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Strong Labeling of Sound Events Using
Crowdsourced Weak Labels and Annotator
Competence Estimation

Irene Martin-Morat6

Abstract—Crowdsourcing is a popular tool for collecting large
amounts of annotated data, but the specific format of the strong
labels necessary for sound event detection is not easily obtainable
through crowdsourcing. In this work, we propose a novel annota-
tion workflow that leverages the efficiency of crowdsourcing weak
labels, and uses a high number of annotators to produce reliable
and objective strong labels. The weak labels are collected in a
highly redundant setup, to allow reconstruction of the temporal
information. To obtain reliable labels, the annotators’ competence
is estimated using MACE (Multi-Annotator Competence Estima-
tion) and incorporated into the strong labels estimation through
weighing of individual opinions. We show that the proposed method
produces consistently reliable strong annotations not only for syn-
thetic audio mixtures, but also for audio recordings of real everyday
environments. While only a maximum 80% coincidence with the
complete and correct reference annotations was obtained for syn-
thetic data, these results are explained by an extended study of how
polyphony and SNR levels affect the identification rate of the sound
events by the annotators. On real data, even though the estimated
annotators’ competence is significantly lower and the coincidence
with reference labels is under 69 %, the proposed majority opinion
approach produces reliable aggregated strong labels in comparison
with the more difficult task of crowdsourcing directly strong labels.

Index Terms—Strong labels, Sound event detection,

Crowdsourcing, Multi-annotator data.

I. INTRODUCTION

NNOTATED data is a key player in the development
A of machine learning methods. While advanced methods
may be capable of learning from data without or with only
partial annotations, evaluation of their performance does require
annotated data. The degree of difficulty and effort necessary
for producing annotated audio datasets varies depending on
the task. Some tasks require classification of audio at a coarse
temporal level, such as the general-purpose audio tagging of
Freesound content [1] or AudioSet [2]. On the other hand,
tasks like sound event detection (SED) [3] or sound event
localization and detection (SELD) [4] require a fine temporal
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resolution output, to indicate the onset and offset of sound event
instances.

The textbook case for training a SED system is based on
strongly annotated data, in which textual labels, onsets and
offsets are provided for the sound event instances [5]. Such
annotation requires a significant effort and as a consequence
strongly-labeled datasets are small in size, if they are real-life
recordings. Synthetic strongly-labeled data can be easily cre-
ated [6], [7], but often lacks the complexity and variability
of real acoustic environments, which creates a mismatch for
methods expected to be used in practical situations. On the other
hand, weakly-annotated data that contains only textual labels
to indicate the presence of different sound events requires less
annotation effort and has become the predominant type of data
in the field.

Research on SED and SELD is continuously developing,
but the acute lack of strongly annotated datasets steers the
approaches towards learning based on weak labels [8], [9] and
semi-supervised methods [10]. There is also a large body of work
that has produced powerful, highly-performing approaches that
use semi-supervised methods, such as student-teacher learning
paradigm, to compensate for the weak labels in learning [11],
[12], [13]. For example training is possible using unlabeled
training data together with smaller amounts of weakly-labeled
data, and possibly strongly-labeled synthetic data, as proposed
by Turpault et al., [11]. However, there is always a need for
strongly-labeled data for evaluation, and this is often manually
annotated.

The measured system performance is dependent on the quality
of the evaluation data, since the reference annotations of the
evaluation dataset define what is considered correctly and erro-
neously detected in the system output. It is therefore important
that these reference annotations are reliable, in order for the
measured performance to reflect reality. Itis widely accepted that
the manual annotations are highly subjective, which manifests
in variability of textual labels (when annotators are required
to provide them) [14] and inaccurate timestamps for the event
instances [5]. Sound event detection is evaluated with respect
to the temporal location of reference event instances [15], [16],
which creates a strong dependence of the system performance
on the quality of the annotations.

An alternative method to manual annotation is automatic
content analysis with added human verification of the proposed
labels, a method that has mostly been employed for weak
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labeling [2], [17]. For example the FSD50 k dataset labels were
proposed based on the tags provided by users and then verified
manually by expert and non-expert annotators [17].

Crowdsourcing offers a more efficient method for annotation
of large amounts of data. Even though mostly used for weak
labeling, attempts to collect strong labels using crowdsourcing
exist [18], [19]. Cartwright et al. [18] employed the classical
annotation approach, requiring the annotators to provide onset,
offset, and a textual label to all event instances; the task was
simplified by providing the annotators with a list of labels to
choose from. In our previous work [19], the annotation was
formulated as weak labeling of overlapping temporal segments,
and the strong labels were reconstructed with a 1 s resolution;
similar to [18], a preselected list of textual labels was provided,
to simplify the annotation task.

One important factor in using crowdsourced data is the avail-
ability of multiple opinions, and the way they are aggregated.
The aggregation of annotator opinions is typically based on
simple strategies like majority vote (consensus) [20], [21]. Using
multiple expert annotators is more common in medical imaging
than audio, with different strategies employed for aggregating
the expert annotator opinions. Simple aggregation methods in-
clude, similar to the audio studies, intersection and union [22];
more complex strategies estimate an optimal ground truth using
expectation-maximization as done in STAPLE [23] or maxi-
mizing the joint agreement between annotators [24]. A review
of these approaches indicates that the method used to estimate
the ground truth has a significant effect on the evaluated per-
formance of the system, with STAPLE causing underestimation
of performance when only few annotations are available, and
consensus overestimating it [25]. In our previous work, [26]
we proposed an extended version of MACE - Multi-Annotator
Competence Estimation [27] to predict the “true” labels for
multi-labeled audio data using models of the annotators’ com-
petence. The method weighs the annotator opinions based on
their competence, in contrast to majority voting which trusts and
weighs all annotators equally. This approach was incorporated
in the strong label estimation proposed in [19], and shown to
produce better estimates than the majority vote procedure.

In this paper, we present two key contributions to the problem
of strongly-labeling audio data for SED. First, we propose a
method for estimating strong labels, using crowdsourcing of
weak labels and a processing stage to reconstruct the temporal
information. While the method has been introduced in our
previous work [19], we now extensively test its effectiveness on
real-life recordings, to understand its applicability in practical
situations. Second, we propose a novel aggregation method that
we call “majority opinion,” applied directly to the weak labels
as provided by the annotators. This approach operates on the
raw data obtained from annotators instead of estimating the tags
for each annotated segment, as done in [19], and uses annotator
competence to weigh the individual opinions. All the previous
work on crowdsourcing strong labels has been done on synthetic
data, and the methods have not been tested on real-life audio. In
this work, we investigate the crowdsourced annotation outcome
on two known real-life SED datasets, and also compare the out-
come of our proposed method with the approach of Cartwright

et al. [18]. Finally, we investigate the effect of the reference
annotation generation method on the evaluated performance of
a SED system, to understand what proportion of the measured
errors are due to incomplete reference data.

The remainder of this paper is organized as follows: Section II
presents the related work in more detail, and the novel elements
of the proposed approach; Section III presents the crowdsourc-
ing annotation procedure, annotator competence estimation and
the proposed strong label estimation method. Section IV in-
troduces the datasets and the annotator competence analysis.
The experimental results for the labels estimation are presented
in Section V, which includes analysis of the resulting weak
labels, strong label estimation, the comparison to direct strong
annotation and discusses the sound event detection experiments
using estimated labels. Finally, Section VI presents conclusions
and future work.

II. RELATED WORK

Manual annotation is the most obvious approach to obtain-
ing strong labels. Because the annotation task is difficult and
time-consuming, most datasets containing strong labels are very
small, for example TUT Sound events 2016 [28] and TUT
Sound events 2017 [3] datasets contain only about 2 h of data
each, in files of length 3-5 minutes. Their reference annotation
was produced by two annotators that listened to the audio and
could inspect the spectrogram, and had to provide a textual label
composed of noun and verb (object and action), and onset and
offset for all audible sound event instances [28]. The obtained set
of labels was later manually processed to merge some classes,
and the most frequent ones were selected and provided with the
data. Similarly, the MAVD-traffic datased for SED in Urban
environments [29] was manually annotated using the ELAN
software, displaying the audio waveform, the video, and the
spectrogram of the audio signal. The dataset consists of 4 h of
datain files of approximately 5 minutes, and contains 21 classes.

The largest strongly-labeled dataset to date is a portion of
AudioSet consisting of around 120 K files that were manually
annotated. The annotation process consisted of several steps, in
which a first-pass labeling was reviewed by a different anno-
tator who could adjust the temporal boundaries. The verifica-
tion/adjustment step was repeated, but even with 5 stages this
process rarely converged to consensus [30], which implies that
the annotators did not seem to agree on the boundaries. While
very large in terms of classes and size, the audio files in this
dataset have a length of only 10 s, which makes it very different
from the aforementioned ones which are more representative
of the overlaps and sequentiality of sound events in everyday
environments.

As mentioned earlier, crowdsourcing is a very effective way
to collect or curate data because it provides immediate access
to a large number of nonexpert annotators. For example in
FSDS50 k dataset, selected clips were automatically assigned
labels based on the tags provided by the users, mapped onto
the AudioSet ontology [17]. A specifically created tool, the
Freesound Annotator (FSA), was then used to curate the data:
volunteer users were asked to validate that a certain sound is
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present in the audio or not. The sound classes were divided
according to an estimated level of difficulty and only the easy
and medium difficulty classes were validated publicly through
FSA. The classes considered difficult to annotate were validated
by a pool of hired raters. Crowdsourcing was used to collect
annotations for many notable image datasets such as ImageNet
and Microsoft COCO, and a number of recent audio datasets,
for example Clotho [31] and Open-MIC [20].

When multiple opinions are available for one annotated item,
they are commonly aggregated through a majority vote. As a
consequence, the expertise and diligence of the annotators in
the annotation task influences the result. Our previous work
addressed the problem of analysing annotator behavior for gen-
erating a reliable reference annotation based on their aggregated
opinions [26]. A pool of 133 annotators was used to annotate
3930 audio recordings, providing 3-5 opinions per file. Aggre-
gation based on annotator competence estimation was found
to provide the best set of labels, evaluated using annotator
agreement metrics. A second experiment using synthetic data,
for which the ground truth was available, confirmed that the
competence-based aggregation approach is superior to majority
vote, validating the connection between annotator competence
and reliability of the aggregated annotation [19].

Crowdsourcing of strong labels has been studied by
Cartwright et al. in a controlled experiment that aimed to inves-
tigate the effect of visualizations and complexity on the crowd-
sourced annotations [18]. The study used 3000 synthesized
soundscapes which were 10 s in duration, each containing up to
9 sound events, and a maximum polyphony of 4. The aggregated
annotation was obtained by converting the annotations to a
frame-based time-series representation using a frame size of
100 ms, and majority vote: a time frame was marked as active
if at least half of the participants marked it as active. The study
observed a sharp increase in quality of the estimated aggregated
annotation for the first 5 annotators, followed by more subtle
improvements as the number of annotators considered in the
aggregation increased.

Our previous work introduced an alternative to the crowd-
sourcing of strong labels by breaking the annotation task into
weak labeling of consecutive audio segments, followed by
postprocessing to recover the temporal connection between the
labeled events [19]. Aggregation based on annotator competence
was also incorporated into the strong label estimation process.
The study was based on 20 synthetic soundscapes containing a
maximum number of six sound event classes and a maximum
polyphony of 2. The comparison of the resulting estimated
strong annotation with the reference generated with the data
showed that the proposed method successfully reconstructs
about 80% of the ground truth information.

In this work, we continue exploring the method in [19] and
propose a novel aggregation method that uses directly the seg-
ment labels as provided by the annotators, instead of estimating
the true labels with MACE. The aggregation starts from the raw
data and takes into account annotator competence directly in the
estimation of strong labels. For the synthetic data, we perform
additional analyses of the labels with respect to signal-to-noise
ratio and polyphony of sounds in the audio. Most importantly,
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Fig. 1. Estimating event activity from overlapping weakly-labeled segments.

we investigate the proposed method’s applicability to real-life
data, which is much more complex in terms of acoustic content
than the synthetically generated one. In addition, we compare
the outcome of the proposed method with the strong annotation
approach from [18], to understand the tradeoff between cost-
effectiveness and labeling process outcome.

III. CROWDSOURCING ANNOTATIONS

A simple and well-defined annotation task is the key for
successful and consistent behavior of the annotators. The typical
annotation process for creating strong labels requires the anno-
tator to listen to an audio excerpt, recognize the target sound
events, and annotate their presence by marking the temporal
boundaries for each instance of the target classes. Oftentimes this
requires repeatedly listening to the audio example to annotate
sounds that overlap, or to make corrections to the already marked
temporal boundaries. Selection of the temporal boundaries is
subjective, and different annotators tend to disagree on their
exact location [30], which indicates that the strong labeling
annotation task is a difficult one.

A. Annotation Procedure

We propose a procedure that simplifies the annotation task by
dividing it into unit tasks that require only weak labeling. The
files to be annotated are segmented into short, overlapping seg-
ments, which are to be annotated with weak labels by indicating
binary activity of sound events within the entire segment. The list
of target sound classes is selected in advance and presented to the
annotator, making the labeling task as simple as possible. The
proposed method is illustrated in Fig. 1. A sliding “annotation
window” goes over the length of the audio file, with a high rate of
overlap between consecutive segments covered by this window.
The temporal sequence of these annotated segments provides
the temporal activity of the sounds within the original long file,
by aggregating activity indicators at each time step. If all weak
annotations are correct, therefore all annotators have indicated
correctly that a sound is active or not, the event boundaries
correspond to the boundaries of the maximum-valued region
in the count-based activity indicators.

To facilitate accurate recognition of sound sources in the
audio segments provided to annotator, we choose a segment
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length of 10 s. This length is motivated by studies that examined
the recognition by humans of a list of 42 different sounds, and
concluded that listeners need a maximum of 6.8 s to accurately
identify the sounds of the studied categories [32]. A hop of
one second between the segments will provide a one second
resolution in the temporal reconstruction of the events activity,
which is in line with the diffuse labels created in [30] and the
segment length used in the evaluation of most SED systems [3].
We formulate the annotation task as a single-pass multi-label
annotation, as done in [21] and [26]. As a consequence of this
procedure, the presence of a sound is explicitly indicated by
selecting the corresponding label, while the absence is implicit
by the label not being selected.

B. Annotator Competence and Ground Truth Estimation

When working with non-expert annotators, it is important to
be able to trust their answers. We employ MACE [27] to estimate
how reliable these annotators are. The method allows identifica-
tion of trustworthy annotators and provides a prediction for the
ground truth based on aggregation of the annotators opinions.
MACE does not necessarily require that all annotators provide
answers on all data, but requires at least that a large pool of
annotators annotate partially the same data, in order to learn
from redundant annotations.

The model, as originally introduced by Hovy et al. [27],
considers that annotator j produces label A;; on instance i.
The annotated label depends on the true label 7}, and whether
annotator j is spamming (spamming means that the annotator is
selecting the answer at random). Annotator behavior is modeled
by binary variable S;; drawn from a Bernoulli distribution with
parameter (1 — 6;). The behavior assumes that when an annota-
tor is not spamming on instance ¢ (S;; = 0), the annotation A;;
corresponds to the true label. When the annotator is spamming,
Sij = 1, Ayj is sampled from a multinomial distribution with
parameter vector §;. The annotations A;; are observed, the true
labels 7; and the spamming indicators S;; are unobserved. The
model parameter ¢; specifies the probability of trustworthiness
for annotator j, while §; determines the spamming behavior of
annotator j.

The model parameters are estimated using the expectation
maximization algorithm, to maximize the probability of the
observed data:

N M
P(A;0,6)=> | [ P(To) [] P(Sij 05)P(Aij|Sij, Tis &)
T,S |i=1 j=1
(D
where A is the matrix of annotations, S is the matrix of compe-
tence indicators, and T is the vector of true labels. Here /N refers
to the number of instances ¢ that are annotated, and M to the
number of annotators j that provide an opinion for instance ¢. The
method was shown to produce predicted labels very accurately
in comparison with ground truth data on a few tasks. At the
same time, the model’s §; was shown to correlate strongly with
annotator proficiency [27].
Because MACE was originally defined for single-labeled
items, we extend the representation of our multi-labeled data

TABLE I
ANNOTATION MATRIX EXAMPLE WITH EXPLICIT/IMPLICIT ANNOTATIONS
PRODUCED BY m ANNOTATORS

items (file, label) | 1] 23] 4| | m
scape-00, car-horn 0 1 -
0 1 -

1 1
scape-00, children-voices 0 0
scape-00, dog-bark - -

scape-01, car-horn 1 1

such that each file is assigned a set of binary yes/no labels, each
corresponding to one target sound class. This implies that each
(file, sound label) pair is considered an independently annotated
item, equivalent to a multiple-pass binary annotation [21]. The
difference is that in a multi-pass binary annotation both the
present (yes) and absent (n0) labels would be explicitly provided
by the annotator, while in the single-pass multi-label annotation
such as our task, the absence is implicit. We consider that the
tagging task is easy enough to allow changing the data repre-
sentation without introducing significant errors. We therefore
explicitly represent as absent the items that were not explicitly
marked as present by the annotators.

The annotations are represented as a matrix containing the
answers of all annotators per file and per label, as illustrated
in Table I. Each row refers to a (file, sound label) item, and
each column represents the answer of one annotator in the
format [0, 1, —], marking the presence (1, explicit) or absence
(0, implicit) of this label within the audio file; “—" indicates that
this file was not assigned to this specific annotator.

Using this representation, we estimate the annotators’ com-
petence and predict the aggregated weak labels using MACE. It
is important to note that MACE does not discard annotators, but
weighs their opinion based on their competence, which results
in a different procedure than majority voting which trusts and
weighs all annotators equally. In some experiments, we also
eliminate the most unreliable annotators based on their estimated
competence, to study if relying on a smaller pool of better
annotators is more advantageous than using a higher number of
annotators wherein low-competence annotators are also present.

C. Strong Label Estimation Based on Majority Opinion

The illustration in Fig. 1 takes into account one weak label
for each segment and reconstructs the temporal activity pattern
of a sound event as a count-based activity at hop-size resolution.
Having multiple annotators per segment allows for estimation of
this weak label using MACE. The count-based activity indicators
are then binarized to obtain the maximum-valued regions that
corresponds to the estimated temporal boundaries of the sound
event instances. In [19], a threshold of 80% was used instead of
the maximum, in order to allow for possible incorrect answers
from the annotators.

We propose a novel method of estimating the strong labels,
in which we consider directly the labels provided by the in-
dividual annotators. This way, the method takes into account
the fine-grained differences in annotators’ opinions instead of
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transforming them first into an estimated weak label per seg-
ment. Given the procedure explained above, we consider all
annotator opinions in each hop-size segment ¢ and aggregate
them such that the vote of each annotator (sound event active
or not active) is weighed by his/her estimated competence. The
individual competence associated to each annotator is the model
parameter ; estimated using (1), in other words the probability
of trustworthiness for annotator j. We calculate the activity
indicators using the following expression:

ZjM:1 (05 - vj)
ay = M . (2)
Z j=1 ej

where a; is the activity level a for one class in segment t,
M is the number of available opinions for that segment, 6;
is the competence of annotator j, and v; indicates the annota-
tor’s opinion, being 1 for the presence and O for the absence
of the label. The estimation is done independently for each
class.

This formulation is a generalization of the majority vote: if
we consider all annotators as equally and perfectly competent,
their competence level ¢; is 1. With the opinions being 0 or 1,
normalizing the sum of opinions by the sum of the annotators’
competence results in a value higher than 0.5 only when over
half of the annotators have indicated a sound as being active. If
the annotator competence is not always 1, the resulting value is
still anumber between 0 and 1, but it can be higher than 0.5 when
less than half of the annotators indicated a sound as active, given
that these annotators are the most trustworthy ones. This is still a
consensus-based aggregation, but instead of majority vote (over
half the annotators voting 1) we are considering the majority
opinion, i.e. enough weight brought by the trustworthiness of
annotators.

IV. DATASETS ANNOTATION TASK SETUP

In the experiments we use both synthetic and real audio
recordings. The synthetic data offers the possibility of perform-
ing a detailed analysis of how the polyphony and SNR levels of
the sound events present in the soundscape affect the outcome
of the annotation, and allows the comparison of the method
outcome with the correct reference annotation that is generated
at the same time with the audio mixtures. On the other hand, the
real recordings are more complex than synthetic data due to the
unrestricted and uncontrolled sounds distribution and overlap,
and present a difficult task to the annotators. To the best of our
knowledge, this is the first experiment to attempt crowdsourcing
strong annotations for real recordings, and the detailed analysis
of its outcome will allow us to understand how the estimation
of the annotators and annotations reliability translates from the
highly controlled and simplified synthetic case to a real-world
situation.

A. Datasets

1) Synthetic Data: The synthetic dataset used in this study
is MAESTRO Synthetic (Multi-Annotator Estimated STROng
labels) [33], which was created using a slightly modified version

of Scaper [34]. Soundscapes were generated by iteratively plac-
ing sound events at random intervals until the desired maximum
polyphony of 2 is obtained. Intervals between two consecutive
events were selected at random between 2 and 10 seconds. The
sound event classes and sound instances were chosen uniformly,
and mixed with a signal-to-noise ratio (SNR) randomly selected
between 0 and 20 dB over a Brownian noise background. The
mixing procedure did not allow two overlapping sounds of the
same class.

The dataset contains the following classes: car horn, chil-
dren voices, dog bark, engine idling, siren, and street music.
The isolated sound event instances were extracted from the
UrbanSound dataset [6] based on their temporal boundaries
which were manually annotated by the dataset authors (chil-
dren playing label from the UrbanSound dataset was renamed
to children voices for the annotation task, as often the audio
examples contained childrens’ laughter). Only sounds marked
as being in the foreground were used. The selection of target
classes was based on the intention to mimic the content of the
street scenes annotated in our previous study [26] and from the
real-life TUT Sound Events 2016 and 2017 datasets. MAESTRO
Synthetic dataset consists of 20 audio files, each having a
length of 3 minutes. The reference annotation of this dataset
is created at the same time with the audio mixtures. We con-
sider this reference annotation as correct and complete, because
of the way it is produced. Dataset statistics are presented in
Table II.

2) Real-Life Data: The real life-recordings used in this study
include a subset of the TUT Sound Events 2016 [28] and a
subset of TUT Sound Events 2017 [35]. We use the residential
area acoustic scene from TUT Sound Events 2016, and select
six target classes: bird singing, car, children, people speaking,
people walking, and wind blowing (i.e. we do not consider
the object banging class of the dataset). From TUT Sound
Events 2017 we use the recordings corresponding to the city
center acoustic scene, with target classes brakes squeaking, car,
children, large vehicle, people speaking and people walking. We
will refer to the strong annotations produced by the described
method as MAESTRO Real and publish them for further study.’
The reference annotation for MAESTRO Real is the annotation
provided with the original datasets, which was obtained through
manual annotation performed by two expert annotators that each
annotated half of the data [28]. While these manually annotated
data cannot be considered correct and complete due to the com-
plexity of the acoustic content, our purpose is to understand the
differences between different methods to produce annotations,
therefore we use these reference annotations to evaluate how the
different crowdsourced versions coincide with expert opinions.
We accept the fact that the expert annotations are also subjective,
and analyze the effect of different annotation procedures on
the produced labels and on the evaluation of SED systems.
The statistics of the data are presented in Table II. The two
acoustic scenes (city center and residential area) are treated
separately in all our experiments.

IMAESTRO-Real, 10.5281/zenodo.7244360
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TABLE II
SOUND EVENTS CLASS DISTRIBUTION IN MAESTRO SYNTHETIC AND MAESTRO REAL DATASETS, ACCORDING TO THE REFERENCE ANNOTATION

MAESTRO Synthetic MAESTRO Real
residential area city center
event class | count | event class | count | event class | count
car horn 41 bird singing 56 brakes squeaking 39
children voices 63 car 45 car 55
dog bark 76 children 17 children 13
engine idling 102 people speaking 19 large vehicle 30
siren 69 people walking 32 people speaking 48
street music 40 wind blowing 16 people walking 41

MAESTRO Synthetic reference annotation is generated together with the audio mixtures, MAESTRO
Real reference annotation is provided with the original datasets, and was produced by human annotators.

B. Crowdsourcing Task Setup

As explained in Section III, the audio soundscapes were cut
into 10 s segments with 1 s offsets. Each individual 10 s segment
was considered as an independent annotation task, provided
on Amazon Mechanical Turk as one HIT (Human Intelligence
Task). In order to prevent the same worker annotating overlap-
ping segments, the data was organized into batches containing
segments located at least 15 seconds apart in the original audio.
The batches were launched one at a time, and workers that
already performed at least 50 hits in previous batch(es) were
disqualified from working on the task. A payment of $0.10 was
offered per HIT. Worker qualification was requested as at least
1000 completed HITs with average approval rating of at least
85%.

One HIT consisted of listening to the provided audio excerpt
and indicating which sounds are present in it, from the given
list of classes or “none of the above”. The number of playbacks
allowed was not limited. No visualization (e.g. spectrogram) was
provided. Workers were instructed to complete the task using
headphones, and in a quiet environment. Before the job, they
were also provided short descriptions for every class, and four
example audio excerpts that contained sounds from all target
classes. Each 10 s segment was annotated by 5 workers. While
MTurk requires reviewing the assignments in order to approve
or reject the answers submitted by workers, we approved all
assignments, irrespective of the quality of the answers, in order
to study the annotator behavior.

C. Annotators Competence Analysis

Annotators’ competence analysis performed with MACE is
shown in Fig. 2. This analysis considers only the weak labels
provided by the annotators to the 10 s segments, and the audio
segments are considered as independently annotated items. The
synthetic data was annotated by a pool of 680 workers, while
the real data was annotated by 861 and 717 workers for the
residential area and city center scenes, respectively. Each set
consisted of approximately 20 thousand HITs.

Most annotators seem to have high competence for the syn-
thetic data, with about one third of the annotators in the highest
tier (competence 0.9 to 1.0). Competence of the annotators on the
real data shows a completely different situation: the values are

MAESTRO Synthetic
242

144

76 70
45

33 28
7 18

0.2

17
0.4

0.0 0.6 0.8

MAESTRO Real - residential area
148

0.0 0.2 0.4 0.6 0.8 1.0
MAESTRO Real - city center
126
89
8 g3 78 o
54 62 51
37
0.0 0.2 0.4 0.6 0.8 1.0
Competence values
Fig. 2. Annotator competence estimated using MACE.

distributed over the entire range, and a high number of annotators
have extremely low competence (17% for city center and 14%
for residential area have an estimated competence of under 0.1).
We did expect to see a deterioration of overall competence for
the annotation of the real soundscapes, but such a pronounced
difference was surprising. This in itself is a very good indicator
of the task difficulty for a non-expert annotator.

It is important to note that the annotators of the real and
synthetic soundscapes are different, and individual annotators
were limited to maximum 50 HITs. The competence estimation
is therefore applied to a large pool of annotators, and the result
can be seen as an indicator of the task complexity. Previous
works that studied annotation procedures all used synthetic data
to draw their conclusions [18], [19], while the difficulty and
subjectivity of annotating real data was always mentioned and
accepted as true [5]. Fig. 2 shows histograms of the estimated
annotators’ competence on the different datasets. These results
are the first that demonstrate in a quantifiable way that real data
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TABLE III
STATISTICS OF THE THREE DATASETS AND THEIR CORRESPONDING
KRIPPENDORFF’S ALPHA VALUES

TABLE IV
WEAK LABEL ESTIMATION COMPARED TO THE REFERENCE ANNOTATION
USING THREE DIFFERENT AGGREGATION METHODS

Data | # Workers  # HITs ol Qcomp>0.6
MAESTRO Synthetic 680 20520 0.56 0.73
MAESTRO Real-RA 861 20574 0.25 0.54
MAESTRO Real-CC 717 21264 0.20 0.54

RA and CC stand for Residential area and City center, respectively.

is much more difficult to annotate than synthetically generated
one.

Inter-annotator agreement was calculated using Krippen-
dorff’s alpha, and is presented in Table III along with more
details about the annotation task. In the table, ay;; represents
Krippendorff’s alpha for the entire set of annotations. The values
show how difficult it is for annotators to agree on annotation of
the real data, compared to the synthetic data. Removing the less
competent annotators increases the inter-annotator agreement:
using annotators with competence higher than 0.6 results in a
30% relative increase in agreement for the synthetic data; for the
real data, the relative increase is 116% and 170%, respectively,
{0 Qcomp>0.6 of 0.54.

When removing annotators based on their competence values
(tcomp > 0.6), the number of annotators left for the agreement
calculation is considerably reduced, being 532, 430 and 228
workers, respectively. As a consequence, the number of HITs
that the agreement is calculated on is reduced to 20514, 19164
and 16164, respectively. The most affected subset is the city
center data: 4770 of the 21264 annotated items are left without
annotations, because 489 annotators have an estimated compe-
tence below 0.6.

V. EXPERIMENTAL RESULTS

The weak and strong labels estimation methods are analyzed
by comparing their output with the reference annotation. We
evaluate the quality of the resulting weak labels using precision,
recall, and F1, and the strong labels using the most common
metrics from SED.

A. Weak Label Estimation

Considering the annotated segments individually, the anno-
tation process output is evaluated by comparing the audio tags
with the reference tags for each segment. The reference tags per
segment were generated based on the reference strong labels by
assigning a label to a segment if the sound is active at any time
within that segment.

The multiple annotations were aggregated for each segment
using three different methods: union, majority vote and MACE.
Union assigns a label to an item if at least one of the annotators
has assigned it to that item; majority vote assigns a label to an
item if most annotators have assigned it (in this case at least 3
of the 5 annotators). MACE uses the estimated competence of
the annotators to predict the labels for each item, as explained in
Section III. The comparison to the reference labels is done using
F1, precision and recall. The results are presented in Table IV.

Dataset | Aggregation method | F1 [%] P [%] R [%]
MAESTRO Synthetic | Union 78.7 70.2 89.4
Majority vote 68.8 98.2 52.9
MACE 86.3 97.5 77.4
MAESTRO Real Union 29.7 33.8 26.5
Residential area Majority vote 29.8 51.5 21.0
MACE 32.1 47.5 243
MAESTRO Real Union 429 58.8 33.8
City center Majority vote 32.8 75.7 20.9
MACE 42.6 72.2 30.3

For the synthetic data, the best F1 is obtained using MACE:
86%, with 97% precision and 77% recall. Recall values show
that many sounds are not annotated: with the majority vote,
only slightly over half of the tags are found, while taking into
account all opinions through union aggregation brings recall
close to 90%. MACE produces a good compromise between a
high precision and a good recall.

Looking at the real data, the metrics behavior is very similar,
although the actual values are much lower: aggregation through
union produces the best recall, while majority vote produces the
best precision, and MACE raises the recall level while slightly
lowering precision. It is worth noting that, for the real audio
recordings, the reference annotations should not be considered as
being absolutely correct, since even though they were produced
by expert annotators, they were produced by a single person for
each file. It is however discouraging that the aggregated opinion
of multiple annotators overlaps only so little with the original
annotator’s opinion. The results nevertheless show that MACE is
the best aggregation method for both types of data, synthetic and
real. For this reason, we will focus on MACE-based aggregation
approaches for the remainder of the experiments.

1) Polyphony Analysis: We analyze the influence of the
polyphony on the aggregated weak labels using the synthetic
data, for which such details are available. The synthetic data
has been designed to have maximum two overlapping sound
events at a given time. However, a 10 s segment may have
more than two labels assigned, depending on its content. We
use the term “polyphony” broadly to mean the number of events
present in one 10 s segment, not necessarily all overlapping in
time. We also calculated the average gini-polyphony introduced
in [18] and defined based on the sound event polyphony at
100 ms time intervals throughout the soundscape. Interpreted
as a measure of soundscape complexity, with zero representing
maximal equality (low soundscape complexity) and one repre-
senting maximal inequality (high soundscape complexity) [18],
the average gini-polyphony of the data is 0.74, which shows that
the complexity of the soundscapes is generally high.

Table V presents the F1, precision and recall for segments of
different polyphony, along with the number of these segments
in the data. According to the reference, there are no segments
containing no events, 95% of the segments contain two or three
events, while only 4 segments have a polyphony of 5. On the
other hand, in the MACE output almost 90% of the segments
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TABLE V
MAESTRO SYNTHETIC LABEL ESTIMATION FOR DIFFERENT
LEVEL OF POLYPHONY

PL | N GT N; MACE || FI [%] P[%] R[%]
1 10 1000 95.2 90.9  100.0
2 2202 2051 87.9 9.8  80.6
3 1041 351 84.1 98.6 733
4 163 4 83.6 984 727
5 4 0 727 1000  57.1

Pl stands for Polyphony level, determined based on the reference
and Ns for the number of segments.

have one or two events, indicating a large number of missing
labels, therefore explaining the lower recall.

Table V indicates the number of segments with different de-
gree of polyphony, with column 2 corresponding to the reference
labels, and column 3 to the labels estimated using MACE. The
metrics in columns 5—7 compare the reference and MACE output
with respect to the number of segments in the reference (N;GT).
For the 10 segments of polyphony 1, all labels were correctly
estimated (R = 100), but some of them were assigned more than
one label (PR =90.9). For the case of maximum polyphony, only
half of the labels (R = 57.1) within the four segments where
labeled correctly (PR = 100).

As expected, precision and recall vary with the polyphony,
with recall decreasing at a high rate when polyphony increases. A
similar annotator behavior was observed by Cartwrightetal. [18]
in the case of strong annotations: when more than two sounds
overlapped, annotators failed to recall all the concurrent sounds.
This may be because it is more difficult to identify sound events
when there are more than two, but it may also show a tendency
of the annotators to only identify one sound, and annotating
a second one only if it was clearly identifiable. Additionally,
the listening conditions play a role in identification too: in re-
ality humans have better capabilities to distinguish overlapping
sound events because of using both ears, therefore the spatial
perception plays a role in the process, while listening to a mono
recording in headphones does not provide the necessary spatial
cues for disambiguation.

2) SNR Analysis: We investigate the effect of the SNR on the
precision and recall of the sound events by annotators. Because
each sound instance has been randomly assigned an SNR level
when creating the synthetic mixtures, in most cases the 10 s
segments contain more than one sound with different values of
SNR. We group the segments by considering a segment into a
specific SNR range if at least one of the sounds in the segment has
the SNR within that range, and all other sounds in the segment
have SNR within that range or lower (e.g. a segment with a sound
at 7 dB, one at 3 dB, and one at 4 dB is in the [5-10] dB range).

The results, presented in table VI, show that recall is increas-
ing with SNR, with a 7% absolute increase for sounds in the
[10-15] dB range compared to those in the [0-5] dB range.
The lower values for the [15-20] dB are observed due to the
definition of these groups: based on the statistics in Table V,
most segments have 2 or 3 sounds, so most of the 1778 segments
with sounds in [15-20] dB interval also have some other sounds
that are at lower SNR and are missed, hence the lower F1, P

TABLE VI
MAESTRO SYNTHETIC AUDIO TAGGING METRICS FOR
DIFFERENT RANGE SNR

SNR interval [dB] | Ns FI [%] P [%] R[%]
0-5 1737 82.8 97.2 72.1
5-10 1719 86.4 97.8 774
10-15 1428 88.0 98.4 79.6
15-20 1778 85.5 97.4 76.3

Ns is the number of segments where at least one event has
the SNR within the given range.
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Fig. 3. Estimation of strong labels based on the weak labels of consecutive,
overlapping, audio segments.

and R. Of the 1778 segments, 1660 segments (93%) have events
with SNR lower than 15 dB. In this case inter-event ratios also
play an important role: when two events occur simultaneously,
the louder one will be masking strongly or at least partially the
other one, making it harder to identify. For the other ranges this
relative ratio is smaller (40% for [5-10] dB, 60% for [10-15]
dB), resulting in less chances for masking. According to [32],
identification accuracy and speed depends on the type of sound,
therefore identifying the concurrent sounds will depend not only
on the relative prominence of the sounds in a scene, but also on
the degree of overlap, and the familiarity of the annotator with
the sounds to be annotated.

If we consider only segments where all the sound events
present have the SNR within the same interval, the number of
evaluated segments decreases to about 20% of the total. In this
case F1 for range [0-5] dB is 88.92% (202 segments), while for
range [15-20] dB is 95.71% (118 segments), demonstrating the
ease of annotating sound events that are relatively loud compared
to the background.

B. Strong Label Estimation

Following the scheme for temporal activity reconstruction
of the sound events described in Section III-C, we stack the
annotated segments in their original order and combine the mul-
tiple annotator opinions using the proposed majority opinion. An
example of estimating the strong labels from the count-based ac-
tivity curves is presented in Fig. 3. The annotation task produces
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TABLE VII
SOUND EVENT DETECTION METRICS CALCULATED BETWEEN THE ESTIMATED STRONG LABELS AND THE GROUND TRUTH

Dataset labels based on | ERis | S D I || Flig [%] | P[%] R [%] || Flage—o.7 [%]  Flate—o.1 [%]
MAESTRO Synthetic (1) comp > 0.6 0.44 0.02 036 0.05 72.6 88.9 61.3 44.0 81.3
(2) MACE 0.37 0.02 020 0.15 80.0 82.3 77.9 41.1 90.1
(3) majority opinion 0.46 0.03 0.14 0.29 77.4 72.2 83.4 39.3 92.2
(4) strong annotation 0.46 0.04 040 0.02 69.1 90.0 56.1 40.1 70.9
MAESTRO Real (1) comp > 0.6 0.65 0.05 0.57 0.03 52.1 82.4 38.1 144 42.8
Residential area (2) MACE 0.59 0.09 043 0.07 58.9 75.6 48.3 12.8 51.7
(3) majority opinion 0.53 0.10 033 0.10 64.3 74.3 56.8 18.0 58.6
(4) strong annotation 0.86 0.04 0.81 0.01 25.0 73.9 15.0 11.3 314
MAESTRO Real (1) comp > 0.6 0.64 0.03  0.61 0.00 52.5 92.2 36.6 229 55.1
City center (2) MACE 0.54 0.06 047 0.02 61.5 86.8 47.6 229 57.6
(3) majority opinion 0.46 0.07 036 0.03 68.1 84.4 57.1 25.0 61.6
(4) strong annotation 0.88 0.02 0.86 0.00 21.0 85.9 119 10.4 30.9

S, D and I stand for substitutions, deletions and insertions, respectively.

5 opinions per 10 s segment, which translates into 50 opinions
per 1 s segment, due to the staggered annotation procedure.
According to the estimation method explained in Section III-C,
the temporal location of an event instance corresponds to the
region in which all annotators have considered it active in the
weakly-labeled segments. To accommodate possible incorrect
answers from the annotators, in [19] we used a threshold of
80% for binarizing this representation, i.e. a sound event was
considered active in a 1 s segment if at least 80% of the opinions
available for that segment considered it active [19].

We compare the proposed method with the MACE estimate
as presented in [19], considering that MACE provided the best
estimation of the reference weak labels; in addition, we also
compare it with the aggregation of data from annotators with a
competence higher than 0.6. The results are presented in VII in
the following order: (1) using only annotators with a competence
higher than 0.6; in this case, low-competence annotators are
eliminated, resulting in a varying number of opinions per 1 s
segment (on average 37, 20, and 13 annotators for synthetic,
real-residential and real-city-center, respectively); (2) using the
labels estimated with MACE; in this case, each 10 s segment is
assigned the labels estimated by MACE, and there is only one
opinion per 10 s segment (the MACE output), which translates
into 10 opinions per 1 s segment, due to the staggered annotation
procedure; (3) majority opinion. For cases (1) and (2) we use the
80% threshold to binarize the count-based activity, as explained
above. For majority opinion, we binarize the activity at the mid-
point of 0.5, according to the definition in Section III-B.

Table VII presents the SED scores between the reference
annotations and the estimated strong labels based on the three
described approaches, using segment-based F1 and ER [36] and
intersection-based F-score as defined for the Polyphonic Sound
Detection Score (PSDS) [16]. PSDS is evaluated for two sce-
narios, as defined in DCASE 2021 Challenge Task 4.2 The two
metrics are evaluated using the following parameters: F'lgc—0.7
uses a detection tolerance criterion (DTC): 0.7; ground truth
intersection criterion (GTC): 0.7; cost of instability across class
(ast): 1; costof CTs on user experience (acr): 0; maximum false

2[Online]. Available: http://dcase.community/challenge2021/task-sound-
event-detection-and-separation-in-domestic-environments#evaluation

positive rate (e_max): 100. F'14.—¢.1 uses a detection tolerance
criterion (DTC): 0.1; ground truth intersection criterion (GTC):
0.1; cost of instability across class (agr): 1; cross-trigger toler-
ance criterion (cttc): 0.3; cost of CTs on user experience (acr):
0.5; maximum false positive rate (e_max): 100. For details on
the parameters and their effect, we refer the reader to [16].

The error rate (ER) consists of deletions (D), events present
in the reference which are missed in the output, insertions (I),
events erroneously marked as present in the output, and substi-
tutions (S), events that are mislabeled in the output compared
to the reference. We observe that a large proportion of errors
in ER are deletions. This means many of the sound events
were not identified, which is expected based on the previously
observed recall rates in the weak labels analysis. Deletions
(and implicitly ER) are very high for the real data, being about
twice as many in comparison to the synthetic data, for a similar
amount of annotated segments. This, in particular, indicates
the high difficulty in identifying the target sounds in real-life
mixtures.

The strong annotations estimated for the real-life data com-
pare rather poorly with the reference annotation. The use of
MACE has a clear effect on increasing recall, with the proposed
majority opinion aggregation (3) providing the best outcome.
However, the higher recall is reflected in a lower precision and
a significant increase in insertions, even though the overall ER
decreases. The best precision is obtained by using a selected
proportion of highly competent annotators according to method
(1), but this means discarding large amounts of raw data, in
particular for the real audio recordings.

F1 values show a similar trend, with MACE helping improve
the scores significantly. The majority opinion approach provides
by far the best F1 for the real data, for all three calculated
versions. For the synthetic data, the proposed method does not
always provide the better strong label estimates.

Here one should not forget that the synthetic data comes with
correct and complete reference annotations for the sound event
instances, while the real recordings were manually annotated
and therefore are prone to labeling errors that arise from sub-
jective perception of each annotator. While the superiority of
the proposed method can only be demonstrated numerically on
the synthetic data, this does not diminish its importance; on
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TABLE VIII
SEGMENT BASED METRICS (100 MS) OF AGGREGATED ANNOTATION IN THE
STRONG ANNOTATION PROCEDURE ON MAESTRO SYNTHETIC

Aggregation | F1[%] P [%] R[%] ER
Majority vote 68.3 89.6 55.2 0.47
Union 66.8 54.6 85.9 0.77

the contrary, it shows that the proposed competence-weighted
aggregation provides consistent results across different types
of datasets, and may be used as an objective and reproducible
procedure for creating strong annotations.

One scenario in which this method fails is when two events
of the same class follow each other at short intervals, within
a 10 s segment. In this case, correctly indicating presence of
the sound event class in all segments that overlap any of the
instances will create a situation where there are no gaps, leading
to the estimation of a continuous, single instance.

C. Comparison to Direct Strong Annotation

For comparison, we reproduced the annotation method of
Cartwright et al. [18] which provided workers with the spec-
trogram visualization along with the audio, and required anno-
tators to produce strong annotations. We used the exact same
annotation protocol through Amazon Mechanical Turk, using
the code provided by the authors,? to collect five annotations for
each audio file. We provided the visualization as a spectrogram,
and explained to the annotators how it can be interpreted. The
workers for this task were selected to have at least 95% accepted
jobs.

Aggregation of the multiple annotations was done following
the same procedure as in [18]: each annotation was transformed
into a discrete sequence of 100 ms length segments; for each
100 ms segment, an event was considered active if the majority
of the annotators (in this case 3 of 5) have annotated it as active.
The resulting aggregated strong labels are compared with the
ground truth (for synthetic data) or with the reference annotation
(for real-life data).

Table VIII shows information retrieval measures in 100 ms
segments for the synthetic data, for comparison with the work
in [18]. The F1 of 68.3% is much lower than the approximately
93% in [18] in the case of 5 annotators. We hypothesize that this
large difference is due to the annotation task being more difficult:
our soundscapes have a length of 3 minutes, and may exhaust
the worker’s attention, in comparison with a short 10 s one.
While for our experiment the precision and recall are 89.6% and
55.2%, respectively, the same metrics for the 10 s soundscapes
in [18] are 98% and 95%. As an attempt to increase recall to
the maximum possible, we verify the outcome of a union-based
aggregation instead of consensus on the 100 ms segments, and
obtain a recall of 85.9%. The method does however deteriorate
precision, leading also to a much higher error rate.

In line with the other experiments presented in this paper, we
calculate the SED metrics between the reference annotation and
the aggregated strong annotation. The results are presented in

3[Online]. Available: https://github.com/CrowdCurio/audio-annotator
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Fig. 4. Visual comparison of estimated labels to reference annotation using
two different annotation methods for synthetic soundscapes; upper panel: direct
strong annotation and majority vote aggregation; lower panel: proposed method
consisting of weak labeling and majority opinion aggregation.

Table VII as approach (4). For the synthetic data, the segment-
based F1, P and R calculated in 1 s segments are in the same
range with the same metric in 100 ms segments (Table VIII).
In comparison with the evaluation of the other approaches in
Table VII, we can conclude that this method provides very
poor results, in particular on the real data. While precision
values are comparable among the four approaches, the recall
in the direct strong labeling approach is very low, also visible
in the high proportion of deletions. An example of how our
proposed method based on weak labeling and majority opinion
behaves better than the direct strong annotation and majority
vote aggregation shown in Fig. 4.

While we conclude that the strong annotation crowdsourcing
as studied in [18] does not seem to be suitable for minutes-long
real recordings, we have to mention a peculiar behavior of the
annotators: the number of annotated event instances for the real
data was very high, with a visible tendency of “filling up” the
length of the audio. As can be seen in Fig. 5, the spectrogram
visualization of a synthetic soundscape has more prominent
segments corresponding to individual sound instances that are
easily noticeable on the background, which may elicit a different
annotator behavior. The complexity of the spectrogram for real
data, brought by the unconstrained presence and overlapping of
non-target sounds might give the impression that there is always
something happening that needs to be annotated. In light of this,
providing the spectrogram in the annotation task may have been
detrimental to the quality of annotations instead of aiding the
process.

In terms of time and cost, the required annotation effort for
the two methods is quite different. While the weak labels are
faster to annotate, the HITs were published in batches, and the
average time for completing all batches of one dataset was 4
hours. In comparison, the strong annotation took on average 7 h
for each set. Cost-wise, the tagging HITs were paid $0.10, while
the strong annotation HITs were paid $5 each, which resulted
in a 4 times higher cost for tagging than for the strong labeling.
However, we observed that many workers in the tagging task
completed the maximum allowed HITs, while for the strong
annotations most workers completed only one HIT, indicating
that they considered the work load too high. This reinforces our
intuition that simple unit annotation tasks like tagging are prefer-
able to ones requiring the annotator to take complex decisions
such as is the case for strong labeling.
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Synthetic soundscape

Fig. 5.

D. Sound Event Detection Using Estimated Labels

As an additional experiment, we investigate how the reference
annotations influence the evaluated performance of a SED sys-
tem. Traditionally, algorithms are trained and evaluated using
the reference produced through manual annotation. Accepting
that such annotation is subjective means that the reference is
not necessarily complete, and the differences and disagreement
between annotators may be the cause of some of the measured
errors. Moreover, it is difficult to create a consistent annotation
protocol that results in similar annotator differences for different
datasets. As a consequence, testing a method across datasets
will be affected by errors caused not only by the acoustic
content mismatch but also by the mismatch in the labeling
procedure.

In order to observe how this mismatch in the labeling proce-
dure affects the evaluated performance, we train a SED system
using the official reference labels, and evaluate its output against
differently produced strong labels. We consider as baseline the
system trained and evaluated using the reference annotation
(generated for the synthetic data, annotated by experts for the
real data). The experiments follow a leave-one-out setup in order
to use as much as possible data for training the model. For
each of the three datasets, the training/test procedure uses one
soundscape for testing, one for validation, and the rest of the
soundscapes for training the model. All training/test experiments
were run first, and the evaluation was performed on the entire
data at once, to avoid possible imbalances due to averaging over
file-wise results [36].

We use PANNs [37], specifically the wavegram-logmel-
CNN14 model,* consisting of six convolutional (conv) blocks.
Each conv block contains two 2-D convolutional layers with a
3x3 kernel and batch normalization, followed by a ReLU non-
linearity layer. After each conv block 2x2 average pooling and a
dropout layer with 0.2 rate are applied. The input to the PANNs
is the concatenation of the log-mel spectogram features and
the wavegram. Wavegram is a feature representation proposed
by the authors in [37], which is learnt by a CNN block from
the raw audio file. Using both mel spectrogram and wavegram
as input features has been shown to improve the performance
significantly compared to mel only [37]. The model is pretrained
using AudioSet, with all audio converted to mono, resampled to
32 kHz, and padded to 10 s.

To fine-tune the model for our experiment, a fully-connected
layer consisting of six units was added to the pre-trained conv
layers of the selected PANNs model, after which the complete
model was further trained for a few epochs (maximum number

4[Online]. Available: https://zenodo.org/record/3987831

Real soundscape

Example of spectrogram visualization provided for synthetic and real soundscapes during strong annotation.

of epochs 50) to learn to classify the given six classes. The
fine-tuning was done separately for each subset.

The audio files available for fine-tuning the model were re-
sampled to 32 kHz, to be similar to the data used for pre-training,
then cut into 10 s segments that are individually processed. The
mel spectrogram was calculated using a window size of 1024
with a hop length of 320 samples, and 64 mel filter banks, with
the lower and upper frequencies set to 50 and 14 kHz, resulting
ina 1001 x 64 feature matrix for an audio clip of 10 s. The same
parameters were applied to the wavegram. SED was performed
using the inference method provided by Kong et al. [37], which
outputs frame-based activity within the processed segment for
the target sound classes. Postprocessing of the individual outputs
was done to create a single list of detected event instances
corresponding to the entire analyzed audio file.

The results are presented in Table IX and show that the training
and evaluation process is not highly robust to the mismatch
in the reference label production method: the system trained
with the reference annotation and evaluated with the estimated
strong labels has the highest ER, and especially high for the
real data. Compared against complete and correct annotations,
we obtained at best ER;¢ of 0.45 and F1,; 71.7% for a set of
synthetic soundscapes.

The significant decrease observed in the metrics when the
system output is evaluated against the crowdsourced annotations
(second line in Table IX for each dataset) compared to the
official reference annotation (first line in IX) is not connected
to the actual performance of the system, since we evaluate the
exact same system output, but against a differently produced
reference. Based on the analysis presented earlier, we know that
the estimated strong labels are only a subset of the reference,
therefore this evaluation across annotation methods is blending
the effect of the errors in the system output and the errors (missed
or substituted events) in the crowdsourced annotations. When
the system is trained and evaluated using the crowdsourced
annotations (third line in IX), the measured performance is
similar to the one obtained using the official reference for each
dataset.

This experiment highlights one main challenge in the develop-
ment of robust SED systems: when the data available for system
development (training) is annotated using a differently defined
procedure or a different pool of experts than the data expected
at deployment stage (evaluation), a large drop in performance
does not necessarily indicate a failure to generalize to different
acoustic conditions, but hides a mismatch in the labeling process,
which can be caused by differences in the definition of the label-
ing procedure itself and differences in annotators’ opinion. Even
though its output is not entirely accurate, the method proposed in
this paper is based on multiple opinions per item and a very large
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TABLE IX
EVALUATION AGAINST DIFFERENT SETS OF STRONG LABELS FOR THE THREE DATASETS USING PANNS

Dataset | eval. reference | ERis  Flis [%] | Flage—o.7 [%]  Flage—o.1 [%]

MAESTRO Synthetic | GT 0.30 81.0 57.5 72.6
estim. majority opinion 0.46 70.8 45.2 67.8
train&eval majority opinion | 0.45 71.7 443 61.6

MAESTRO Real GT 0.59 61.2 475 58.1

Residential area estim. majority opinion 0.71 60.7 48.6 54.0
train&eval majority opinion 0.50 69.8 499 63.3

MAESTRO Real GT 0.58 63.1 70.1 58.6

City center estim. majority opinion 0.77 62.3 65.6 54.2
train&eval majority opinion | 0.48 67.9 72.9 80.2

pool of annotators, therefore it has the potential of producing the
labels in a more objective and reproducible manner.

VI. CONCLUSION

While crowdsourcing has been repeatedly used as a fast
method to collect large amounts of labeled data, the specific
format of strong labels for sound event detection is still difficult
to crowdsource. In addition to the complexity of the task itself,
the outcome is affected by subjectivity of the annotators in
perceiving the sounds. Collecting multiple opinions alleviates
the subjectivity, but comes with the question on how to aggregate
the multiple annotations for the best outcome.

This paper presented two key contributions to the research
problem of crowdsourcing strong labels. First, we introduced
a novel workflow in the crowdsourcing task which breaks the
strong annotation process into two stages: weak labeling and
reconstruction of temporal information based on the weak labels.
The weak labeling task is much simpler than strong labeling,
therefore expected to produce consistent quality labels. Second,
we proposed a novel method for aggregating multiple annotator
opinions, using annotator competence estimation tools. Given
that some users produce more reliable annotations than others,
replacing the majority vote aggregation with a majority opinion
scheme was expected to produce higher quality outcome.

Results have shown that weighing the annotators’ opinions
by their estimated competence produces better strong labels
than any other method, including direct strong annotation. In
addition, the results show that the proposed majority opinion
approach produces reliable aggregated strong labels in com-
parison with a manually annotated reference produced by an
expert annotator. Using a SED experiment, we have also shown
how a model’s evaluated performance is linked to the selected
reference annotation. Annotations produced manually by dif-
ferent annotators reflect their personal biases and are prone to
annotator-dependent errors, which are not separable from the
system-produced errors when evaluated against. The proposed
method uses multiple annotators in a crowdsourced manner
and a data-independent processing chain for producing the
strong labels, therefore has the advantage of being objective and
reproducible, even though the produced annotations were shown
to be incomplete.

Future research may investigate incorporating additional
knowledge into the workflow. The main advantage of the pro-
posed approach is its streamlined and reproducible setup, but the

drawback is its high level of redundancy. For a more efficient
method, it would be useful to preprocess the audio to select
regions of interest, so that only the parts expected to contain the
target events are annotated with high redundancy.
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