widely used software systems, and in particular critical
systems, downtime is usually unacceptable, and different strategies should be
considered to avoid or minimize downtime as much as possible.

In our case, a very large Nordic company3 is running a service-based system.
The system is running 24/7 and it is deployed on edge and cloud, in multiple
countries. Among different countries, the system has more than 800 locations,
with an average of 336 edge nodes for each location for a total of ∼ 270k edge
nodes. Each edge node provides a service to 100-1000 users connected simulta-
neously totaling 270 million connected Internet of Things (IoT) devices.

3 For reasons of NDA, we are not allowed to disclose the name of the company, nor
the low-level details of the use case.
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The company is continuously developing the system using an agile method-
ology and the continuous building of the system needs to deploy a new version
of the code every day. However, the deployment of the new version requires the
restart of each location, taking an average of 30 minutes, and impacting all the
edge nodes and related services provided to the connected IoT. During this time,
all the end users connected to the edge nodes in the location, need to be rerouted
to another edge node in a different location, to minimize the number of dropped
service calls. However, the IoT devices can access only adjacent locations, due
to the wireless technology adopted, increasing the complexity of the updates.

Given the daily upgrade time frame and the number of nodes, it would not
be feasible to have a sequential upgrade schedule, as it would require more than
405 hours (∼ 16 days).

Therefore, we intervened to support the company in identifying a smart up-
date algorithm to schedule the updates of each location while reducing the num-
ber of service call drops as much as possible, maximizing the quality of service.

For this purpose, we defined a smart scheduling algorithm, validated it, and
finally deployed it in production. The goal of the scheduling systems is to provide
the suggested timing at which each location should start the provisioning process.

As a result, the company is now able to continuously deploy new updates,
dropping only once a day, for 30 minutes, 20% of the calls to the service APIs.

The result of this work can be useful to researchers to validate the scheduling
algorithm and to further extend it. Moreover, companies can benefit from this
work by applying and extending it in production. It is important to remember
that this algorithm is currently deployed in production, on a very large-scale
system.

The remainder of this paper is structured as follows. In the next section, we
introduce the necessary background and related work. In section 3 we introduce
the smart edge service update scheduler, explaining its characteristics and its
rationale. In section 4 we describe how the performance of the scheduling algo-
rithm is measured. Section 5 includes the validation of the algorithm and the
smart edge provisioning scenario. Section 6 finally presents our conclusions and
draws future works.

2 Background and Related Works

2.1 Provisioning

The term provisioning is usually referred to as the process of preparing and
equipping a software system to provide the best possible services to its users.
However, since a system needs to be updated constantly, a vital part of the
provisioning process is related to the updates and eventual restart of the ap-
plications. In this work, we use the term provisioning exactly to describe the
update process of edge nodes (with consequent rebooting) to provide the best
QoS to the system’s users.
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Fig. 1. Example of a system with multiple locations (L1, L2, and L3), each with mul-
tiple edge nodes (E1, E2, ..), and a variety of IoT devices connected to the the edge
nodes of the closest location (squares with same colors as locations). Moreover, the
lines connecting edge nodes of different locations indicate the possibility to handover
the connections of the IoT devices.

2.2 Edge Computing

With the term Edge computing, we refer to a system where the computation is
brought closer to the end user and the source of the data [1]. By keeping the
majority of the data closer to the end users, there is a significant advantage in
terms of lower latency and improved bandwidth compared to centralized systems.
For this reason, whenever real-time processing is needed, edge computing allows
bringing computation and data storage closer to the client.

2.3 Related Works

The increase in usage of edge technology and computing, including the pro-
liferation of IoT devices, has increased the need for additional care needed to
guarantee a sufficient quality of service. This system decentralizes the use of
computational resources, bringing new issues in the management of the overall
network.

Most of the research has therefore focused on how to optimize the provision-
ing of the resources for edge systems. Kherraf et al. [2], for example, proposed an
approach that decomposes the resource provisioning and workload assignment
into subtasks, allowing for higher performance trends in the overall system. Sim-
ilarly, Cai et al [3] proposed a provisioning model called edge federation, which
allows to schedule of resources among multiple edge infrastructure providers by
characterizing the provisioning as a linear programming problem. Their method
resulted in significantly reduced costs. Xu et al. [4] also tried to optimize the pro-
visioning of resources in edge computing, by proposing a dynamic provisioning
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method which, besides optimizing the resource scheduling, also tries to optimize
energy consumption and the completion time. Another issue in resource provi-
sioning is that sometimes it doesn’t take into account edge-specific characteris-
tics. Ogbuachi et al. [5] tackled this problem by integrating real-time information
regarding physical, operational, and network parameters in the scheduling of 5G
edge computing, showing that this approach improves the scheduling process
compared to the default Kubernetes scheduler.

Among the works that tackled the resource provisioning process, some of
them exploited machine learning models for optimizing it. Guo et al. [6], for
instance, used a combination of Auto-Regressive Integrated Moving Average
(ARIMA) and Back-Propagation Neural Network (BPNN), to predict the load
and optimize the resource provisioning of an edge system. Similarly, Li et al. [7]
used the same ARIMA and BPNN models to forecast the load and proposed a
location for new requests to be filled, reducing the cost of provisioning.

3 The Scheduling Algorithm

The proposed smart scheduling algorithm is based on three different contribution
factors, as described below.

– Static Weight: a factor relates to the information which is not going to
change in the near future and, therefore, static in time. It is computed taking
into account the topology of the system.

– Dynamic Weight: this factor, in contrast, includes all of the information
which is not static in time and therefore related to throughput among differ-
ent nodes. Specifically, in this model, the Dynamic weight is related to the
number of active connections each location has at different time slots.

– Cluster ID: this factor assigns a value to each location showing which are
similar and can be considered in the same cluster.

3.1 Static Weight

The topology of the network is presented as a structured file including the Edge
Source and the Destination Edge for each different possible service. This means
that between different couple of locations it is possible to have multiple edge-
based connections. Moreover, we also know that different locations have a differ-
ent number of edge nodes. As we believe that different information has different
importance when impacting the topology of the network we computed the static
weight sw of each location as a weighted sum of this different information so
that :

sw = α ∗WE + β ∗WL, (1)

where α and β are two factors assigned to the different weights, WE is the weight
computed based on the number of edges within a single location and WL is the
weight computed based on how many connections there are between two different
locations.
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Fig. 2. Seasonality of the active traffic for a specific location.

More in particular we compute WE as:

WE(xE) =

n∑

i=1

[li = xE ], (2)

where li is the list of the unique edges, having the location as the prefix.
We compute WL as:

WL(xE) =

n∑

i=1

[lSi = xE |lDi = xE ], (3)

where lSi is the list of all source locations and lDi is the list of all destination
locations.

3.2 Dynamic Weight

The information related to the temporal evolution of the traffic for each location
is especially useful in understanding which location to update (and therefore
disconnect) first. The information is presented as a structured file that includes
time series for each edge.

From an exploratory analysis of the aforementioned, the time series present
an intra-day seasonality as well as a weekly seasonality (Figure 2). The objective
of the algorithm used for this data is therefore to find the perfect time for each
location that impacts the traffic the least.

In the specific, given a window of operation within the time series provided,
for each location, we assign a weight based on how much provisioning would
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affect the location. In our work, we divide the weights as optimal, suboptimal,
acceptable, and irrelevant (i.e. 3, 2, 1, 0). This means that once we find the
minima we assign to that specific time frame the value 3. Following, we compute
the minima again, but this time within the time series having the previously
time-frame dropped; we assign the value 2 to the newly found minima(s). We
repeat the same procedure and we assign the value 1 to those that are found as
3rd minima. We assign 0 to the remaining time frames.

3.3 Cluster ID

A fundamental part of the algorithm is related to the process of clustering the
different locations. To compute the clustering we rely on the python package
NetworkX [8], used for the analysis of complex networks. NetworkX is mostly
known in the literature for its ability to create a visual representation of a net-
work, however, one of its less known but powerful strengths is the ability to
compute cluster coefficients. In short, the cluster ID is the ID assigned to a lo-
cation and used for grouping the locations sharing the highest number of edge
connections between them.

The cluster coefficients have therefore been computed through the NetworkX
Clustering function giving as an inputWL and the maximum number of allowable
clusters. Once the coefficients are computed we created the clusters by computing
evenly spaced areas and assigning each area based on the coefficients computed
in the previous step.

3.4 Smart Edge Scheduling Algorithm

Given two files related to Topology (TN) and to the temporal evolution of the
traffic (TS) we develop our algorithm as shown in Algorithm 1.

More in detail, for each of the possible i locations (li) in TN, we compute both
the Edge-Based weight (WE) and the location-based weight (WL) as previously
described in Equation 2 and 3 respectively. Once both of those are computed,
we retrieve the static weight sw for each possible location.

Then, by making use of WL, we compute the cluster numbers using Net-
workX.

Following, for each specific location, we assigned the dynamic weights DW
by finding the minima (first, second and third) in TS. This means that the time
frame with the minimum amount of data sent will have the highest dynamic
weight assigned (3), the second minimum will have the second highest dynamic
weight assigned (2), and so on until the weights are assigned.

Once the dynamic weights are assigned, we sort sw from the lowest to the
highest value. The reason behind this choice is that we want to prioritize loca-
tions that have the less amount of edges and connections as we will have fewer
chances to redirect the connections to adjacent edges and therefore, impact more
users.

Then for each location xE in sw we search for the maxima in DW , and most
importantly, the time-frame (TF (xE)) when the maxima in DW is found. Once
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Algorithm 1: Smart Edge Provisioning Algorithm

for li in TN do
WE(xE) =

∑n
i=1[li = xE ];

WL(xE) =
∑n

i=1[lSi = xE |lDi = xE ];
sw(xE) = α+WE(xE) + β ∗WL(xE);

end
C = NetworkX(WL)
DW = AssignDynamicWeights(TS)
SW = sort(sw) ▷ From lowest to highest value of xE

for xE in SW do
TF (xE)← max(DW (xE))
if SC(C(TF )) is empty then

SC(C(TF )) = TF (xE)
else

TF2(xE)← max(DW (xE), 2)
if SC(C(TF2)) is empty then

SC(C(TF2)) = TF2(xE)
else

TF3(xE)← max(DW (xE), 3)
if SC(C(TF3)) is empty then

SC(C(TF )) = TF (xE)
end

end

end

end

the TF (xE) has been detected we search if that specific TF has been assigned
to any location within the same cluster C. If the TF for the specific cluster is
vacant, then it is assigned to xE , if not we repeat the same procedure for the
second and third maxima. If all the possible detected TF have been already
reserved, we move to the next location.

The reason for using TF is to maximize the degree of parallelism. We want
to schedule inter-cluster parallel updates so that we have one update per node
for each cluster, which means that the degree of parallelism depends the number
of clusters created in the previous step.

Once all the locations have been served we have a clear schedule of which
location should perform provisioning at each TF . On the other side, we will also
have a list that reports which one is the correct TF to perform provisioning for
each location. Inevitably, there are locations for which no suggested TF can be
detected. This means that these locations (usually less than 5%), can be assigned
to empty TF for their C without varying the impact.

4 Measuring the Scheduling Performance

To properly validate our algorithm it was fundamental for us to understand
the performance of the model proposed. Moreover, it was important for us to
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take into account some key factors such as the number of intra-edge connections
broken while provisioning, and the amount of data lost in the same phase. For
this reason, we created two metrics based on such factors: the intra-edge impact
and the traffic impact.

4.1 Intra-edge impact

The first factor to take into account when measuring the performance of the
network is the number of multiple connections between different locations. A
fundamental part of the algorithm relies on the creation of clusters composed of
locations that are strictly related to each other. The reason behind the choice
is to reduce the number of parallel unavailable locations which share multiple
connections. We know that different countries are composed of a different num-
ber of locations, therefore, countries with a higher necessity of connection are
less demanding. For this reason, we need a factor that shows the ability of the
proposed algorithm to keep dense active connections alive when the throughput
is high and heavily penalize situations where suggested scheduling cannot be
proposed.

The intra-edge impact takes as input the proposed scheduling and the topol-
ogy of the network: the first provides information related to when a specific
location is shut down, while the second about which connections are going to be
impacted by the provisioning. To penalize a situation where scheduling was not
possible, all the locations without a suggested schedule are grouped in the same
time frame.

4.2 Traffic impact

The second factor to take into account when measuring the performance of the
network is the amount of data lost during the provisioning. The goal of the
algorithm is to minimize such an amount through optimal scheduling so that
precise handovers can be performed and the chance of failure is reduced to the
minimum.

In our environment, the information related to the traffic is provided in time
frames of 15 minutes each. The provisioning time is set so that out of 30 minutes
required, for the first 10 minutes (i.e. 1/3 of the time) the system runs at lower
capability and tries to perform handovers, during the following 5 minutes the
system is inaccessible, and for the last 15 minutes the location runs again at
lower capability.

Knowing this, we try to schedule handovers during the whole provisioning
time, however, we know from the literature [9] that usually 20% of handovers
fail. When creating the traffic impact factor, we grouped all of this information
and created a factor that takes as input the proposed scheduling and the tem-
poral evolution of the traffic. This means that for each specifically scheduled
provisioning in the first input we search a correspondence for the TF , once the
traffic information is found we store it as v1 and the following TF as v2. Then,



Smart Edge Service Update Scheduler: An Industrial Use Case 9

Fig. 3. Seasonality of the active traffic for all the locations considered.

we compute the traffic impact for the specific location as:

TI =
1
3 ∗ v1 + ( 23 ∗ v1 + v2)/5

5
(4)

This means that we try to perform handovers all the time. However, statistically,
1 out of 5 times the handover fails and we need to compute the value we would
lose in such an event. The traffic impact is composed of two parts, in the first
we compute the complete outage which is taking one-third of the time of v1, in
the second we compute the partial outage, which is taking two third of the time
of v1, and the full v2. In our environment, during a partial outage the system
can run at 80%, which means that during that period we lose 1/5 of the traffic.

5 Validation

To validate our scheduling algorithm, we used a system composed of 800 loca-
tions, with 270,000 edge nodes in total, averaging around 336 edge nodes for
each location.

First of all, we calculated the static weights as described in 3.1. We obtained
a value for each location; such value is only depending on the locations and the
Edge devices, therefore, it is not changing, unless the architecture of the network
itself would change.

Following, we calculated the dynamic weights described in 3.2. As it can be
seen from Figure 3, there is a clear seasonality in the data, which allowed us
and consider the temporal evolution of the system and therefore calculate the
dynamic weights, for each of the locations.
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Once the static and dynamic weights have been calculated, we calculated the
cluster number using NetworkX as described in 3.3. This allowed us to have a
modeled representation of the edge nodes and their location.

Our smart edge update scheduler produced therefore a proposed update
scheduling. In Table 1 it is possible to see an example of the scheduling for
some of the locations. As it can be seen, for each of the locations we have a time
that represents the moment in which the update is scheduled.

Table 1. Update scheduling example.

Location Update Schedule

235 2022-03-30 02:15:00 UTC
268 2022-03-30 02:30:00 UTC
224 2022-03-30 02:30:00 UTC
318 2022-03-30 02:45:00 UTC
362 2022-03-30 02:45:00 UTC
388 2022-03-30 02:45:00 UTC
402 2022-03-30 03:00:00 UTC
455 2022-03-30 03:00:00 UTC
469 2022-03-30 03:00:00 UTC

6 Conclusion

In this work, we provide a smart edge provisioning algorithm to minimize the
number of dropped services and maximize the quality of service in a service-
oriented architecture. We developed this algorithm to tweak at its best the envi-
ronment provided resulting in a reduced amount of time necessary to perform a
full upgrade of the elements composing the network and, therefore, not impacting
availability of service in the hours with the highest demand. Such an environ-
ment is composed of a worldwide network divided into multiple locations, each
one composed of multiple EDGE devices providing instruction to multiple IoT
devices.

Ideally, the best possible outcome would be to update all the available loca-
tions without dropping any information provided to the IoT devices. This would
mean that when performing the provisioning (update and restart), the amount
of IoT devices connected to the location would be 0.

A possible way to achieve this condition would be by performing handovers
to different locations. When performing handover we need to take into account
two conditions:

– Network availability: when performing handover we need to make sure that
the neighbor locations which are going to provide the service to the IoT de-
vices will not be overpopulated by those. This would risk the malfunctioning
of two locations.
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– Failed handover: as described in Section 4.2, we know for sure that an average
of 20% of handovers fail.

Therefore, it is very important to search for the time frame where each location
has the minimum amount of throughput.

Given the latter as an input, we developed an algorithm tailored to this
environment and impact values to validate it.

As the singular location-based provisioning would be impractical due to a
large number of locations, our first goal has been to understand how to cluster
different locations so that those could be updated in parallel. For this reason, we
calculated weights based on the topology of the locations (and the edge nested
in those) and the throughput of each location at each specific time frame.

By jointly analyzing the calculated weights we were able to understand which
of these locations have more importance (some locations have fewer connections
to other locations and therefore need to be carefully provisioned), and at what
time there is less stream of information in the whole environment.

Our algorithm suggests schedules for most of the locations in the network.
For some of them, it was not possible to provide an optimal schedule for two
reasons:

– impact: the amount of information that they transmit is lower compared to
other locations.

– overconnected: they have a high amount of connections to other locations
and therefore the handover is easier

For these locations, the overall impact on the network between upgrading in
different time frames can be neglected.
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ABSTRACT
Software development based on MLOps practices is entering its
early adoption stage. As for it, practitioners and researchers are
starting to develop pipelines composed of tools capable of automat-
ing the whole software lifecycle. The development of the pipeline
however is not as straightforward as it looks and some key points
need to be addressed. In this work, we propose our vision for the
development of the MLOps pipeline by showing what to keep into
account when choosing the tools for each step of a pipeline. The
proposition has been backed up by describing a developed use case
scenario: the OSSARA use case. We believe that the presented use
case, as well as the remarks presented for the process of tool selec-
tion for each MLOps phase, will help practitioners and researchers
in the process of developing their own pipelines.
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1 INTRODUCTION
The increased adoption of Machine Learning (ML)-based software
has inevitably created a need for a new method to efficiently de-
velop software based on this new trend. Even if the term MLOps
(i.e. Machine Learning Operations) has been widely accepted in lit-
erature, the concept does not provide uniform guidelines to develop
ML-based software.

As a direct evolution of DevOps, it inherits some of its funda-
mental concepts such as Continuous Integration (CI), Continuous
Delivery (CD), and the automation derived from such concepts.
Some of these concepts take a step further compared to DevOps by
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adding, for example, new levels of automation such as Continuous
Training of the underlying ML code behind the software.

The best way to achieve complete automation in MLOps is to cre-
ate pipelines capable of automating the process of developing, test-
ing, deploying, and monitoring ML models at scales. Such pipelines
are created to meet the goals set by MLOps of ensuring the quick
delivery of high-quality models as well as the cooperation among
software and ML developers on one side, and IT operations on the
other.

In order to optimize the process of MLOps pipeline development
it is essential to have a full understanding of both the underlying
ML code and the results that need to be achieved. To do so it is also
essential to have the right set of tools to ensure full compatibility
among the different MLOps phases covered.

In this work, we aim at providing some insights related to the pro-
cess of choosing and combining tools for creating MLOps pipelines.
In particular, we want to share our experience when developing
an MLOps pipeline based on a model for OSS Abandonment Risk
Assessment, namely OSSARA.

The work provides a different perspective on the development
of a software-based MLOps pipeline. Contrary to most works that
focus on a definition of MLOps based on the different levels of
automation provided in [2], we focus our attention on reducing
the gap between DevOps and MLOps by considering the latter as a
natural evolution. A starting point is the selection of different open
source tools based on the infinite MLOps pipeline as presented in
[13]. The selection of such tools is also done taking into account
the minimum number of usable OSS tools to create a meaningful
pipeline for the tested use case.

Specifically, we aim to create a system that can perform continu-
ous training on an ever-increasing dataset measured with different
metrics and trained with different models, as we develop an MLOps
pipeline for OSS abandonment risk assessment. The developed sys-
tem will also need to be able to select the model with the best result
and perform an automatic deployment of a new release on the basis
of such a model.

The contribution of this paper is two-fold:

• MLOps Pipeline Creation: We provide insight into the
process of developing an MLOps pipeline by focusing on
the different stages of the infinite MLOps pipeline, which is
derived from the original infinite DevOps pipeline.

• Use case development:We test the theorized pipeline by
developing a specific use case based on OSSARA, the OSS
Abandonment Risk Assessment model. Allowing the model
to perform continuous training and deployment through
REST API.
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Figure 1: Different branches derived from DevOps

The results of this work will enable researchers and practitioners
to gain insight into the process of developing fully automated ML-
based software by making use of MLOps guidelines. In particular,
we aim at increasing awareness of the importance of performing
data versioning when developing ML-based software. On the other
hand, the newly developed OSSARA model will achieve continuous
updates through continuous training and deployment.

The rest of the paper is structured as follows. Section 2 covers the
background starting from DevOps and reaching different branches
such as MLOps. Section 3 presents the related works. Section 4
describes the process of selecting the most appropriate tool for
each stage of the MLOps infinite loop. Section 5 introduces the
original OSSARA model and describes how the risk assessment is
calculated. Section 6 describes the process of creating a pipeline
based on the OSSARA model. Section 7 provides some discussions
while Section 7 concludes the work.

2 BACKGROUND
Since the dawn of software development, software engineers have
been developing methodologies and guidelines to make the process
of developing software a systematic process capable of ensuring
specific levels of quality. The guidelines defined in the Software
Development Lifecycle (SDLC) have been providing the correct
methodology to follow for around 50 years.

With the evolution of the traditional software development
model, the two main categories responsible for creating and main-
taining the software, namely Developers and IT Operations neces-
sitated a new set of practices aiming at breaking down the borders
between such categories and boosting the collaboration among
such entities. Such a set of practices has been defined as DevOps,
a simple term coined based on the names of the two main leading
actors responsible for such a revolution.

Even if there is no clear and uniform definition for DevOps has
been set [9], all the definitions agree on 3 particular points:

(1) What - DevOps is a set of practices
(2) Who - combining software development and IT operations
(3) Goal - to deliver software quickly, rapidly, and efficiently.
Nowadays DevOps evolved by acquiring some of the main princi-

ples of other practices such as Agile development and CI/CD. From
a different perspective, however, practitioners and technology ex-
perts focus more on the tools that allow providing the automation
and the goals set by DevOps than the set of practices defined by
DevOps itself. A clear example of such a shift is the periodic table
of DevOps Tools a famous tool developed to identify the best tools
for the software delivery lifecycle [4].

Different evolution of DevOps have been proposed and are receiv-
ing increasing attention. These new sets of practices are combining
DevOps with the different entities on which is posed the main fo-
cus. A representation of DevOps and its branches is depicted in
Figure 1. AIOps, for example, is defined as artificial intelligence for
IT Operations and, even if places more attention on the Ops phase
it is usually categorized as a branch of DevOps [6].

Among the different branches of practices derived from DevOps,
we have the one that is focused on data: DataOps. In [12] Mainali et
al. analyzed the different definitions of the term DataOps starting
from what has been traced as the original definition in a blog post
on the IBM Big Data &Analytics Hub titled "3 reasons why DataOps
is essential for big data success1", which highlights the importance
of executing data analytics rapidly. They also analyzed different
works that focused on different perspectives of the topic dividing
these into 3 main categories: goal-oriented, activities-oriented, and
process and team-oriented. From the goal-oriented perspective,
DataOps is mostly identified as a process (not a set of practices) to
"eliminate errors and inefficiency in data management", from the
activities perspective it is a set of practices in the data analytics
field that combines DevOps and Agile methodologies. At last from
the process and team-oriented perspective, it is defined as an ap-
proach for managing activities of the data lifecycle which requires
collaboration among data creators and consumers.

A definition that seems to include all the previous definitions is
the one presented in [5] by Ereth which defined DataOps as "set
of practices, processes, and technologies that combines an integrated
and process-oriented perspective on data with automation and meth-
ods from agile software engineering to improve quality, speed, and
collaboration and promote a culture of continuous improvement".

All of the previous definitions do not take into account what
has been made on the data, for this reason, it has been necessary
to define another set of practices that are focused on data-driven
applications, namely MLOps. Multiple entities have been trying
to provide their vision on what are the most important stages
and phases of MLOps, notably the most famous is the one from
Google [2]. In the latter, the main focus has been posed on how
to implement Continuous Integration (CI), Continuous Delivery
(CD), and Continuous Training (CT) for ML systems. In particular,
MLOps has been categorized based on the different levels of automa-
tion from 0 to 2, which respectively stand for Manual Process and
CI/CD automation. An "MLOps level 2: CI/CD pipeline automation"

1Not available at the time of writing this work
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Figure 2: Stages of CI/CD automated pipeline. Reprinted with permission from [2]. (CC BY 4.0).
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Figure 3: MLOps pipeline. Reprinted with permission from
[13]. ©IEEE 2022.

is therefore capable of providing a system capable of "deploying
an ML pipeline that can automate the retraining and deployment of
new models". Such a system is described by the pipeline depicted in
Figure 2.

On the contrary, in [13] Moreschini et al. provided their vision
of MLOps by highlighting the similarities and differences compared
with DevOps. As such, the proposed pipeline is an evolution of the
well know DevOps infinite loop, and as such it is composed of two
main areas the Dev and the Ops (Figure 3). The main difference,
in this case, is that the Dev part does not just include the work
performed by the software developer but also the one from the ML
developer which needs to work together to develop the software
that will be passed to the IT Operations for the Ops phases.

Following, in the work [16], the authors provided a follow-up to
their previous work by providing a list of tools capable of handling
the various phases of theMLOps pipeline. Among the different tools
provided, some of these have been categorized also as End-to-End

Full-stack MLOps tools as they are capable of handling all the stages
of the MLOps pipeline, while others have been categorized by the
implementation that they can perform (i.e. CT, CI, CD, and OPS).
Therefore, they suggest that it is possible to compose an MLOps
pipeline by selecting one tool for each phase of the Dev phase and
at least one tool for each phase of the Ops phase.

3 RELATEDWORKS
In the last year, various works have tried to define a specific set of
tools to define ML pipelines and provide their own examples related
to how to use such pipelines in specific use cases. In [19], with the
aim of presenting the potential of MLOps, the authors compared a
specific set of tools for MLOps. After comparing them, in terms of
preprocessing, training, management, deployment, and operations
in ML projects, they presented an example of a specific workflow
for "Partially Automating Object Detection with MLOps Tools". The
paper bases its definition of MLOps on the different levels from [2],
and the example aims to describe a level-1 automation using tools
such as Git, GitHub actions, DVC, Hyperopt, and MLflow.

In [23], the authors combined the power of an end-to-endMLOps
tool such as Kubeflowwith additional tools such as Gitea and Drone
to create an ML platform with a DevOps-capable framework. The
framework was designed to continuously train several well-known
deep learning neural networks, such as ResNet, MobileNet, and
Inception V3, specifically to test the consumption in terms of energy
and time.

In [18] an Edge MLOps framework has been presented. The
framework uses a continuum-like system, as the CT phase is per-
formed in the cloud through a cloud orchestration layer, while
inference is performed on an edge device. The framework has been
developed with Azure for ops-side management and Docker for de-
ployment. The framework has been tested in a real-world scenario,
where the goal was to deploy ML models to predict the air quality
of rooms directly on the edge.
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In [21], after reviewing the state of the art in MLOps and intro-
ducing MLOps as an evolution of DevOps principles, a use case
was presented where modular pipelines were built for an ML time
series forecasting system. Three approaches for the use cases were
presented where an MLOps level 2 automated CI/CD pipeline is
implemented [2]. Some of the tools that have been used are GIT,
Jenkins, Docker, MLflow and Django.

4 DEVELOPING AN MLOPS PIPELINE
The process of creating an MLOps pipeline provides a very different
approach compared to basic ML applications.

Plan: In this case, the selection of the tools used to perform the
whole process is a vital step that needs to be taken into account
already in the planning phase and, as part of the planning phase, it
might variate along the development process.

Code/ML: Following the coding/ML phase in most cases is not
usually associated with specific tools as the IDEs are only sup-
porting the coding phase. Lately, there is an increased interest in
different approaches toML such as automatedMLwhich is provided
in some end-to-end MLOps tools such as Microsoft Azure Machine
Learning, which automates the process of building machine learn-
ing models. For this reason, they can be defined as an extension of
the library commonly used for creating ML architectures.

Build: For what concern the Build we find the biggest differences
as we are not going to track the codes anymore but also its inputs
and outputs. A huge part of creating an MLOps pipeline is to keep
track of what are the different inputs associated with the various
versions of the code and what are the outputs generated for such
combination. In this work, this has been done by making use of
the high compatibility between DagsHub [3] and DVC [8] for the
input phase and between DagsHub and MLflow [17] for the output
phase.

The importance of Data tracking is the fundamental part of
DataOps and such similarity makes it often hard to delineate the
difference betweenDataOps andMLOps. In [22], Tamburri indicates
the operation of Machine Learning continuously as the borderline
between DataOps and MLOps, specifically, MLOps needs to be
composed of 5 specific functions:

(1) Data ingestion/transport: The layer at which the source
data is collected on a regular basis and sent to the data ware-
house or other such database, or ingested into the next layer.

(2) Data transformation: The layer that contains a set of trans-
formations that support learning algorithms. It can include
both preprocessing and data augmentation.

(3) Continuous (re)Training The layer responsible for train-
ing the network at regular intervals or when a certain event
occurs.

(4) Continuous Deployment The layer responsible for de-
ploying the system whenever the results achieved from the
training phase overcome the previous training.

(5) Output Presentation. The layer responsible for constant
monitoring of the deployed system and for presenting the
desired results to the end-users.

This means that while both DataOps and MLOps are based on
fundamentals of collaborative workflow, automation, and standard-
ization, the main difference is that while it is possible to have

DataOps without Machine Learning (and therefore MLOps) it is
not possible to have the contrary as the second one relies on the
first.

Test: The test phase is a fundamental step in the DevOps pipeline
and is somehow a very ad hoc stage for what concerns MLOps as it
is mostly dependent on the application that is tried to produce. First
of all, when talking aboutML, andmentioning test the main concept
that comes to mind is to test how well the trained model performs
on a dataset which has never been seen on the contrary when devel-
oping software the concept of testing is related mostly to ensuring
the built software is defect free [10]. For its nature is therefore
important to use tools to ensure the correct behavior of the system
before encapsulating it and deploying it. From the algorithm devel-
opment (ML) point of view tools such as DeepChecks [1] provide a
continuous validation testbed to the ML system. On the other side,
from the deployment (software) point of view, it might be necessary
to run further tests due to the software nature of the system and the
tools selected from the deployment stage. When choosing a tool for
ML deployment it is quite normal to expect the integration of tools
used to perform testing before deployment. However, extra testing
can be performed by using libraries dedicated to it (for example
PyTest in Python).

5 OSSARA
The OSS Abandonment Risk Assessment (OSSARA) has been first
presented in [11]. The OSSARA model has been developed to pro-
vide a valuable tool to increase awareness of the problem of soft-
ware abandonment. Such a problem is of particular interest in Open
Source Software (OSS) components and libraries because such tools
are developed in a collaborative, public manner.

Nowadays the process of composing software based on the adop-
tion of Components Off The Shelf (COTS) is an effective method for
software development. As OSS can be viewed as COTS, therefore,
new software can be developed by creating custom code that ag-
gregates different OSSs. In this particular environment, it is of vital
importance that all the components of the software are reliable and
stable, especially because the abandonment of OSS components
could provide partial or full instability of the complete software.
Among the main problems generated by the abandonment of an
OSS there are security-related issues that might expose the users
and the company creating the software.

The OSSARA model is calculated on 2 main factors:
(1) the likelihood of each component losing maintenance sup-

port,
(2) the importance of each component in the main system.
This means that starting from a system composed of several OSS

components, it is analyzed the composition of the system to retrieve
the weight of the component and, for each of these components,
the abandonment probability is calculated in a specific time-frame
(Figure 4). Formally this can be calculated as:

𝑅𝑎 =
𝑘∑︁

𝑚=1
𝑤 (𝑂𝑚) ∗ 𝑟 (𝑂𝑚) (1)

where 𝑅𝑎 is the overall abandonment risk of the system,𝑤 (𝑂𝑚) is
the weight of the OSS component𝑂𝑚 and 𝑟 (𝑂𝑚) is the risk that𝑂𝑚

will be abandoned. The method has been validated by evaluating
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Figure 4: The OSSARA process. Reprinted with permission
from [11]. (CC BY 4.0).

12,208 OSS projects that contain at least 1,000 commits from at least
5 unique contributors and are watched by at least 100 users. The
classification has been performed using four different classification
algorithms: decision tree, support vector machine (SVM), logistic
regression, and naive Bayes. The results have shown that among
these the logistic regression was providing the best results.

6 IMPLEMENTING THE OSSARA USE CASE
The OSSARA method has been used as a use case to develop an
MLOps system. Following the list of tools suggested in [16], we cre-
ated an MLOps pipeline to develop the OSSARA system in MLOps
using Open Source Tools. In particular, such an MLOps system
performs continuous training (CT) to compute the risk factor of
each tool in the OSSARA system.

The implemented system will calculate the risk factors of each
tool based on the model that is automatically chosen to be deployed.
Such a model will be the one that provides the highest level of
F1-score among all the models that have been trained with the
different sets of the dataset and with the different classification
algorithms.

The reason behind this choice is to simulate a system that is
capable of performing continuous training to update its knowledge
based on the current state of OSS projects of GitHub.

6.1 Continuous Training
One of the primary outcomes we tried to achieve in this develop-
ment was the possibility of having a CT setup. To achieve such
desideratum,we preprocessed the dataset used inOSSARA (https://doi.
org/10.6084/m9.figshare.16944001. v1) so that it was divided into
different time frames.

The different data frames have been created so that the start-
ing data frame would include 2 years and half of the data for the
first training, 3.5 for the second, and so on, generating in total 18
different sets for training.

The sets would then be loaded by the system sequentially so that
it would simulate a continuously increasing dataset.

6.2 Tools Selection
The tools chosen to create this specific pipeline are DagsHub, DVC,
and MLflow. For what concerns the developing part of the project
DagsHub and DVC can provide all the desiderata. More into detail,
even if both of these systems are categorized as Build tools, the
cooperation of these tools can cover also different phases such as
Planning.

To start the project, at first, a DagsHub repository has been
initialized. Together with this, the DVC storage has been configured
following the guidelines provided by the DagsHub repository. As
previously specified the planning phase of the MLOps pipeline has
been fulfilled by creating a dvc.yaml file which would create a data
pipeline representation in the DagsHub repository. The generated
representation is depicted in Figure 5.

Following the planning phase, we have the Code/ML phase. The
code has been developed in Python, specifically using the scikit-
learn library [20] in the Pycharm integrated development environ-
ment (IDE) [7] which has been connected to the DagsHub repository
to simplify the stages of commit and push.
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Figure 5: The data pipeline (Planning Phase).

As previously mentioned the phase of Build has been covered
by both DagsHub and DVC. As the application does not require
anything more than an API, the tools necessary for testing have
been provided by the automatic testing performed by the deploying
tool before performing the deployment. For what concerns data, as
we are using a dataset already used previously we do not need to
test it and perform drift analysis.

MLflow has been used to cover all the Operations phases. During
the development of the code we integrated MLflow and we ran the
experiments by following the MLflow guidelines in the DagsHub
repository. Once the experiments have been produced it was possi-
ble to lunch the MLflow UI directly from the DagsHub repository,
such UI provides information related to the different experiments,
including all the metrics extracted (accuracy, macro, active, inac-
tive) the duration, the source from which the experiment has been
run and the model associated to the experiment.

A very interesting feature of MLflow is the possibility of de-
ploying the model created as a REST API directly from MLflow,
avoiding therefore to use of an external tool to perform such a step.
This allows to invoke the local REST API endpoint with a POST
input and after running the command it is possible to retrieve the
inference results directly in the terminal.

6.3 Training and Deployment
Once the project has been developed, it was possible to perform
a complete loop of the MLOps pipeline to measure the timing. A
full training step of a single dataset was composed of 4 different
algorithms. Each training step was based on the size of the dataset

used to perform training. A summary of the timing for each training
step has been reported in Table 1.

Once the training has been completed, it was possible to choose
a specific run among those. Once the run has been detected, its id
has been copied and used to perform a deployment based on REST
API. The command used in the terminal was straightforward, as it
was necessary to provide the MLflow URI, username, and password
as shown in the experiment section of DagsHub together with the
command mlflow models serve –model-uri runs:/<run_id>/DT
–no-conda

The deployment has been immediate (3 seconds in total) and, as
no public IP was provided the REST API has been deployed in the
localhost port 5000 (as default). To invoke the REST API, a simple
curl script with a POST input to the /invocations path was launched
with an instant inference response.

6.4 Overall system architecture
The architectural design of the system implementing OSSARA is
depicted in Figure 6. The system consists of 3 main components:
the online repository, the server and a client.

The online repository, DagsHub, has been connected to DVC
and MLFlow for data versioning and model registry.

The server is the one where the code resides, therefore at first
the process of coding is completed and the practices of code ver-
sioning are finalized by pushing the different versions on DagsHub.
Since the model resides online on DagsHub, it can be downloaded
whenever it is needed. When the MLOps pipeline loop is started, if
the data is not already on the server, it will be downloaded. During
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1999-2001 5.1 4.6 5.6 4.5 19.8
1999-2002 4.9 4.7 4.5 5.6 19.7
1999-2003 4.9 4.8 4.7 4.5 18.9
1999-2004 4.8 5.0 4.6 4.9 19.3
1999-2005 4.7 4.8 4.6 4.9 19.0
1999-2006 4.7 5.4 4.7 4.7 19.5
1999-2007 4.7 4.6 5.3 4.8 19.4
1999-2008 4.9 4.8 4.8 4.7 19.2
1999-2009 4.9 4.9 4.7 4.8 19.3
1999-2010 4.8 4.9 4.7 4.5 18.9
1999-2011 4.9 5.2 4.9 4.7 19.7
1999-2012 4.9 5.7 4.9 4.8 20.3
1999-2013 4.9 6.0 4.7 4.8 20.4
1999-2014 5.0 7.2 4.9 4.8 21.9
1999-2015 5.1 8.6 6.0 4.4 24.1
1999-2016 4.5 10.0 4.8 4.9 24.2
1999-2017 5.2 10.0 4.8 4.8 24.8
1999-2018 5.1 10.3 4.7 4.6 24.7

Table 1: Timing for each training (in seconds).

the training steps, the different training logs are uploaded to the
online MLFlow registry connected to DagsHub. Once the training
is completed, the different models in the MLFlow registry are com-
pared and once the best one is found, it is deployed through REST
API.

Once the model is deployed, a client can now connect to the
available port to submit the script and receive the inference from
the server.

7 DISCUSSION
For the goal of this project, only part of the OSSARA use case has
been developed as we were interested in simulating CT for the
ML-based part of the model. The use case provided in the previous
section provides an example of an MLOps pipeline based on the
use of OSS tools. The use of such tools has been reduced to the
minimum in order to provide a simple yet complete MLOps pipeline.
It is important to specify that the current state of tools development
is heavily based on the application that is intended to develop,
and therefore smaller pipeline could be developed for different
applications. An example is Computer Vision applications which
nowadays have been heavily based on ML (and in particular deep
learning) architecture and therefore have received ad-hoc tools
such as Picselia or Roboflow.

A very important point that we would like to highlight by devel-
oping this work is the centrality of data in MLOps. This is because
as the software to develop is heavily dependent on data it is funda-
mental to track any changes related to the input. For this reason,
we see MLOps as a natural evolution of both DevOps and DataOps.

Thanks to this process it is now possible to automatically train
and deploy a system capable of continuously monitoring the risk
of embedding OSS components as COTS. We believe that such a
process is of high interest for companies and developers who need
to rely on OSS libraries and tools for developing their own software.

The system could be further implemented in the future by adding
an alert system that could trigger messages for specific OSS tools or
libraries inserted in a watch list to inform the users of the increased
risk of abandonment for the element.

7.1 Threats to validity
We know that this work is subject to a variety of threats.

In particular, as stated in Section 7, we are aware that a different
set of tools could be used to achieve the same results. The reason
behind the choice of this specific set of tools is mainly based on the
decision to create a free open-source pipeline that does not use any
end-to-end tool but only relies on tools that are highly compatible
and each of which partially covers the entire MLOps pipeline.

The results could have been influenced by the length of the
different data frames used to simulate the CT setup. We know that
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in anML-based system one, the result is heavily based on the dataset
used to represent the information and therefore used to perform
training. The reason behind the selection of such a specific length
relies on the decision of having a time frame that is informative for
a big part of the lifetime of projects.

8 CONCLUSION
In this work, we presented an approach to develop an MLOps
pipeline. Specifically by making use of OSSARA model guidelines,
we created a model that performs continuous training on the avail-
able dataset and automatically deploys the best model to perform
OSS risk assessment analysis. The integration of OSS tools such as
DugsHub, DVC, and MLflow allowed the development of a fully
automated system capable of keeping track of the different data,
models, and experiments.

The use case has been used to describe what is the process of cre-
ating an MLOps pipeline and discussing what are the fundamental
steps to take into account when creating an MLOps system. In the
specific the OSSARA model developed using the MLOps pipeline
has gained some new characteristics from this fruitful development.
Some of these are continuous updates through continuous train-
ing, automatic deployment based on the model with the highest F1
score, and the possibility to deploy the model independently of the
device through REST API.

Future works include the implementation of new pipelines to
address different problems, including, among others, time series
analysis, fault detection, and computer vision. Moreover, it would
be useful to extend this in the context of continuous [15] and cog-
nitive [14] edge-to-cloud.
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rinnovellate di novella fronda,

puro e disposto a salire alle stelle.

– Dante Alighieri, Purgatorio
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