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Abstract
When domain experts are needed to perform data annotation for
complex machine-learning tasks, reducing annotation effort is
crucial in order to cut down time and expenses. For cases when
there are no annotations available, one approach is to utilize the
structure of the feature space for clustering-based active learning
(AL) methods. However, these methods are heavily dependent
on how the samples are organized in the feature space and what
distance metric is used. Unsupervised methods such as con-
trastive predictive coding (CPC) can potentially be used to learn
organized feature spaces, but these methods typically create high-
dimensional features which might be challenging for estimating
data density. In this paper, we combine CPC and multiple dimen-
sionality reduction methods in search of functioning practices
for clustering-based AL. Our experiments for simulating speech
emotion recognition system deployment show that both the local
and global topology of the feature space can be successfully used
for AL, and that CPC can be used to improve clustering-based
AL performance over traditional signal features. Additionally,
we observe that compressing data dimensionality does not harm
AL performance substantially, and that 2-D feature representa-
tions achieved similar AL performance as higher-dimensional
representations when the number of annotations is not very low.
Index Terms: active learning, unsupervised learning, contrastive
learning, manifold learning, speech emotion recognition

1. Introduction
In many complex real-world machine-learning applications, an-
notating data can be expensive and time-consuming. This is
often the case particularly in situations where domain experts are
needed to carry out the annotation process [1, 2]. For such cases,
active learning (AL) algorithms can be used to reduce human
annotation effort and to produce machine-learning models that
perform well with limited labeled data [3]. For example, data
scarcity is an ever-present problem in deploying speech emotion
recognition (SER) systems to new domains [4].

There are a number of different approaches for AL, of which
by far the most popular methods are based on uncertainty or
confidence scores of a classifier trained on already-labeled data
(e.g. [4–8]). However, when the maximum number of labels that
can be manually assigned, also known as the labeling budget,
adds up to only a small subset of the data, the aforementioned
AL approaches cannot be applied. This is because these methods
often require a rather large number of annotated samples before
they can outperform random sampling [9].

In the absence of any existing annotated data, a potential
approach to AL is to utilize the distributional properties of the
dataset with clustering-based AL methods (e.g. [10–13]). These
methods rely heavily on how the samples are organized in the
feature space (i.e. the choice of features) and what distance

metric is used, as the methods need to use these two to cluster
the data points and to prioritize the order in which cluster sam-
ples are provided for human annotators. This puts particular
emphasis on how the features behave in the given metric space
with respect to the analysis task at hand. In addition, the dimen-
sionality of the used features poses a potential challenge for the
AL algorithms, as accurate data density estimation from finite
data becomes less accurate in higher-dimensional spaces [14].
Hence, it could be beneficial for AL if there was a systematic
way of representing data samples in a low-dimensional feature
space. Moreover, a lower dimensionality would heavily reduce
the computational complexity of AL algorithms. Taken to the
extreme, a 2-D feature space could be used to combine AL with
data visualization and efficient human-based data exploration
and reorganization, such as in the annotation platform described
in [15].

While the use of standard acoustic features such as i-vectors
[12] or MFCCs [16] has been applied to previous AL clustering
approaches, there are nowadays a number of highly promising
unsupervised methods for learning feature spaces (e.g. [17–19]).
These methods can learn linearly separable representations for
many speech phenomena of interest (e.g. [17]), and could po-
tentially be used to learn organized feature spaces for clustering-
based AL algorithms. However, the aforementioned methods
typically result in high-dimensional feature spaces which can
impose challenges for AL algorithms, as discussed above. Also,
these methods have been used primarily for learning features that
are relevant for supervised downstream tasks, but not for inter-
mediate tasks such as clustering, where data grouping is equally
important to data separability (see Fig. 1 for an example).

In the present study, we combine AL with unsupervised
learning and dimensionality reduction methods in order to seek
answers to the questions of whether self-supervised representa-
tion learning (SSRL) can improve AL performance over classical
signal features, and how AL performance depends on input fea-
ture dimensionality. While doing so, the work also sheds light
on the question of how the local and global topology of a feature
space affects clustering-based AL systems. In order to answer
these questions, we conduct a set of experiments involving a

   Class 2
   Class 1

Figure 1: A toy example for 2-D data, clustered into two clusters
(blue and yellow) with k-means clustering using Euclidean dis-
tance. Although the classes are linearly separable (dashed line),
the data points are not organized into class-specific clusters.
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simulated annotation procedure and a clustering-based AL al-
gorithm from [16]. We use SER as our test case using four
different SER corpora and with two distinct classification tasks.
Our ultimate goal is to find functioning practices for developing
machine-learning algorithms for applications where access to
human expert labels is expensive. Hence, our primary focus is
in cases with a low labeling budget, although we also include
higher labeling budgets in our present experiments.

2. Methods
Fig. 2 depicts a block diagram of the present experiments. First,
a standard acoustic feature (log-mel) representation is obtained
from an input signal. Then, an SSRL algorithm called contrastive
predictive coding (CPC) [17] is applied to the data. CPC aims to
produce linearly separable features that can be used to predict
signal evolution over time [20, 21]. CPC has already been suc-
cessfully used with clustering-based approaches (e.g. [21–23])
and also produces features that separate suprasegmental proper-
ties such as speaker identities [17]. However, to the best of our
knowledge, [24] is the only study so far using CPC for AL.

Next, an array of alternative dimensionality reduction meth-
ods is optionally applied to the log-mel and CPC features. In the
present study, we explore the use of t-distributed stochastic neigh-
bor embedding (t-SNE) [25], nonlinear bottleneck autoencoders
(AEs), and principal component analysis (PCA) for dimensional-
ity reduction. Among these, t-SNE preserves the local structure
of the high-dimensional data while also revealing some global
aspects, such as clusters at multiple scales [25]. In contrast, PCA
simply maps the data into principal axes of variation without
differentially altering the local and global metric structure of
the feature space. Bottleneck AEs, on the other hand, attempt
to learn a low-dimensional feature embedding from which the
original input features can be reconstructed.

Finally, we run a simulated AL-based speech emotion anno-
tation and a SER classifier deployment procedure using a support
vector machine (SVM) classifier, similar to [26]. For this, we
use a clustering-based AL algorithm together with each possi-
ble combination of log-mel or CPC features and the aforemen-
tioned dimensionality reduction methods, including not using
dimensionality reduction at all, and compare the resulting SER
performance among the alternative strategies.

Log-mel

CPC
Dimensionality

reduction 
Simulated 
AL (MAL) SER 

(SVM) 
Speech 
signal t-SNE

PCA

AE

What 
 works? 

Figure 2: A block diagram of the present experimental setup.

2.1. Contrastive predictive coding

CPC [17] is an unsupervised method for extracting represen-
tations from data that encode underlying shared information
between different parts of the input signal. This is achieved by
predicting k ∈ {1, ...,K} future latent representations of the
input signal where typically K > 1 (e.g. K = 12 for speech
in [17]). A CPC model consists of two separate models, a non-
linear encoder, genc, and an autoregressive model, gar . First,
genc maps the input observations, xt, into latent representations
zt = genc(xt). Then, gar maps z≤t into a context latent rep-
resentation ct = gar(z≤t). Instead of directly modeling xt+k,
CPC models a density ratio that aims to preserve the mutual

information between xt+k and ct. For this, a log-bilinear model
fk(xt+k, ct) = exp

(
zT
t+kWkct

)
is used, where Wk are linear

transformations. Both genc and gar are trained using the loss

LCPC = − 1

K

K∑

k=1

log


 fk(xt+k, ct)∑

xj∈X

fk(xj , ct)


 , (1)

where X = {x1, ...,xN} is a set of N random samples contain-
ing one positive sample and N − 1 negative samples. As shown
in [17], minimizing the loss in Eq. 1 maximizes the mutual
information between xt+k and ct.

2.2. Medoid-based active learning

For AL, we use medoid-based active learning (MAL) [16], which
is an AL method developed for scarce labeling budgets. The
algorithm consists of three subsequent stages: 1) compute an
affinity matrix containing the pairwise distances between each
sample in a dataset, 2) perform k-medoids clustering using this
affinity matrix, and 3) in a descending cluster size order, query
for human annotations for the medoids.

In the first stage, the pairwise distances between each sample
in a dataset are computed using a distance metric, d, and are
stored to an affinity matrix, A. In the second stage, k-medoids
clustering (see e.g. [27]) is performed for the data using A. First,
one sample is randomly selected as a member of a set, S. Then,
k − 1 additional samples are added to S one at a time using the
farthest-first traversal algorithm [28], each added sample being
farthest from the current set S. Here, the distance from a sample,
a, to the set S is defined as d(a, S) = min

b∈S
d(a, b). Next,

the samples in S are used as initial medoids for a k-medoids
clustering algorithm in order to assign each sample into one of
the k clusters. Based on a previous study [29], k was set to be
N
3

, where N is the number of samples in a corpus.
In the third stage, the clusters are first sorted in a descending-

size order, after which the cluster medoids are presented to
human annotators for labeling. In the present experiments, the
obtained labels were used in two different ways: i) using only the
medoid labels as labeled data (referred to as “medoid labels”),
or ii) propagating the medoid label to all elements in the cluster
(referred to as “cluster labels”).

3. Experiments
3.1. Emotional Speech Corpora

We conducted our experiments using four SER corpora:
1) The Berlin Emotional Speech Database (EMO-DB) [30]

is perhaps the most widely used SER corpus. It contains 535
spoken utterances in German from 10 actors in seven emotions:
anger, boredom, disgust, fear, joy, neutral, and sadness.

2) eNTERFACE [31] contains 1,287 videos in English (42
test subjects, 14 nationalities), of which only the audio tracks
were used in the present study. The corpus contains emotions in
six categories: anger, disgust, fear, joy, sadness, and surprise.

3) The Finnish Emotional Speech Corpus (FESC) [32] con-
sists of 450 spoken passages from nine Finnish professional
actors portraying five emotions: neutral, sadness, joy, anger, and
tenderness. Based on long silences defined by an energy thresh-
old [26], the passages were further split into 4,254 utterances.

4) The Ryerson Audio-Visual Database of Emotional Speech
and Song (RAVDESS) [33] is a multimodal database containing
7,356 recordings in English from 24 professional actors. Only
the recordings including speech (1,440 utterances) were used in

1144



Log-mel 
(600-dim)

CPC 
(256-dim)

CPC 
(32-dim)

CPC 
(2-dim)

t-SNE

AE

PCA

t-SNE

AE

PCA

t-SNE

t-SNE

2-dim 32-dim 2-dimInitial features

Not feasible        =

Outperformed
random sampling        =

Random sampling-
level performance        =

Figure 3: A visualization of the feature, dimensionality reduction
method, and data dimensionality combinations that were experi-
mented with in the present study.

the present experiments, including eight emotions: neutral, calm,
happy, sad, angry, fearful, surprise, and disgust.

In order to harmonize the emotional labels of each SER
corpus, the labels were mapped into the quarters of the valence-
arousal plane following the mapping of [34], which has been
popularly used in SER studies (e.g. [35–37]). The mapping also
simplifies the SER classification task into two binary classifica-
tion tasks: valence (positive/negative) and arousal (high/low).

3.2. CPC and AE model training

A separate CPC model was trained for each SER corpus as a data-
driven feature extractor. Log-mel frames (40 mel filters, 30-ms
Hann window, 10-ms shifts) were used as input features for the
encoder genc. To get constant-length inputs, 5-second segments
were extracted from the acoustic signal by zero-padding utter-
ances shorter than 5 s and randomly selecting 5-second segments
of utterances longer than 5 s. The encoder genc consisted of three
fully-connected ELU [38] layers of 256 units, each followed by
a dropout of 20%. The autoregressive model gar was a one-layer
GRU [39] with a 256-dimensional hidden state. Prediction was
carried up to 12 steps (120 ms) ahead.

Each corpus was randomly split into training and validation
sets in a ratio of 80:20 utterances. The models were trained
using the loss LCPC in Eq. 1, a batch size of 8 utterances, and
Adam [40] optimizer. An initial learning rate of 10−4 was used
with a reduction factor of 0.7 based on the validation loss with
a patience of 20 epochs. Early stopping with a patience of 100
based on validation loss was used to select the model with the
lowest validation loss. For each sample in a minibatch, the rest
of the minibatch samples acted as the negative samples.

Using a similar 80:20 split as above, an AE model was
trained for dimensionality reduction individually for each corpus
and for two input features (utterance-level log-mel and CPC
features, see Sec. 3.3). The network consisted of six fully-
connected ELU layers of 512 units each, except for the third
layer (32 units) and the last layer (600 and 256 units for log-
mel and CPC features, respectively). The 512-unit layers had a
dropout of 10%. The AE models were trained using MSE loss,
Adam optimizer, batch size of 1024, and a learning rate of 10−4.
Early stopping with a patience of 300 based on validation loss
was used, and the best encoder (the first three network layers)
was selected from the AE model with the lowest validation loss.

3.3. Features

For log-mel features of each utterance, seven functionals (the
first four moments, min, max, and range) were applied to the
time dimension of log-mel frames (Sec. 3.2), and the first four
moments were applied to the first and second order delta features
to get a 600-dimensional utterance-level feature vector. For CPC
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Figure 4: The MCC performance scores for different experi-
mented features using the MAL algorithm and varying labeling
budget, and with random sampling as a baseline reference. Each
reported number is the mean of 200 feature-specific experiments
(valence and arousal classification tasks, four SER corpora, 5-
fold CV, five different random initializations for each data split).
The features are ordered based on mean performance, with the
best-performing feature being the rightmost.

features, the mean over the time dimension of the encoder out-
puts zt was computed to get 256-dimensional utterance features
(ignoring potential zero padding). The context latent represen-
tations ct were also tested but resulted in slightly worse results
than using zt, and hence are not separately reported. In addition
to the mean, we also tested computing other functionals from
the CPC features. However, since the mean is the only moment
that preserves the metric properties of the original CPC feature
space, the inclusion of these additional functionals turned out to
systematically worsen the SER performance of the CPC features,
and hence are also not reported.

Fig. 3 illustrates the tested combinations of features and
dimensionality reduction methods that were included in the
experiments. For both the 600-dimensional log-mel and 256-
dimensional CPC features, 32- and 2-dimensional PCA and AE
representations were computed. The AE representations were
obtained using the encoder networks of Sec. 3.2. Additionally,
2-D t-SNE features were computed from the high-dimensional
log-mel and CPC features as well as their 32-dimensional repre-
sentations. The Scikit-learn [41] implementation of t-SNE was
used with default values, with the exception of using PCA initial-
ization for better overall stability. We also tested training CPC
models directly into lower-dimensional feature spaces but with
poor results. In order to save space, only the features that outper-
formed the random sampling baseline in AL-based classification
are included in the present results. Computing 32-dimensional
t-SNE features was not considered due to the poor scalability of
the algorithm for higher than 2-dimensional projections.

3.4. AL simulation setup for SER

For each corpus and for each feature described in Sec. 3.3, SER
experiments were carried out with the MAL algorithm using
a simulated annotation procedure. In the simulation, samples
selected for annotation by MAL were replaced by the ground-
truth labels of the corpus as available based on earlier human
annotations, and were then used to train a classifier for the va-
lence and arousal classification tasks (see also [26]). The data
was randomly split into training and test sets using 5-fold cross-
validation (CV), after which MAL was applied to the training set.
Labeling budgets of 1%, 2%, 5%, 10%, 20%, 50%, and 100% of
the total training set samples were used in the experiments. Al-
though MAL was originally intended for scarce labeling budgets,
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Figure 5: Comparison of CPC and log-mel features (left) and PCA, AE, and t-SNE dimensionality reduction methods (right) in MAL-
based SER simulations, averaged across all experimental conditions (standard error as shaded area). For the latter, the cases where only
one dimensionality reduction method is being used are considered. Random sampling is shown as a baseline reference. Note that a SER
classifier is always trained using 600-dim utterance-level log-mel features independently of the features and dimensionality used for AL.

higher labeling budgets are also included in the analyses. Each
cross-fold experiment was repeated five times to account for the
minor variability in the results due to t-SNE and MAL random
initialization. We use Matthew’s correlation coefficient (MCC)
[42] as our primary evaluation metric. As argued by e.g. [43],
MCC can be considered as one of the most informative quality
measures for binary classifiers since it requires good results from
all four confusion matrix categories to output a high score.

After obtaining a set of labeled data from MAL, an SVM
with an RBF kernel was trained with the labeled training data
and tested on the test data. This was applied to both classification
tasks and for both medoid and cluster labels. Since the primary
focus of the present experiments was to find features that enhance
the performance of clustering-based AL algorithms, the training
and testing features for the SVMs were standardized for each
experiment. For this, we selected the 600-dimensional utterance-
level log-mel feature statistics (z-score normalized at the corpus
level), as they were found generally well-performing in valence
and arousal classification tasks in [26]. SVM hyperparameters
(box constraint and kernel scale parameter) were optimized sep-
arately for each corpus and classification task based on a grid
search using 5-fold CV on all labeled data for the given corpus.
As a baseline reference, random sampling results with corre-
sponding labeling budgets are also reported, with experiments
conducted in a similar manner as with MAL.

For the sake of brevity, the results with MAL cluster labels
are omitted since they provided an advantage over medoid la-
bels only for 1% labeling budget. For the same reason, only
the results from the best-performing distance metrics for MAL
are reported, corresponding to the Euclidean distance for 2-D
features, and the cosine distance for higher-dimensional features.

4. Results
Fig. 4 presents the results of the experimental setup, aver-
aged over the corpora and both classification tasks (valence
and arousal). As the labeling budget increases, the differences
between the tested features become smaller. Also, with a 50%
labeling budget MAL does not provide a benefit over random
sampling. For labeling budgets of 1%–20%, the 32-dimensional
“CPC PCA” features had the highest average performance (ap-
prox. 0.38 MCC). For the four SER corpora, a labeling budget
of 1% corresponds to approx. 15 samples on average.

Fig. 5 (left) shows the performance comparison between
CPC and log-mel features. For labeling budgets of 2%–10%,
CPC features provided statistically significant improvements

over log-mel features (paired t-test, p < 0.05, df = 999,
t = 3.06–6.12 across the tests), showcasing better overall clus-
terability and/or more efficient feature space exploration for the
CPC features in the SER task. Fig. 5 (right) shows the compari-
son between dimensionality reduction methods, demonstrating
a similar performance for all three methods from a 5% labeling
budget onward. With a 2% labeling budget, PCA and AE obtain
a similar performance and outperform t-SNE, and with a 1%
labeling budget, PCA outperforms the AE method which, in
turn, outperforms t-SNE (paired t-test, p < 0.05, df = 399,
t = 1.17–3.92 across the tests). Comparing different dimen-
sionalities in Fig. 4, we can observe that heavily reducing the
dimensionality of the 600/256-dimensional features does not
provide a major drop in average performance, with “CPC PCA”
and “CPC AE” even outperforming the 256-dimensional CPC
features. The 600/256-dimensional and 32-dimensional features
obtained similar performance on average, and the 2-D t-SNE fea-
tures also obtained similar performance for labeling budgets of
5% and larger. Overall, these results indicate that for clustering-
based AL approaches, both the global (600/256/32-dimensional
features) and local (t-SNE features) properties of the data can be
used to provide an advantage over random sampling. However,
it seems that t-SNE works best if the labeling budget is not below
5%, possibly since t-SNE distorts the global distance metrics.

5. Conclusions
In this study, we combined CPC and various dimensionality re-
duction methods in search of functioning practices for clustering-
based AL. Our experiments revealed that SSRL can be utilized to
improve clustering-based AL performance over traditional signal
features. In addition, we found that both the local and global
topologies of feature spaces can be successfully used for AL. Fur-
thermore, we observed that compressing the dimensionality of
high-dimensional features does not provide a major drop in AL
performance. We also found that 2-D t-SNE features achieved
similar AL performance as higher-dimensional features when
the labeling budget is not very low. This finding could be uti-
lized to reduce the computational complexity of AL algorithms,
and to combine AL and data visualization to create interactive
AL algorithms involving data exploration and visualization, in a
similar manner as in the annotation platform of [15].
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