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ABSTRACT

Mikel Robredo Manero: Measuring the impact of SonarQube on the development velocity using
regression analysis
Master of Science Thesis
Tampere University
May 2023

The study of development velocity has gained importance in software engineering research
within the last decades. Not only software development projects but many fields are interested in
analyzing the impact specific factors have on the development velocity, since this one stands as
a useful metric to measure the productivity with which teams perform when working on different
types of tasks. One of these factors is SonarQube, a widely used software considered to be one
of the most used code analysis tools by developers in software development.

This thesis aims to analyse the impact of SonarQube as a factor affecting the variance of the
development velocity in software development projects. Furthermore, based on expert knowledge
from the field, a set of different confounder variables that are believed to have an impact on the
development velocity are included in the analysis. Thus, an additional goal of this thesis is to
analyse which is the relationship of the considered variables with the development velocity that
better describes its variance. Regression analysis was selected to conduct the analysis of this
thesis, and the statistical software R was the computational tool. The collected data included
information about 337 mature software development projects in the Apache Software Foundation
obtained through a cohort study design.

The conducted analysis considers a complete regression analysis process, first understanding
the shape of the data and drawing initial distributional assumptions. Consequently, the analysis
considers using Linear Models as well as Generalized Linear Models under the drawn assump-
tions. By performing a backward selection process variables in models under different distribu-
tional assumptions, results showed a low statistical significance in the exposure of projects to
SonarQube. Moreover, all the observed models denoted a low predictive power towards the de-
velopment velocity, hence showing a low ability to describe its variance. Additionally, ensemble
learning was used to discover that results behaved in the say way under an agglomerating ap-
proach.

In the same way, the model selection showed a better fit with models assuming distributions
depicting high skewness. These results suggested that potential work could be done inspecting
further non-parametric methods that assume the observed skewness in the distribution of the de-
velopment velocity. Furthermore, the obtained results do not show the significance of the use
of SonarQube to describe the development velocity, a fact that differs from the software devel-
opment field. This suggests the possibility of finding alternative data collection designs that may
understand capture the connection between SonarQube and the development velocity in a more
accurate way. These could consider periodic measurements of the velocity level in measurements,
as well as a different variable structure when performing regression analysis, among many other
options.

Keywords: Regression analysis, Development velocity, Empirical Software Engineering, Sonar-
Qube, Cohort Study

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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1. INTRODUCTION

Software repositories are a vital component for many fields like Software Engineering

(SE) nowadays, indeed, projects store their data in repositories in an organized way so

that data can be selected easily. Within SE, Mining Software Repository (MSR) is one

of the research fields that has evolved rapidly during the last years. MSR studies utilize

mainly the data available in software repositories, analysing it and understanding features

and phenomena within the software development process [1].

Among the different aspects of software development, there is the so-called development

velocity. In a nutshell, the development velocity can be explained as the productivity

of software development teams with their tasks, that is, how much time they need to

accomplish a task from the moment in which the same task was opened.

It is a widely known fact that often developers spend time locating and fixing bugs that

make the program work incorrectly, rather than creating new features for their clients [2].

Similarly, the same software development field has introduced different tools to help de-

velopers fix errors in their code, such as SonarQube (SQ), a Static Analysis Tool (SAT)

introduced in Section 2.2.

As will be shown in Section 2.1, different MSR and not only MSR studies have been

performed to measure the impact of SATs on software development team’s velocity. One

of the main goals of research in SE is to discover which is the most efficient way to develop

new software in terms of productivity, and what tools and factors have an impact on this

phenomenon. However, no exact approach has been yet identified to present enough

robustness to measure this impact.

Consequently, the goal of this thesis is to analyze the impact SQ has on the software

development velocity of mature projects. For that, this work seeks to define the best

regression analysis that quantitatively describes the statistical significance of SQ, and

how this one explains the variance of the development velocity. In parallel, another object

of analysis in this thesis is the impact of potentially significant project characteristics on

the variance of the development velocity, as well as analyzing whether their impact makes

the one generated by SQ to be lost or deprecated.

To conduct this analysis, given the novelty of the chosen type of analysis in this spe-

cific topic, different distributional assumptions are considered based on a preliminary
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exploratory analysis. Based on the mentioned step, Linear Models (LMs), as well as

Generalized Linear Models (GLMs) are utilized for the regression analysis. Within the

regression process, a Backward variable selection process is followed where considered

information criteria and methods are used for model and variable comparison.

The data collection considered for this thesis is part of a cohort study conducted by

Saarimäki et. al [3]. The data consists of information about mature software develop-

ment projects from the Apache Software Foundation (ASF) between January 2020 and

December 2022.

In the next chapter, a literature review is displayed for the reader covering the specific con-

cepts that are an object of study in this thesis. Next in Chapter 3, a detailed description

of the theoretical background behind the conducted regression analysis is given. Then,

Chapter 4 describes the observational design followed in this thesis, as well as the differ-

ent data collection steps performed to obtain the final data set. Chapter 5 presents the

results obtained from the performed regression analysis and, finally, Chapter 6 covers the

conclusions derived from the work performed in this thesis.
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2. LITERATURE REVIEW

This chapter describes the important concepts to understand the background of the anal-

ysis performed in this thesis. First, concepts coming from the SE field which are the

subject of study in this thesis are described in Section 2.1. Then, Section 2.3 covers

the description of cohort studies, which is the theoretical background of the observational

design adopted in this thesis.

2.1 Software Engineering concepts

This Section describes the main concepts covered in this thesis, which will be the subject

of study. First, the notion of development issue will be defined in Section 2.1.1, and

similarly, development velocity will be explained in Section 2.1.2.

2.1.1 Development issue

The concept issue in software development can refer to different types of procedures or

actions. In fact, according to [4] issues in software development can depict a bug, a task

within a project as well as a leave request form, and more. In this sense, issues resemble

the different types of blocks or actions that construct a project.

As an analogy, given a software development project, the same developers of the product

service are the subjects that report an issue that has to be fixed or accomplished, as

mentioned before this could be a bug in the code or a new feature task. The newly

created issue is reported to one or multiple assignees that must fix or accomplish the

task.

In this way, in software development projects as well as in another type of organizations,

tasks are configured as issue blocks that can vary based on their issue type. Still, the

purpose of creating different types of issues remains the same, creating an organized

system of blocks that build a project in a controlled manner.

To follow the aforementioned working system, projects adopt different software to control

their work with issues so that in the case of software development projects issue-tracking

helps teams manage their code, estimate the workload and keep track of the existing

reported issue [4].
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For instance, projects in Apache Software Foundation (ASF) have adopted software such

as GitHub and Jira as their issue-tracking systems.

2.1.2 Development velocity

In SE, development velocity denotes the speed in which teams accomplish tasks such

as feature development, testing, software release, or issue fixing [5], i.e., how productive

teams are in accomplishing different types of tasks. Hence, the faster and more efficient

projects are in accomplishing tasks, the higher is their velocity level [6]. Similarly, de-

velopment velocity can be influenced by different factors such as developers’ skills, the

complexity of the tasks as well as the development tools used in the team to improve their

development velocity [3].

Software development projects aim to keep their development velocity high in order to

maintain a fluid production of new features to clients. To achieve this, among the develop-

ment tools used by teams, SATs, such as the already mentioned SQ, have an important

role in keeping the quality of the code as high as possible and, therefore, help develop-

ers fix issues at a higher speed. Therefore, the development velocity stands as a key

response variable describing the impact of development tools like SQ.

t0 t

Issue 5

Issue 4

Issue 3

Issue 2

Issue 1

t0

t0

t0

t0 t

t

t

t

Δ

Δ

Δ

Δ

Δ

Figure 2.1. Issue velocity calculation within a fixed time period.

The approach adopted for calculating velocity in this thesis is based on the calculation of

the average velocity of a set of reported issues within a limited amount of period of time.

Figure 2.1 graphically explains the mentioned approach for a set of issues. Similarly,

Equation 2.1 explains the calculation as follows:

Velocity average =

∑︁n
i=1(End time − Start time)

n
(2.1)
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where n is the number of issues reported during the mentioned calculation windows.

2.2 SonarQube

SonarQube (SQ) is one of the most used open-source Static Analysis Tools (SATs) in

SE nowadays. Provided by sonarcloud.io [7], SQ can be used on a private server by

downloading it or as a software-as-a-service (SaaS) too.

SQ is widely known for the set of metrics it offers to software development teams, such as

the number of lines or the complexity in the code among others [2]. Furthermore, it defines

a set of rules that determine coding standards, thus, they help developers orientating them

on the proper coding practices. In this sense, software development teams who desire to

understand the quality of their code, analyze it with SQ which generates different types of

issues when the mentioned rules are broken in the submitted code.

In relation to the definition of the development issue in Section 2.1.1, issues reported by

SQ might denote current bugs in the code that can already impact the functionality of the

program, same as warning about code smells that denote possible future functionality

problems due to the analyzed code [8]. This warning induces developers into a process

called issue-fixing, and often requires more time than the one spent developing new fea-

tures in the program [8]. It is here where the importance of issue-trackers mentioned in

Section 2.1.1 is highlighted since software development teams might start tracking some

of the issues reported by SQ in issue-trackers.

Given the current massive use of SonarQube in the SE field, different studies have been

conducted lately to analyze the effect of SQ on the efficiency of development teams [2,

8, 9, 10]. However, this thesis does not concentrate on the impact of different levels of

issues, but rather on the global impact of SQ on the development velocity of a software

project, this latter one being calculated based on development issues reported in the

already mentioned issue-trackers.

2.2.1 Apache Software Foundation

As mentioned initially in Chapter 1, in order to study the effect of SonarQube on the devel-

opment velocity of software development projects, this thesis considers existing mature

software development projects from the Apache Software Foundation (ASF).

ASF is a well-known organization that provides services and support for software de-

velopment communities that choose to follow the Apache way or standards [11]. The

foundation is formed by active and independent open-source projects, but it classifies

projects into three different statutes. Projects that fulfil the criteria of the ASF policy are

called Mature and are the subject of study in this thesis. Meanwhile, projects that are be-

sonarcloud.io
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ing helped by the ASF in order to get promoted to be Mature are considered to be in the

Incubator. And finally, projects that no longer fulfil the requirements of ASF are relegated

to the Attic, and archived by the ASF.

In addition, ASF has a predefined policy that every project in the foundation must strictly

follow in order to be a mature project [11]. Among the criteria specified in the mentioned

policy, projects must store their data in GitHub repositories under the organization name

of Apache since this software is the official repository of the foundation. Similarly, ASF

officially uses Jira, GitHub and Bugzilla as their official issue trackers, which only the first

two are considered for the study in this thesis.

As a matter of fact, majority of all ASF projects contain multiple repositories so that each of

them covers a different functionality of the software service the project is offering. Thence,

each repository has a linked issue-tracker to track the flow of issues for that specific

functionality, as well as SQ or other software tools likewise.

In fact, issue-trackers and software tools are deployed in a 1vs1 relationship with each

repository of a project. Hence, each project containing multiple repositories can contem-

plate the use of different software tools by teams depending on the given repository. Due

to this fact, this thesis considers repositories containing enough data from ASF mature

projects as eligible singular projects, since not all repositories have the same or enough

activity to be considered.

In relation to the aforementioned importance gained by SATs like SQ in recent years,

multiple projects in ASF have adopted SQ and, thus, the comparison among ASF projects

using and not using SQ stands as a potential case of analysis.

2.3 Cohort studies

This section covers the theoretical background of cohort studies, a type of study which is

widely applied in research fields such as epidemiology. Cohort studies study the effect of

a specific exposure on a given population to explain the outcome of interest [12].

To accomplish that, first an observational time period is proposed in which some of the

subjects in a population are naturally exposed to the effect variable that is being studied,

i.e., the independent variable. Then, two observational windows are defined within the

defined observational period time, one for the initial collection and calculation of the inde-

pendent variable and possible confounders, and a second one after a predefined follow-

up period where the outcome or dependent variable is measured. Figure 2.2 graphically

explains the comparison between exposed population and non-exposed population in a

cohort study.

Cohort studies aim at choosing sample populations where subjects are similar in almost
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all the considered variables but on the independent variable. Therefore, this type of study

becomes useful when comparing two populations in order to explain the impact of a con-

sidered factor, SQ in the case of this thesis.

Non exposed population

Exposed population

Time

Outcome

Initial
observation

Final 
observation

Exposure
...

Figure 2.2. Schema of a cohort study.

For this thesis, the retrospective cohort study is chosen in order to construct the data.

Retrospective types of studies are performed at the present time but look into the past to

analyse possible effects explaining the outcome of interest. A graphical representation of

the logic behind retrospective studies is given in Figure 2.3 below.

Figure 2.3. Retrospective studies return in time to the moment where the exposure was
made in order to study its effect on the current outcome.

As mentioned above, the robustness of cohort studies stands on the principle of the

relative similarity among the group in the population that is under the effect of exposure

and the group which is not. Thus, the comparison offers strong validity and gives a margin

to analyze in depth the effect of the exposure on the outcome of the different groups, as

well as the effect of possible potential confounders [12].

It is important to mention that even though the exposure is received by a part of the con-

sidered population, it is the entire population that obtains the outcome, the development

velocity at the end of the analysis period. It is in this way that the cohort study stands as

a suitable study method to analyze the effect of a given exposure.
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3. REGRESSION ANALYSIS

This chapter covers the considered regression models and assumed distributions within

this thesis, as well as their theoretical background and selection criteria. The chapter

begins on Section 3.1 with the initial basic assumptions to be considered when imple-

menting regression analysis on a study, as such, Multiple Linear Models (LM) and how

the model estimation is performed through Ordinary Least Squared (OLS). Based on the

assumption of non-normality within the response variable, Section 3.2 covers the Gener-

alized Linear Models (GLM) and how the model estimation is achieved through Maximum

Likelihood (ML). The following Section 3.3 describes the main theoretical details of the

distributions considered for the regression analysis of the response variable in this thesis.

The second Section 3.4 considers the application of ensemble learning through Random

Forest, where regression trees are combined to observe the effect of agglomerating re-

gression. Section 3.5 introduces the so-called Backward selection process to manage

regression models in order to perform variable selection. And finally, the last section of

this chapter describes the information criteria and model selection methods considered

in this thesis.

3.1 Linear Models

Multivariable Linear Models (LM) present a regression analysis that through linearity de-

scribe the existing relationship between a response variable and a set of explanatory

variables [13]. For a given number of dependent variables y = (y1, ..., yn)
T where n is

the size of the population, and similarly µ = (µ1, ..., µn)
T where µ = E(yi), an LM can

be described in the following way. Given a covariance matrix:

V = var(y) = E[(y − µ)(y − µ)T ] (3.1)

And defining the model matrix as X = (xij) with n × p dimensions where xij is the

explanatory variable j at observation i, model fitting can be performed based on

µ = Xβ and V = σ2I (3.2)
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We consider β as the p × 1 parameter vector where p ≤ n and I as n × n identity

matrix, thus making the variance-covariance matrix a diagonal matrix of σ2. In this way

the multiple linear model would be described as follows:

X =

⎛⎜⎜⎜⎝
1 x11 · · · xp1

...
...

...

1 x1n · · · xpn

⎞⎟⎟⎟⎠ y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1

.

.

.

yn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
β =

⎛⎜⎜⎜⎜⎜⎜⎝
β0

β1

...

βp

⎞⎟⎟⎟⎟⎟⎟⎠ ϵ =

⎛⎜⎜⎜⎝
ϵ1
...

ϵn

⎞⎟⎟⎟⎠ .

According to [13], by assuming normal distribution in y the model becomes the normal

linear model (LM), which similarly can be described as a generalized linear model (GLM)

with identity link function. This and more options offered by GLMs are discussed in later

Section 3.2. A more widely used expression of the normal LM in matrix notation can be

y = Xβ + ϵ (3.3)

where the expected value of error ϵ is E(ϵ) = 0 and the variance-covariance matrix is

defined as in Equation (3.2) [14].

Classically, the most commonly used method to obtain the best linear estimates is the

least squares method, through which parameter estimates β̂, and thus fitted values µ̂ =

Xβ̂ are obtained.

3.1.1 Least Squares Estimation

As mentioned, the best estimate of µ̂ performs the minimization

||y − µ̂||2 =
n∑︂

i=1

(︄
yi −

p∑︂
j=1

βĵxij

)︄2

(3.4)

Furthermore, when the normality assumption is added to the model (in this thesis through

normalization of the data as presented later) least squares yield maximum likelihood [13]

by L(β) =
∑︁

i(yi−µi)
2 =

∑︁
i(yi−

∑︁
j βjxij)

2. Agresti has proven the solution for these

better called Likelihood equations in [13] as follows:
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L(β) = ||y − Xβ||2 = (y − Xβ)T (y − Xβ) =

yTy − 2yTXβ + βTXTXβ
(3.5)

By deriving the matrix minimization on 3.5

∂L(β

∂β
= −2XT (y − Xβ) (3.6)

Hence, by becoming β into β̂

XTy = XTXβ̂ (3.7)

We obtain the least squares estimator

β̂ = (XTX)−1XTy (3.8)

which yields the fittest predictions of the regression’s random variable given the values

from the explanatory variables. The minimization problem seen before presents a math-

ematically correct procedure to build a prediction model, still, normality cannot be yielded

so easily which leads this thesis into the next chapter.

3.2 Generalized Linear Models

Linear Models explain the relationship of the random component and a set of explanatory

variables through linearity, and assuming that the distribution of the former one follows

normality. In this thesis, since the analysis approach for the concrete research field has

not been standardized yet, we do not consider only such assumption but pursue to per-

form linear regression under non-normality by using Generalized Linear Models (GLMs).

McCullagh and Nelder define in [15] the three components that describe GLMs, these are

the random component, the linear predictor and the link function.

The former one represents the independent variable of the linear regression, for instance,

it could be defined as y = (y1, ..., yn)
T , this one being distributed in the exponential

family of distributions (see [15] for the complete mathematical definition of the exponential

family). Similarly, the linear predictor could be described as the connection between

the explanatory variables and the expected value of yi, in fact, as A. Agresti defines

in [13] "The linear predictor of a GLM relates parameters ηi pertaining to E(yi) to the

explanatory variables x1, . . . , xp using a linear combination of them"
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ηi =

p∑︂
j=1

βjxij, i = 1, . . . , n. (3.9)

And finally, the link function performs the connection between the response and the linear

predictor ηi = g(µi) through a differentiable function

g(µi) =

p∑︂
j=1

βjxij, i = 1, . . . , n. (3.10)

Function g(·) can perform different transformations based on the chosen distribution fam-

ily and link function. It is in this stage when the accomplishment of the considered as-

sumptions must be tested through the observation of the explanatory variables to be

included in the model.

3.2.1 Maximum Likelihood Estimation

By far one of the most well-known model fitting methods in statistics, Maximum Likelihood

Estimation (MLE) is based on the notion that, given the sample data, the most accurate

model parameters should be found so that the sample’s response parameter values are

most likely generated from them [16].

For instance, if we consider that the response variable y belongs to the exponential family

distribution, [13] describes the fitting procedure as follows, starting from the definition of

the log-likelihood in GLMs

L(β) =
n∑︂

i=1

Li =
n∑︂

i=1

logf(yi; θi.ϕ) =
n∑︂

i=1

yiθi − b(θi)

a(ϕ)
+

n∑︂
i=1

c(yi, ϕ) (3.11)

The likelihood equations thus are obtained through the chain rule of differentiation with

respect to the model parameter βj ,

∂Li

∂βj

=
∂Li

∂θi

∂θi
∂µi

∂µi

∂ηi

∂ηi
∂βj

(3.12)

Since the mean and variance of the exponential family of a random component are µi =

b′(θi) and var(yi) = b′′(θi)a(ϕ) by definition, ∂Li/∂θi = [yi − b′(θi)]/a(θi), and since

ηi =
∑︁p

j=1 βjxij hence ∂ηi/∂βj = xij the differentiation is summarized into

u =
∂L(β)

∂βj

=
n∑︂

i=1

(yi − µi)xij

var(yi)

∂µi

∂ηi
= 0, j = 1, 2, . . . , p. (3.13)
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The MLE θ̂ must satisfy the likelihood equations for the GLM

u = XTDV −1(y − µ) = 0. (3.14)

where β is implicitly inside µ and

X =

⎛⎜⎜⎜⎜⎜⎜⎝
∂µ1

∂η1
0 · · · 0

0 ∂µ2

∂η2
· · · 0

...
...

...
...

0 0 · · · ∂µn

∂ηn

⎞⎟⎟⎟⎟⎟⎟⎠ , V =

⎛⎜⎜⎜⎜⎜⎜⎝
V ar(Y1) 0 · · · 0

0 V ar(Y2) · · · 0
...

...
...

...

0 0 · · · V ar(Yn)

⎞⎟⎟⎟⎟⎟⎟⎠ .

By nature, the likelihood equations are nonlinear functions of β that are used to obtain

the maximum of the log-likelihood through the Taylor series expansion

L(β) ≈ L(β)(t)u(t)T (β − β(t)) +

(︄
1

2

)︄
(β − β(t))TH(t)(β − β(t)) (3.15)

where H resembles the Hessian matrix.

One well-known method to solve the system of nonlinear equations is the Newton-Raphson

method which iteratively seeks for the maximum point.

∂L(β)

β
≈ ut +Ht(β − βt) = 0,

βt+1 = βt − H−1
t ut (3.16)

where

H =

(︄
∂2L(β)

∂β∂β′

)︄

Alternatively, the Fisher Scoring method can be used for the same purpose, since the

unique difference in comparison with 3.16 comes from the use of the expected value of

the Hessian matrix instead of the matrix itself.

βt+1 = βt + F−1
t ut (3.17)

where
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F = −E(H)

Similarly, if we consider approximation on GLMs, under standard regularity conditions for

a large sample size the model parameters follow an approximate normal distribution [17]

β̂ ∼ N
(︂
β, (X′ŴX)−1

)︂
, (3.18)

where (̂W ) is the estimated W for β̂ defined as

W =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(
∂µ1
∂η1

)2

V ar(Y1)
0 · · · 0

0
(
∂µ2
∂η2

)2

V ar(Y2)
· · · 0

...
...

...
...

0 0 · · · ( ∂µn
∂ηn

)2

V ar(Yn)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
3.3 Distributional assumptions

This section covers the description of the distributions considered for the regression anal-

ysis and their theoretical background given the nature of the response variable. To begin

with, Gaussian (or Normal) distribution is explained in Section 3.3.1 as an initial distri-

butional assumption after denoting that the response variable is continuously distributed.

This and further assumptions based on the data covered in Chapter 5 transferred the at-

tention into other distributional assumptions fitting the nature of continuous distributions.

Thus, Section 3.3.2 and Section 3.3.3 describe further additional distributions for statisti-

cal modelling in this thesis, Gamma distribution and Inverse Gaussian distribution.

3.3.1 Gaussian distribution

As an initial alternative to the traditional way to model data, that is, transforming y in order

to reach normality through approximation, considering the assumption under which y is

distributed by the exponential family is covered in this section [13]. Additionally, given

the continuous nature of y, Gaussian distribution fits as the best initial assumption to start

modelling with GLMs. The Gaussian or Normal consists of two main parameters µ and σ2

as its mean and variance and the probability density distribution (pdf) representation [18]

is presented as follows
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f(x|µ, σ2) =
1√
2πσ

e−(x−µ)2/(2σ2), −∞ < x < ∞ (3.19)

In practice, the possible link functions g(µi) for the Gaussian distribution are

µi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip, identity link

log(µi) = β0 + β1xi1 + β2xi2 + · · ·+ βpxip, log link

1

µi

= β0 + β1xi1 + β2xi2 + · · ·+ βpxip, inverse link

3.3.2 Gamma distribution

This section of the thesis emerges as a non-predefined step within the analysis since it

is due to the characteristics of the residuals from the random component that the study

case considers another option than the assumption of normality. Further details are given

in Chapter 5.

The gamma distribution or gamma family of distributions has been always related to vari-

able distributions denoting skewness, as well as non-negativity [0,∞) within the values

of the random component [18]. In fact, given the pdf of the gamma distribution

f(x|α, β) = 1

Γ(α)βα
xα−1e−x/β, 0 < x < ∞, α > 0, β > 0 (3.20)

E(f(x|α, β)) = α

β
= µi, V ar(f(x|α, β)) = α

β2
= ϕµ2

where α is the shape parameter describing the peakedness of the distribution, β is the

scale parameter which defines the spread of the distribution and ϕ = α−1 (see [18] for

formal derivations of the gamma family of distributions).

Based on the properties of the distribution for yi that are covered in Chapter 5, that is,

variance depends on the mean due to the fact that both increase proportionally to rate µ2
i ,

gamma distribution appears as an alternative GLM approach [13] for the analysis within

this thesis.

Under Gamma distribution, possible link functions g(µi) are
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µi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip, identity link

log(µi) = β0 + β1xi1 + β2xi2 + · · ·+ βpxip, log link

1

µi

= β0 + β1xi1 + β2xi2 + · · ·+ βpxip, inverse link

3.3.3 Inverse Gaussian distribution

In this subsection, a direct competitor distribution for the Gamma distribution is presented.

In fact, similarly to the distribution described in the previous subsection, the Inverse Gaus-

sian distribution is suitable for modelling situations in which the response variable can

only have non-negative values [0,∞), and the variance increases proportionally to rate

µ3
i [13]. The pdf can be described by

f(yi|µ, γ) =
√︃

γ

2πy3i
exp

(︃
−γ(yi − µi)

2

2µ2
i yi

)︃
, yi > 0 (3.21)

E(f(yi|α, γ)) = µi, V ar(f(yi|α, γ)) = ϕµ3
i ,

where ϕ = γ−1.

Under Inverse Gaussian distributions, the possible options as link function g(µi) are

µi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip, identity link

log(µi) = β0 + β1xi1 + β2xi2 + · · ·+ βpxip, log link

1

µi

= β0 + β1xi1 + β2xi2 + · · ·+ βpxip, inverse link

1

µ2
i

= β0 + β1xi1 + β2xi2 + · · ·+ βpxip, canonical link

3.4 Using Random Forests

This section introduces the additional approach of applying regression through the con-

cept of Ensemble Learning concretely with Random Forests (RF) and its theoretical back-

ground. This approach is supported by the library randomForest which is offered as an

algorithm-based random forests of trees for classification and regression [19].
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To begin with, the concept of ensemble learning describes the idea of combining several

different regressors, that even though they may perform acceptably alone, assessing their

combined regression results through majority voting ensures better accuracy [20]. In the

case of this thesis, ensemble learning is applied through regression trees, which can be

fitted as follows:

> model <- randomForest(response ~ . , data = Data, type = ’regression’)

After fitting the model, one way to assess its power can be through the means squared

error which will be explained in detail in Section 3.6.3. For that, the library randomForest
provides the following function to obtain the model estimates, and similarly, the function

summary can offer details describing the building process of the random forest.

> estimates <- predict(model)

> summary(model)

Similarly, the performance of the random forest can be graphically assessed through the

plot function, which denotes the diminishing prediction error as the number of regression

trees is included, thus showing the effect of ensemble learning on the prediction power.

> plot(model)

In addition, to compare the significance of the considered variables within the model, the

importance recorded through the regression can be numerically obtained and graphically

plotted as follows:

> randomForest::importance(model)

> varImpPlot(model, main = "Variable importance in ’model’")

This subsection describes in a neat way the contributions that randomForest can offer

to this thesis as an additional resource of comparison. However, this library offers further

options on how to manually customize the shape and structure of the random forest, but

they are not covered in this thesis. For further reading, the usage of the library in R [19]

and the theoretical background behind the computed algorithms [20] are referred.

3.5 Backward variable selection

This section covers a commonly used approach among statisticians, the backward vari-

able selection process. In fact, as its name defines, this process begins by considering a

complex model with multiple components considered. Gradually, it starts to remove terms

from the model based on different criteria although with a common objective, removing

terms whose effect is negative towards the model. This process is constructed on the

basis of model comparison through considered information criteria and model selection



17

techniques further explained in Section 3.6. The procedure finishes when additional term

exclusions do not improve the model but weaken its fit [13].

A recommended format for model-building through the backward elimination procedure is

shown by Hosmer et al. [21], better called purposeful selection. This approach considers

at the initial stage of the process the main effects of those explanatory variables and

potential confounders that are known to be important in the given field. Once the full set

is built, the backward elimination process begins until the final set of variables is found. At

this moment, researchers can consider possible interactions among model variables and

test their significance based on considered significance tests for the study.

3.6 Information Criteria and model selection

In observational studies where regression is implemented, often researchers aim to find

the best fitted combination of explanatory variables that better explain the outcome of the

study. Hence, the model selection task stands as an important step within the analysis

since under-fitting may not identify the complete nature of the variability in the response

variable, as well as over-fitting the model may suppose generality loss in the problem [22].

In this thesis, the model selection was performed when the regression modelling had been

applied based on the observed patterns from the data, and before performing hypothesis

testing to see whether the relationship between the included explanatory variables could

have significant changes in the chosen model. The selected information criteria and

measurements have been based on the commonly used techniques observed in similar

studies.

3.6.1 Akaike Information Criteria

The Akaike Information Criteria (AIC) assesses models by means of how close their

fit can be from the true model fit. Furthermore, according to [13] given a population of

interest, a simpler model may give a better fit than a complex model in which multiple

variables are considered. This means that AIC penalizes models with a high number of

parameters, thus aiding in variable selection too. The AIC can be determined as follows:

AIC = 2K − 2log(L(θ̂/y)) (3.22)

where K means the parameters to be estimated and log(L(θ̂/y)) resembles the maxi-

mum of the log-likelihood of the given model [23]. Additionally, based on C.M. Hurvich

and C.L. Tsai’s work in [24] a refined estimate called AICc can be further used when the

sample data is small enough. It develops AIC in the following way:
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AICc = AIC +
2K(K + 1)

n−K − 1
(3.23)

where n is treated as the sample size, and the rest of the parameters perform the same

role as explained above. This extension may offer no difference compared to AIC if n

results into a large value. Thence, given a set of models under comparison, the model

showing the lowest AIC or AICc score stands as the best fitting the data.

3.6.2 Bayesian Information Criteria

The Bayesian Information Criteria (BIC) appears as an alternative to the AIC but remains

similar to the formal representation of the latter statistic [25]

BIC = 2K − log(n)log(L(θ̂/y)) (3.24)

In fact, compared to Formula 3.22, BIC replaces factor 2 by the logarithm of the sample

size, thus penalizing the model for the number of the used model parameters. In this way,

meanwhile, AIC fluctuates into more complex models, and BIC moves less rapidly in

that direction [13].

3.6.3 Mean Squared Error criteria

The means squared error (MSE) criteria is one of the most widely used predictive eval-

uation measurements in fields with observed data [26]. In this thesis, we will focus on the

definition describing a predictor:

MSE =
1

n

n∑︂
i=1

(Yi − Yî)
2 (3.25)

Sometimes finding the best linear unbiased predictor (BLUP) with small variance can

be difficult, because of this rather than seeking a BLUP researchers prefer to choose

predictors providing the smallest MSE [27]. Based on the outcome range of the MSE

[0,+∞), the model with the smallest quadratic error is the best one.
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4. DATA

This chapter describes the specific procedure followed to obtain the data set used for the

conducted regression analysis. This process is formed by different steps that are covered

in the existing section within the current chapter. To begin with, Section 4.1 describes the

criteria followed to conduct the data collection process based on the principles of cohort

studies covered in Section 2.3. Then, the description of the data mining process and its

procedure are covered in Section 4.2. Next, Section 4.3 covers the data-cleaning stage of

the collection process and defines the considered pruning decisions. Finally, with the data

mining process being conducted based on the defined study design, and once it is clean,

Section 4.4 describes the steps followed to obtain a data set containing the variables’

data needed for the regression analysis.

The data collection process in this thesis is conducted using Jupyter Notebook and Python

scripting environments, as well as Python the unique programming language. At the end

of the data collection process, the final data set contains information from 337 open-

source repositories, which are composed of 52 repositories using SQ (15%), that is the

treatment cases, and 285 not using SQ (85%), or in other words the control cases of the

study. In fact, as mentioned in Section 2.2.1 ASF projects contain multiple repositories

defining their different functionalities. As mentioned in Section 2.2.1, this thesis considers

inspecting every single repository as a unit project since SQ similarly performs analyses

of single repositories rather to complete projects, making the service a 1vs1 relationship.

4.1 Observational design

According to the background on cohort studies considered in Section 2.3, the observa-

tional design is defined as an application of a cohort study based on the own goals of the

thesis. To begin with, an observational period of two years is considered, starting from

the beginning of 2020 until the end of 2022, with the aim to give projects that may have

started using SonarQube before 2020 [7] enough time to familiarize to the software tool

and ensure that it does have an impact on project’s velocity.

Yet another time, the logic behind the considered observational design is to measure the

velocity of projects at an initial time period in which the impact of the exposure of interest

is not affecting the outcome, that is, the development velocity. In the same way, other
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variables that may have impact in the outcome will be measured at the initial time period

so that there are no omitted factors in the analysis. Likewise, after a follow-up period that

is understood to give a software tool enough time to have impact on the development

velocity, a second time period is considered to measure the outcome a second time.

Thus, possible anomalies in the outcome values can be linked to if not the independent

variable of the study, then the additional possible confounder variables.

To understand the time setup of the observational design, a graphical representation is

offered in Figure 4.1

01/2020
06/2020 06/2022

01/2022 12/202212/2020

Start velocity
calculation time

window

End velocity
calculation time

window

Repositories 
using SQ

Repositories
non using SQ

Follow-up period
01/21 - 12/22

Issue 
closed

Issue 
opened

Time
(Monthly)

Figure 4.1. Graphical schema of the observational design for the data collection.

Similarly, in order to investigate the effect of SQ during the defined observational period,

two time windows of exactly 6 months are defined to collect data about the considered

independent variable and potential confounders. Furthermore, two years are considered

as the follow-up period in order to give time margin to projects to use SQ. A graphical

illustration of the mentioned procedure can be seen in Figure 4.1 and Figure 4.2. Addi-

tionally, while development velocity is calculated at the first time window and at the last

window based on the comparison goal of the thesis, data about confounders are collected

at the beginning of the follow-up period depicted in Figure 4.1 with the aim of capturing

the shape of the project before the exposure of SQ has any impact on any confounder.
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... - 01/2022
06/2022

12/2022

End velocity calculation time window

Time
(Monthly)

Issue 
opened

Issue 
closed

Days

Figure 4.2. Velocity calculation time window schema.

Figure 4.2 offers a graphical view of the modus operandi for the velocity calculation in this

study design. Only issues reported to be closed during the time window are considered

in order to calculate the mean velocity measurement per each project.

The goal of the described observational design is to collect the data about the eligible

projects in such a way that the considered variables act as potential factors to describe the

changes registered in projects at the end of the follow-up period. In order to accomplish

this, the following sections describe in detail the procedure to collect and process the data

with the goal of obtaining a data set capable of offering the required characteristics in the

covered observational design.

A graphical representation of the result of the data collection process is represented in

Figure 4.3.
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Figure 4.3. Graphical summary of the observational design setup.

4.2 Data Mining

The analysis subjects in this thesis are official software projects from Apache Software

Foundation (ASF) [11] and only the projects listed on their website when the first collection

of project names was performed on 07/02/2023 are considered in the study. In fact,

ASF is an active association that is in constant development, so active projects can vary

eventually. The first exclusion criterion is the status of the project. In ASF the projects

are divided into three groups; Mature, Attic (retired or archived) and Incubator (not yet

mature). From this classification 41 projects are in the Incubator, 51 in the Attic and 291

are identified as Mature. Likewise, these categories act as filtering stages in the incoming

procedures as depicted in Figure 4.4.

Variable Source Description

Project full name GitHub Source name used in the project repository

Language GitHub Main programming language included in the repository

#commitsBeforeFollowup GitHub Number of commits performed before 31/12/2020

#commitsDuringFollowup GitHub Number of commits performed after 31/12/2020 and before 31/12/22

Age GitHub Age of the project repository measure from the first commit (Days)

#issuesBeforeFollowup GitHub & Jira Number of issues performed before 31/12/2020

#issuesDuringFollowup GitHub & Jira Number of issues performed after 31/12/2020 and before 31/12/22

SQ/nonSQ SonarCloud Boolean variable denoting if the project was identified in SonarCloud (Using SonarQube)

Table 4.1. Variables collected within the data mining process used in the analysis.

The collection procedure starts with collecting data from the GitHub [28] repositories un-

der ASF ownership through its API. In this initial step, a total number of 2,375 repositories

were identified. The variables aimed to collect are presented in Table 4.2. These vari-

ables denote the potential confounders that based on Software Engineering expertise,

can affect the development process of a team, hence the development velocity as well.
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Thus, these variables are considered in the regression analysis as explanatory variables

and later examined to test their explanatory significance.

The next step in the data mining process is to search for information over GitHub’s and

Jira’s ASF-owned repositories, in order to collect data related to the projects’ issues along

with their registered starting and closing dates so as to calculate the velocity from each

reported issue. In this case, while the same total number of GitHub repositories initially

identified are similarly identified in GitHub for their respective reported issues, only 483

repositories are identified in Jira through its’ API [29]. And thus, before the data cleaning

is performed, data from 2,858 repositories regarding issue activity are mined from GitHub

and Jira in total.

4.3 Data Cleaning

The next step after performing the data collection process covers the cleaning of cases

that do not fit in the analysis, and because of this, as shown in Figure 4.4 the criteria

considered is divided into different consecutive pruning decisions (I-V).

ASF official repositories
from GitHub

2467

Pruning I
Incubator 41
Attic 51

GitHub: 2375
Jira: 483

ISSUES

Pruning II
Attic (Jira) 21
No issues 403
Incubator/Incubator-retired 225
No match Jira/GitHub 94
Common projects 333
No identified 18

Mature ASF projects
with issues recorded

1749

Mature ASF projects
with recorded

commit activity
1205

Mature ASF projects
with issue/commit

activity
585

Pruning IV
No issues during 
velocity calculation
time windows 620

Velocity
calculation

Pruning III (No commits)
During follow-up period 387

Before follow-up period 156

Mature ASF Java
projects

337

Pruning V
Non-Java projects 283

SQ
projects

52

Non SQ
projects

285

DATA MINING
STAGE

Figure 4.4. Data collection pipeline.

Following the graphical description from Figure 4.4 the initial pruning decision (I) is al-

ready performed during the data mining stage since it excludes directly any repository

that existed in the projects inside the Incubator and the Attic groups.

Consequently, the second (II) pruning decision is defined in order to combine registered

issues from the same project that exist in repositories from GitHub and Jira since some
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projects are identified to have activity in both issue-tracking systems. Hence, these repos-

itories are merged reducing the total number of existing repositories by the number of

merged ones (333). At the same time, projects from Jira that are newly identified as re-

tired (Attic) (21) and projects whose repository name includes the suffix "incubator" are

excluded as well (225).

As an additional pruning step within the second pruning decision, project repositories

crawled from Jira but that do not match their counterpart in GitHub are excluded too (94),

in fact, since the commit information is to be considered as a variable confounder, projects

with no commit information cannot be used in the analysis. And, as mentioned before,

ASF projects only perform version control in GitHub based on their policy. Similarly, those

Jira projects that are not identified with any project in GitHub nor in the ASF list of projects

are excluded as considered unidentified (18).

Finally, as the core part of the second pruning decision, project repositories with no regis-

tered issues during the follow-up period whereas repositories with no issue activity before

the follow-up period are excluded (403). Indeed, as the core part of the analysis is based

on the effect of SQ on the issue velocity, projects without information regarding issue ac-

tivity are ineffective for the purpose of the analysis, making the number of suitable projects

at this stage to be 1,748.

However, the pruning process does not end here since there are still two groups of the

same number of repositories concerning different data, one of them based on commit

data and the other one on issue data. And, since the goal of the data collection process

is to generate a single data file, the third pruning decision (III) stands as a merge process

in which 156 repositories result not having commit-data before the follow-up period and

other 387 present the same diagnostic during the follow-up period. In addition to the third

pruning decision, at this point the velocity calculation is executed based on the specifi-

cations given in Section 2.1.2. This results in a lack of existing valid issues during the

velocity calculation time window on 620 projects. Hence, this robust pruning decision (IV)

leaves the size of the analysis population in 585 project repositories.

The final pruning decision (V) of the data cleaning process resembles a major problem

for the analysis. After performing the presented pruning stages, the population using SQ

shows a common pattern: using Java as the main programming language. In front of this,

for the sake of simplicity and since projects’ workflow might differ based on the program-

ming language they use, it is decided to perform the analysis only on ASF projects whose

main programming language is Java (337). In fact, if this pruning would not be performed,

the identified confounder variable language would not be comparable among treatment

and control cases.

Finally, after the complete cleaning process is performed, a single data file is defined in

which 52 ASF Java projects report using SQ (15%) and 285 do not use it (85%).
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4.4 Data Preprocessing

The mining process collects unstructured data from the mentioned version control repos-

itories and issue-tracking systems. It is in this section the needed preprocessing of the

data is explained to perform the data analysis. The result of the complete data collection

process can be observed in Table 4.2.

Variable Status Type Description

Velocity end Dependent Continuous Mean value of the registered velocity at the end calculation window.

SQ/nonSQ Independent Categorical The project has adopted SQ or not.

Velocity start Confounder Continuous Mean value of the registered velocity at the start calculation window.

#commits Confounder Continuous Number of commits at the beginning of the follow-up period.

Project age Confounder Continuous Age in days of the project at the beginning of the follow-up period.

#developers Confounder Continuous Number of developers participating at the beginning of the follow-up period.

#issues Confounder Continuous Number of existing issues at the beginning of the follow-up period.

Table 4.2. Final list of variables used in the analysis.

Initially, the data from time variables such as velocity measurements and project age

comes in DateTime format, which for simplicity in the regression analysis is converted

into continuous decimal format.

It is at this point that, due to the difference in time size among different ASF projects,

multiple suitable projects present values extremely close to zero while others present

high values, making the data set unbalanced. Due to this, it is considered to uniformly

scale the data set continuous variables through min-max scaling as follows

x′ =
x−min(x)

max(x)−min(x)

In addition, since by definition all the data measurements are non-negative and non-

zero,and since some observations present 0 values after scaling, it is decided to manip-

ulate all projects’ data in the analysis by an agreed 0.001 decimal modification. In fact,

even if by definition the considered variables are non-negative, values presenting 0 due

to the variable type transformation appear to collapse with the distributional assumptions

mentioned in Section 3.3 while performing the regression analysis.
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5. RESULTS

In this chapter the results of the analysis performed in this thesis are presented. In con-

trast with the environment used in the data collection, for the analysis version 4.1.1 of

the object-oriented programming language R was used in R Studio, a specific text editor

environment dedicated to statistical computations. The first Section 5.1 of this chapter de-

scribes the nature of the data through an exploratory analysis. Next, Sections 5.2 and 5.3

describe the backward selection criteria followed in LMs and GLMs. Finally Section 5.4

declares the results of model comparison among the best-identified regression models.

As an additional section, Section 5.5 shows the results from the agglomerating regression

performed with random forests.

5.1 Exploratory analysis

Before assuming normality, the first step of the analysis was to perform an exploratory

analysis. In fact, the goal of this stage was to understand in a better way which would be

the best distributional assumption before knowing the results from the different analyzed

regression models.
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Figure 5.1. Boxplot for exploratory analysis of scaled data.

Graphical representation from the continuously distributed variables was displayed in box-

plot format as can be seen in Figure 5.1. It was evident that a high number of subjects in

the sample population was considered as outliers, which denoted a pattern for assuming
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skewness in the distributions of the variables. In fact, this consideration was confirmed by

the histograms displayed in Figure 5.2. Variable Exposure was not included in the men-

tioned plots as its binary nature would not show explanatory information for the current

purpose.
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Figure 5.2. Histograms of the scaled variables (Blue dotted line explains the normal fits
and and red line density distributions of each variable.)

The next considered step in the preliminary analysis was to observe the linear depen-

dence among the considered variables. Figure 5.3 denoted low linear dependence in the

sample population.
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Furthermore, by taking a closer look at Figure 5.3 it was easy to see that the linear de-

pendence among the dependent variable Velocity end and the rest of the explanatory

variables were explicitly skewed and distant for being linear.

5.2 Regression with Linear Models

Even though the exploratory analysis in Section 5.1 did not denote high evidence of lin-

earity in the data, linearity was assumed for the initial modelling step in order to check

the effect of the performed feature scaling in the preprocessing stage as mentioned in

Section 4.4.

As a common approach in the diverse assumptions considered during the analysis pro-

cess, the initial models considered the main effects of all the considered explanatory

variables MM.E , and considered two Mv|v and three-way interaction Mv|v|v models as

well. Similarly, as mentioned in Section 3.5, Backward Selection (BS) modelling was im-

plemented through step() R function based on AIC criteria in order to discover the model

best fitting the data.

Model AIC BIC MSE

MM.E -497.1978 -466.6609 0.0127

Mv|v -476.3616 -388.568 0.0123

Mv|v|v -467.8699 -303.7341 0.0112

BS model -504.1395 -488.8711 0.0127

Table 5.1. Model comparison results for Linear Models.

As can be observed from Table 5.1, the BS process offered a slightly better model, with

the explanatory variable set reduced to Age and Velocity start. However, as it can be

seen in Table 5.2 the survival variables hardly obtained statistical significance from their

p-values, a fact that was further analyzed in the stage covered in Section 5.4.

Estimate Std. Error t value p value

(Intercept) 0.0392 0.0121 3.25 0.0013 **

Age 0.0368 0.0230 1.60 0.1101

Velocity start 0.0770 0.0453 1.70 0.0896 .

Multiple R2 0.0195 p value 0.0378

Table 5.2. Summary statistics from the observed best Linear Model.

In addition, results for the model in Table 5.2 showed a low coefficient of determination

or R2 which denotes a weak predictive power for the model in case. Indeed, the p-value

itself rejected the hypothesis of the model being able explain the data [13].
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5.3 Regression with Generalized Linear Models

Turning now to the regression performed under the assumption of non-linearity, as men-

tioned in Section 3.2 three distributions are assumed for the analysis in this thesis. The

organization of the regression analysis considers the same structure seen in Section 5.2.

Section 5.3.1 considers the assumption of the Gaussian distribution for the regression,

and similarly, Gamma and Inverse Gaussian distributions are covered in Sections 5.3.2

and 5.3.3 respectively based on the shape of the data seen in the performed explanatory

analysis.

5.3.1 Assuming Gaussian distribution

The Gaussian distribution was expected to offer similar results as the ones observed with

Linear Models, still, the new regression opportunities offered by the link functions offered

possible suitable modelling options either considering only main effects and interactions

too.

Link function Model AIC BIC MSE

Identity MM.E -497.1978 -466.6609 0.0127

Identity Mv|v -476.3616 -388.5680 0.0123

Identity Mv|v|v -467.8699 -303.7341 0.0112

Logarithmic MM.E -495.6492 -465.1123 8.2473

Logarithmic Mv|v -500.4273 -412.6338 58.2010

Logarithmic Mv|v|v -569.9655 -405.8298 1,152.7540

Inverse MM.E -449.6051 -419.0683 1,073.620

Inverse Mv|v 1,044.0880 1,131.8810 12,201,733

Inverse Mv|v|v -610.9207 -446.7849 14,401.990

Identity BS model -492.0284 -381.3322 0.0113

Table 5.3. Summary table of model comparison scores for Gaussian distribution models.

Table 5.3 summarizes the modelling performed with the considered Gaussian distribu-

tions. Within this process with each of the link functions interactions were investigated,

as well as BS was applied as mentioned before. To begin with, MSE results obtained for

logarithmic and inverse link functions directly stood as a sufficient argument to reject them

as suitable models. Similarly, the BS process conducted for the logarithmic and inverse

link function-based models did not offer better results neither.

However, turning to the identity link, while the main effect model was presenting the best

information criteria results among the initially considered identity link models, the latter

ones presented slightly better MSE results. Within the BS process models derived from



30

the main effect model and the two-way interaction model resulted to offer similar results,

to which the derived model from the three-way interaction model offered better results,

as well as statistically significant interactions among the explanatory variables (see Ta-

ble 5.4)

Estimate Std. Error t value p value

(Intercept) 0.0357 0.0173 2.06 0.0398 *

Age 0.0137 0.0361 0.38 0.7043

Commits 0.1998 0.4205 0.48 0.6351

Developers 0.8542 0.4306 1.98 0.0482 *

Issues -1.0415 0.5302 -1.96 0.0504 .

Velocity start -0.0970 0.1618 -0.60 0.5495

Exposed -0.0423 0.0376 -1.13 0.2615

Age:commits -0.1550 0.6288 -0.25 0.8055

Age:developers -0.8701 0.8446 -1.03 0.3037

Age:issues 1.8219 1.1672 1.56 0.1196

Age:velocity start 0.3778 0.2748 1.38 0.1701

Age:exposed 0.0826 0.0887 0.93 0.3524

Commits:developers -6.3591 2.2971 -2.77 0.0060 **

Commits:issues 3.0142 1.6127 1.87 0.0626 .

Commits:velocity start 5.2774 3.6968 1.43 0.1544

Developers:issues 2.4639 1.6304 1.51 0.1318

Developers:velocity start -5.5899 2.0257 -2.76 0.0061 **

Issues:velocity start -1.3758 4.5626 -0.30 0.7632

Velocity start:exposed 1.2658 0.3890 3.25 0.0013 **

Age:commits:developers 8.8954 3.4574 2.57 0.0106 *

Age:commits:issues -4.7867 2.2712 -2.11 0.0359 *

Age:commits:velocity start -9.4293 5.7965 -1.63 0.1048

Age:developers:issues -6.2342 3.4094 -1.83 0.0684 .

Age:issues:velocity start 15.6692 8.2549 1.90 0.0586 .

Age:velocity start:exposed -2.2693 0.7325 -3.10 0.0021 **

Commits:developers:issues 1.6385 1.1277 1.45 0.1473

Commits:developers:velocity start 19.2188 8.5848 2.24 0.0259 *

Commits:issues:velocity start -18.2837 5.9418 -3.08 0.0023 **

Multiple R2 0.1240 Adjusted R2 0.0472

Table 5.4. Summary statistics from the best observed Mv|v|v Gaussian GLM model with
identity link.

From the aforementioned table two main effects were observed to have an impact on the

additional interactions, in fact, velocity start and issues. Indeed, it was in inter-

actions where the mentioned effects would have an impact where the highest statistical

significance would be registered. But, the model itself did not denote high predictive

power, in fact, the obtained low R2 and adjusted R2 results clearly showed that the data

was being explained by the model in a low level.

These observations denoted an evident impact of the interaction among the considered

variables on the significance of the model to predict the response variable. Still, further

analysis had to be done on different distributional assumptions, a subject to be explained

in the following sections.
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5.3.2 Assuming Gamma distribution

From the exploratory analysis described in Section 5.1 it can be seen evidence of non-

normality in the data, in fact, the skewness Figure 5.2 denoted a graphical pattern more

related to Gamma distribution.
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Figure 5.4. Summary of residuals from the best Linear Regression Model.

Furthermore, given the fact that by definition the considered variables in the model are

non-negative, and residuals from the initial model denoted an increase in the variance

proportional to the mean as it can be seen in Figure 5.4, there was enough evidence to

conduct a regression analysis based on Gamma distributions.

Directly Table 5.5 there can be seen two notable results. First, the algorithm for interaction

models with identity and inverse link functions did not converge with the shape of the

data. And then, notable high errors were detected in the MSE results for models with a

logarithmic link and the main effect model with an inverse link.

From the resulting modelling options, it was the BS process for the main effect model

with identity link the one that presented the best model. Interestingly, the pattern was

similar to the result from the BS process when assuming linearity since variables Age and

Velocity start were the only surviving ones in the model.

The resulting model offered a higher statistical significance for the model variables, visible

in Table 5.6. However, even with Gamma distribution low results such as Multiple R2 and

Adjusted R2 denoted small predictive power in the model.



32

Link function Model AIC BIC MSE

Identity MM.E -1262.253 -1231.716 0.0128

Identity Mv|v − − −
Identity Mv|v|v − − −

Logarithmic MM.E -1259.181 -1259.181 8.4478

Logarithmic Mv|v -1245.864 -1158.071 8.7548

Logarithmic Mv|v|v -1242.885 -1078.749 9.3374

Inverse MM.E -1254.619 -1224.082 303.4082

Inverse Mv|v − − −
Inverse Mv|v|v − − −

Identity BS model -1271.197 -1255.929 0.0128

Table 5.5. Summary table of model comparison scores for Gamma distribution models.

Estimate Std. Error t value p value

(Intercept) 0.0277 0.0076 3.62 0.0003 ***

Age 0.0547 0.0207 2.64 0.0086 **

Velocity start 0.1475 0.0855 1.73 0.0854 .

Multiple R2 0.0499 Adjusted R2 0.0442

Table 5.6. Summary statistics from the best observed MM.E Gamma GLM model with
identity link.

5.3.3 Assuming Inverse Gaussian distribution

As mentioned in Section 3.3.3, the Inverse Gaussian distribution is presented as a clear

competitor against Gamma distribution, in fact, both distributions follow the same assump-

tions but they slightly differ on the proportionality of the variance towards the mean of the

response variable.

Still, the Inverse Gaussian distribution results to be a difficult distribution to fit, and in fact,

it can be seen from Table 5.7 the algorithms for most of the link functions did not converge.

Interestingly though, in the case of Inverse Gaussian distribution, the BS process reached

the best model with identity link as in previous cases, but this time the best model only dis-

carded developers variable. Besides, it is visible in Table 5.8 that all the main effects of

the considered variables are considered statistically significant, despite the independent

variable of the analysis Exposed.

Additionally, looking at the values for the multiple and adjusted R2 the pattern of all the

models observed during the regression analysis denote the same pattern, in fact, the

predictive power remains low given any of the assumed distributions. This specific point
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Link function Model AIC BIC MSE

Identity MM.E -1276.161 -1245.624 0.021

Identity Mv|v − − −
Identity Mv|v|v − − −

Logarithmic MM.E -1265.063 -1234.526 8.3899

Logarithmic Mv|v − − −
Logarithmic Mv|v|v − − −

Inverse MM.E − − −
Inverse Mv|v − − −
Inverse Mv|v|v − − −

Canonical MM.E − − −
Canonical Mv|v − − −
Canonical Mv|v|v − − −

Identity BS model -1278.026 -1251.307 0.0172

Table 5.7. Summary table of model comparison scores for Inverse Gaussian distribution
models.

Estimate Std. Error t value p value

(Intercept) 0.0306 0.0062 4.95 1.21e−6 ***

Age 0.0572 0.0185 3.08 0.0022 **

Commits -0.0925 0.0125 -7.38 1.33e−12 ***

Issues 0.5740 0.2591 2.22 0.0274 *

Velocity start -0.0524 0.0068 -7.70 1.55e−13 ***

Exposed 0.0284 0.0229 1.24 0.2159

Multiple R2 0.0463 Adjusted R2 0.0318

Table 5.8. Summary statistics from the best observed MM.E Inverse Gaussian GLM
model with identity link.

is further discussed in Chapter 6.

5.4 Resulting regression model

This final section aims on comparing the best models observed from the considered as-

sumptions in previous sections. Table 5.9 offers an overview of the model selection per-

formed at this last stage of the regression analysis.

Among the initial considerations derived from the aforementioned table, the clear differ-

ence between distributions assuming normality and the ones that do not arise first. In fact,
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Model AIC AICc BIC MSE

MM.E LM -504.139 -504.019 -488.871 0.0127

Gaussian Mv|v|v GLM -492.028 -486.342 -381.332 0.0114

Gamma MM.E GLM -1271.197 -1271.076 -1255.929 0.0128

Inv. Gaussian MM.E GLM -1278.026 -1277.685 -1251.307 0.0172

Table 5.9. Summary table of model comparison comparison between the best observed
models.

despite the best MSE result came from the Gaussian interaction model, the rest of the

indicators resembled a clear difference supporting distributions like Gamma and Inverse

Gaussian.

In addition, the low significance of the AICc test became evident due to its close results

to the AIC values, so the former one did not provide much information within the analysis.

Turning into the non-normal models, already when analyzing the summary statistics from

the observed best models it was evident that despite the explanatory variable had ac-

quired statistical significance in comparison to models assuming normality, this change

was not occurring at a model level. In fact, the observed best models did not present high

predictive power since the explanatory variables were not able to describe the variance

of the response variable.

Taking a closer look at the residuals obtained from the considered Gamma and Inverse

Gaussian models, Figure 5.5 shows two evident patterns to understand the results from

the regression. First, the QQ plot in both models depicts a clear distance from normality,

which matches the model comparison results presented in Table 5.9. Secondly, the resid-

uals vs fitted plot shows with enough robustness the non-linear nature of the response

variable.
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(a) Residuals from Gamma MM.E model.
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(b) Residuals from Inverse Gaussian MM.E model.

Figure 5.5. Residual plots from the observed best non-normally distributed models.

Interestingly enough, the presented final results provide two main considerations to be

further discussed in Chapter 6. In fact, on one hand, all the resulting best-fitted models

denoted a lack of ability to describe the variance of the response variable. On the order

hand, only one of the models offering the best results, Gaussian Mv|v|v GLM, offered a

case scenario in which the interaction of the explanatory variables played an important

role, the rest of the models only considered main effects models.

And to close this section, it must be noted how the variable exposed disappeared from

the best models, or did not reflect statistical significance to explain the variance of the

development velocity at the end of the follow-up period.
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5.5 Regression with Random Forests

This section covers the results from the application of ensemble learning through random

forests. The library randomForest in R provides the option of performing regression by

providing a specific model. In this sense, the models presented in Table 5.9 were com-

puted with different number of trees in order to observe whether the effect of ensemble

learning could show changes in the regression results.

Figure 5.6 shows the values obtained from the MSE assessment of the different random

forests implemented. In fact, only three model structures were used when implementing

ensemble learning, these were the main effect model obtained in the best LM and Gamma

distributed GLM, the interaction model obtained in the best Gaussian GLM and the main

effect model obtained in the best Inverse Gaussian GLM excluding Developers.
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Figure 5.6. MSE values for model structure with simplified MM.E (black), Mv|v|v (red)
and MM.E without Developers variable (green).

The aforementioned results described the same scenario as in Section 5.4 with the model

used with Inverse Gaussian distribution being the best model fitting the data. Addition-

ally, Figure 5.7 clearly described the variable importance of the considered explanatory

variables or predictors when explaining the response variable.
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This chapter described an additional implementation for the regression analysis per-

formed that, distant from differing from the results obtained with LM and GLM models,

it confirmed the same model structure developed in the previous chapter.
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6. CONCLUSIONS

The goal of this thesis was to analyze the impact of SQ on the development velocity of

software development projects, for that regression analysis was the considered statistical

analysis method. Additionally, this thesis aimed to understand the relationship of the con-

sidered explanatory variables with the dependent variable, that is, how able the predictors

were to describe the variance of the development velocity. This chapter closes this thesis

by summarizing and discussing the main results obtained in Chapter 5. Similarly, at the

end of this chapter considered further research is addressed.

In order to run the regression analysis, a set of considered explanatory variables was

obtained from a data collection process following an observational design based on co-

hort studies theory. The data collection process returned a total number of 337 eligible

projects, 52 using SQ and becoming the exposed subjects, 285 being therefore the non-

exposed. The structure of the regression analysis started with the assumption of linearity

as a first step and continued with the use of GLMs by not assuming linearity. Pursu-

ing the goal of this thesis, the BS process was performed under the different considered

assumptions in order to discover the respective best model.

Moving on to the obtained best models, the regression models obtained through the BS

process described considerable results that need a interpretation. Running the BS pro-

cess under LMs and when assuming Gamma distribution resulted in the same reduced

model, including only variables age and velocity at the start of the observational period.

BS resulted in a main effects model without considering the number of developers when

assuming Inverse Gaussian distribution where all the explanatory variables resulted be-

ing statistically significant despite the exposure of the projects to SQ, the key variable in

this thesis. And finally, Gaussian distribution modelling resulted in a three-way interaction

model offering statistical significance in multiple interaction cases regarding explanatory

variables such as the exposure to SQ, the velocity at the start of the observational period

and the age of the project.

These resulting models offered a first important interpretation, in three out of four consid-

ered best models the exposure of SQ was not significant to explain the variance of the

development velocity of projects. Additionally, only under the Gaussian distribution, the

interaction between the predictors offered statistical significance, a factor subject to sur-
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prise given the mixture of effects that impact simultaneously on the development velocity

of a team when working on a task.

Turning now to the model comparison results obtained for the described best models, the

initial assumptions of non-linearity were confirmed. In fact, the Inverse Gaussian model

was the one fitting the data best, followed closely by the model assuming Gamma distri-

bution. These results clearly denoted the tendency of the variance of the development

velocity to increase proportionally to the mean. However, the model comparison did not

describe the real predictive power of the considered to be the best models. Generally

in all models analyzed within the thesis, observed statistics such as the multiple R2 de-

scribed a low ability in models to describe the variance of the development velocity, in this

way offering a low predictive power too.

With the aim to conclude this manuscript, the regression analysis performed offered one

of the few carried statistical analyses to understand the impact of SATs such as SQ on

software development projects. Results demonstrate that there is much further research

to be done in order to understand the quantitative relationships that lie behind the vari-

ance of development velocity. Moreover, the results from this thesis suggest the need for

different possible approaches to obtain the data, i.e., considering measuring the devel-

opment velocity in longitudinal structured format, so that the nature of the variance of the

development velocity is better described by the used data. Therefore, it would be interest-

ing to see that future work considers this thesis as a baseline and, with a possible bigger

size of data, can study possible semi-parametric or non-parametric that may describe

better the impact of potential predictions on the variance of the development velocity.
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