
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:3517  | https://doi.org/10.1038/s41598-023-30657-1

www.nature.com/scientificreports

Transformers for cardiac 
patient mortality risk prediction 
from heterogeneous electronic 
health records
Emmi Antikainen 1*, Joonas Linnosmaa 1, Adil Umer 1, Niku Oksala 2,3,4, Markku Eskola 3,5, 
Mark van Gils 2, Jussi Hernesniemi 2,3,5,7 & Moncef Gabbouj 6,7

With over 17 million annual deaths, cardiovascular diseases (CVDs) dominate the cause of death 
statistics. CVDs can deteriorate the quality of life drastically and even cause sudden death, all the 
while inducing massive healthcare costs. This work studied state-of-the-art deep learning techniques 
to predict increased risk of death in CVD patients, building on the electronic health records (EHR) of 
over 23,000 cardiac patients. Taking into account the usefulness of the prediction for chronic disease 
patients, a prediction period of six months was selected. Two major transformer models that rely on 
learning bidirectional dependencies in sequential data, BERT and XLNet, were trained and compared. 
To our knowledge, the presented work is the first to apply XLNet on EHR data to predict mortality. 
The patient histories were formulated as time series consisting of varying types of clinical events, 
thus enabling the model to learn increasingly complex temporal dependencies. BERT and XLNet 
achieved an average area under the receiver operating characteristic curve (AUC) of 75.5% and 76.0%, 
respectively. XLNet surpassed BERT in recall by 9.8%, suggesting that it captures more positive cases 
than BERT, which is the main focus of recent research on EHRs and transformers.

Electronic health records (EHRs) encompass evidence of patient care paths and outcomes. Different EHR models 
have been widely adopted by healthcare facilities and continue to accumulate increasing amounts of data with 
potential to discover new medical knowledge and to support decision making to improve outcomes for new 
 patients1. Although EHRs offer large volumes of longitudinal real-life data for improved machine learning (ML), 
they still challenge the methodology with their heterogeneous, sparse, often incomplete and even erroneous  data2. 
Moreover, due to the sensitive nature of the data, privacy issues and regulations will further complicate model 
development and deployment in the  future3. Some regulations may require database anonymization to protect 
data privacy but this may result in decreased data quality due to additional noise and gaps.

Cardiovascular diseases (CVDs) have held their ranking as the leading cause of death worldwide for years 
and continue to impose an increasing challenge to the global health. In 2017, CVDs alone caused 17.8 million 
deaths globally, showing an alarming 21.2 % increase in the yearly CVD death count since  20074. Furthermore, 
CVDs can be a risk factor in relation to other diseases and increase the demand for hospital care. For instance, 
they have been linked with poor prognosis in the context of COVID-19, which threatened health care capacity 
all over the  world5. The problem of CVDs has not been sufficiently addressed. While the risk could be efficiently 
reduced with lifestyle changes towards physically active lives and healthier diets, the reports of the aging popula-
tion and overwhelming obesity rates indicate enduring prosperity for  CVDs4. Predictive models may help identify 
high-risk patients and patient deterioration and may be used to focus healthcare resources efficiently to improve 
patient outcomes and manage the increasing CVD counts. Data-driven approaches are expected to renew the 
clinical cardiology practice, ascertain their place in the clinician’s toolbox, and to reform our understanding of 
the causes of  CVDs6,7.
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Transformer neural networks are the state-of-the-art machine learning methods for sequential data modelling. 
Developed for natural language processing, their built-in properties respond to many needs that arise when using 
EHR data. Thanks to them combining attention and positional encoding, transformers can be applied to learn 
bidirectional temporal dependencies despite the sparsity and possible errors in the large volumes of EHR data. 
Their design to handle textual input does not exclude numerical input and may thus be useful for heterogeneous 
input types. In the context of EHRs, they have been applied mainly to clinical notes or  diagnoses8–11. Yet, their 
capabilities to capture more complex dependencies in heterogeneous databases have received little  attention12. 
Furthermore, prior studies have focused on one transformer variant; bidirectional encoder representations from 
transformers (BERT)13. A newer model, XLNet, has surpassed BERT in many baseline natural language process-
ing  tasks14. This work uses an anonymous cardiac patient EHR database to compare the learning capabilities 
of BERT and XLNet in the important application of mortality risk prediction. Here, the transformer models 
are applied to multi-modal heterogeneous patient event time series, comprising both textual and numerical 
attributes.

Prior to transformers, convolutional neural networks (CNNs) and recurrent neural networks (RNNs) achieved 
encouraging results in, e.g., arrhythmia detection from electrocardiograms (ECG), diagnostic decision sup-
port using cardiovascular images, and diagnosis prediction from EHR  data15–18. The introduction of attention 
mechanisms provoked countless new studies reporting improved  results19–23. Importantly for clinical applica-
tions, attention gave interpretability to the model outcomes, thus offering one solution to the primarily criticized 
shortcoming of deep learning (DL)  methods19. For example, Choi et al. presented the RETAIN model which 
coupled attention with recurrent neural networks (RNNs) to predict heart failure from EHR data. They presented 
a method for prediction interpretation while reporting an 87% area under the receiver operating characteris-
tics curve (AUC)21. Another relevant study was conducted by Rajkomar et al. who used an ensemble of three 
DL models, one of which was attention-based, and tested their system on EHR data from two hospitals. They 
achieved 93–95% AUC for in-patient mortality prediction at 24 h after  admission22.

The original Transformer relied exclusively on attention  mechanisms24. The Transformer and its variants 
surpassed RNNs by allowing parallelized computing and by learning bidirectional dependencies. They learned 
longer-range dependencies at improved training time, which is crucial with long input sequences like EHR 
 histories24. The first studies applying transformers directly on EHRs were built on BERT, which bases its learning 
strategy on masking the  input13. Shang et al. combined BERT with ontology embeddings from a graph neural net-
work creating G-BERT for medication  recommendation10. They reported a 1% increase in precision-recall AUC 
as compared to RETAIN. BEHRT by Li et al. applied BERT directly for disease prediction by using sequences 
of diagnoses available in the  EHRs9. They reported a patient-averaged AUC of 95–96% for varying prediction 
windows extending up to 12 months. Thirdly, Rasmy et al. reported up to 2% improvement in disease predic-
tion with their Med-BERT as compared to  RETAIN11. They evaluated Med-BERT for heart failure prediction in 
diabetic patients and pancreatic cancer onset prediction. Some studies have additionally proposed somewhat 
modified transformers for EHR representation  learning25–27.

In this study, we apply the ground-breaking transformer models on patient time series to predict 6-month 
mortality in cardiac patients. The 6 months prediction period may offer actionable predictions for many chronic 
conditions. Unlike BEHRT and Med-BERT which were trained on sequences of diagnostic codes, we incorporate 
over a dozen different event types each described by multiple attributes to capture a more complete depiction of 
the patient history. By feeding the transformers sequences of patient events with timestamps based on age, the 
models may learn how the interplay between different events and their outcomes, as well as temporal dependen-
cies, affect the patient outcome. With this approach, the patterns learned by the model may unveil unforeseen 
associations between different events. Moreover, we study both BERT and XLNet. Unlike BERT, XLNet is an 
auto-regressive transformer variant that avoids corrupting the  input14. We exploit the anonymous EHRs of over 
23,000 cardiac patients who were treated at Tays Heart Hospital in Finland and report our findings on using 
privacy-preserving anonymous data in model development, an increasingly common starting point for future 
EHR studies. A previous machine learning study on the same database considered a subset of 9066 consecutive 
acute coronary syndrome patients and achieved an AUC of 89% for 6-month mortality using conventional, non-
deep learning  methods28. This study takes up a more complex challenge of predicting mortality in all available 
CVD patients, comprising a more heterogeneous patient population.

Methods
Study data. The longitudinal study data comprised three Finnish data sources: (1) the EHR by the Pirkan-
maa Hospital District (PHD), (2) the KARDIO registry by the Tampere Heart Hospital, and (3) the Finnish 
mortality registry by Statistics Finland. The PHD EHR extend back to the 1990’s and the date of death from 
the mortality registry was included for the matching period. The PHD EHR data include hospital discharge 
diagnoses, which record every diagnosis recorded for the patient in ICD-10 format (and previously in ICD-9 
and ICD-8 formats). This data is equally reported in every hospital nationally and the validity of the registry is 
high for many significant cardiovascular conditions such as strokes, coronary heart disease and heart  failure29–31. 
The KARDIO registry is the most recent of the three; its first entries date back to the early 2000’s. The original 
database was automatically collected from the three registries until January 2020 as a part of a retrospective 
registry study, MADDEC (Mass Data in Detection and Prevention of Serious Adverse Events in Cardiovascular 
Disease)32.

The study was approved by the Pirkanmaa Hospital District Institutional Review Board’s scientific steering 
committee. Informed consent is waived since the retrospective nature of the study by the Pirkanmaa Hospital 
District Institutional Review Board’s scientific steering committee. The study was conducted according to the 
declaration of Helsinki as applicable and the study data was processed in accordance with the Finnish legislation. 
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An anonymous version of the database was used, comprising 72,680 patients (9172 deceased patients within 
six months of their last visit, i.e., 12.6%) all treated at the Tays Heart Hospital for different cardiac conditions.

Input sequence formulation. The patient records were extracted from the event-oriented database, pre-
processed, and finally ordered on temporal attributes to formulate a single time series of events for each patient. 
The resulting time series were further processed into appropriate input for the transformer neural networks, as 
summarized in Fig. 1. In the anonymous database, the temporal attributes were age-based (on a daily level, i.e., 
days since birth) and the real dates and times were unknown.

Data pre-processing included replacing Roman numerals with Arabic numerals, filling in event start or end 
times when only one of the two was missing, and unifying notations. Units and measurement names, anesthesia 
types, and urgency classes were translated from Finnish to English. Additionally, some body-mass index (BMI) 
values below 0.02 were presumed to use centimeters instead of meters for height, and thus, multiplied by 104 to 
restore correct units. For events where the ending time preceded the recorded event start time, the timestamp 
order was presumed a typographical error and the timestamps were switched. In the end, only the pre-processed 
event start time was included as the event durations were generally error-prone.

Any events occurring before the patient became of age were excluded. Additionally, any events with missing 
event timing or overlap with the date of death were excluded. The latter consists of events extending to the date 
of death, e.g., resuscitation or procedures, or beyond, such as lab values or diagnoses.

The data sources contained 14 distinct types of events each described by a different set of attributes, as pre-
sented in Table 1. Here, we took the liberty of excluding any attributes that were never present for an event type. 
For angiography, percutaneous coronary intervention (PCI), coronary care unit (CCU), transcatheter valve 
implantation (TAVI), and resuscitation events, the attributes were limited to the nine most available attributes 
(out of tens of attributes) to control input sequence length and to fit multiple events in the input sequence. Each 
event was constructed into a sequence simply by listing the event type and the corresponding attributes in one 
sequence. Thus, each event type was represented by a specific “sentence structure” mimicking natural language. 
Any missing attribute values were filled in with ’None’. All event representations started with the event type name, 
the event starting time, and residence (among Finnish counties) when available. Residence was available in 67%, 
74%, and 79% of CCU, resuscitation, and hospital ward events respectively, while it was missing completely for 
TAVI and in 59–94% for other event types. Event type, start time, all operation attributes, times repeated, ward, 
sex, stenosis, imaging type, dialysis, temporary pacemaker, primary vasoactive medication, fluoroscopy time, and 
glomerular filtration rate attributes were all fully available for the relevant event types. The remaining attributes 
in labs were available in 72–75% of lab events (except textual values only in 1%). Diagnosis code and priority 
were available in 36% and 41% of diagnosis events respectively, and anesthesia type, ASA class, and urgency in 
56%, 61%, and 93% of procedures. All measurement event attributes were available in 91–100% of measurement 
events. The remaining attributes in angiography, PCI, CCU, and TAVI were available in 98-100% of the respec-
tive events, whereas the other attributes for resuscitation events were available in 89% of resuscitation events.

The individual pre-processed events were combined in order of occurrence into one sequence per patient, 
forming the patient event timeline. Until this point, the events were linked via patient and event pseudo-iden-
tifiers. The pseudo-identifiers were removed and the date of death was isolated and transformed into a binary 
class: positive (1) when the date of death occurred within 182 days of the last event, and negative (0) otherwise. 
The date of death was comprehensively obtained from the Finnish mortality registry. Importantly, in the real-life 

Figure 1.  A schematic example of how a patient’s events were formulated into a time series. The records in the 
event-oriented database contain the event type specific attributes (yellow circles). First, the events related to the 
same patient ID (magenta square) were combined to a sequence sorted according to their temporal attributes. 
Hereafter, the patient ID was no longer necessary. Next, the class (prediction target, i.e., death within six months 
or alive) was computed using the death-related attribute (green striped circle) and the time between that and the 
previous event. Finally, the point of prediction was randomized. If the class was positive, the time to death from 
the final remaining event was maintained within the selected six month period.
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clinical use-case the model could be used to produce predictions at any time of a patient timeline. Therefore, to 
produce realistic evaluation of model performance and avoid bias due to the retrospective nature of the data, a 
random number of events at the end of a patient’s timeline were erased. The number of erased events was selected 
randomly between zero and a patient-specific maximum number such that at least five events remained for the 
patient, and the death for any positive case would still occur within the selected cutoff from the final remaining 
event.

Finally, the input sequences were tokenized and the special tokens for class (CLS) and sentence separation 
(SEP) were added once to each patient timeline according to their expected position in BERT and  XLNet33. Any 
numerical input was transformed into string-type integers for tokenization. The age in days was transformed 
into full years.

Hyperparameter optimization. The model hyperparameters were optimized using Population Based 
Training (PBT)34,35. PBT is an evolutionary algorithm, which trains several networks with varying hyperpa-
rameters in parallel. During the training process, each network can explore hyperparameters randomly in a 
predefined space or exploit another better performing parallel model by copying its parameters and continuing 
to explore new hyperparameters with the partially trained model, without restarting the training from scratch.

PBT was applied to optimize the learning rate, dropout fraction, and model dimensions including the num-
ber of heads and layers, as well as layer size. Due to memory limitations, only batch sizes 16 and 24 were tested. 
PBT was run for both BERT and XLNet for 30 epochs on 12 trials with the perturbation interval of ten epochs. 
Similarly to the original transformers, Gaussian Error Linear Unit (GELU) was used for activation.

Model evaluation. Eighty percent of the study data was used for model development, while 20% was held 
out as a test set. The development data was further split into training and validation data, comprising 80% and 
20% of the development set, respectively. Stratified splits were used to maintain a similar distribution of positive 
and negative cases in each set. The data sets were further balanced by taking a random sample of negative cases 
to match the number of positive cases (see details in Implementation). Model performance was assessed with 
AUC, precision (positive predictive value), and recall (sensitivity)36.

PBT was performed on the development set. The top-performing BERT and XLNet models were validated 
using stratified fivefold cross validation with the development data. Subsequently, the final BERT and XLNet 
models were trained with the selected hyperparameters on the full development data and evaluated on the held 
out test data set.

Table 1.  Event specific attributes *Measurement context in text format, for example a suspected diagnosis 
or type of the visit. **Measurement context related code (e.g. an ICD-10 diagnostic code). ***Family history 
(for early coronary artery disease) was positive if at least one of the patient’s first degree relatives had suffered 
a myocardial infarction or underwent coronary revascularization (PCI or coronary artery bypass surgery) at 
an early age ( < 55 and < 65 years in men and women, respectively). a International Statistical Classification of 
Diseases and Related Health Problems, the 10th revision (ICD-10). b Anatomical Therapeutic Chemical (ATC) 
code. c Nordic Classification of Surgical Procedures (NCSP). d American Society of Anesthesiologists (ASA) 
classification of physical status.

Event type Attributes

Labs Event type, start time, residence, lab test value (num), lab test value (char), lab test name, 
lab test unit

Diagnosis Event type, start time, residence, diagnosis codea , diagnosis priority

Medication Event type, start time, residence, ATC codeb , daily dosage, dose unit, administration 
method

Operation Event type, start time, residence, sequence number, code ID, codec

Procedure Event type, start time, residence, anesthesia type, ASA classd , operation urgency

Measurement Event type, start time, residence, measurement value (num), measurement context*, 
measurement name, measurement unit, measurement context code**

Hospital visit Event type, start time, residence

Hospital ward Event type, start time, residence, times repeated, ward

Angiography Event type, start time, residence, times repeated, ward, primary angiography findings, sex, 
stenosis (boolean), primary puncture places

Percutaneous coronary intervention (PCI) Event type, start time, residence, times repeated, ward, complications, sex, indication, 
urgency

Imaging Event type, start time, residence, imaging type

Coronary care unit (CCU) Event type, start time, residence, times repeated, ward, dialysis, sex, temporary pace-
maker, primary vasoactive medication

Transcatheter aortic valve implantation (TAVI) Event type, start time, times repeated, ward, dyslipidemia, fluoroscopy time, sex, glo-
merular filtration rate, hypertension

Resuscitation Event type, start time, residence, times repeated, ward, family history***, sex, hyperten-
sion, smoking
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The final model training was repeated five times to account for the effect of random initialization. Early 
stopping was applied when the training loss failed to improve at least by 0.0045 over 5 epochs (min_delta 
and patience in keras EarlyStopping, selected based on the previously observed cross-validation losses). To 
interpret what the final models had learned, the models were fed example time series from the test set and the 
attention weights were visualized using  BertViz37. Min–max normalization was applied to the attention layers 
prior to the visualization to properly highlight where attention was at its highest and lowest.

Implementation. The data were tokenized using pretrained tokenizers (bert-base-cased, xlnet-base-cased) 
available in the Hugging Face model  database13,14. The transformer models were implemented in Python by 
using the Hugging Face Transformers library together with  Tensorflow33,38. The Ray Tune package (function 
API) was used for hyperparameter  optimization35. The data split for model evaluation was obtained using scikit-
learn39. The final models were trained using an Adam optimizer with an epsilon of 10−8 . The sequence length 
was restricted to 512 tokens such that the latest information in the patient history was included. Overlength 
sequences were truncated and under-length sequences padded using the tokenizer-specific padding token.

Class imbalance was managed by (1) down-sampling the negative examples in the training and validation 
sets and (2) using a weighted binary cross-entropy loss function. To ensure that each limited-size batch had a 
reasonable chance of including some positive cases, the negative samples were randomly down-sampled so that 
25% of the samples in both training and validation set were positive. By limiting the extent of down-sampling, 
the related data loss was also limited. The remaining imbalance was counteracted via the loss function using 
balanced class weights; each class was weighted by its inverse prevalence in the development set, further divided 
by the number of classes (two).

A 32 gigabyte Tesla V100-DGXS graphics processing unit (GPU) was used in hyperparameter optimization 
and training the models.

Results
Implementing the exclusion criteria reduced the study data from 72,680 patients to 57,377 adult patients, includ-
ing 3771 (6.57%) positive cases. The demographic details are described in Table 2. The average age of patients was 
65 years (79 for positive cases). The sex of the patient was only available for 35.7%, most of which (61.2%) were 
male. The notably large portion of sex information was lost upon anonymization as the national identification 
numbers were removed.

After down-sampling the development sets to counteract class imbalance (as detailed in “Methods”), the 
resulting training and validation sets contained 9640 and 2420 patients (12,060 in total with 3015 positive cases). 
The test set comprised 11,482 patients with the number of positive cases, 756 (6.58%) corresponding approxi-
mately to the prevalence in the full pre-processed data. Thus, the study involved 23,542 individuals (including 
all 3771 positive cases). The patient flow is summarized in Fig. 2.

The hyperparameters optimized using PBT are presented in Table 3. BERT performed best on learning rates 
around 5× 10

−7 to 1 ×10
−6 , whereas rates an order of magnitude larger ( 5× 10

−6 to 1× 10
−5 ) worked best 

Table 2.  Pre-processed study data. The percentages depict the proportion of the (known) sex with respect to 
the full number of patients on the same row. SD standard deviation.

N Female Male Age range Mean years of data (SD) Mean no. of events (SD)

Positive 3771 691 (18.3%) 1183 (31.4%) 18–102 6.5 (3.4) 1755 (2364)

Negative 53,606 7249 (13.5%) 11,365 (21.2%) 18–105 4.2 (3.8) 553 (1091)

Total 57,377 7940 (13.8%) 12,548 (21.9%) 18–105 4.4 (3.9) 632 (1255)

Figure 2.  Patient flow diagram. The total number of patients is indicated for each step and the number of 
positive cases is denoted in brackets. The final data used in model evaluation comprised 23,542 patients and is 
depicted on a gray background.
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for XLNet. The selected configurations comprised 108,312,578 trainable parameters for BERT and 5,482,130 
parameters for XLNet.

The models with optimized hyperparameters were cross-validated using 5-fold validation to assess their 
sensitivity to the selection of training instances. The validation results are presented in Table 4. The models 
achieved similar average AUC. BERT achieved slightly higher precision but the variance between folds was also 
higher. However, less than half of the predicted cases were true positive cases. Finally, XLNet reached a notably 
higher average recall, with low variance between folds. Thus, the optimized XLNet was more sensitive to detect 
positive cases than BERT.

The final model training was repeated five times to examine the effect of random initialization. The test results 
obtained on the held-out test set are presented in Table 5. The corresponding mean specificity scores were 78% 
and 69% for BERT and XLNet, respectively. The test set results support the observations from cross-validation. 
The slight improvement in AUC and recall were likely due to early stopping, which stopped the training already 
before 50 epochs in all cases. This prevented over-fitting, which occurred remarkably early for this data and 
models. The drop in precision is explained by the increased class imbalance in the test set but also underlines 
that both models produced mostly false positives, despite capturing 73–83% of the positive cases on average. 
In comparison to BERT, the improvement in XLNet’s recall exceeds the drop in precision and, thus, the XLNet 
model may be more useful.

The final BERT and XLNet models exhibited very similar metrics (run number 5 in Table 5) and were fed 
an example time series from the test set for interpretation. The model attention for the 50 tokens nearest to the 
classification token in an example time series are depicted in Fig. 3a,b for XLNet and BERT, respectively. The 
selected (full sequence) example was correctly labeled positive by XLNet and mislabeled negative by BERT. The 

Table 3.  Hyperparameters optimized via population based training.

Hyperparameter BERT XLNet

Hidden size 144 144

Number of layers 12 6

Number of attention heads 12 6

Feed-forward layer hidden size 128 128

Learning rate 1× 10
−6

5× 10
−6

Batch size 16 16

Dropout 0.5 0.4

Table 4.  5-fold cross-validation of optimized models. Performance metrics in the validation set, after 50 
epochs. The best mean score for each metric (AUC, precision, recall) is in bold. 

 Fold

BERT XLNet

AUC Precision Recall AUC Precision Recall

1 0.7452 0.4567 0.8126 0.7438 0.4592 0.8027

2 0.7366 0.5244 0.6783 0.7570 0.4740 0.8159

3 0.7703 0.4711 0.8640 0.7692 0.4873 0.8292

4 0.7432 0.5350 0.6849 0.7454 0.4496 0.8292

5 0.7689 0.5047 0.7993 0.7557 0.4815 0.7977

Mean 0.7528 0.4984 0.7678 0.7542 0.4703 0.8149

Table 5.  Blind test results on five different initializations. The best mean score for each metric (AUC, 
precision, recall) is in bold.

 Run

BERT XLNet

AUC Precision Recall AUC Precision Recall

1 0.7398 0.2248 0.6336 0.7556 0.1533 0.8373

2 0.7612 0.1923 0.7421 0.7602 0.1574 0.8360

3 0.7586 0.1919 0.7355 0.7654 0.1665 0.8201

4 0.7547 0.1937 0.7209 0.7609 0.1601 0.8280

5 0.7591 0.1571 0.8333 0.7586 0.1563 0.8347

Mean 0.7546 0.1919 0.7330 0.7602 0.1587 0.8312
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corresponding pre-processed example input before tokenization is depicted in Fig. 3c. The full patient history 
comprised 111 events, whereas the models could only consume input from up to 38 events.

The 83 years old patient’s latest event was an operation encoded as H0519, which stands for a simulation 
film, possibly related to radiation therapy planning. Their history also showed, e.g., an angiography of the heart 
and/or coronary artery, a percutaneous transluminal coronary angioplasty, and an intraventricular stent place-
ment to enlarge the coronary artery, all within the past year. As seen in Fig. 3a at the end of the sequence, XLNet 
attends especially to the age (three instances visualized) and to the operation code. Most other layers also attend 
to age and the operation code at the <cls> classification token, while exhibiting varying attention to the other 
inputs. In contrast, BERT’s attention at the [CLS] classification token in Fig. 3b does not exhibit special attention 
to the patient’s age (not the primary focus of attention in any layer) but attends to some of the lab results. It is 
noted that a tokenizer specialized in EHR data might not only make the interpretation easier but also improve 
attention results.

    a               b c

…
labs, 82, None, 266, None, B -Trom, E9/l
labs, 82, None, 1, None, fP-Kol-LDL, mmol/l
labs, 82, None, 344, None, E -MCHC, g/l
labs, 82, None, 91, None, E -MCV, fl
labs, 82, None, 332, None, E -MCHC, g/l
labs, 82, None, 3, None, B -Eryt, E12/l
operation, 82, Päijät-Häme, 2, FN1BC
operation, 82, Päijät-Häme, 3, FN1BT
operation, 82, Päijät-Häme, 4, FN1YT
angio, 82, Päijät-Häme, 1, None, 3-VD, 1, 

is stenosis, A. radialis
pci, 82, Päijät-Häme, 1, None, No complications, 

1, NSTEMI, during the same hospitalization period
labs, 82, None, 1, None, P -CRP, mg/l
labs, 82, None, 3, None, B -Eryt, E12/l
labs, 82, None, 3, None, P -K, mmol/l
labs, 82, None, 0, None, B -HKR, %
labs, 82, None, 129, None, B -Hb, g/l
labs, 82, None, 61, None, fP-Krea, umol/l
labs, 82, None, 0, None, B -HKR, %
labs, 82, None, 315, None, B -Trom, E9/l
labs, 82, None, 143, None, P -Na, mmol/l
labs, 82, None, 14, None, Pt-EKG-12, form
labs, 82, None, 9, None, fB-Leuk, E9/l
labs, 82, None, 342, None, E -MCHC, g/l
labs, 82, None, 29, None, E -MCH, pg
labs, 82, None, 88, None, E -MCV, fl
labs, 82, None, 88, None, E -MCV, fl
labs, 82, None, 5, None, fB-Leuk, E9/l
labs, 82, None, 14, None, Pt-EKG-12, form
labs, 82, None, 45, None, P -CRP, mg/l
labs, 82, None, 364, None, E -MCHC, g/l
labs, 82, None, 3, None, P -K, mmol/l
labs, 82, None, 30, None, E -MCH, pg
labs, 82, None, 66, None, fP-Krea, umol/l
labs, 82, None, 128, None, B -Hb, g/l
labs, 82, None, 4, None, B -Eryt, E12/l
labs, 82, None, 293, None, B -Trom, E9/l
labs, 82, None, 143, None, P -Na, mmol/l
operation, 83, None, 1, H0519

Figure 3.  Attention (a) in the fifth attention layer in XLNet at the end of an example subsequence near the 
<cls> token, and (b) in the final attention layer in BERT at the start of an example subsequence near the [CLS] 
token. The different colours represent the (a) six and (b) 12 attention heads; the more opaque the colour, the 
heavier the attention. The final events of the example time series are presented in a human readable format in 
(c), where the first information visible to BERT is highlighted with purple and with green for XLNet. Figures 
(a,b) were produced using  BertViz37.
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Discussion
This work explored and compared the potential of two popular transformers, BERT and XLNet, in the task of 
predicting 6-month mortality in cardiac patients at randomly chosen events recorded in their EHR. The hetero-
geneous electronic health record data were constructed into semi-structured multi-event time series to exploit 
the temporal information. We achieved a higher recall with XLNet, suggesting that it captures more positive cases 
than BERT. It has been argued that the learning strategy implemented in XLNet is better capable of capturing 
long-term dependencies in  sequences14. To our knowledge, this is the first study exploring XLNet for mortality 
prediction from electronic health records.

Previous studies often set their focus on in-patient mortality within 24 h of admission, which can be especially 
beneficial for applications at intensive care  units2. In contrast, patients with long-term conditions may profit from 
earlier predictions. The 6-month prediction period selected in this study allows time for clinicians to re-evaluate 
the patient’s needs and make their care more effective to decrease their risk of death. It provides time for any 
additional tests and diagnostics, as well as a realistic possibility for interventions to take effect. Six months was 
considered a suitable period to explore model performance in such a heterogeneous cardiac patient population.

As compared to a prior study using extreme gradient boosting (XGBoost) on the same database and predic-
tion target, the presented results fall short of the previous AUC  result28. This may, however, be expected because 
the prior study focused on a specific homogeneous patient group (with acute coronary syndrome) whereas the 
current work with a larger portion of the database included a wide heterogeneous spectrum of CVD patients. 
Moreover, the more refined and smaller subset of data in the previous study allowed for features selected by expert 
clinicians, which may have further facilitated good performance but also increased manual work. Additionally, 
this study used the anonymous database, which lead to more noise and gaps in the training data and only offered 
dates relative to a patient’s birth instead of real dates. Hence, the importance of the concurrent planning of the 
analysis and anonymization is underscored. In this study, because the collection of study data was terminated 
on a specified date without any follow-up, the data contained patients that were still in care or did not have a 
full six months since their last event. These examples could not be filtered from the anonymous data as the real 
dates were no longer available and, thus, they may cause the model to be too optimistic about patient survival. 
The missing real dates also prevented the analysis of time-dependent differences between patient timelines which 
might exist due to, e.g., updates in care guidelines. Moreover, the sex of patient was largely missing although it 
is an important clinical factor affecting patient outcomes.

Even though some transformers such as XLNet are in principle able to consume sequences of any length, 
the models are still limited by the memory resources of the hardware used for training and visual output inter-
pretation. This poses a challenge for incorporating all different event types and their attributes from the patient 
history. Here, the 512 tokens representing the most recent events of the patient were used while the captured 
time period varied. Formulating the EHR data as multi-event time series may facilitate the extraction of new 
knowledge concerning the role and relationships of different types of events. Future research may explore longer 
input sequences with XLNet or alternative ways to incorporate multi-event information. For instance, replac-
ing code based attributes with full text descriptions may improve performance but would require longer input 
sequences to feed the model the equivalent portion of patient history. In the future, harmonization of hospital 
information management systems may additionally yield better grounds regarding the selection of attributes as 
they are inherited from the hospital’s original system. Further improvement may be achieved by using tokenizers 
specially trained on clinical data or pre-trained transformers. Here, due to the lack of such resources for XLNet, 
both models were trained from scratch to facilitate a fair comparison. Notably, our results show that the standard 
English tokenizers can produce promising learning results.

As demonstrated in this work, transformers provide a means to interpret individual outputs and the pre-
dictions may therefore become a valuable part of the clinical workflow and answer to the requirements set for 
ML models in CVD  predictions40. Nevertheless, intuitive and user-friendly output interpretation interfaces for 
clinicians need further development so that this capability can be properly harnessed. The resulting tools may 
be efficiently integrated to the EHR system itself, although additional computing resources are likely required.

Conclusion
Using transformers to learn bi-directional dependencies in EHRs shows promise in mortality prediction, despite 
the sparsity of the data. We compared BERT and XLNet for CVD patient mortality risk prediction from EHR 
data. While prior research has focused on BERT for EHR applications, the results of this study suggest that future 
studies may achieve improved results using XLNet. Similar models with actionable outputs, as presented here, 
could improve patient outcomes with chronic diseases, such as CVDs, and be directly integrated to the EHR 
systems for everyday clinical use.

We also observed that transformers may perform better in more refined patient groups. The wide spectrum 
of CVD patients in this study added complexity to the prediction problem, producing weaker performance 
as compared to conventional machine learning in a more refined patient group. Furthermore, more concise 
representations have reached better learning results, whereas the multi-attribute multi-event representation 
faces computational restrictions. Hence, in the future, improved results may be obtained via more sophisticated 
representations, transfer learning from pre-trained models, or via improved computational power. As in the 
presented study, anonymous data will become an increasingly common basis for model development. In such 
cases, the performance of data-driven models may benefit from an improved anonymization process.

Data availibility
The anonymized data is available for scientific purpose upon reasonable request to J.H. (jussi.hernesniemi@
sydansairaala.fi) pending the approval of the MADDEC study steering committee.
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