
Microprocessors and Microsystems 97 (2023) 104772

A
0

E
T
G
a

b

A

K
H
H
H
F
O

1

o
p
p
t
e
h
i

c
a
t
m
s
s
p
a
d

h
R

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

fficient OpenCL system integration of non-blocking FPGA accelerators
opi Leppänen a,∗, Atro Lotvonen a, Panagiotis Mousouliotis b, Joonas Multanen a,
eorgios Keramidas b, Pekka Jääskeläinen a

Tampere University, Tampere, Finland
University of the Peloponnese, Patras, Greece

R T I C L E I N F O

eywords:
eterogeneous computing
ardware integration
ardware acceleration
PGA
penCL

A B S T R A C T

OpenCL functions as a portability layer for diverse heterogeneous hardware platforms including CPUs,
GPUs, FPGAs, and hardware accelerators. However, OpenCL programs utilizing multiple of these devices in
the same computing platform suffer from poor coordination between OpenCL implementations of different
hardware vendors. This paper proposes a vendor-independent open source method for integrating custom FPGA
accelerators into a common OpenCL platform. The accelerators are wrapped in a common hardware interface
to enable efficient synchronization and data sharing between devices on the same chip. The provided software
connects the accelerator to OpenCL runtime and enables the control of diverse FPGA accelerators with OpenCL
command queues.

The benefits of the integration methodology are demonstrated by creating FPGA accelerators with different
development tools and integrating them together on two different types of FPGA devices while showing
minimal integration overhead. Direct memory access of the accelerator to external memory is shown to increase
the performance by a factor of 8. Non-blocking execution enabled by the on-chip synchronization between
devices is shown to remove a 250 μs overhead from dependent kernel launches. Additionally, as a proof of
concept and a case study, a fully OpenCL-controllable computing platform with two devices is implemented
on an FPGA to compute CNN inference on a real-world input signal.
. Introduction

Heterogeneous computing systems consist of multiple different types
f processing devices. Having multiple specialized hardware com-
onents on the same system can significantly improve the energy,
erformance, and resource usage efficiency. Specialized hardware is
ailored for a certain application or an application domain and can only
fficiently execute the tasks it was designed to execute. The specialized
ardware can still be software programmable, which adds flexibility to
t.

Programming heterogeneous systems poses several challenges. The
ode must be compiled for all programmable components of the system,
nd the runtime must take care of device-specific quirks to control
hem during run time. Many tasks are collaborative, which means that
ultiple devices of the heterogeneous systems work together on the

ame tasks. Programming for heterogeneous systems requires platform-
pecific engineering efforts, which must be re-done whenever some
art of the system or the application is changed. Ideally, the software
lgorithm is written once, after which it can be deployed to various
ifferent computing platforms with minimal effort. However, this level

∗ Corresponding author.
E-mail address: topi.leppanen@tuni.fi (T. Leppänen).

of portability is often lacking, which leads to significant costs when
software is ported from one system to another.

Open Computing Language (OpenCL, [1]) is an open standard for
programming heterogeneous systems. OpenCL program using low-level
API calls is portable to very different types of OpenCL-conformant
computing platforms. This makes OpenCL very useful as a portability
layer between application libraries and heterogeneous platforms.

Many hardware vendors provide their own OpenCL implementa-
tions, which allow control of their devices through OpenCL. However,
the vendor-specific implementations are only designed to handle their
own hardware devices, which leaves many interoperability possibilities
of the OpenCL standard under-utilized. For example, when complex
collaborative task pipelines are developed for heterogeneous systems,
it is important that the devices are able to interoperate well in aspects
such as data sharing and synchronization.

Field Programmable Gate Arrays (FPGA) can be reconfigured to imple-
ment any digital circuit. Reconfiguration makes it possible to change
the functionality of FPGA devices after they have been manufactured.
In terms of performance and energy efficiency, they are clearly behind
vailable online 16 January 2023
141-9331/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

ttps://doi.org/10.1016/j.micpro.2023.104772
eceived 4 May 2022; Received in revised form 27 September 2022; Accepted 12 J
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

anuary 2023

https://www.elsevier.com/locate/micpro
http://www.elsevier.com/locate/micpro
mailto:topi.leppanen@tuni.fi
https://doi.org/10.1016/j.micpro.2023.104772
https://doi.org/10.1016/j.micpro.2023.104772
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2023.104772&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Microprocessors and Microsystems 97 (2023) 104772T. Leppänen et al.

s
c
h
f
l

l
o
s
a
t
i

w
s
f
a
l
v

a
a
t
n
i
t
a

g
t
t
d
m
S
h
p
i
a

2

w
d
b

o
h
c

fixed-function accelerators due to the reconfigurability overhead [2].
Still, their fine-grained control over the datapath enables better effi-
ciency than CPUs or GPUs in certain applications [3]. Traditionally,
FPGAs are programmed with hardware description languages which de-
cribe the application functionality as timed digital circuits. A signifi-
ant effort has been put forward to raise the level of abstraction towards
igh-level languages (e.g. C) to reduce application development ef-
ort for FPGA devices. Synthesizing digital circuits from high-level
anguages is called High-Level Synthesis (HLS).

Major FPGA providers have already included OpenCL as an input
anguage for their HLS flows. While this enables rapid development
f parallel accelerators, the development flows still require vendor-
pecific source code modifications [4]. Additionally, the generated
ccelerators are designed to be controlled by the runtime provided by
he vendor and cannot efficiently work together with different devices
n the same OpenCL context.

To solve the poor interoperability between vendor implementations
e utilize Portable Computing Language (PoCL, [5]), which is an open

ource OpenCL implementation. It can be used to integrate very dif-
erent device types such as CPUs, GPUs, FPGAs, and fixed-function
ccelerators into the same platform. This enables highly efficient col-
aborative execution platforms with various device types from multiple
endors.

This paper extends our previous work [6] in which we proposed
common hardware interface specification for OpenCL accelerators

nd the necessary software to integrate them into PoCL OpenCL run-
ime. The interface enables portable integration of programmable and
on-programmable accelerators to a common OpenCL platform. The
ntegration method enables the utilization of different FPGA types
ogether with CPU devices. In this work we present the following
dditional contributions:

• Asynchronous (non-blocking) kernel execution enabled by on-
chip synchronization and direct data sharing between kernels.

• Support for direct memory access (DMA) to external memory from
the accelerators.

• An end-to-end audio Convolutional Neural Network (CNN) applica-
tion case study starting from microphone input to a classification
result.

• The first open source release of the proposed integration flow is
made available when this article is published.1

The paper consists of the following sections. Section 2 includes back-
round information on the related heterogeneous computing standards
hat this work is based on. Section 3 presents previous related integra-
ion methods and how the proposed method relates to them. Section 4
efines the hardware interface that provides a consistent memory-
apped view to various different types of integrated components.

ection 5 describes the software developed in this work to connect the
ardware interface to the OpenCL implementation. Section 6 shows
ractical instructions on how the integration method can be used to
ntegrate new components. Section 7 includes overhead measurements
nd performance evaluations. Section 8 concludes the paper.

. Open heterogeneous computing standards

OpenCL provides the lowest layer of heterogeneous computing soft-
are stacks. It has an extensive feature set to control diverse hardware
evices with a common API. OpenCL has been widely adopted due to
eing an openly available standard.

The platform model of OpenCL consists of a single host CPU and
ne or multiple devices, which execute tasks specified by the host. The
ost uses command queues (CQs) to push work to the devices. These
ommands include kernel commands that launch a specific function on

1 Source code available at: http://code.portablecl.org/
2

the device and memory read/write commands. OpenCL allows describing
kernel commands as data-parallel Single Program Multiple Data (SPMD)
functions, which perform the function for a multidimensional grid of
kernel instances (work-items). The user provides a program descrip-
tion of what a single work-item is supposed to perform, and OpenCL
applies that for multiple work-items. The work-items may then be
executed sequentially or in parallel. The work-items can be grouped
into work groups, which enables fine-grained synchronization between
work-items of the same work group.

Task-level parallelism is described in OpenCL with command queues
and events [7]. In-order command queues execute the commands in
the order they are pushed to it, or if they are re-ordered by the
implementation, the results must be the same as if they were not re-
ordered. Out-of-order command queues can execute the commands in an
arbitrary order by default. Explicit event synchronization is required
when using out-of-order command queues or when multiple command
queues, on possibly different devices, operate on shared data.

An event describes the completion status of a command. The user
can describe dependencies between commands with events by provid-
ing a wait-list which is a list of events that must be completed before
the command can be executed. This way the events can be used to
construct command dependency task graphs. The in-order command
queues automatically construct a task graph where every command de-
pends on the previous one, whereas when using out-of-order command
queues this graph must be explicitly defined by the user using events
and event wait-lists. User-defined dependencies between two command
queues connect the task graphs together.

OpenCL provides software portability for different heterogeneous
systems by online compilation, which means that the kernel code is
(cross-)compiled during run time just before it is needed. OpenCL also
supports custom devices which do not have to support online compi-
lation of kernel code but can execute a set of built-in kernels with
semantics defined outside OpenCL. Built-in kernels can be used to ex-
pose fixed-function hardware or otherwise difficult to utilize hardware
to OpenCL programmer.

Heterogeneous System Architecture (HSA, [8]) is another heteroge-
neous computing standard. It attempts to provide a way to map devices
to a common unified coherent address space to enable simple data
sharing between the devices. It introduces the idea of having devices
implement well-defined memory-mapped interfaces for easier execu-
tion coordination. It has heavily inspired the proposed work, which
does not attempt to implement the HSA specifications, but rather takes
some parts which seem useful for the FPGA component integration
methodology. The command queue packet format described later is
almost directly as defined in the 1.2 of the Systems Architecture spec-
ification’s Architected Queue Language (AQL) section, thus serving as a
good source for further information.

3. Related work

Intel Open Programmable Acceleration Engine (OPAE, [9]) is an open
source effort led by Intel to abstract the FPGA resources for Intel FPGA
Programmable Accelerator Cards (PAC) with Xeon CPUs. They utilize
a 256 KiB memory-mapped hardware interface called CCI-P in the
component for control and status register usage. These can be used to
control the Application Functional Unit (AFU). This is quite similar to our
proposed method since we also define a hardware interface that the
component must implement. Their implementation is limited to only
Intel Xeon CPUs with PACs, whereas the proposed method is meant
to be portable between various device types. However, the integration
methodology proposed in this work could in the future utilize OPAE as
a backend portability layer to support Intel FPGA PACs.

Xilinx provides an open source library called Xilinx Runtime
(XRT, [10]) to provide similar management of their FPGA and ACAP
devices. Their library supports both PCIe and Multiprocessor System on
a Chip (MPSoC) type Xilinx devices. This method includes a kernel

http://code.portablecl.org/


Microprocessors and Microsystems 97 (2023) 104772T. Leppänen et al.

i
g

control interface in the integrated component to configure, launch and
reset the accelerator on the FPGA. Configuration of kernel arguments
is done through a slave control interface to a memory map specific to
each kernel. In the proposed integration method, XRT’s API is utilized
to access the accelerator’s memory map implemented on a Xilinx PCIe
accelerator card.

Xilinx XRT and OPAE are both quite close to our integration
method. The difference in the hardware interfaces is that our method
shifts more functionality to the accelerator’s side which makes it easier
to decentralize the control of the accelerator. In both Intel’s and Xilinx’s
approaches, the synchronization and data sharing between devices
require more involvement from the host.

Furthermore, both Intel and Xilinx-provided OpenCL flows are still
tied to their own FPGA devices and require the use of their software
drivers to control the accelerators. Cross-vendor functionality has not
been a priority for vendor OpenCL implementations, even though in-
cluding multiple different types of devices in the same OpenCL context
would enable efficient multi-command queue execution with event-
based synchronization.

OpenCAPI [11] enables coherent host memory access to accelerator
devices such as FPGAs and fixed function accelerators. The accelerators
can use virtual pointers to user-space applications running on the host
CPU. While their approach is architecture or vendor agnostic, hardware
support is needed for both the host CPU and the FPGA accelerator card.
The proposed method could in the future utilize OpenCAPI devices as
one of the device platforms.

HOpenCL [12] is an OpenCL-inspired execution model which can be
used to execute both software and hardware kernels on FPGA devices.
While their intention is very similar to the proposed method, they do
not stay within the OpenCL execution model, but instead develop their
own. This significantly reduces the portability of applications written
for their execution model. Our proposed method utilizes only standard
OpenCL features with no requirements for extensions, which makes
the applications developed for it portable to other OpenCL-supported
platforms.

Steinert et al. [13] utilized FPGA for cloud acceleration. Their
method uses a custom API to call the accelerator. Similar to the
proposed work Holland et al. [14] develop a unified hardware interface
they call USURP to control FPGA accelerators with MPI programming
model. Another integration approach targeting MPI is Galapagos [15].
Our work focuses on the OpenCL standard which enables portability to
a more diverse set of heterogeneous platforms.

Similar to the proposed method, Ashraf & Gioiosa [16] also use the
OpenCL implementation PoCL to execute built-in kernels. They emulate
the hardware devices as host CPU threads for a design space exploration
use case. However, they do not attempt to integrate their components
to an FPGA.

4. AlmaIF: The common hardware interface

Hardware accelerators execute tasks set by the host CPU. Therefore
there must exist a well-defined way for the host CPU to communicate
with the accelerator device to coordinate the execution of the OpenCL
kernels. To accomplish this, the host CPU has a driver that manages the
accelerator. Having to redesign or modify this driver for each possible
hardware accelerator would be unreasonable, so there should exist a
method for the driver to adapt to the device-specific details.

There are two clearly separate issues to solve when hardware de-
vices are connected to the host CPU:

1. During initialization, the accelerator is discovered.
2. During run time, the accelerator is requested to execute tasks.

During initialization, the driver discovers information about the
accelerator and updates its internal data structures to then be able to
submit tasks to the accelerator device with minimal latency. Rediscov-
3

ering the device every time a new task is launched would be wasteful, S
which is why the device initialization is performed only once at the
beginning of the program.

The initialization of a new accelerator requires metadata of the
accelerator parameters. This metadata can be passed as a separate
metadata file which is created at the accelerator generation-time. Al-
ternatively, some of this information can be embedded in the memory-
mapped interface of the accelerator. The driver then either reads the
metadata from the metadata file or from the interface at the device
initialization time. If the metadata is embedded in the interface, accel-
erators could also discover other accelerators without having to have
access to the host filesystem. In the future, this could be useful for
e.g. hierarchical accelerators, where accelerator devices command each
other.

During run time, the accelerator is controlled to launch the re-
quested kernels at the specified time. If the accelerator can have
multiple different functionalities, the driver has to be able to call the
correct functionality. The control mechanism has to still be portable
enough to not require significant modifications to the driver whenever
new accelerators with new functionalities are designed.

The run time control and data movement responsibilities can also be
split arbitrarily between the host and the accelerator. At one end, the
accelerator can be highly autonomous and fetch its own data from the
host memory. Alternatively, the host CPU can have very tight control
of the accelerator to only launch it after making sure that the data
it needs is fed into its ports. An example approach somewhere in the
middle would be the host initiating the data move to a close-by memory
of the accelerator before launching it. The advantage of autonomous
accelerators is that they can operate asynchronously to the host CPU by
handling the data movement themselves and synchronizing with each
other to make progress.

A unified hardware interface with specifications for both initial-
ization metadata and a protocol for run time control enables easy
integration of new accelerators to the driver. With enough information
in the physical interface itself, peer-to-peer discovery and control are
possible. However, the interface must still be simple enough to be easily
implementable in various existing and new accelerator designs.

The proposed interface has been under active development un-
der the name AlmaIF [17]. It is implemented as a memory-mapped
hardware interface with four memory regions as shown in Fig. 1.
Two example scenarios for integrating devices are shown: One for a
fixed-function accelerator, and another for a software programmable
core.

The four memory-mapped regions used in AlmaIF are the following:
Control registers region is the first region and it includes both

read-only registers for automatic device discovery and a control write-
only register to reset and start the core. The control region defines the
memory layout of the regions following it to easily enable different
sized and packed memory regions. Therefore these values must always
be read first before the other regions are accessed. The full register map
of the control region is described in Table 1.

Configuration memory is an optional region designed mainly for
programmable accelerators. It is defined to be a region where the
host driver writes optional initialization bits specific to a kernel or a
set of kernels. In the case of programmable accelerators, this region
maps naturally to the instruction memory of the core, and the written
bits are the program image that implements the kernel. Fixed-function
accelerators can still utilize this region for target-specific purposes.

Command queue memory is used for run time control of the
accelerator. It contains a command queue in which the host pushes
kernel execution and synchronization command packets. The structure
of the packets is based on the HSA AQL specification [8]. The kernel
execution commands are called kernel dispatch packets which include
nformation about the kernel functionality, work-item range, and ar-
ument addresses. The synchronization packets are described more in

ection 5.4.



Microprocessors and Microsystems 97 (2023) 104772T. Leppänen et al.

w

Fig. 1. Two different types of accelerators implementing the proposed hardware interface. AlmaIF memory regions highlighted with blue dashed line and the accelerator highlighted

ith red.
Table 1
AlmaIF: Memory mapped control registers.

Offset Bits Name Purpose/explanation

0 × 000 3 Status Status of the accelerator. Bit 0
is high when the execution is
stalled due to any reason, bit
1 is high when the external
freeze signal (pauses the
hardware temporarily) is
active, and bit 2 is high when
the accelerator reset is active.

0 × 200 3 Command Command register to control
execution. Writing 1 to this
register resets the accelerator,
writing 2 lifts reset and the
external freeze, and writing 4
enables the external freeze
signal, pausing execution (4 is
an optional feature).

0 × 300 32 Device class Optional OpenCL vendor ID of
the component.

0 × 304 32 Device ID Currently unused by the
driver.

0 × 308 32 AlmaIF
version

Version number of the
interface. Currently at value 2.

0 × 30C 32 Core count Number of compute units in
the device.

0 × 314 32 Configuration
memory size.

Can be 0.

0 × 318 64 Configuration memory starting address

0 × 320 64 Command
queue
memory size

The command queue ring
buffer fills the entire region,
so the size of this memory is
Max_number_of_packets *
packet_size. Maximum number
of packets must be a
power-of-two.

0 × 328 64 Command queue starting address

0 × 330 64 Data memory size

0 × 338 64 Data memory starting address

0 × 340 64 Feature flags Boolean feature flags. Bit
semantics: Bit 0 = Bus master
interface available. The device
can access the whole memory
space through a master
interface.
4

Fig. 2. Software stack of the integration method. The purple components correspond
to the hardware and software interfaces proposed in this work.

The command queue is implemented as a ring buffer. Its read and
write indexes are included in a header at the start of the command
queue memory region. The device executes the command queue in or-
der, updating the read index as it processes the command packets. Since
the device executes the command packets in order, the barrier packets
are sufficient to implement OpenCL event-based synchronization.

Data memory is a region close to the accelerator that can be used
by the OpenCL runtime to allocate frequently accessed data. This can
be e.g. OpenCL kernel arguments, small buffers or other OpenCL kernel
command metadata (e.g. work-group sizes).

5. Software interface

Software interface for the proposed method is implemented as a user
space driver in OpenCL implementation PoCL [5]. PoCL implementa-
tion handles the OpenCL API calls and forwards some of the calls and
other tasks to the proposed driver. It is then the driver’s responsibility
to implement the device-specific functionality and manage the device to
execute the OpenCL kernels. The common hardware interface definition
makes it possible for the same driver to work with very different types
of hardware accelerators. The proposed software interface is shown as
a layer in Fig. 2 in between the generic PoCL implementation and the
proposed hardware interface.

The proposed PoCL driver supports two types of accelerators:

1. Fixed-function accelerators, that are not software-programmable.
They can only execute a set of built-in kernels chosen at design-
time.



Microprocessors and Microsystems 97 (2023) 104772T. Leppänen et al.

t
c

2. Programmable accelerators, which support online compilation
of kernels from OpenCL standard specified inputs. Additionally,
they can also implement built-in kernels.

The following two sections describe the support for these accelerator
types in more detail.

5.1. Fixed-function accelerators

Fixed-function accelerators are highly specialized to perform only
a predefined task or set of tasks. The functionality cannot be changed
after fabrication and the accelerator cannot be programmed. The user
must know before using such accelerators, which built-in kernels it can
execute, and what are their semantics.

The OpenCL 3.0 specification does not define the semantics of
built-in kernels. In OpenCL API calls, only the name (C string) of the
kernel is used to identify it. Therefore, the naming system of the built-
in kernels should be carefully designed to make the built-in kernels
portable between different accelerator implementations. Otherwise, the
user calling a poorly defined built-in kernel (e.g. ‘‘Convolution’’) might
not know what kind of convolution the device is performing and what
data types and layouts it is expecting.

To make the built-in names portable, the kernel semantics should be
well-defined in a central registry. The registry could be a database with
columns for kernel names and bit-exact definitions of the semantics and
the data layout the kernel expects. One option could be to include an
example OpenCL C source code implementing the built-in kernel func-
tionality to serve as a reference for what the built-in kernel implements.
The source code would also serve as a software fallback implementation
for programmable devices that do not support the functionality as a
built-in kernel.

If the device supports multiple built-in kernels at the same time, the
software interface includes a 16-bit integer ID to the kernel execution
command to denote which kernel it wants the device to execute. This
is to avoid an expensive name string comparison in the device during
run time. The integer ID is an index to the alphabetical list of the built-
in kernels the device implements. Since the software interface knows
all the built-in kernels the device can execute, it can order this list
alphabetically and use the index as the ID.

5.2. Software programmable accelerators

The integration method also supports online kernel compilation as
defined in the OpenCL standard. The method utilizes PoCL’s LLVM-
based [18] compilation passes to convert input program into executable
binaries.

This integration method is most easily adapted for custom compila-
tion flows that already utilize the LLVM compilation framework. Fig. 3
shows how new programmable accelerator compilation flows can be
integrated into the proposed integration method. PoCL has support for
generating the LLVM intermediate representation of the kernel for a
single (SPMD-style) or multiple work-items (work-item loop) at a time.

In an ideal case, the target to be integrated already has an LLVM
backend available, in which case the LLVM target triple is enough to
compile code for it. However, if the target requires e.g. custom code
generation passes, it is possible to add custom compilation callbacks
that are called for the specific target. An example of this are de-
vices based on OpenASIP [19], which need an architecture description
file and custom compilation callbacks since the code generation is
highly architecture-specific due to extreme instruction-set specializa-
tion. Currently, only the OpenASIP-based programmable accelerators
are supported by the integration method. In the future, supporting more
programmable accelerators is prioritized to ensure the generality of the
method.
5

b

Fig. 3. Supporting kernel compilation based on either LLVM target triple or custom
target-specific compilation flow.

5.3. Software programmable accelerators with built-in kernels

The proposed method supports accelerators that are programmable,
but where the programmability is not possible to be exposed through
the usual OpenCL kernel compilation flow. Built-in kernel abstraction
enables the use of highly hand-optimized assembly or target-specific in-
trinsics since it is no longer restricted by the kernel language specifica-
tions. Creating efficient compilers for novel programmable accelerators
is often difficult and can lag behind architecture development. How-
ever, the architecture can have highly efficient hand-written assembly
programs for a limited set of tasks. The proposed method enables the
use of such pre-made program binaries through the built-in kernel
abstraction.

In this use case, the user must provide the firmware binary with
the attached information of which built-in kernels the firmware imple-
ments. The integration method simply loads in the program firmware
to the device configuration region at the device initialization time. In
he future, this feature is to be extended to automatically load in the
orrect firmware from a set of user-provided firmwares based on the
uilt-in kernels the user asks for in the OpenCL program.



Microprocessors and Microsystems 97 (2023) 104772T. Leppänen et al.

c
e
h
o
t
h
c

i
b
t
s
t
d
A
o
c
t

m
d
o
s
c
p
f
d
a

t
a

i
o
w
h
o
a
t
h
c
i
e
r
t

a
c
l
t
s
w

d
h
w

5

5.4. On-chip synchronization

On-chip synchronization between AlmaIF devices enables asyn-
hronous command queue execution. If the devices can coordinate with
ach other to respect dependencies between them, the host does not
ave to block on a kernel launch call even if the kernel depends
n a previously launched non-finished kernel. This frees up the host
o perform other tasks and can help ease system bus and memory
ierarchy pressure by reducing the need for the host to poll for event
ompletion.

The dependencies between kernels are expressed as HSA AQL-
nspired barrier packets [8] in the device command queue region. A
arrier packet consists of pointers to other signaling variables. Once
he device comes across a barrier packet, it will check the values of the
ignaling variables and stall until all of the signaling variables are set
o complete. The signal values can exist on data memories of different
evices, which is why a unified memory address space is required.
lthough the synchronization could also be performed in a separate
n-chip or external memory component, in the proposed approach we
hose to utilize the AlmaIF data memory regions since unified access
o those is already beneficial due to the data sharing opportunities.

The host will automatically create the barrier packet to the com-
and queue whenever it would otherwise have to wait on a depen-
ency between two kernels on different suitable devices. Currently,
nly the devices on the FPGA devices with AXI master support are
uitable for on-chip synchronization. In the future, similar support
ould be added for CPU+FPGA synchronization, as long as reliable
hysical addresses of the CPU completion signals could be provided
or the FPGA device. Dependencies between two kernels on the same
evice do not need barrier packets, since the device command queues
re processed in-order.

Barrier-AND-packet includes pointers to 5 signaling variables. If
here are more than 5 dependencies on a kernel, the host will write
s many consecutive barrier packets as necessary.

After the host CPU has launched the kernels in a non-blocking way
t must still be able to know once they have finished. There can be
ther dependencies to other devices or to the host program that are
aiting for the non-blocking kernels to finish. To implement this, the
ost creates a single background thread that polls the kernels running
n the FPGA devices for completion. This polling does not have to be
s aggressive as would be the case if the host would have to resolve all
he dependencies. It is not an issue if the other device on the FPGA
as already processed the completion signal in question and started
omputing a dependent kernel. It is enough that the background thread
s able to report back on finished kernels in a reasonable time for
xternal synchronization purposes. This time depends on the latency
equirements of the application and therefore in the proposed method,
he polling frequency is an adjustable parameter.

Utilizing interrupts for device-to-host signaling would be another
lternative to the current polling-based approach. Polling has been
hosen due to its easy portability to new systems and the possibility for
ow latency synchronization due to the adjustable polling frequency. In
he future, interrupts from device to host could be used as a wake-up
ignal for the host to go check on the devices it is controlling. This
ould remove the negative effects of polling on the memory hierarchy.

As shown in Fig. 4, moving some dependencies to be resolved at the
evice-side reduces the number of host synchronizations required. This
as a chance to significantly reduce the execution time of programs
ith a large number of dependent kernel launches.

.5. Direct memory access

Relying on the host to provide the data to the device’s data memory
region can be ineffective in applications with large amounts of data.
Giving the device direct access to external memory can increase the
6

performance significantly. This is due to the memory access not having
Fig. 4. Host synchronization differences with blocking and non-blocking kernel
launches in case of dependent kernel launches.

to pass through more congested system memory interconnects. Addi-
tionally, the host CPU time spent copying data is away from performing
other more useful tasks.

Random access to an external memory from an FPGA programmable
region can have significant overheads, even if it is using a separate
interface to do it. High-performance FPGA-to-DDR interfaces are op-
timized for large burst transfers of contiguous data. Therefore, the
device should also be able to perform burst transfers in order to get
high throughput from its DMA operations. Since the latency of a single
memory operation is high, the data should be pre-fetched, such that the
device does not need to stall due to the memory access latency. In an
ideal scenario, the data transfers are interleaved with the computation
such that both the device and the memory subsystem can consistently
perform at their maximum capacity.

When the device on the FPGA is accessing data that exists in host
CPU’s virtual address space, the virtual-to-physical conversion has to be
handled carefully. If the FPGA device has access to a shared memory-
management unit, it can perform the necessary address translations by
itself. In the proposed method, we assume that such a component does
not exist. This means that the host CPU must provide the device the
physical pointer to the data buffer it has to access, and the data behind
the pointer must be physically contiguous.

In the proposed method, the user must set an environment variable
that describes a physically contiguous region’s starting address and size.
The provided software interface will then manage the buffers allocated
in that region while performing the necessary physical-to-virtual and
virtual-to-physical translations. The OpenCL application will then be
able to transparently allocate OpenCL buffers into the region. If such
a buffer is used as a kernel argument, the implementation will pass
the physical pointer to the device. The device must be able to decode
the buffer address to either access its own data memory region or the
external physically contiguous region. This can be implemented as a
hardware address decoder.

The built-in kernel abstraction allows the transparent use of FIFOs
as shown in Fig. 5. The device itself can configure a DMA unit to
transfer the data from external memory to an internal FIFO and use
the data from there for the computations. Therefore, the built-in kernel
abstraction allows hiding the DMA unit and its configuration inside
the device itself. The host does not need to know whether the device
is processing the data through a FIFO or not. The only limitation
is the use of physically contiguous external memory, which must be
enabled by the user by giving the contiguous region information to the
implementation.

6. Component integration

The integration method provides a methodology and the neces-

sary software tools to integrate custom FPGA components to an open



Microprocessors and Microsystems 97 (2023) 104772T. Leppänen et al.

t
a

a
i

Fig. 5. Example design which demonstrates how the DMA engine can be hidden under
he built-in kernel abstraction. The accelerator configures the DMA engine to initialize

data transfer to internal FIFO.

nd unified OpenCL platform. The practical steps required to use the
ntegration methodology are summarized in this section.

(1) Hardware component wrapping. To add OpenCL support for a
new or existing hardware component, it must be modified to implement
the memory map described in Section 4. It must be able to process the
command queue packets from the command queue region. Minimally,
it must implement the processing of kernel dispatch packets for the built-
in kernels it claims to support. Example implementation written in
HLS-compatible C has been tested to pass through Vitis HLS [20] tool.

(2) Optional step for completely new FPGA platforms: Enable access to
the FPGA device’s memory map in the host. The provided software
interface controls the hardware interface through a memory map.
Therefore, there must exist a path from the host CPU to the device
memory map on the FPGA. To make it easy to add new platforms,
all the memory accesses from the host driver to the device are made
through a C++ abstract class.

(3) Optional step for new built-in kernel functionality: Register new
built-in kernels. If the accelerator to be integrated implements some
previously unseen functionality, the new built-in kernel arguments
must be registered to the software interface. The number and the
types (buffers or scalars) of the arguments need to be specified in a
configuration file of the driver. After that, the driver can check the
validity of the OpenCL kernel arguments and can correctly fill the
argument buffer before launching the kernel. The functionality of the
built-in kernel does not need to be defined in the driver. However, if the
built-in kernel is desired to be portable to different systems, its name
and semantics should be published as described in Section 5.1.

(4) Optional step for online compiler supported components: Add a
compilation configuration entry. To support online kernel compila-
tion as described in Section 5.2, all the necessary information about
the compilation flow must be specified to the driver. An example main
program that implements the command queue processing and calls
the kernel through a function pointer is provided. The integrator can
configure whether the function executes a single work-item (SPMD-
style) or multiple work-items in a loop. The driver then takes care
to upload the program image to the device configuration region as
described in Section 4.

7. Evaluation

The integration method is evaluated by creating two different types
of accelerators using different development flows and evaluating both
of them on two types of FPGA devices.

The first accelerator is a customized software programmable archi-
tecture generated with OpenASIP tools [19]. The second is created with
Vitis HLS 2020.2 [20] commercial high-level synthesis tool utilizing
their C language-based synthesis flow.

To demonstrate the portability of the method to different types of
7

FPGA, both of the accelerators are implemented on an SoC-based FPGA
Fig. 6. XC7Z020 resource overhead and portability evaluation setup with two AlmaIF
devices.

Fig. 7. Alveo U280 resource overhead and portability evaluation setup with two
AlmaIF devices. DMA access to Alveo’s DDR and High Bandwidth Memories (HBM) is
not implemented.

Table 2
FPGA resource utilization of two hardware components wrapped in the AlmaIFv2
with two different FPGA devices. Given as total resources and as a percentage of all
resources available on the FPGA fabric. The rightmost column shows the maximum
clock frequency of the design in the more resource-constrained Zynq.

LUTs Registers Block
RAMs

FMax
(MHz)

OpenASIP soft core

Zynq XC7Z020 1952
(3.7%)

2166
(2.0%)

2
(1.4%)

162

Alveo U280 1931
(0.15%)

2163
(0.08%)

2
(0.10%)

Vitis HLS generated component

Zynq XC7Z020 561
(1.1%)

721
(0.68%)

1
(0.71%)

152

Alveo U280 627
(0.05%)

620
(0.02%)

1
(0.05%)

(Xilinx Zynq XC7Z020) shown in Fig. 6 and a PCIe FPGA accelerator
card (Xilinx Alveo U280) shown in Fig. 7.

Access methods to the FPGA device’s memory map must be created
as described in Section 6. First, on the SoC-based FPGA the physical
memory of the accelerator’s control interface is mmapped with a Linux
system call. Second, Xilinx PCIe accelerator card is accessed by utilizing
the Xilinx-provided XRT library.

Both of the accelerators implement the same two built-in kernels:
32-bit element-wise addition and multiplication along the first work-
item dimension. The kernels are purposefully kept simple to evaluate

the overheads of the hardware interface.



Microprocessors and Microsystems 97 (2023) 104772T. Leppänen et al.
Table 2 contains the resource utilization and the clock frequencies
of the accelerators. The resource utilization as a ratio of total system re-
sources is shown to be low enough to not be an issue even with multiple
devices. The programmable OpenASIP accelerators have approximately
three times the resource utilization of the HLS-generated one due to the
added flexibility it has due to programmability.

7.1. Collaborative execution with CPU and FPGA devices

The integration methodology aims to provide flexibility in utilizing
multiple different device types simultaneously. To validate this aspect,
two demonstration cases are created with collaborative CPU+FPGA
execution, one with the previously used Alveo PCIe card, and one with
the previously used Xilinx SoC FPGA.

The demonstration cases first perform computation with the CPU
device, after which the FPGA device continues operating on the output
data of the CPU device. The implementation takes care to correctly
migrate the buffers between the devices based on the event synchro-
nization set up between the two command queues. These demonstrators
prove that the collaborative execution with a CPU device works with
both SoC and PCIe-based FPGAs.

7.2. On-chip synchronization

As discussed in Section 5.4, direct device-to-device synchronization
enables faster program execution time, since the host CPU is not in-
volved in between dependent kernel launches. The performance effect
of this should be most visible with a large number of small kernels since
those can be bottlenecked by the synchronization overhead.

For performance testing, two devices are implemented on the
XC7Z020 FPGA running at 100 MHz. They both have their own
separate AlmaIF interfaces. However, they also have their AXI master
interfaces connected to each other’s data memories, and their data
address spaces are mapped to the same global address space, so they
can transparently access each other’s data memories using pointers. The
evaluation setup is similar to the one shown in Fig. 8 with two devices
and a host CPU connected together with a memory interconnect, except
in this setup both of the devices are Digital Signal Processor (DSP)
devices that implement only pocl.add.i32 kernel.

To measure the performance effect of on-chip synchronization, a
synthetic benchmark is created. The benchmark program increments
a variable in two devices one after another. The devices have access to
each other’s data memories, so the variable does not have to be moved
in between kernels. The host thread launches a few hundred kernel iter-
ations to two device command queues. Since there is no data movement
between kernel launches, and the computation load is minimal, most
of the total execution time will be spent on synchronization and kernel
launch overheads.

The device-side synchronization can be disabled by having the host
wait when it notices a dependency to a previously launched kernel. This
is done to get the baseline performance numbers before the proposed
method is applied. The average run-time of a single incrementation
kernel is 313 μs.

With the proposed device-side synchronization enabled, the host
will add a barrier packet as described in Section 5.4 whenever it notices
a dependency to a previously launched kernel. After that, it will write
the new kernel execution packet without waiting. After launching all of
the kernels to both command queues, it waits for the final event in the
second command queue before reading back the final result. With the
proposed method, the average run-time is now brought down to 67 μs.

The synthetic benchmark shows that the average cost of the host-
side synchronization compared to the on-chip synchronization is 246 μs.
It can be approximated that even in other applications and systems a
similar latency reduction can be expected at every dependent kernel
launch. In a latency-critical application with a large number of small
kernels, this can add up to significant overhead.
8

7.3. Direct memory access

The performance effect of DMA is measured on the XC7Z020 FPGA,
which has high-performance master interfaces to external DDR mem-
ory. The host CPU can access the programmable region with a general-
purpose slave interface, which is not optimized for performance. There-
fore, moving the performance-critical transactions to high-performance
interfaces should give significant throughput improvements.

The first benchmark used for the first five rows of Table 3 tests
data movement overhead of relatively small arrays to find the break-
even point where using DMA gives a performance improvement. In
this benchmark, the DMA engine is configured in the user program to
slightly reduce the hardware complexity needed to configure the DMA
from the device side. The device is created with Vitis HLS tools as an
HLS design with a streaming data port and an accompanying FIFO.

A clearly visible DMA startup latency can be seen in Table 3, which
can make the DMA not as suitable for very small amounts of data in
latency-critical applications. According to this benchmark, the break-
even point where DMA and BRAM-based approaches reach the same
performance is at a transfer size of about 4000 bytes. With arrays
smaller than this, it makes sense to let the host perform the copy to
on-chip BRAM, while with larger arrays setting up a DMA transfer is
worth it.

Table 4 shows the resource utilization difference with the system
including the DMA and the one without. The system with the DMA
engine can use a smaller on-chip BRAM data memory, which reduces
BRAM usage. The addition of the DMA engine and the FIFO clearly
increases the LUT, LUTRAM and FF utilization, due to there being
additional hardware components for performing the burst transfers and
for FIFO storage of the pre-fetched data. However, the total resource
usage is still kept reasonable. The differences in the data access method
also affect how the final accelerator gets implemented, which causes
the small difference in DSP utilization.

To reduce the effect of the DMA engine’s configuration and kernel
launch overhead, the DMA is also tested with a very large data array
in an attempt to saturate the DMA bandwidth of the system. The
benchmark loads in an 800 × 600 × 4 image and performs a small
pixel-wise operation on it. The total execution time is measured and
compared against a device with no DMA support which relies on the
host CPU to write the input data to the device’s on-chip data memory
region through an AXI slave port. The input image is so large that it
does not fit into the BRAM at once. This means that it has to be split
into smaller pieces, and the host must therefore synchronize the data
movement with the accelerator which adds further overhead. With the
DMA design, this split is not necessary, since the accelerator will pull
the data in as it needs it, interleaving transfers with the computation.

In the saturating benchmark application in the last row of Table 3,
the device on FPGA with DMA support configures its internal DMA IP
to pull data from physically contiguous external memory to its internal
FIFO with burst transfers through an AXI master interface. This is
similar to the system shown in Fig. 5. Because the device utilizes a
separate internal DMA engine for the transfer, it can start operating
on the data in the FIFO as soon as it appears while the DMA transfer
of the remaining data is still taking place.

In the test case with a large amount of data, the system with DMA
is able to finish the application at best 8 times faster compared to
the baseline case with the copy initiated by the host CPU. The exact
speedup is always application and system-specific, but the principle of
using a dedicated high-performance interface to get large throughput
should be portable to various kinds of systems.

7.4. Audio CNN demonstrator

To demonstrate a whole application implemented with the proposed
integration method, a case study is created. Additionally, the case study
demonstrates the usage of a built-in kernel to abstract external IO



Microprocessors and Microsystems 97 (2023) 104772T. Leppänen et al.
Table 3
DMA speedup with an increasing number of elements. BRAM column describes a device
with no DMA engine and where the data is moved to on-chip BRAM by the host CPU.
The column DMA describes a device with a DMA engine. The last column corresponds
to the speedup in runtime the DMA device is used instead of the BRAM. The last row
is a bandwidth saturation test performed with a slightly different device setup.

Elements
(bytes)

BRAM (μs) DMA (μs) DMA vs BRAM
Speedup

40 779 880 0.89
400 820 896 0.92
4000 948 920 1.03
8000 1047 960 1.09
16000 1279 1040 1.23

Bandwidth saturation test

1920000 468500 58550 8.00

Table 4
FPGA resource utilization of the devices used for first five rows of Table 3. The device
with the stream interface and the DMA engine does not need as large of a BRAM for
the AlmaIF as the one without it. This is because the BRAM is not being used for the
data movement.

Resource Available BRAM 128K
AlmaIF Util.

BRAM 32K AlmaIF
+ Stream IF Util.

LUT 53200 1893 (4%) 10350 (19%)
LUTRAM 17400 254 (1%) 1723 (10%)
FF 106400 2126 (2%) 12125 (11%)
BRAM 140 32 (22%) 17 (12%)
DSP 220 16 (7%) 12 (5%)

Fig. 8. Audio CNN demonstration setup which implements the kernels from Table 5.

signals. The system shown in Fig. 8 consists of a microphone input
device and a DSP device. The microphone input device produces an
input signal and writes it to on-chip memory. The DSP device executes
a CNN inference on it and classifies the audio signal to belong to
one of 10 classes. The system is deployed on a PYNQ-Z1 development
board with the XC7Z020 FPGA. It executes in real-time, processing one
500 ms sample every half a second. The input is double-buffered so that
the devices can work independently to produce a classification result
every 500 ms.

The microphone input device samples the built-in microphone com-
ponent of the development board. The built-in microphone produces
Pulse-Density Modulated (PDM) signal, which is converted to Pulse-Code
Modulated (PCM) signal utilizing hardware components to low-pass
filter and decimate the signal. The final signal consists of 8-bit signed
integer samples with a sampling rate of 16 kHz. The microphone input
device writes the samples directly to the DSP device’s data memory to
one of the two buffers used in the double-buffering scheme.

The user commands the microphone input device using a built-in
kernel. The built-in kernel pocl.io.stream.in.i8 has a single argument
called output, which is an OpenCL buffer that has been allocated on
the DSP device. Once the microphone input device has produced 8000
samples, it sets the completion signal, which signals the DSP device to
start processing the samples. After that, the microphone input device
continues to write samples to the other input sample buffer.
9

Table 5
Audio CNN demonstrator built-in kernels.

Kernel name Semantics

Microphone input device

pocl.io.stream.in.i8 Produces n values from a streaming
source to an output buffer.

DSP device

pocl.add.i8 Element-wise addition for n elements.

pocl.dnn.conv2d.relu.i8 2D convolution and ReLU with
parametrizable window size and stride
for n input channels.

pocl.dnn.dense.relu.i8 Dense layer with ReLU activation.

pocl.maxpool.i8 2D maxpool with parametrizable
window size and stride.

The DSP device executes the classification CNN to produce the class
label for the 500 ms input sample. The CNN is a quantized version of
a 1D network introduced in [21]. The numerical values of the CNN
are quantized to 8-bit to take advantage of the specialized 8-bit vector
hardware present in the DSP accelerator.

The DSP device is a soft processor created with OpenASIP
toolset [19] and specialized especially for 8-bit convolution computa-
tion. The processor RTL is designed and optimized for ASIC implemen-
tation. Synthesizing it to FPGA directly without performing any FPGA
optimizations is a way to prototype and evaluate the processor with
realistic workloads. The relatively slow clock frequency 43 MHz of the
non-FPGA-optimized design is not an issue in this case, as the 500 ms
constraint to execute the inference is long enough that the entire CNN
inference can be executed. Faster FPGA-optimized accelerator could
provide better result quality since the extra computation budget could
be used to scale up the neural network.

The DSP device is able to execute the four built-in kernels described
in Table 5. The host program calls the kernels one after another to exe-
cute the quantized network layer by layer. The kernels are implemented
in the device firmware. The built-in kernel abstraction allows it to be
manually optimized and to utilize DSP-specific intrinsics to achieve
higher performance. The same firmware contains implementations for
all of the kernels, so it is not changed after it has been loaded in at
initialization time.

Due to the limited on-chip memory (64 KiB) of the DSP-core, the
entire network weights and intermediate values cannot fit in it at the
same time. However, for performance reasons, it is a good idea to have
the values close to the core when they are being used for computation.
Therefore, the host also takes care to allocate and deallocate the
OpenCL buffers in such a way that the device memory does not run out.
This is done by the user in the OpenCL program by freeing the buffers
after the layer has been executed and they are no longer needed. This
deallocates the buffer so that the memory can be used for the buffers
of the next layer.

The utilization breakdown of the case study can be seen in Table 6.
The DSP device is running at 43 MHz. The relatively low clock fre-
quency is due to it being a prototype of an ASIC-optimized processor.
The AXI interconnect that is used to connect devices to each other and
to the host CPUs interconnect takes up most of the area in this case. This
shows that the devices themselves consume relatively small amounts of
area. The interconnect has to take care of connecting every device to
every other device, and perform clock domain crossings when necessary
which makes it quite a complicated block.

8. Conclusions

The integration method of fixed-function and programmable accel-
erators to a unified OpenCL platform was presented. The proposed

method makes it possible to integrate FPGA components to OpenCL



Microprocessors and Microsystems 97 (2023) 104772T. Leppänen et al.
Table 6
FPGA case study resource utilization.

LUTs Registers BRAMs
(4kB)

FMax
(MHz)

Microphone input device 1514 2739 8.5 96
DSP 6497 4517 32 43
Interconnect 8905 11003 0 43,96

Total 16916 18259 40.5

platforms without relying on vendor-specific OpenCL implementations.
The previous work [6] was extended to add support for direct mem-
ory access to external memory which was shown to increase the
performance by a factor of 8. Another extension to previous work
was the non-blocking kernel execution enabled by on-chip synchro-
nization, which removed 250 μs host synchronization overhead when
dependent kernels were launched. Additionally, a deployment-ready
audio-processing demonstrator was created to prove that the proposed
method can be used to build complete working systems with external
IO wrapped inside the built-in kernel abstraction.

The current version of the method supports streaming data transfers
for built-in kernels. In the future, the work will be expanded to support
OpenCL pipes for more efficient on-chip streaming for software kernels.
Additionally, automatic bitstream and firmware deployment based on
the submitted built-in kernels will be created to further increase the
usability of the proposed method. Evaluating the method on a wider
range of FPGA devices from different major vendors could expose
further portability improvements. Furthermore, supporting OpenCL 2.0
Shared Virtual Memory (SVM) would be a very useful addition for
platforms with the necessary hardware support for advanced memory
management.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The source code repository used for this research is included as a
footnote.

Acknowledgments

The work for this publication was supported by European Union’s
Horizon 2020 research and innovation programme under Grant Agree-
ment No. 871738 (CPSoSaware) and Academy of Finland (decision
#331344). We would also like to thank Xilinx for donating the Alveo
FPGA and its related software used in this work and HSA Foundation
for the financial support and the useful specification work.

References

[1] Khronos® OpenCL Working Group, The OpenCL™ Specification, 2021, https:
//www.khronos.org/registry/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf,
accessed: 2021-08-27.

[2] I. Kuon, J. Rose, Measuring the gap between FPGAs and ASICs, IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 26 (2) (2007) 203–215, http://dx.doi.
org/10.1109/TCAD.2006.884574.

[3] J. Cong, Z. Fang, M. Lo, H. Wang, J. Xu, S. Zhang, Understanding performance
differences of FPGAs and GPUs, in: 2018 IEEE 26th Annual International
Symposium on Field-Programmable Custom Computing Machines, FCCM, 2018,
pp. 93–96, http://dx.doi.org/10.1109/FCCM.2018.00023.

[4] S. Lahti, P. Sjövall, J. Vanne, T.D. Hämäläinen, Are we there yet? A study on
the state of high-level synthesis, IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst. 38 (5) (2019) 898–911.
10
[5] P. Jääskeläinen, C. Sanchez de La Lama, E. Schnetter, K. Raiskila, J. Takala,
H. Berg, Pocl: A performance-portable OpenCL implementation, Int. J. Parallel
Program. 43 (5) (2015) 752–785.

[6] T. Leppänen, P. Mousouliotis, G. Keramidas, J. Multanen, P. Jääskeläinen, Unified
OpenCL integration methodology for FPGA designs, in: 2021 IEEE Nordic Circuits
and Systems Conference (NorCAS), 2021, pp. 1–7, http://dx.doi.org/10.1109/
NorCAS53631.2021.9599861.

[7] P. Jääskeläinen, V. Korhonen, M. Koskela, J. Takala, K. Egiazarian, A. Danielyan,
C. Cruz, J. Price, S. Mcintosh-Smith, Exploiting task parallelism with OpenCL: A
case study, J. Signal Process. Syst. 91 (1) (2019) 33–46, http://dx.doi.org/10.
1007/s11265-018-1416-1.

[8] HSA™ Foundation, HSA Platform System Architecture Specification v1.2.
[9] E. Luebbers, S. Liu, M. Chu, Simplify software integration for FPGA accel-

erator with OPAE (white paper), 2017, URL https://01.org/sites/default/files/
downloads/opae/open-programmable-acceleration-engine-paper.pdf.

[10] Xilinx, Xilinx Runtime (XRT) Architecture, URL https://xilinx.github.io/XRT/
master/html/index.html.

[11] J. Stuecheli, W.J. Starke, J.D. Irish, L.B. Arimilli, D. Dreps, B. Blaner, C.
Wollbrink, B. Allison, IBM POWER9 opens up a new era of acceleration
enablement: Opencapi, IBM J. Res. Dev. 62 (4/5) (2018) 8:1–8:8, http://dx.
doi.org/10.1147/JRD.2018.2856978.

[12] H. Ding, M. Huang, A unified OpenCL-flavor programming model with scalable
hybrid hardware platform on FPGAs, in: 2014 International Conference on
ReConFigurable Computing and FPGAs (ReConFig14), 2014, pp. 1–7, http://dx.
doi.org/10.1109/ReConFig.2014.7032563.

[13] F. Steinert, P. Kreowsky, E.L. Wisotzky, C. Unger, B. Stabernack, A
hardware/software framework for the integration of FPGA-based accelera-
tors into cloud computing infrastructures, in: IEEE International Conference
on Smart Cloud (SmartCloud), 2020, pp. 23–28, http://dx.doi.org/10.1109/
SmartCloud49737.2020.00014.

[14] B. Holland, J. Greco, I.A. Troxel, G. Barfield, V. Aggarwal, A.D. George, Compile-
and run-time services for distributed hetergeneous reconfigurable computing, in:
ERSA, 2006.

[15] N. Tarafdar, N. Eskandari, V. Sharma, C. Lo, P. Chow, Galapagos: A full stack
approach to FPGA integration in the cloud, IEEE Micro 38 (6) (2018) 18–24,
http://dx.doi.org/10.1109/MM.2018.2877290.

[16] R.A. Ashraf, R. Gioiosa, Exploring the use of novel spatial accelerators in
scientific applications, in: Proceedings of the 2022 ACM/SPEC on International
Conference on Performance Engineering, ICPE ’22, Association for Computing
Machinery, New York, NY, USA, 2022, pp. 47–58, http://dx.doi.org/10.1145/
3489525.3511690.

[17] J. Hoozemans, J. van Straten, T. Viitanen, A. Tervo, J. Kadlec, Z. Al-Ars,
ALMARVI execution platform: Heterogeneous video processing SoC platform on
FPGA, J. Signal Processing Systems 91 (1) (2019) 61–73, http://dx.doi.org/10.
1007/s11265-018-1424-1.

[18] C. Lattner, V. Adve, LLVM: A compilation framework for lifelong program
analysis & transformation, in: Proceedings of the 2004 International Symposium
on Code Generation and Optimization (CGO’04), Palo Alto, California, 2004.

[19] P. Jääskeläinen, T. Viitanen, J. Takala, H. Berg, HW/SW co-design toolset
for customization of exposed datapath processors, in: W. Hussain, J. Nurmi,
J. Isoaho, F. Garzia (Eds.), Computing Platforms for Software-Defined Radio,
Springer International Publishing, 2017, pp. 147–164.

[20] Xilinx, Introduction to Vitis HLS, https://www.xilinx.com/html_docs/xilinx2021_
1/vitis_doc/introductionvitishls.html.

[21] S. Abdoli, P. Cardinal, A. Lameiras Koerich, End-to-end environmental sound
classification using a 1D convolutional neural network, Expert Syst. Appl. 136
(2019) 252–263, http://dx.doi.org/10.1016/j.eswa.2019.06.040.

Topi Leppänen reveived the M.Sc. degree in Electrical Engi-
neering in 2021 from Tampere University, Finland, where he
is currently pursuing a Ph.D. degree. His research interests
include heterogeneous platforms and hardware acceleration.
His current research focuses on easier development and pro-
gramming of diverse systems with specialized programmable
and nonprogrammable accelerators.

Atro Lotvonen MSc. Information Technology and Com-
munication Sciences, Graduated from Tampere University
in 2021 with a major in Signal Processing and Machine
Learning. Previously worked on the CPC-VGA group in
Tampere University on topics related to real-time com-
puter graphics and virtual reality algorithms. More recently,
work is focused on executing machine learning models on
heterogeneous platforms.

https://www.khronos.org/registry/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
http://dx.doi.org/10.1109/TCAD.2006.884574
http://dx.doi.org/10.1109/TCAD.2006.884574
http://dx.doi.org/10.1109/TCAD.2006.884574
http://dx.doi.org/10.1109/FCCM.2018.00023
http://refhub.elsevier.com/S0141-9331(23)00018-2/sb4
http://refhub.elsevier.com/S0141-9331(23)00018-2/sb4
http://refhub.elsevier.com/S0141-9331(23)00018-2/sb4
http://refhub.elsevier.com/S0141-9331(23)00018-2/sb4
http://refhub.elsevier.com/S0141-9331(23)00018-2/sb4
http://refhub.elsevier.com/S0141-9331(23)00018-2/sb5
http://refhub.elsevier.com/S0141-9331(23)00018-2/sb5
http://refhub.elsevier.com/S0141-9331(23)00018-2/sb5
http://refhub.elsevier.com/S0141-9331(23)00018-2/sb5
http://refhub.elsevier.com/S0141-9331(23)00018-2/sb5
http://dx.doi.org/10.1109/NorCAS53631.2021.9599861
http://dx.doi.org/10.1109/NorCAS53631.2021.9599861
http://dx.doi.org/10.1109/NorCAS53631.2021.9599861
http://dx.doi.org/10.1007/s11265-018-1416-1
http://dx.doi.org/10.1007/s11265-018-1416-1
http://dx.doi.org/10.1007/s11265-018-1416-1
https://01.org/sites/default/files/downloads/opae/open-programmable-acceleration-engine-paper.pdf
https://01.org/sites/default/files/downloads/opae/open-programmable-acceleration-engine-paper.pdf
https://01.org/sites/default/files/downloads/opae/open-programmable-acceleration-engine-paper.pdf
https://xilinx.github.io/XRT/master/html/index.html
https://xilinx.github.io/XRT/master/html/index.html
https://xilinx.github.io/XRT/master/html/index.html
http://dx.doi.org/10.1147/JRD.2018.2856978
http://dx.doi.org/10.1147/JRD.2018.2856978
http://dx.doi.org/10.1147/JRD.2018.2856978
http://dx.doi.org/10.1109/ReConFig.2014.7032563
http://dx.doi.org/10.1109/ReConFig.2014.7032563
http://dx.doi.org/10.1109/ReConFig.2014.7032563
http://dx.doi.org/10.1109/SmartCloud49737.2020.00014
http://dx.doi.org/10.1109/SmartCloud49737.2020.00014
http://dx.doi.org/10.1109/SmartCloud49737.2020.00014
http://refhub.elsevier.com/S0141-9331(23)00018-2/sb14
http://refhub.elsevier.com/S0141-9331(23)00018-2/sb14
http://refhub.elsevier.com/S0141-9331(23)00018-2/sb14
http://refhub.elsevier.com/S0141-9331(23)00018-2/sb14
http://refhub.elsevier.com/S0141-9331(23)00018-2/sb14
http://dx.doi.org/10.1109/MM.2018.2877290
http://dx.doi.org/10.1145/3489525.3511690
http://dx.doi.org/10.1145/3489525.3511690
http://dx.doi.org/10.1145/3489525.3511690
http://dx.doi.org/10.1007/s11265-018-1424-1
http://dx.doi.org/10.1007/s11265-018-1424-1
http://dx.doi.org/10.1007/s11265-018-1424-1
http://refhub.elsevier.com/S0141-9331(23)00018-2/sb18
http://refhub.elsevier.com/S0141-9331(23)00018-2/sb18
http://refhub.elsevier.com/S0141-9331(23)00018-2/sb18
http://refhub.elsevier.com/S0141-9331(23)00018-2/sb18
http://refhub.elsevier.com/S0141-9331(23)00018-2/sb18
http://refhub.elsevier.com/S0141-9331(23)00018-2/sb19
http://refhub.elsevier.com/S0141-9331(23)00018-2/sb19
http://refhub.elsevier.com/S0141-9331(23)00018-2/sb19
http://refhub.elsevier.com/S0141-9331(23)00018-2/sb19
http://refhub.elsevier.com/S0141-9331(23)00018-2/sb19
http://refhub.elsevier.com/S0141-9331(23)00018-2/sb19
http://refhub.elsevier.com/S0141-9331(23)00018-2/sb19
https://www.xilinx.com/html_docs/xilinx2021_1/vitis_doc/introductionvitishls.html
https://www.xilinx.com/html_docs/xilinx2021_1/vitis_doc/introductionvitishls.html
https://www.xilinx.com/html_docs/xilinx2021_1/vitis_doc/introductionvitishls.html
http://dx.doi.org/10.1016/j.eswa.2019.06.040


Microprocessors and Microsystems 97 (2023) 104772T. Leppänen et al.
Panagiotis Mousouliotis graduated from the ECE depart-
ment of Aristotle University of Thessaloniki (AUTh) in
2011 and since then he has worked in projects ranging
from digital logic design on FPGAs to C/C ++ application
development for embedded systems. Currently, he is a Ph.D.
student in the ECE AUTh department working on algorithm
acceleration in FPGAs using HLS tools.

Joonas Multanen received his M.Sc. degree in Electrical
Engineering in 2015 from Tampere University of Technology
and his Ph.D. degree in 2021 from Tampere University
(TAU), Finland. He is currently a postdoctoral researcher at
the Faculty of Information Technology and Communication
Sciences in TAU. His research interests include energy
efficient computer architectures.
11
Georgios Keramidas Assistant Professor at the School
of Informatics of the Aristotle University of Thessaloniki,
Greece and a technology consultant in Think Silicon
S.A. Dr. Keramidas main research interests are in the
areas of low-power processor/memory design, multicore
systems, VLIW/multi-threaded architectures, graphic proces-
sors, power modeling methodologies, FPGA prototyping, and
compiler optimizations techniques. He has published more
than 75 papers, two books, and he also holds 13 US patents
(4 more patents are under evaluation). His work received
more than 1190 citations. He is a regular reviewer and
program committee member in high quality conferences,
workshops and transactions and a member of the HiPEAC
European Network of Excellence.

Pekka Jääskeläinen Leads the Customized Parallel Com-
puting group (http://cpc.cs.tut.fi) of Tampere University.
He has worked on heterogeneous platform customization
and programming topics since early 2000s. In addition to
his academic publication activities, he is responsible of
two heterogeneous computing related open source projects;
OpenASIP (http://openasip.org) and Portable Computing
Language (PoCL, http://portablecl.org). His research inter-
ests include methods and tools to reduce the engineering
effort involved in design and programming of diverse
heterogeneous platforms, and hardware and compiler tech-
niques to reduce the energy consumption of programmable
processors.

http://cpc.cs.tut.fi
http://openasip.org
http://portablecl.org

	Efficient OpenCL system integration of non-blocking FPGA accelerators
	Introduction
	Open Heterogeneous Computing Standards
	Related Work
	AlmaIF: The Common Hardware Interface
	Software Interface
	Fixed-Function Accelerators
	Software Programmable Accelerators
	Software Programmable Accelerators with Built-in Kernels
	On-chip Synchronization
	Direct Memory Access

	Component Integration
	Evaluation
	Collaborative Execution with CPU and FPGA Devices
	On-chip Synchronization
	Direct Memory Access
	Audio CNN Demonstrator

	Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


