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ABSTRACT

This thesis is about LiDAR place recognition. Place recognition is the problem of

being able to recognize already seen or visited places – an important sub-problem of

robot navigation. LiDAR sensors offer accurate and cost-effective range and reflec-

tivity data that can replace or complement RGB cameras.

Place recognition has been studied with different sensors and methods for many

years. Traditional methods use handcrafted features to match images in order to

recognize places. In recent years, the surge of deep learning has made learned features

the main approach.

In this work LiDAR place recognition is studied with exported 2D pixel images

and deep learning models. Place recognition is posed as an image retrieval problem,

where a model is trained to learn a feature space in such a way that the similarity of

images can be conveniently compared. With a trained model, one can use an image

to search for other similar images, and thus recognize places.

The key finding of the thesis publications is that place recognition with image

retrieval using exported pixel images from LiDAR scans is a well performingmethod,

as evidenced by achieving about 80% recall@1 with 5 meter test distance in urban

outdoors and 1 meter indoors. The other key findings are: Loop points in the route

are detectable with image retrieval type methods. LiDAR is a competitive modality

versus RGB. LiDAR depth maps are more robust to change than intensity maps.

Generalized mean is a good pooling method for place recognition. Simulated data is

beneficial when mixed in with real-world data at a suitable ratio. Dataset quality is

very important in regards to ground truth position and LiDAR resolution.
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ABBREVIATIONS

BoW Bag-of-words is a simplifying representation used in informa-

tion retrieval.

CNN Convolutional neural network.

FOV Field of view.

GeM Generalized mean. In this thesis GeM most often refers to a

generalized mean pooling layer used to produce the final feature

vector.

GPS/INS Global positioning system with inertial navigation system. It

calculates position, orientation, and velocity using satellites and

inertial sensors.

HOG Histogram of oriented gradients. It is a feature descriptor.

INS Inertial navigation system. In practice uses accelerometers and

gyroscopes to calculate the position, orientation, and velocity.

LiDAR Light detection and ranging. (Alternatively also laser imaging,

detection, and ranging.) Refers to an active sensor that projects

laser beams and measures how they are reflected back from the

environment.

PCA Principal component analysis.

RANSAC Random sample consensus.

RGB Red, green, and blue. In this thesis it refers to a typical digital

photography image, due to being often defined by the three

color values per pixel.

SIFT Scale-invariant feature transform. It is an algorithm to detect,

describe, and match local features.
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SLAM Simultaneous localization and mapping.

SURF Speeded up robust features. It is a patented algorithm to detect

and describe local features.

VGG Visual geometry group at University of Oxford. In this the-

sis refers to the network architecture developed in the group

named after the group. The network architecture name is often

preceding the number of layers in the network, for example,

VGG-16.

VLAD Vector of locally aggregated descriptions.
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1 INTRODUCTION

1.1 Background and motivation

Place recognition is an important function for a robot to have. Being able to make

sense of where one is, even when missing extrinsic information like the GPS. Under-

standing that a place is the same when the snow has piled up, the traffic has changed,

or the building has been completely renovated or replaced, is essential if the robot

is to be able to navigate reliably around our dynamic world and carry on with its

business.

We humans have wonderful automatic brain functionality for building internal

models out of our environments. We can tell where we are intuitively without much

effort. It is only occasionally in new or repetitive places where we struggle and need

to pay attention or check the map. Robots do not have the luxury of such wonderful

model building capability. The level of operation is much lower.

In robotics, place recognition is used with navigation algorithms such as simulta-

neous localization and mapping (SLAM)[20, 21, 9], in which the robot reconstructs

a metric map of the environment as it goes along, while locating its place on it. Place

recognition system is useful when visiting places for the second time, which allows

the robot to error-correct its internal map of the environment.

In practice, place recognition can be implemented by being able to match images

or other sensory data [2]. Finding the very best matches for a new image from

a huge library of other images is called image retrieval [41], and it is one way to

implement place recognition. In experiments, correct matches for images are found

from another list of images, and the ratio of found correct matches is calculated in

order to evaluate the performance of the matching method.

Different sensory data for place recognition is available. One sensor modality

is LiDAR (Section 2.6.1), which has improved in recent years. A typical LiDAR

used in robotics and autonomous vehicles can provide range and surface reflection
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intensity data in decent quality and speed. It is an active sensor that shines laser

beams into its environment and senses how they are reflected back. For that reason

the usual range is quite limited compared to photography and other methods that

passively capture natural phenomena such as photons. Typical RGB photography

images are not used in this thesis, but instead LiDAR scans where the range and

reflectivity data is projected as 2D pixel images (Section 2.6.2).

An illustrative example of LiDAR data and difficulty of matching is presented

in Figure 1.1, which shows visualized LiDAR images as well as normal photograph

images for better understandability. The situation depicted is such that we have an

image we are trying to find matches for (the query image) on top. In the middle

there is an image of what the place recognition system thought was the best match,

but in this case the system got it wrong, and the best found match is actually over a

kilometer away. The bottom images are for a match we know to be correct (ground

truth). In contrast, a well working example would have the best match from the

same place as the query image.

16



Figure 1.1 Example situation for LiDAR image matching. The top LiDAR image is the image we are
finding matches for – the query image. The middle LiDAR image is the wrong match that
the place recognition system thought was correct. The bottom LiDAR image is one of the
existing correct matches for the query image. The left, front, and right images are not used
in the matching, they are just for better human readability. Publication IV, Figure 1. (The
data is from the Oxford Radar RobotCar dataset [5].)

17



1.2 Research focus

The research in this thesis is focused on LiDAR place recognition with image re-

trieval methods. More specifically, the focus is on extracting the best possible em-

beddings for the exported 2D pixel images, which can be used to find the best matches

for a given input. The main point is to explore the performance of place recogni-

tion in different scenarios to demonstrate that LiDAR place recognition with image

retrieval methods does reach reasonable recall performance, and that it is thus real-

istically applicable to robot navigation challenges.

The focus includes the ability to detect loops in the route, the performance ef-

fects of architectural choices within the image retrieval pipeline, the suitable mix

ratio of simulated to real world data, and how much the dataset ground truth and

LiDAR quality affect the performance. These topics were explored by developing

and executing the suitable test scenarios and answered by evaluating and reporting

the resulting performance.

The research focus is captured in the following research questions:

• How to apply existing image retrieval methods for place recognition?

• How to handle LiDAR in image based methods?

• How to improve the recall performance of the deep image retrieval based place

recognition method?

The work and publications are applied research, in which the theoretical ideas

from convolutional neural networks, image retrieval, and place recognition are un-

derstood and experimented with. The topic is closely related to image retrieval [41,

2], visual place recognition [46, 61, 11], localization [57, 67, 68], and simultaneous

localization and mapping (SLAM)[20, 21, 9].

1.3 Summary of original publications

This thesis consists of four main authored publications, each of them looking at the

main problem from different perspectives.

Publication I explores how artificially generated data can bemixed with real world

datasets to improve results. The context is image segmentation, with a convolutional

processing pipeline. The key result is that adding simulated data to augment real-

18



world data improved results, as long as the amount of simulated data was below 50

to 70 % of the combined dataset. Visually complex objects, such as trees, benefited

from simulated segmentation ground truth data, because the simulated segmentation

is more detailed than a human annotator would perform.

Publication II deals with the problem of loop-closure, where the embeddings are

trained and extracted similarly to place recognition. The test metric is simpler and

binary: is the query in a loop zone or not. The dataset used in the publication

is of high quality, but private and small. Backbone network, loss function, and

augmentation choices are also explored. The key result is that it is feasible in the

depicted scenario to detect loop points with image retrieval type methods.

Publication III evaluates two existing pooling methods for LiDAR place recogni-

tion: Generalized mean pooling (GeM) and NetVLAD. Two very different datasets

are used: an urban outdoor dataset with a high quality LiDAR sensor and an indoor

office space dataset with a low fidelity sensor. Also different LiDAR modalities of

depth and reflectivity are compared to RGB. The key results are that in place recog-

nition, LiDAR is a competitive modality versus RGB, depth maps are more robust

to change than intensity maps, GeM is a good pooling method, and 80% recall@1

is achievable with 5 meter test distance in urban outdoors and with half a meter test

distance in office indoors.

Publication IV proposes improved position ground truth and evaluation protocol

for place recognition with the Oxford Radar RobotCar dataset. The radar odometry

ground truth supplied by the dataset gets appended with manually tuned starting

poses for each sequence. This allows for more accurate benchmarking on this popular

dataset in tasks relying on aligned sequences, such as place recognition. The key result

is providing fixed radar odometry ground truth starting positions and demonstrating

the better testing accuracy.

19
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2 PLACE RECOGNITION BACKGROUND

Place recognition is the problem of being able to recognize already seen or visited

places. It is an important sub-problem of navigation. Recognition requires some

kind of a library of stored history of visited places, a sensor to get information about

the places, and a computational method to do the recognition. [46, 51]

The library does not have to exist before embarking on a voyage of discovery,

as it can be collected as the agent moves about in the exploratory space. But it

can improve the recognition performance a great deal if such a library is already

collected and processed into powerful recognition models beforehand. For example,

if a robotics delivery company would like to employ new robots to its fleet, it would

make sense to use the best available models already gathered from the fleet, rather

than having the robot to learn the streets from scratch.

The utilized sensors can be any kinds of available sensors: cameras, LiDARs,

radars, sonars, event-cameras, and so forth. Different sensors thrive in different

environments, and have different capabilities and prices. Many robotic applications

employ multiple sensor modalities for best performance. For instance, typical RGB-

cameras are relatively cheap and offer information in a format easily understandable

by a human – the color, resolution, and field-of-view are close enough to what our

eyes can see and our brains intuitively interpret. A LiDAR provides a sparser array

of accurate range information, which is very useful in cases such as docking a space

shuttle to a space station.

The computational method to process the sensory input for place recognition

can also be implemented in different ways. In recent years the deep neural network

implementations have dominated all kinds of machine learning tasks, and so has been

the case in place recognition, as well. The range of best methods can also be plotted

somewhere on the accuracy–computability curve. A well recognizing method can

be so heavy that it can only be run slowly on a server, while some light method can

run in real-time on modern mobile robotic hardware.

21



A machine learning approach is to first gather lots of data, then use that data

to train a good place recognition model on a server, and then deploy the model

on mobile hardware. The learning phase is more computationally intensive than

just using the same learned model. Then, while using the model and navigating the

environment, the agents can collect more sensory data, especially from challenging

situations and edge cases where the existing model performs poorly. This gathered

data can then be used to train better and better models to be deployed, benefiting

the whole fleet of agents.

Localization is a problem related to place recognition. In localization the whole

3D pose is considered, so it is a harder problem than just recognizing the place.

[57, 67] Place recognition is sometimes used as the first step in more resource in-

tense methods, such as localization or accurate point cloud matching, in order to

significantly cull the amount of input data for the heavier process.

2.1 Visual place recognition

Images can be matched by their visual similarity, which allows for place recogni-

tion. Traditionally handcrafted local feature methods such as SIFT [45], SURF [7],

and HOG [18] have been used for visual place recognition. These local feature

vectors have been combined to global feature vectors most notably with the vi-

sual bag-of-features model, improved upon by, for example, DBoW [23] and FAB-

MAP [17]. Traditional place recognition methods have been surveyed by Lowry et

al. in 2016 [46] and by Masone and Caputo in 2021 [51].

Deep learning (more in 3.1) based learning methods have surpassed the hand-

crafted features in performance. Local features are still used, for example DELF [53].

Global features offer faster matching after extraction, but local features might allow

for more accurate matching. Methods such as NetVLAD [3] and GeM [61] can

be layered on top of any convolutional pipeline for a decent system. Combining

local and global features have been proposed, for instance DELG [11]. Many learn-

ing feature extractors can take advantage of any typical CNN architecture, such as

ResNet [27], VGG [70], MobileNet [31, 66], or EfficientNet [76]. The training can

leverage ImageNet [64] pre-training to save resources. Localization systems can be

used for place recognition as well, even though they also do provide extra informa-

tion. Hierarchical localization with SuperPoint [67] and SuperGlue [68] is one of

22



the best performing methods for visual localization [57]. Modern place recognition

methods have been surveyed by Masone and Caputo in 2021 [51].

2.2 LiDAR place recognition

LiDAR place recognition utilizes LiDAR sensors (2.6.1) for place recognition. Most

visual place recognition methods can be used with LiDAR data by first exporting the

LiDAR point clouds to pixel images, as has been done by many [72, 28, 79, 36, 86,

63, 84]. A season-invariant and viewpoint-tolerant pixel image exportation method

for point clouds has been proposed by Cao et al. [12]. LiDAR sensors are explored

more in depth in Section 2.6.1, and the point cloud to pixel image exporting process

in Section 2.6.2.

There are also place recognition methods which process the LiDAR point cloud

data directly, without exporting to pixel images. PointNetVLAD [79] can take

point clouds as an input, and is based on PointNet [59] with NetVLAD [3] pooling.

MinkLoc3D-SI [87] is based on MinkLoc3D [38], and introduces place recognition

with sparse convolutions, spherical coordinates, and intensity values. Point clouds

can be segmented into discrete voxels as input to 3D convolutional pipelines. This

has been experimented for tasks other than place recognition [52] [83], but these

pipelines might also be used to pool global features for place recognition.

ScanContext is an egocentric spatial descriptor for place recognition [36]. ISHOT

[26] is a local descriptor that combines LiDAR range and reflection data. Semantic

segmentation data has been combined with the point cloud for a descriptor [44].

BVMatch is a bird’s eye view LiDAR descriptor [47].

Hybrid methods have also been introduced that combine the usage of LiDAR

with other sensory input. Collier et al. [14] combined LiDAR and RGB inputs with

FAB-MAP [17, 16]. They used VD-LSD [75] fetures for LiDAR and SIFT [45]

features for RGB. Joint learning with LiDAR and radar has also been proposed for

place recognition [85].

2.3 LiDAR datasets

Along with the rising interest in autonomous driving, various LiDAR datasets have

become more popular. There are several datasets available with good quality ground
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truth positioning and LiDAR data. However, indoor datasets were hard to find at

the time of choosing. For good place recognition results, the sensor data needs to be

of high enough quality, and therefore recorded with a LiDAR that can produce big

enough point clouds per scan. A 32 beam 360 degree LiDAR is a decent baseline.

MulRan [37] is an urban outdoors dataset with high quality LiDAR data and

their own egocentric spatial descriptor [36]. They also assess the suitability of several

similar datasets for LiDAR place recognition.

Many datasets with high quality ground truth position and LiDAR data are us-

able for place recognition, even though they are not specifically intended for it. High

quality LiDAR datasets include: The Newer College Dataset [62], University of

Michigan North Campus Long-Term (NCLR) [13], nuScenes [10], Kitti [24], Com-

plex Urban [33], Ford Campus [55], and Ford Multi-AV Seasonal [1], WaymoOpen

dataset [73], The Oxford RobotCar [49], and The Oxford Radar RobotCar [5].

While all the LiDAR datasets are also usable for RGB, there are datasets available

only for RGB place recognition: Mapillary Street-Level Sequences [80] is a large

dataset for lifelong place recognition. Eynsham [15] is a dataset with a 35 km long

sequence that is traversed twice. The Nordland dataset [74] consists of 3000 km in

northern Norway over four seasons. St. Lucia dataset [25] from the urban streets of

Brisbane covers several times of day over a few days three weeks apart.

2.4 Loop-closure

Place recognition is related to the problem of loop-closure, in which the recognition

of already visited places is used to reduce error in the route mapping. A loop is

formed in the route when the agent comes back to a place it has already visited.

The reason a loop point is important is because a loop point gives very reliable

information about two points in the route being at the very same location. If the

internal navigation odometry has drifted along the traveled way, as is most often the

case, a loop point provides a stable check-point to rectify the drift. [40, 30]

Illustrative visualization of using the loop-closure detection method is seen in

Figure 2.1, in which a loop point and a non-loop point can be told apart by looking

at the feature space distances of the best matches. This indicates that the model has

learned to distinguish nearby images by having them be closer in the feature space

just as they are in the real-world.
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Figure 2.1 © 2021 IEEE. Publication II, Figures 2 and 4. Examples of loop closure (top-left) and non-
loop closure locations (top-right) where the method effectively detects the loop closure. In
the loop-closure location the best five matches (red points) are all near the query spatial
location (green point) and within a small feature distance while in the non-loop-closure
location the feature distances are large and the matches are found in random spatial loca-
tions. The model has been trained to match nearby images. The detection for loop points
could be thresholded with the feature space Euclidean distance, as seen in the bottom
figure. Data from a private factory dataset. (Note: the graph is from a different model, so
the distances do not match the map images above.)

2.5 Image retrieval

Image retrieval is a practical way to implement place recognition [2]. Image retrieval

is the problem of using images to find other similar images [41]. There is a pool

of images called the gallery, which is where we are trying to find images from. An

image that is used as the search term is called a query image.
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A query image is given to the image retrieval system, and the image retrieval

system gives the best matching images from the gallery set as a result to the query

image. The result list can include n best matches, or it can be thresholded by a

similarity score to the query image. The image retrieval system therefore needs

to be able to compare images to each other and assign similarity scores to image

pairs. In the thesis, similarity is dealt with at two levels: Metric learning (Section

3.3.1) with a deep neural network (Section 3.1) is used to learn relevant similarities

between images, and Euclidean distance (Section 2.5.1) is used to compare the learned

similarities.

To test a query set against a gallery set, first we get the feature vectors from the

model for all the images in both sets. Then we can calculate the Euclidean distance

of each query set image to all the gallery set images. The Euclidean distances can

then be sorted from smallest to largest. The shortest distance is the best match that

the image retrieval system provided, and it may be correct or incorrect depending

on the quality of the model and how similar the images in the gallery are. A high

level view of an image retrieval system can be seen in Figure 2.2.
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Figure 2.2 Image retrieval system high level diagram. A query image can be given to the system,
and the system finds similar images from the gallery set. A function for calculating feature
vectors from images is assumed, and all the images have the feature vectors calculated.
The query image feature vector is compared to each feature vector from the gallery set.
The comparison can be done as the Euclidean distance. The closer two images are in
their feature space Euclidean distance, more similar they are. In the figure it can be seen
that the last image in the gallery set is the best match for the query image.

2.5.1 Euclidean distance

In image retrieval, the learned similarity between images is often represented as two

feature vectors – one extracted from each image. To get a single number value for easy

comparison, the similarity between two vectors can be calculated by various distance

metrics. In the context of this thesis, Euclidean distance is used as the distance metric,

and the final similarity score is the inversed feature space Euclidean distance between

the images, so that the closer the distance, the more similar the images are expected

to be.

The Euclidean distance for two feature vectors, p and q, in the n-dimensional

feature space can be calculated by taking a square root of the sum of all the dimension-

wise squared subtractions:

d(p, q) =
√
(p1 − q1)2 + (p2 − q2)2 + · · · + (pn − qn)2 (2.1)
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2.5.2 Feature vectors

A feature vector is a vector that describes a piece of data, such as an image or a feature

point in an image. A good feature vector is like a compressed essence of the data,

focusing in on the areas that are important for the task at hand. Feature vectors can

be of any length. [65]

An l-length feature vector habits an l-dimensional feature space. Similarity be-

tween different data inputs can be distinguished by how close they are to each other

in the feature space. For example, a feature vector of a model that is trained to be in-

variant to lighting conditions can have largely different input images with lots of the

pixel values completely different, and still be very close to each other in the learned

feature space. A model that is fed an image, produces a feature vector describing the

features the training of the model has deemed important.

In the image retrieval context, feature vectors are usually either global or local

features. A local feature describes an area around a point in the image. Often the

methods find many local features from the image. A global feature describes the

whole image in one vector. Global features are generally faster to extract and to use,

but local features often allow for more accurate matching of the images, and there is

also geometric information of the local points that can be used.

2.5.3 Comparing the feature vectors faster

The extracted local or global feature vectors are compared to each other to find the

best matches. Matching is usually comparing feature space distances, for example,

as Euclidean distance (equation 2.5.1). This can be done one by one, but research

work has been conducted to speed up the process. Speed of search is particularly

beneficial in practical real-time scenarios or massive datasets.

Many methods [3, 61, 53] use principal component analysis (PCA) to decrease

the length of feature vectors for faster comparability and lower memory consump-

tion. Optimized software and methods, such as FAISS [34] and locally optimized

product quantization [35], can be used to speed up the similarity search process for

feature vectors. Hierarchical grouping has been found to decrease the linear com-

plexity to logarithmic, at least for exported LiDAR imagery [48].

For increased accuracy for matching images with local feature vectors, geomet-

ric verification can be used. The local feature descriptor coordinates in the images
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are calculated for inlier points with the Random Sample Consensus (RANSAC) al-

gorithm [22], and the inlier count is used as matching similarity instead, as in the

DELF [53] method.

2.6 Exporting LiDAR point clouds to 2D pixel images

2.6.1 LiDAR sensors

LiDAR is an active sensor that sends a laser beam into the environment and senses

how the beam is reflected back. The accurate measurement of the time it took for the

beam to reflect back is used tomeasure the distance to the reflected object. In addition

to range, the sensor often also provides some kind of reflectivity data of how well

the encountered material reflected the laser beam. LiDAR is an interesting robotics

sensor due to accurate range information, which complements an RGB camera. The

price has also become reasonable for practical applications.

LiDARs are often called either 2D or 3D. Two dimensional LiDARs operate on a

single plane in space, producing two dimensional point clouds. They often use only a

single laser beam, which is fixed vertically but might be rotating horizontally. Three

dimensional LiDARs also rotate the laser vertically or, more often, have multiple

lasers with different vertical angles, thus capable of producing three dimensional

point clouds.

In the context of robotic navigation, the focus in this thesis is on the relatively

cheap commodity hardware LiDAR sensors. These sensors typically are rotated

around an axis, giving a 360 degree horizontal field of view. Several different vertical

angles can be scanned, giving the rotating unit a 3D view of the environment. A

typical commodity 3D LiDAR, such as the Velodyne HDL-32E, has 32 channels,

a 360 degree horizontal field-of-view and a 40 degree vertical field-of-view. This is

good enough quality to be used for place recognition in urban outdoors experiments,

as seen in publication III, Evaluation of long-term LiDAR place recognition.

3D LiDAR scan data is usually processed as a three dimensional point cloud. One

rotation of the sensor is though of as one scan. By combining multiple scans one can

build a 3D point cloud of a larger environment, such as a room, a cave, or a city.
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2.6.2 Projecting LiDAR points to a plane

Point cloud data can be exported to a panoramic 2D image, in which the pixel values

represent the range or reflection in that point of the scan. These exports are also

called depth maps and intensity maps, respectively. Points clouds, like any other

three dimensional data, can be projected onto a two dimensional plane. LiDAR

point clouds are sparse, so the resolution has a practical upper limit and it is markedly

worse compared to RGB photography.

A good quality commercial 3D LiDAR sensor, Ouster OS1-128, can produce

enough points for a 2048 by 128 pixel image per scan. A medium quality LiDAR,

Velodyne HDL-32E, can produce a 1024 by 32 pixel image. Cheaper 2D LiDARs

only produce measurements on a plane, which in practice can be exported into one

dimensional pixel "images". For example, the 2D LiDAR used in COLD dataset

[58] can export only to 512 by 1 pixel images.

For the projection, we need to know the vertical and horizontal field-of-view and

resolution for the sensor. Then the points in the space can be mapped onto a cylin-

drical surface that can be displayed as a plane. Either the range or reflection data

can be used as the greyscale color for the pixels. The 32 bit float values indicating

the distance or reflectivity can be scaled to a range suitable for images. The maxi-

mum real-world range of the LiDAR sensor can be set as the color white, and the

minimum range as the color black, and the other values interpolated to somewhere

inbetween. This results in a discrete gradient with useful data, although the gradient

is not consistent between differently ranged sensors. The 32 bit float distances can

be quantized down to 8 bits, so that the biggest value 255 is scaled to the maximum

real-world range of the LiDAR sensor. The projected and quantized point cloud pro-

duces a low resolution image, as seen in Figure 2.3. The low resolution is especially

pronounced because of the wide full circle field-of-view, which makes the pixels per

degree very low. The sensors also often have a big difference between the vertical

and the horizontal field-of-view, which makes the aspect ratio of the projected image

quite high. For all these reasons the projected LiDAR pixel images are often visu-

alized with suitable color mapping and rescaling, as seen in Figure 2.3. The neural

networks, of course, use the unaltered greyscale images as data.
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(a) LiDAR pointcloud visualized (top view):

(b) LiDAR pixel map depth export:

(c) Visualized depth map for human comfort:

(d) LiDAR pixel map intensity export:

(e) Visualized intensity map:

Figure 2.3 LiDAR data is usually stored as (a) point clouds, which can be visualized as sparse points
in a three dimensional space. After projecting the point cloud depth to a (b) greyscale pixel
image, the image is ready to be fed to the image retrieval system for place recognition
and other tasks. (c) The exported image can also be visualized – brightened, colorized,
and scaled – for better human understandability. (d) The raw intensity map and (e) the
visualized intensity map are visibly different from the depth maps. In the pixel images the
x-axis is the horizontal 360 degree field of view, and the y-axis is the vertical FoV. The
depth map pixel brightness corresponds to the distance from the sensor. In the intensity
map the pixel brightness corresponds to the intensity of the reflection from the material.
The point cloud data is from the Oxford Radar RobotCar dataset [5] left side LiDAR.
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3 DEEP PLACE RECOGNITION

3.1 Deep models

Many image retrieval and place recognition methods employ deep learning. Convo-

lutional deep learning networks are powerful at learning features from sensory data

such as images, and therefore perform well for place recognition.

Deep learning means neural networks that have more than a few layers. There

is no clear limit, and it depends on the application. In image processing there are

typically between a dozen and a few hundred layers. Deep learning is one type of

machine learning. In machine learning the algorithm is fed data in the form of inputs

and outputs, and the system learns a connection between the two. Machine learning

is a sub-field of artificial intelligence.

There are widely used open source tools freely available for building and ex-

perimenting with neural network architectures, loss functions, evaluation metrics,

workflows, and so forth, with ready made implementations available. Notably, Ten-

sorflow [50] and PyTorch [56] are used commonly in the field.

Neural networks and deep learning are widely researched topics which go well

beyond images and place recognition. Natural language processing (NLP) for trans-

lating and generating text, text-to-speech and speech-to-text for switching modalities,

and training agents via reinforcement learning are just a slice of the application do-

mains.

3.1.1 Convolutional neural networks

Convolutional layers allow spatial data to be processed with fewer neural connections

than fully connected layers. The data, for example an image, is processed by different

learned filters which spatially go over the image. Convolutional layers are often

interlaced with pooling layers to form a convolutional pipeline. In the network,
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the layer size starts with the spatial size of the input data, which gets smaller and

smaller towards the end of the pipeline, whereas the filter size increases. It could be

said that information about the image gets more generalized towards the end of the

convolutional pipeline, as there is more information about a larger spatial area.

The fact that convolutional layers have less weights than fully connected layers,

means that they are faster to compute. The speed increase has brought many prob-

lems previously seen as too slow to calculate into the field of practical experimen-

tation. Convolution is not suitable for everything though, as sometimes dropping

connections and exploiting spatial information is not preferred, and in many situ-

ations a fully connected or some other type of layer is more suitable. Often for

sensory input at least, convolutional pipelines are generally good.

Deep learning and convolutional networks have been developed by many over

the years, such as LeCun, Bengio, and Hinton [42] and their collaborators [43] [8]

[39] [71]. The current community has naturally grown much larger.

3.1.2 Backbone networks

A backbone network refers to the neural network that is used as the basis for the

feature vector extraction. For place recognition, the backbone network is usually

stripped of the possible extra layers at the end, such as categorization. Typically, for

place recognition, a layer of pooling is added on top of the backbone network to

produce better performing feature vectors. In this thesis two pooling methods are

explored: generalized mean pooling (GeM) [61] and NetVLAD [3].

In practice, the backbone networks are often the same ones which are generally

used in many image processing tasks. Networks such as ResNet [27], VGG [70],

EfficientNet [76], and MobileNet [31] architectures. These backbone networks usu-

ally have pre-trained weights provided by the developers. The pre-training is often

done with the ImageNet dataset [19] and the image classification task. Using the

pre-trained weights as a starting point saves resources, as training big networks from

scratch would require lots of training cycles.

It is important to note that training done for one visual task is most often applica-

ble to other visual tasks as well. The convolutional network learns to process images

in useful and general ways. A network trained for image classification is surprisingly

good for place recognition, as the network has already learned to extract essential

information from the images. Still, the pre-trained network is often further trained
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with task specific data in order to improve the results. The further task specific

training is called fine-tuning.

3.2 Pooling methods

When the extraction of good suitable feature vectors (embeddings) for the dataset is

required, a typical way is to have a general convolutional neural network pipeline

for extracting the features and add a pooling layer on top of it to produce the final

embedding. While all the layers in the pipeline can be used as feature vectors (with

or without pooling), it is usually the last layer that is used in order to get the shortest

vector with the highest abstractions of the features. The three dimensional last layer

output tensor (with width, height, and depth or filter count) is concatenated as an

l-dimensional vector (where l = w*h*d) and fed to the pooling layer. For place

recognition, the network is trained in a way that the Euclidean distance of pooling

layer 2D vectors of two images is indicative of their real-world distance. A high level

diagram of a deep convolutional neural network with a pooling layer on top is seen

in Figure 3.1.

Figure 3.1 Deep backbone network with suitable pooling on top. The network is fed an image, and
the output is a feature vector.

3.2.1 Generalized mean pooling (GeM)

Generalized mean pooling (GeM) is a learnable generalization between average pool-

ing and max pooling. It was introduced in CNN Retrieval, a state-of-the-art image

retrieval system by Radenović et al. [60, 61]. They use GeM to generate the final

feature vector after the convolutional pipeline. The GeM calculates the generalized

mean of each channel in a tensor. The GeM layer is added on top of the last convo-

lutional layer in the pipeline. The 3D tensor output χ, sizedW ∗H ∗ K , is fed into

the pooling layer, where the GeM vector f is calculated:
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f = [f1...fk...fK ]
�, fk =

(
1

|χk |

∑
x∈χk

xpk

) 1
pk

, (3.1)

The set of activations χk is calculated for the feature map k ∈ {1...K}. GeM is a

generalization of average pooling and max pooling, and the learned parameter pk

controls how close the per channel pooling is to average (pk = 1) and max (pk = inf).

The pooled vector f is l2-normalized before using.

3.2.2 NetVLAD

NetVLAD [3] is a deep learning place recognition method. The main components

of NetVLAD are the NetVLAD (pooling) layer, triplet ranking loss, and PCA

dimensionality reduction. The NetVLAD pooling layer is a differentiable version of

the VLAD [32] encoding of SIFT [45] features. VLAD encoding outputs a K × D-

dimensional matrix, in which K is the number of visual words and D is the number

of feature dimensions.

The VLAD encoding,

V (j, k) =
N∑
i=1

ak(xi) (xi (j) − ck(j)), (3.2)

is calculated from the N SIFT vectors. xi (j) and ck(j) are the j-th dimensions of the

i-th SIFT vector and k-th cluster center. Feature xi belonging to the k-th visual word

is noted ak(xi).

The resulting VLAD matrix encodes feature distances from the visual words.

VLAD encoding is more powerful than Bag-of-Words (BoW) encoding, but it is

also slower to process [32]. The NetVLAD layer implements a learnable VLAD

encoding:

V (j, k) =
N∑
i=1

ew
T
k
xi+bk∑

k′ e
wT
k′
xi+bk′

(xi (j) − ck(j)), (3.3)

The {w}k, {b}k, and {c}k are sets of learned parameters.
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3.3 Loss functions

Loss functions are at the very core of how the learning happens in a neural network.

For place recognition, the loss functions are similar in that they implement metric

learning (Section 3.3.1). The learned representation feature vector provides that

similarity can be measured by standard distance functions such as Euclidean distance.

All the loss functions introduced below push matching images closer towards each

other and non-matching images further from each other in the feature space.

3.3.1 Metric learning

Metric learning means learning to measure similarities between objects [54, 81]. In

image retrieval and place recognition, it is beneficial to know similarities between

objects. Meaningful real-world similarities between complex patterns, such as im-

ages, cannot be calculated with simple metrics like the Euclidean distance. We use a

deep convolutional neural network to learn meaningful similarities between images.

For the training, the network is given pairs or triplets of images with the knowl-

edge of whether they are a match. In the loss function, the total model error is

calculated for the input data based on the ground truth. The total error is backprop-

agated through the network to find weight-wise error contribution, after which the

weights are updated according to the chosen learning parameters. In essence, the

loss function for the training pulls matches closer together in the feature space, and

pushes non-matches further apart. When repeated enough times with enough data,

the network has learned a metric to measure similarity in images in the specific way

that the matches and non-matches were chosen. A high level diagram of a metric

training process can be seen in Figure 3.2.
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Figure 3.2 A simplified training process of the place recognition system using triplet loss function. For
each anchor image (Section 3.3.3), a positive match and a negative match are chosen
based on ground truth real-world position. A positive match needs to be within the cho-
sen training distance threshold T, and a negative match needs to be over the threshold.
The feature vectors for all three images are calculated. The model errors for both pairs
of anchor–positive and anchor–negative are calculated. The combined total error is back-
propagated and the training step is carried out.

3.3.2 Contrastive loss

The contrastive loss is the default used by CNN Retrieval system with GeM [61].

Training is done with a contrastive training loss function used in a Siamese network
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configuration, in which two inputs are fed into two identical networks with shared

weights, and the loss is calculated from the output of both networks. Unlike triplet

style loss functions, contrastive loss only deals with images as pairs. The input images

are fed as pairs (i, j) with labels Y (i, j) ∈ {0, 1}, where 0 means that the images are

non-matches and 1 means that the images are matches, as seen in the contrastive loss

equation:

L(i, j) =

⎧⎪⎪⎨⎪⎪⎩
1
2 ‖f (i) − f (j)‖2, Y (i, j) = 1

1
2 (max{0, τ − ‖f (i) − f (j)‖}2, Y (i, j) = 0

(3.4)

The parameter τ is the enforced margin between the non-matching images

3.3.3 Triplet loss

The triplet loss function [81] [69] takes as input three images: an anchor, a, a match

for the anchor, p, and a non-match for the anchor, n. The anchor image is chosen

randomly, and used as a point of reference to simultaneous matches and non-matches.

L =
N∑
i

[
| |f (xai ) − f (x

p
i ) | |

2
2 − ||f (xai ) − f (xni ) | |

2
2 + α

]
+

, (3.5)

The α is the distance margin between non-matching images.

Hard negative and positive mining is a process that searches for negative and posi-

tive samples (in relation to the anchor image) which the model still has not learned

to distinguish properly. It is possible to use only either hard negative or hard posi-

tive mining, as using both is in no way necessary. With triplet loss, the learning can

be significantly improved with hard mining when forming the training batches. The

reason is that as the size of the dataset grows, the amount of available triplets (anchor,

positive, and negative) grows cubically, making the full exploration of big datasets

impractical. A powerful model (such as a convolutional neural network) learns the

trivial triplets quickly, making most of the data irrelevant for further learning. Im-

proved learning performance is gained by having a hard mining process to feed the

learning process with hard triplets that are relevant to improving the model. [29]
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3.3.4 Hermans triplet loss

Hermans triplet loss [29] is an improvement to the triplet loss (Section 3.3.3). The

upside of Hermans triplet is speed, as it does not require hard negative mining to

achieve good results. The loss function is more complicated than triplet loss, because

Hermans triplet loss considers all anchor-positive pairs within the batch.

LLG (θ;X ) =
P∑
i=1

K∑
a=1

[
log

K∑
p=1
p≠a

e
D
(
fθ (x

i
a ) ,fθ (x

i
p )
)

+ log
P∑
j=1
j≠i

K∑
n=1

e
α−D

(
fθ (x

i
a ) ,fθ (x

j
n )
) ]

+

. (3.6)

The parameter D is the distance function (in this thesis, Euclidean distance is used).

The fθ is the feature space mapping function (in this thesis, a convolutional neural

net with suitable pooling is used). The P is the number of classes available (within a

batch), and the K is the number of samples (within a batch) from each class. The X

is a batch of training data. The subscript ’+’ denotes the positive numbers only and

therefore the minimum value for the loss is zero.

3.3.5 Lifted structured loss

Lifted structured embedding loss [54] implements a similar metric learning concept

as the triplet loss. In lifted structured embedding loss every image in the training

batch is compared against every other image in the training batch. The batches are

mined in a specific way, as a few randomly chosen positive pairs are used to mine

for neighboring hard negatives. The overall performance of lifted structured loss is

demonstrated to be above triplet and contrastive losses [54].

The lifted structured loss function,

J̃ i,j = log

⎡⎢⎢⎢⎢⎣
∑

(i,k) ∈N

e(α−Di,k ) +
∑

(j,l) ∈N

e(α−Dj,l )

⎤⎥⎥⎥⎥⎦ +Di,j

J̃ =
1

2|P |

∑
(i,j) ∈P

max(0, J̃ i,j)
2

. (3.7)
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optimizes a smooth upper bound J̃ (D(f (x))) to avoid bad local optima. The N

is all the negative samples in the batch, and the P is all the positive samples in the

batch.
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4 DATASETS, EXPERIMENTS, AND PERFORMANCE

EVALUATION

4.1 Overall deep architecture for place recognition

To setup image retrieval for place recognition, minor modifications are needed to

typical image retrieval pipelines. Basically we want the model to learn a feature

space that corresponds to a physical space in a way that two images taken close-by

in real life have a short distance in the feature space, as well. For this, we choose a

training threshold distance that we use to sort images into matches and non-matches

according to their ground truth position data.

In the thesis publications, various architectural choices for place recognition are

explored. The common elements through all are: Feature extraction is done with

a convolutional backbone network with an added global pooling layer at the end.

The loss functions used in image retrieval in this thesis and the publications always

implement metric learning, and are either based on triplet or paired samples. In a

triplet the samples are an anchor, a positive match, and a negative non-match. In

a pair, as used in contrastive loss, an anchor is combined with either a match or a

non-match.

To achieve the wanted feature space, the training batches (for triplet data) are

built as follows:

1. Choose a random image from the training set. This is the anchor sample.

2. As a positive match, choose a random image that is within the chosen training

threshold distance to the anchor.

3. As a negative match, hard negative mine an image that is outside the chosen

training threshold distance to the anchor.

This way the categories are not pre-chosen, but are dynamically built by mandat-

ing that matches are anything near enough and non-matches are anything far enough.
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Otherwise the training is similar to image retrieval with static categories. The dataset

loader is also extended with a loop that pre-builds a list of all the nearby match im-

ages for each image, so the batch forming is faster. The metric learning loss functions

for these batches push further apart the feature space distance of images that are far

away in the ground truth real world positioning, and pull closer together the feature

space distance of images that are close by in the ground truth positioning. A high

level diagram of the training process can be seen in Figure 3.2.

Multiple experiments were run with varying the training match distance thresh-

old. There was not much difference in performance, as long as the train and test

distance thresholds were within "reasonable" values. The reasonability of the values

comes from accuracy of ground truth position information, other researchers, as well

as how different the images actually are. For example, in a big open field two images

taken 10 meters apart might look the same, but indoors 10 meters apart might look

very different. The chosen training distance was 5 meters in urban outdoors, and

one meter indoors.

For place recognition training and testing, a dataset needs to have:

1. Sensory input data.

2. Corresponding place information for input data.

3. At least two sequences that have overlapping driven routes in the environment.

One sequence for the query set and another for the gallery set, so we can test

the recall performance.

4. More data for training, if fine-tuning. The driven route for the training set

is preferably completely independent of the driven routes for the query and

gallery sets. It does not even have to be a sequence as such, but there needs to

be enough data below and above the training distance threshold for multiple

images. This means there needs to be at least some kind of clusters of data in

terms of position. For practical real-life implementations where the goal is to

have a functional system and not to run benchmarks, all the available data can

be used as the training set.

In the context of this thesis, place recognition requires positional data as ground

truth so accuracies can be measured in real-world metric units. To contrast, in cat-

egorical approximate place of image recognition the place information can be just

an ID describing the general place of the data. For example, the Google Landmarks
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datasets [53, 82] have images taken of landmarks identified by an ID. While the

method of matching and retrieving images is quite similar in both, the dataset re-

quirements are very different for place recognition and categorical image recogni-

tion.

The most important dataset used in this work is the Oxford Radar RobotCar

dataset [5], which features long overlapping sequences captured with high quality Li-

DAR. In addition, the Cosy Localization Database (COLD) [58], an indoor dataset

with a 2D LiDAR is experimented with. Despite the 2D LiDAR, the COLD dataset

is interesting as it has long-term capability via several dynamic sequences from same

places.

4.2 Simulated data

Simulated data is interesting, as the lure of easily collectable data from a fully con-

trolled environment with perfect ground truth is very tempting. The downsides are

that even well generated simulation rarely matches real-world data, and depending on

the area of application, it might be very time consuming and hard to create realistic

simulated data.

In Publication I, simulated data from a game environment was experimented with.

The environment built from freely available Unity asset store items, was added with

the capability to tag environment objects with the wanted segmentation labels. Thus,

gathering of image segmentation datasets was possible with ease. The studied seman-

tic segmentation problem is different from place recognition. However, for both,

convolutional neural networks are used as the feature extraction pipeline, and input

is images. With similar simulation setup, LiDAR place recognition data could be

produced with very high quality LiDAR scans and ground truth. That is, however,

left as a future research avenue for now. In the publication, it was demonstrated that

even cheaply built simulation environments can produce datasets that can improve

training results when mixed in with real-world data at a suitable ratio.
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4.3 LiDAR 360 degree rotation augmentation with private factory
data

Image augmentation shares a similarity to simulated data. In augmentation the orig-

inal data is altered to produce more data in order to make the algorithm learn to

generalize better. Due to the horizontal 360 degree view of the LiDAR sensors typ-

ically used, experiments with virtually rotating the sensor to augment data can be

conducted. The virtual rotation of the sensor is quickly doable by rolling over the

exported pixel image. The pixel columns are moved forward, and the overflow is

copied back to the beginning to fill the first columns. All data is preserved, only the

image "direction" is moved, simulating a rotation of the sensor itself.

In Publication II, a 360 degree random panoramic rotation and a 180 degree

panoramic direction flipping were introduced as augmentation methods specific to

exported LiDAR images. In a 360 degree random panoramic rotation the image is

randomly rotated between [0, 360] degrees to simulate more viewpoints and situ-

ations. The 180 degree panoramic direction flipping only rotated either 0 or 180

degrees, to simulate driving the other way around. The random rotation and direc-

tion flipping were experimented with on a 9707 frame high quality private dataset

gathered from an industrial factory indoors environment. A sample image from the

dataset can be seen in Figure 4.1. The best result in loop detection was achieved with

utilizing 360 degree random rotation augmentation.

Figure 4.1 © 2021 IEEE. Publication II, Figure 3. A visualized sample from the Ouster LiDAR intensity
scan used for route loop detection.
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4.4 Oxford Radar RobotCar dataset

The Oxford Radar RobotCar dataset [5] is a newer version of the Oxford RobotCar

dataset [49]. The Oxford Radar RobotCar dataset features 32 sequences driven in

January 2019 in downtown Oxford. Each sequence follows the same 9 kilometer

long route with several loop points. The Radar RobotCar features radar measure-

ments, and more importantly in this context, two LiDAR sensors of decent quality.

The dataset is large enough and there is lots of dynamic variability in traffic, sun-

shine, clouds, and rain. There is however no seasonal variability or extreme weather

conditions. An example of Oxford Radar RobotCar data can be seen in Figure 1.1.

The complete list of sensors in the Oxford Radar RobotCar dataset is as follows:

On the roof there is a Navtech CTS350-X radar and two Velodyne HDL-32E Li-

DARs, one on each side. The other sensors are familiar from the older RobotCar

dataset: NovAtel SPAN-CPT ALIGN for GPS+INS data, Point Grey Bumblebee

XB3 stereo camera pointed forwards, Point Grey Grasshopper2 cameras pointed

left, right, and rear. There are also two low quality SICK LMS-151 2D LiDARs. In

studying LiDAR place recognition, the interest was mostly on the Velodyne LiDARs

and the positional data. The absolute positional data is important as it allows us to

compare data from different sequences and test the system performance as accurately

as possible. The dataset provided GPS/INS positional data drifts too much for re-

liable performance testing with distance thresholds less than about 15 meters. The

provided radar odometry ground truth is more accurate, but completely relational

to the starting position and direction, which are not provided. The GPS/INS data

has approximate timestamped pose information that can theoretically be used as the

odometry start points, but in practice are inadequate.

The Oxford Radar RobotCar dataset was used as the urban outdoors long-term

LiDAR place recognition dataset in Publication III. The environment in Oxford

consists of diverse old buildings along narrow streets with parks and trees visible

every now and then. It does seem that the dataset offers plenty of diversity and

distinguishable visual features, as well as lots of dynamic elements in the form of

traffic and weather.
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4.4.1 Significance of the ground truth accuracy

The significance of ground truth accuracy and the effect of gallery selection for place

recognition evaluation was studied in Publication IV. While the ground truth radar

odometry provided with the Oxford Radar RobotCar dataset is higher quality than

the provided GPS/INS positioning, the odometry could not immediately be used

for place recognition evaluation, as seen in Figure 4.2. The reason for that is that

odometry is always starting from the point of origin, (0, 0), while GPS/INS starts

from a correct (but possibly inaccurate) global positional point. For place recogni-

tion it is critical that the routes are aligned precisely with each other so that one route

can be chosen as the query set and another as the gallery set and use the position-

ing as ground truth. It is impossible to do accurate place recognition benchmarking

without precise alignment.

(a) GPS/INS (b) Radar Odometry (c) Radar Odometry (fixed)

Figure 4.2 Various Oxford Radar RobotCar ground truth sources visualized for all 22 sequences used
in the experiments (2 gallery, 2 train and 18 query sequences). "GPS" is omitted as it
is practically GPS/INS with less samples and provides almost identical results. In Radar
Odometry (fixed) each sequence start pose is manually tuned (translation and rotation).
Figure 2 from Publication IV.

The GPS/INS position drifts too much for reliable place recognition benchmark-

ing for thresholds under about 15 meters. Many recent papers use a 5.0 meter thresh-

old for determining pairs, and the GPS/INS drift was beyond that in many cases,
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giving confusing and erroneous results. To make place recognition benchmarking

with the Oxford Radar RobotCar dataset more accurate, the radar odometries were

manually aligned for a demonstratedly better testing accuracy. A new evaluation

protocol was also proposed, as seen in Table 4.1, for the Oxford Radar RobotCar

dataset to encourage more comparable study results.

Table 4.1 Selected place recognition gallery, training and test sequences for benchmarking the Oxford
Radar RobotCar place recognition. All sequences are during daylight as the starting times
are between 11:46 and 15:20, single traversal takes about 30 minutes and in January the
sun sets approximately at 16:50 (4pm50) in Oxford. Publication IV, Table 1.

Name Data Time (GMT 24h) Weather†

Gallery 1 Day00 (Jan 10) Noon (11:46) Low clouds

Gallery 2 Day00 Afternoon (15:19) Low clouds

Train 1 Day00 Afternoon (14:02) Low clouds

Train 2 Day00 Afternoon (14:50) Low clouds

Query 01 Day01 (Jan 11) Noon (12:26) Broken clouds

Query 02 Day01 Afternoon (14:37) Broken clouds

Query 03 Day01 Afternoon (13:24) Broken clouds

Query 04 Day04 (Jan 14) Noon (12:05) Broken clouds

Query 05 Day04 Afternoon (14:48) Broken clouds

Query 06 Day04 Afternoon (13:38) Broken clouds

Query 07 Day05 (Jan 15) Noon (12:01) Partly sunny

Query 08 Day05 Afternoon (14:24) Partly sunny

Query 09 Day05 Afternoon (13:06) Partly sunny

Query 10 Day06 (Jan 16) Noon (11:53) Light train, partly sunny

Query 11 Day06 Afternoon (14:15) Light train, partly sunny

Query 12 Day06 Afternoon (13:09) Light train, partly sunny

Query 13 Day07 (Jan 17) Noon (11:46) Passing clouds

Query 14 Day07 Afternoon (14:03) Passing clouds

Query 15 Day07 Noon (12:48) Passing clouds

Query 16 Day08 (Jan 18) Noon (12:42) Partly sunny

Query 17 Day08 Afternoon (15:20) Partly sunny

Query 18 Day08 Afternoon (14:14) Partly sunny

†weather conditions obtained from https://www.timeanddate.com
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4.5 COLD: COsy Localization Database

The COsy Localization Database (COLD) [58] is a navigation dataset gathered from

three different indoor offices: the Autonomous Intelligent Systems Laboratory at the

University of Freiburg in Germany, the Visual Cognitive Systems Laboratory at the

University of Ljubljana in Slovenia, and the Language Technology Laboratory at

the German Research Center for Artificial Intelligence in Saarbrücken in Germany.

There are a total of 76 continuous sequences available. The dataset is collected over

multiple days, and includes moving objects and people in the busy offices. The light-

ing and weather conditions are also varied, including sunny day-time, cloudy day-

time, and night-time sequences. The dynamic conditions make the COLD dataset a

good option for testing place recognition robustness in busy environments. COLD

was used in Publication III as the office indoors dataset.

Manually driven robots are used for the capture. The robots at each three location

are of different height, but feature the same set of sensors. Odometry, perspective

and omnidirectional camera images, as well as laser scanner data are included in the

dataset. Two Videre Design MDCS2 cameras are used; one in perspective mode and

another in omnidirectional mode. The SICK 2D LiDAR provides a single vertically

static 360-degree scan with 361 samples per rotation. The data includes only range

information, not reflection intensity. The LiDAR is very low resolution by modern

standards, which should be taken into account when considering COLD for LiDAR

place recognition experiments. A sample RGB and LiDAR can be seen in Figure 4.3.
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COLD dataset sample RGB image:

The corresponding 360-degree 2D laser scan export:

Figure 4.3 © 2021 IEEE. Publication III, Figure 3. Example from the COsy Localization Database
(COLD) [58]. The dataset is fully indoors. The greyscale image below is the expanded
SICK laser scan spanning 360-degree around the robot (white encodes distances at and
above 8 m and black is 0 m). The completely white strip in the middle of the scan is the
narrow view into the room on the other side of the corridor that measures 8 meters or more
from the sensor. The wider light grey strip on the left side of the white strip is the corridor
wall. The rest of the readings are from inside the room and thus closer by.

4.6 Performance evaluation metric

In this thesis and the publications, recall@1 is used consistently with various test

thresholds from half a meter to 25 meters, depending on the dataset. Recall@1 is a

fairly strict metric as only the best found match is considered at all. A typical place

recognition evaluation metric for place recognition is recall@N, with a certain test

distance threshold. For example, recall@N with 25 meter test thresholding is used

in [4, 3, 78, 77], as well as recall@N and recall@1 with a 5 meter threshold in [6,
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37].

To begin an evaluation of the recall@N, first a test is run, giving us a similarity-

sorted list of all gallery images per each query image. For each of the Q query images

Iq(Q), we then have G gallery images Ig (G) sorted such that the first gallery image

Ig (1) is the match that the system is predicting to be the best match for the query,

and the last gallery image Ig (G) is the predicted to be the worst possible match for

the query.

The real world ground truth position of all the images is known in the dataset,

and required for the evaluation. The test distance threshold, τ, is required for deter-

mining whether an image pair found by the system is actually considered a correct

match or an non-match. In urban outdoors the typical test thresholds are around 5

to 25 meters. In indoors the thresholds are between half a meter to 10 meters.

If the system found k-th gallery image Ig (k) has a ground truth position p(Ig (k))

that is within the test threshold distance τ to the j-th query image position d(Iq(j)),

the pair is considered a successful recognition. If the distance is more than the test

threshold, the pair is not a match.

The match function returns 1 if the pair is a match and 0 if the pair is not a match:

match(Iq, Ig) =

⎧⎪⎪⎨⎪⎪⎩
1, if dist(p(Iq), p(Ig)) ≤ τ

0, otherwise
(4.1)

For evaluation purposes, only the top N best gallery images are considered per

query image. The top-N metric determines whether or not the query was a success.

For a query to be successful, the query image needs to have at least one correct match

within the best N gallery images. For example, top-1 metric means we only check

matches between each query image and the very best gallery image in the ordered

list, i.e. the gallery image that the system predicted to be the very best match for the

query image. Top-5 means we check if there are matches in any of the 5 best gallery

images, and so forth. Top-1 is the most demanding metric.

We can think of top-N as a function, where a success would be represented by 1

and failure would be represented by 0. The sum of the first N match scores would

have to be one or more correct matches for the top-N function to return a success:

topN (Iq, N ) =

⎧⎪⎪⎨⎪⎪⎩
1, if

∑N
k=1match(Iq, Ig (k)) ≥ 1

0, otherwise
(4.2)
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As we iterate the top-N metric for all the query images in the query set, we get

the recall@Nmetric. Recall@N is the fraction of top-N scores over the whole query

set, or in other words, the fraction of successful queries.

In the recall@N function, the top-N scores for each query image are first summed

up, and then divided by the total number of query images, giving us a fraction of

successful queries:

recall@N =

∑Q
j=1 topN (Iq(j), N )

Q
(4.3)

The evaluation can be presented by looping over many different N values, or

many different test distance threshold (τ) values depending on what seems appropri-

ate for the experiment. In the publications, multiple distance thresholds are looped

over with the strictest possible N value, in order to emphasize what can be approxi-

mately expected in terms of real-world positioning performance.
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5 RESULTS

The results of the research work for this thesis have been published in several con-

ference proceedings. The most important results are summarised here.

5.1 Long-term LiDAR place recognition

In publication III, the effects of weather and sensor modality were studied with an

outdoor and an indoor dataset. LiDAR being a competitive sensor modality versus

an RGB camera was demonstrated. LiDAR depth map images were also compared

to LiDAR intensity map images, and depth maps were found to be more robust to

change.

An image retrieval systemwasmodified for place recognition and found to achieve

about 80% recall@1 with 5 meter test distance outdoors and 1 meter indoors, as seen

in Table 5.1. The fine-tuning of the pre-trained model resulted in 10 – 20% recall

improvement. In the experiments, GeM seemed to be the better pooling method.

The 2D LiDAR in the indoor dataset clearly demonstrated the worse performance

of a cheaper LiDAR.
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Table 5.1 © 2021 IEEE. Publication III, Table 1, with method name GeM used instead of CNNRetr.
Place recognition recall@1 performance. Comparison of NetVLAD [3] and GeM [61] with
only pre-training (no-train), and GeM with fine-tuning (trained). On the Oxford Radar Robot-
Car [5] and COsy Localization Database [58] datasets.

Outdoor dataset - RobotCar [49] Indoor dataset - COLD [58]

Method Rec@1-25m Rec@1-10m Rec@1-5m Rec@1-2m Rec@1-100cm Rec@1-50cm Rec@1-25cm Rec@1-10cm

Query 1 (same day, 2h later) Query 1 (sunny)

NetVLAD [3] (no train) 0.899 0.867 0.728 0.130 0.838 0.779 0.464 0.008

GeM [60] (no train) 0.926 0.901 0.774 0.134 0.783 0.723 0.439 0.004

GeM [60] (trained) 0.986 0.977 0.869 0.155 0.847 0.774 0.462 0.004

Query 2 (next day, same time) Query 2 (cloudy)

NetVLAD [3] (no train) 0.895 0.863 0.762 0.454 0.230 <0.000 <0.000 <0.000

GeM [60] (no train) 0.887 0.856 0.758 0.468 0.100 <0.000 <0.000 <0.000

GeM [60] (trained) 0.993 0.984 0.902 0.544 0.091 <0.000 <0.000 <0.000

Query 3 (after 6 days, 2h later) Query 3 (night)

NetVLAD [3] (no train) 0.527 0.449 0.325 0.049 0.264 0.005 <0.000 <0.000

GeM [60] (no train) 0.678 0.608 0.465 0.060 0.267 0.005 <0.000 <0.000

GeM [60] (trained) 0.918 0.856 0.642 0.089 0.263 0.005 0.001 <0.000

For future research avenues, it was proposed that indoor datasets with high quality

LiDAR data are needed, and that the interplay between LiDAR depth and intensity,

along with RGB should be further studied.

5.2 LiDAR place recognition evaluation with the Oxford Radar
RobotCar dataset

In publication IV, the effect of gallery selection for place recognition evaluation was

studied. A new evaluation protocol for the Oxford Radar RobotCar dataset was

proposed, as seen in Table 4.1. Fixed radar odometry ground truth starting positions

were provided, with which a better testing accuracy was demonstrated, as seen in

Table 5.2.

Table 5.2 Average top-1 recall rates for various ground truth sources with Oxford Radar RobotCar
dataset. Selected results for gallery 2 with training, from publication IV, Table III.

Method Rec@1-25m Rec@1-10m Rec@1-5m Rec@1-2m

GPS/INS gt 0.921 0.898 0.810 0.334

Radar Odometry gt 0.675 0.498 0.234 0.045

Radar Odometry (fixed) gt 0.943 0.922 0.861 0.535
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5.3 Loop-closure detection with LiDAR

In publication II, multiple technical implementation variations were studied, and

loop-detection on a private dataset was demonstrated. The dataset had 9707 high

quality LiDAR intensity scans and the architecture had an average pooling layer.

Three different loss functions were tested with nine different backbone networks.

A 360 degree random panoramic rotation and 180 degree panoramic direction flip-

ping were introduced as augmentation methods specific to exported LiDAR intensity

images. Several typical 2D image augmentation methods were experimented with.

The key take-away is that it is feasible in this case to detect loop points with image

retrieval type methods, as seen in Figure 2.1.

5.4 Simulated data

In publication I, it was demonstrated that even inexpensively built simulation en-

vironments can produce datasets that improve training results when mixed in with

real-world data at a suitable ratio.

The key results were that very complex objects such as trees benefited from sim-

ulated data, because the ground truth annotation was more detailed than a human

would realistically do. Also, adding simulated data to augment real-world data im-

proved results as long as the amount of simulated data stayed suitable to the specific

situation. In two cases, one benefited as long as the amount of simulated data was

below 50% of the total amount, and the other up to 71%, as seen in Figure 5.1.
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Figure 5.1 © 2019 IEEE. Publication I, Figure 10. Simulated segmentation data results with either one
or ten new type of trees in the simulation. The IoU results from merging different amounts
of simulated data to 1000 real-world ADE20K images. Clearly adding simulated data is
beneficial, but only up to about a 50:50 mix.

The studied semantic segmentation problem is different from place recognition.

However, for both tasks, convolutional neural networks are used as the feature ex-

traction pipeline, and input is images. With similar simulation setup, LiDAR place

recognition data could be produced with very high quality LiDAR scans and ground

truth. That is, however, left as a future research avenue for now.
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6 CONCLUSIONS

In this thesis about LiDAR place recognition by image retrieval, the key topic ar-

eas were covered in general detail and based on published research. In an overall

conclusion, LiDAR place recognition by image retrieval works well. Exported pixel

images work well with the convolutional pipeline, and image retrieval yields accurate

enough results for place recognition. The place recognition pipeline was also turned

into an Android app by a student colleague, demonstrating practical applicability.

LiDAR is a sensor well matched to the task in urban outdoor and office indoor

environments. The thesis and the related publications did, however, not take into

account the great variability of environments, such as for example, forests, caves,

shopping malls, and the countryside.

In urban outdoors, a five meter accuracy is possible with about 85 percent re-

call@1, as measured with the Oxford Radar RobotCar dataset. Indoors, an accuracy

of one meter is possible with a similar recall. The system relies on standard, generally

well understood components, which is good for future improvements alongside with

the overall research and development in the field. For example, an improved back-

bone network is easy to swap in and take advantage of, and the ImageNet pre-training

saves GPU hours and is a surprisingly good starting point for exported LiDAR im-

agery. Any new pooling method can be put on top of the backbone network.

The first research question of how to apply existing image retrieval methods for

place recognition is directly discussed in Chapter 3. More specifically, the overall

deep architecture of the place recognition modifications for the image retrieval sys-

tem (4.1) is discussed, as well as the pooling methods (3.2) and loss functions (3.3).

The performance of the method was explored in various ways in publications II, III,

and IV. In publication II, we studied several backbone networks and loss functions

with the largely related problem of loop-closure detection. In publication III, we

evaluated long-term place recognition on two datasets and two pooling methods. In

publication IV, we demonstrated the importance of ground truth accuracy in datasets

59



by manually improving the radar odometry for the Oxford Radar RobotCar dataset.

The second research question of how to handle LiDAR in image based methods

is directly discussed in Section 2.6.2. In publication III, we concluded LiDAR to be

a competitive sensor modality compared to RGB. This demonstrates that exporting

LiDAR scans to pixel images for processing in image-based pipelines is a decent way

to handle LiDAR data. We also demonstrated the quality difference between a 2D

and a 3D LiDAR, and found depth maps to be more robust to long-term changes

than intensity maps.

The third research question of how to improve the recall performance is discussed

throughout the thesis, but most directly in sections about pooling methods (3.2),

loss functions (3.3), vector comparison speedups (2.5.3), simulated data (4.2), 360

degree augmentation (4.3), the significance of ground truth accuracy (4.4.1), and in

the section about the metric we use to evaluate performance (4.6). In publication

I, we explored the usage of simulated data to improve performance in the semantic

segmentation task. In publication II, we explored 360 degree LiDAR augmentation

with a private dataset. In publication III, we found the GeM pooling to be a good

choice for place recognition.

For real life practical robot navigation systems, place recognition is but a small

piece of the software toolbox, and extracting well distinguished feature embeddings

for LiDAR sensor data is a part of place recognition. In ongoing research in the

same lab the developed methods are used in autonomous robot navigation, which

has proved their practical power for real world applications.
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Abstract—This paper studies the benefits of adding inexpen-
sively gathered simulated data to improve the training of semantic
segmentation models. We introduce our implementation to gather
simulated datasets with minimal effort. In our implementation,
we utilize a commonly available game engine (Unity) and aux-
illiary graphical assets to assemble an environment to generate
simulated data inexpensively. We also demonstrate that even the
usage of spartan simulated data mixed with real-life data can
increase the performance of the trained model slightly, given
that the ratio of simulated data is suitable for the datasets.

I. INTRODUCTION

Semantic segmentation is one of the emerging fields in
computer vision, and deep learning is a most promising
approach for it. [1] [2] [3] [4]

However, the challenge with semantic segmentation is the
requirement of large volumes of annotated examples. In se-
mantic segmentation, this is a particularly significant chal-
lenge, since the required pixel-wise annotation is clearly more
labor-intensive than for example bounding-box annotation.

One common solution is to use synthetic images, where
the ground truth segmentation maps are immediately avail-
able. Several approaches have been proposed for synthesizing
realistic views: Building custom simulated environments for
specific purpose [5] [6] [7], copy-pasting annotated objects
to generate more data [8], and extracting ground truth from
popular video games [9].

However, the generation of a complete high-quality realistic
synthetic data generator is resource-intensive in itself, and
may not always be within the reach of an engineer that
quickly needs to generate large volumes of synthetic data for
a particular application case. Therefore, we will study how
well general-purpose game development platforms are suited
for image synthesis. With this, we mean commonly available
platforms and their freely available non-tailored graphical
assets (e.g., stock models of tree, person, vehicle, etc.). With
these components, an experienced developer can construct an
environment for data collection within a few days or even
hours.

In this paper, we will study these questions with the use case
of tree segmentation aided by synthetic data from Unity game
environment. We selected trees as objects specifically since it
represents an example where human annotations tend to be
inaccurate: Humans only annotate the outline of a tree, while
a synthetic dataset contains all the small details annotated as
well.

The differences in annotation detail are highlighted in figure
1, which illustrates the result of semantic segmentation of trees

(a)

(b)

(c)

Fig. 1. Semantic segmentation results. The original image (a) segmented
with fully human annotated data (b) and with additional simulated data
(c). Simulation can achieve better detail accuracy in pixel-wise annotation
situations.

when trained using human-annotated data (middle) and when
using synthetic data (bottom). One can clearly see that the use
of synthetic data makes the model learn significantly more
detailed segmentation maps.

II. DATA GENERATION AND A GAME ENVIRONMENT

Modern game engines and development environments are
powerful tools for creating complex and visually compelling
virtual environments with relative ease. The availability of
ready-to-use artistic assets, such as textured 3D-models, an-
imations, sounds, visual effects, and behavioral logic brings
down the skill and time required to put together decent envi-
ronments. These advances in the field of game development
are excellent news to a researcher wanting to create different
environments for a variety of tasks, such as reinforcement



Fig. 2. ImageSynthesis component in Unity is attached to a Camera object.
You can select the resolution for saving images in, and the frequency of saved
frames.

learning, stereo vision, visual flow, object detection, semantic
segmentation, and many more.

The goal for our data generation experiment was to cre-
ate data beneficial to the training of semantic segmentation
algorithms with minimal cost. To that end, we took a freely
available pre-made 3D environment and labeled the 3D objects
in the scene, and that was it, as far as the art of crafting
the environment is concerned. We did not do any custom art
or even layout, as we wanted to specifically see how a very
generic, inexpensively gathered dataset could help the training
process.

Any game engine will do, but we chose to use Unity for
our experiments for several reasons: We were already familiar
with it, it is beginner friendly, there is a healthy community
for support and all kinds of add-ons and assets, and there are
ready made AI-helping components available. The objects in
our environment were gathered freely from the Unity Asset
Store. The creation of the segmentation maps was done using
the freely available Unity package ML-ImageSynthesis with a
few tweaks.

A. Necessary components for gathering data

To gather semantic segmentation data from a game engine,
there needs to be a way to export normal RGB camera images
with the corresponding ground truth segmentation images. The
implementation of this is game engine specific.

In our case, the ML-ImageSynthesis offers the required
components to gather semantic segmentation, instance seg-
mentation, depth maps, and optical flow from Unity. We
only needed the semantic segmentation. From the plugin, we
utilized the camera segmentation renderer component, and a
segmentation shader. We also created a script for controlling
how often to export renderings. One export in our case consists
of two images, one normal RGB camera image and one
pixel-wise semantic object segmentation map image. It is
also possible to set the wanted aspect ratio and resolution,
so you can, for instance, match the real dataset resolution
for consistency. In figure 2 the ImageSynthesis component
interface is seen as shown in Unity.

B. Environment design

On the artistic side, the scene in the game engine can consist
of anything you have assembled and annotated. The annotation
process is also game engine specific. The general idea is to
have an easy way to tell the game engine which objects belong

Fig. 3. Unity game engine has the concept of layers, which we utilized to
serve as our semantic class assignment method. Here is a list of layers in our
environment. We have added several classification layers, such as the layer
11 for trees, which we are using in our experiments in this paper.

Fig. 4. Assigning objects to belong to a certain semantic class is done by
selecting the wanted prefab or an instance object and selecting the layer from
the drop-down menu. It is usually beneficial to apply the layer selection to
the child objects as well.

to which classes. This could be done, for instance, utiliz-
ing different scene hierarchy trees, layers, tagging, naming
conventions, or implementing new components to handle the
annotation.

For our situation in Unity, we used assigning objects to
certain layers to mean different object classes for training.
First we added some new layers, as seen in figure 3. Then
we assigned the wanted objects to be on those layers, as seen
in figure 4. It is useful to note that we do not need to go
over our whole environment to assign every instance of a
tree to the tree layer, because we are utilizing the prefab-
structure to represent our trees. Prefabs are kind of prototype
objects in Unity, and might be thought of similarly as classes
in programming languages.

There are some caveats when using general 3D environ-
ments and objects for gathering datasets for machine learning.



For one, it is up to the original 3D artist creating the
environment and the objects to decide how to split the models
and textures to match the semantics of the object they are
modeling. For example, if you want to teach your segmentation
model to instantiate windows and doors from buildings, they
need to be technically separate 3D models in the scene,
otherwise getting the ground truth for them does not work
without additional manual work. In games, developers often
like to minimize the polygon count and the texture space to
increase real time performance, so things are baked together as
much as possible. This means that an otherwise suitable scene
may not necessarily offer the technical object level separation
to be used as is. Of course, adding invisible 3D pseudo-objects
on top of the semantic objects in the models allows you to
annotate the 3D objects however you wish, which can still be
a lot less effort than labeling the resulting 2D images.

The artistic style used might also be antithetical to real
life transfer learning, as in being cartoony or artistically
flamboyant.

It might also be hard to find the exact objects or scenes
you’d prefer, if you have specific needs. The forests near the
Arctic Circle in April look quite different to the stylized lush
green forests modeled to please the eye of the global gamer.

Also, simply the texture quality or the polygon count might
simply be too low for your use case.

There might also be some technical hurdles, such as in
our case, the handling of Unity terrain components. Unity
apparently does have a rendering system for segmentating
based on terrain textures, but we were not able to get it
working properly at the time of writing.

C. Automated data collection

The quick and easy way to gather datasets is to do it auto-
matically. In automated data collection the collecting camera
is put into a semi-random position, the view and the segmenta-
tion map are rendered, after which a new semi-random position
is immediately chosen. This way the gathering of the data is
not limited by human guidance or certain camera orientations.

The challenge in automated data collection is the need for
some kind of a heuristic to weed out the useless samples, e.g.
many images of just sky, close up ground texture, or erroneous
views due to the camera being inside of 3D models or beneath
the ground.

Our method to combat unusable images was to implement
a few very simple rules, which seemed to work well enough
on our example environment:

• The camera has to always be at a certain distance above
the ground.

• The camera always has to be at least a certain distance
away from any 3D model.

• The rotation (α, β, γ) and the position (x, y, z) of the
camera has to be within certain minimum and maximum
limits.

In our case, these parameters can be tuned to fit the envi-
ronment and the type of data to be gathered. For our data
gathering purposes, we left these parameters quite laxed,

Fig. 5. Our random dataset gathering component as shown in the Unity
inspector. You can select some parameters to restrict the selection of camera
parameters for the automatic gathering. In addition to these, the rules about
being above ground and being of certain distance to any 3D models are always
enforced.

serving mostly to make all the randomized views be valid,
and limit the amount of pure sky or ground samples. The data
gathering component settings can be seen in figure 5.

We did not implement any automated heuristics to maximize
the diversity of the dataset, but it would be an interesting
further avenue for research.

D. Sequential data collection by driving around

For some learning tasks, such as optical flow and tracking,
it might be essential to gather sequential video data mimicking
real world spatial progression while moving logically and
smoothly. It is also required for collecting test sets to test
segmentation consistency and smoothness between frames.

To facilitate this, we added a four wheeled vehicle that can
be driven around in the scene similar to an arcade driving
game. It can be driven around with cameras attached to it, that
save images at constant intervals. Driving manually also allows
for the researcher to focus on the part of the environment they
want.

The down sides of collecting data via driving around are
that it is manual, as we have not implemented automated
driving, so it is slow, costly, and the data collected tends to
not be as diverse as it could be. The constant data saving rate
automatically concentrates the images to be more from the
slow parts of the drivable environment, and less from the parts
where the scenery changes faster, e.g. a long straight piece of
road. The layout of the environment also usually attracts to
driving mostly around certain areas (i.e. roads). The cameras
are always at a pretty similar orientation and height, and no
shots are taken from high up, close up, or from surprising
angles.

III. EXPERIMENTAL RESULTS

The purpose of our experiment is to see if, and by how
much, a very inexpensively collected simulated dataset can
improve segmentation performance on a real life dataset.

We also experiment with different ratios of real to simulate
data in the training phase. Our intuition is that increasing
the amount of simulated data to a constant number of real
data would increase the model performance as measured in



intersection over union (IoU) and then eventually plateau and
finally start to decrease as the amount of simulated data vastly
overpowers the amount of real data.

A. Data

In this experiment we specifically studied the tree class, as
it is a class where a human doing pixel-wise segmentation is
bound to draw the general outline of the tree, and the ground
truthed data from the simulated environment correctly assigns
every pixel. Therefore, all the images that did not have a tree
class were removed from the sets.

The simulate dataset was collected using our custom Unity
game engine environment. One thousand images were col-
lected by manually driving around on the vehicle inside the
game environment, and six thousand images were collected
fully automatically. The images and the segmentation maps
were all 960 by 540 pixels. Our environment is extremely
spartan for this task, as there is just a single 3D model of a
tree scattered around the environment.

For the real life dataset, we used ADE20K [10] from
MIT CSAIL. It contains non-sequential photographs of indoor
and outdoor scenes, and is human annotated for semantic
segmentation. The photographs are of different resolutions.
There are over 7300 training images with trees in them. We
used the ADE20K validation set purely as our test set, and it
was never involved in any of the training or tuning processes.
The test set was also cut down to the 700+ images that
contained trees, and turned into single class.

The post-processing of the segmentation data for both
datasets had three steps:

1) Include only images and segmentation maps where trees
were visible at all.

2) Remove other segmentations from the segmentation
maps, and leave only the tree class and the not-a-tree
class.

3) Convert segmentation map images from normal color
RGB to 8-bit single channel grayscale images.

Forming the actual datasets for our different test runs, we
chose images from the same randomized sequences for all the
set sizes. This means that a bigger dataset always includes all
the images chosen for the smaller dataset, too.

The noted size of the datasets is the amount of training
images. 20% more was used as a validation set, and chosen
from ADE20K and/or the simulated dataset in the same ratio
as the training images.

B. Training with simulated data only

DataSet IoU

Simulated tree data 0.53311348
ADE20K tree data 0.73292613

TABLE I
EVALUATING ON THE ADE20K TREE CLASS VALIDATION SET, WE CAN

SEE THAT SIMULATED DATA BY ITSELF IS PERFORMING BADLY. AS
EXPECTED, THE ADE20K TRAINING DATA IS A LOT BETTER FOR THE

ADE20K EVALUATION SET.

Fig. 6. Results from merging ADE20K dataset with inexpensive simulated
data. With 1:1 mix ratio the IoU results get worse, when evaluated on the
ADE20K annotated test set.

Fig. 7. The IoU results from merging different amounts of simulated data to
1000 ADE20K images. A little bit of simulated data seems to help, while a
lot seems to hurt.

To test how the simulated data generalizes to the ADE20K
data set, we trained a model on the simulated data only, and
evaluated it on the ADE20K trees-only test set. As seen in
table I, the performance is pretty quite bad when trained only
on the simulated dataset, as indicated by the 53.3% IoU.

DeepLab V3+ [11] was used to the experiments. We ran-
domly chose 2000 images from both sets for training. The
independent test set was 730 images. We trained for 50000
steps.

Clearly, our inexpensively simulated dataset with just one
3D model of a low poly tree is not enough to generalize to a
proper dataset by itself. Next we move on to see how much
of a benefit it still could be.

C. Training with a mixture of real and simulated data

A more realistic scenario is one where we have a small
annotated training set from the real world, and wish to append
that with synthetic data from a similar scene.

We ran an experiment where we appended our simulated
dataset to ADE20K, and compared the results to training only
on ADE20K. The appending was done in a one-to-one ratio.
We expected the appended set always to be better, but the
results were discouraging, as seen in figure 6. It seems that
the simulated data mostly just decreases the IoU, except for
the peculiar dip when training with 1000 images.



Fig. 8. The IoU results from merging different amounts of simulated data
to 100 ADE20K images. These results were averaged from five differently
seeded dataset selections, and trained for 30k steps.

Fig. 9. The IoU results from merging different amounts of simulated data to
2000 ADE20K images. Average of 5 runs for 30k steps.

To see what the optimal ratio of simulated data should be,
we took 1000 ADE20K images, and tried adding different
amounts of simulated images. The results, as seen in figure
7, were interesting. With the amount of simulated images
being less than the amount of real images, the results were
better than without simulated images. When the amount of
simulated images exceeded the amount of real images, the
models performed worse than without any simulated data.

These models were trained for 100000 steps.
We noticed that there was enough randomness in the results

depending on the randomly chosen sample images, which ob-
fuscated the process of reliable conclusion drawing. To achieve
better stability, we decided to train our other experiments
with 5 differently seeded random sequences for the sample
selection.

To further explore the best ratio of real to simulated images,
we took 100 ADE20K images and added simulated images
in 20 image intervals, and trained to 30000 steps with five
different seeds. The results averaged over the five random
sample sequences are shown in figure 8, and have the same
take-away message as in the previous experiment with 1000
real images.

With 2000 ADE20K images and a varying amount of
simulated images, as seen in figure 9, it seems that 2000 real
images is good enough that additional inexpensive simulated

Fig. 10. Results of adding ten more tree models to the game scene, compared
to the original one model version. The IoU results from merging different
amounts of simulated data to 1000 ADE20K images. 100k training steps.

data seems only to degrade the learning process. It would
seem there is no need to experiment with higher counts of real
images without first adding variance to the game environment.

To see if adding more 3D models of trees to the game
scene would help the training, we downloaded 10 more tree
models and casually added them all over our game scene. The
resulting dataset was used to train with 1000 ADE20K images
in different mix ratios for 100k steps. The results are better
than with the other simulated dataset, and the mix ratio curve
is similarly shaped, as seen in figure 10. With this dataset,
the training also seems to tolerate better the higher ratio of
simulated images. The performance of the segmentation model
is better even with more than half the pictures being simulated
than without any simulated data.

In conclusion, it could be said that adding inexpensively
gathered data to boost semantic segmentation training is not
straight-forwardly the more the better. In our case we only
had one or ten 3D tree models in multiple clusters and seen
from different angles. This resulted in a very slightly increased
IoU when the share of simulated images was suitable for the
datasets, meaning less than half the amount of real images.
With a bigger mix ratio of simulated images, the IoU dropped
with about the same slight amount.

The effect of the simulated data to the IoU is overall low.
Our game environment is very spartan, so these results are
expected to be somewhere close to the lower limit of what
any inexpensive dataset could reach, a sort of a base-line for
inexpensive data, if you will. The most logical next research
step would be to test with added scene variety, especially
adding some variance to the trees, and see how the results
scale.

Also, the lower than expected IoU boost from simulated
images might have to do with the different way the annotations
are drawn by human annotators as opposed to how they are
generated by a graphics engine. In our experiments, all the
images in the test set were from the human annotated ADE20K
dataset. This means that all the test targets were quite low
poly blobs drawn over the trees. The simulated data however
is much more detailed, as the game engine produces true
pixel-wise segmentation of the 3D model. This means adding



simulated images to the training set makes the model attempt
to segment in a more detailed manner, such as seen in figure
1. This increased attention to detail might cause worse IoU
performance when tested against the ADE20K dataset.

All the experiments were ran on Google DeeplabV3+ [11]
with an Xception-65 [12] backbone. We always fine-tuned an
ImageNet [13] pre-trained model from the Deeplab Model
Zoo. The images were squashed to 513x513 resolution.

IV. CONCLUSION

In this paper we introduced an inexpensive way to gather
simulated data with pixel-wise ground truth semantic segmen-
tations. Our results indicate that while using only inexpensive
simulated data is nowhere near the level required for training
models for real life data, using even very spartan simulated
data to augment a real life dataset is a way to slightly improve
the model accuracy. The augmentation needs to take into
account the quality of the simulated data, and adjust the
mix ratio accordingly. For our inexpensively gathered dataset,
the best amount of simulated data seemed to be somewhere
between 0% and 80% of the amount of real data.

For future work, it would be interesting to explore more
thoroughly how the model performance scales in reaction to
added scene variance. It would also be interesting to see how
well a render randomizer made specifically to improve domain
transfer (such as OpenAI Remote Rendering Backend (ORRB)
[14]) would as work with our inexpensive data gathering setup.

REFERENCES

[1] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Semantic image segmentation with deep convolutional nets and fully
connected crfs,” arXiv preprint arXiv:1412.7062, 2014.

[2] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431–3440.

[3] S. Jégou, M. Drozdzal, D. Vazquez, A. Romero, and Y. Bengio, “The
one hundred layers tiramisu: Fully convolutional densenets for semantic
segmentation,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, 2017, pp. 11–19.

[4] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmen-
tation,” arXiv preprint arXiv:1802.02611, 2018.

[5] A. Lehmussola, P. Ruusuvuori, J. Selinummi, H. Huttunen, and O. Yli-
Harja, “Computational framework for simulating fluorescence micro-
scope images with cell populations,” IEEE transactions on medical
imaging, vol. 26, no. 7, pp. 1010–1016, 2007.

[6] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez, “The
synthia dataset: A large collection of synthetic images for semantic
segmentation of urban scenes,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016.

[7] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:
An open urban driving simulator,” arXiv preprint arXiv:1711.03938,
2017.

[8] M. Wrenninge and J. Unger, “Synscapes: A photorealistic synthetic
dataset for street scene parsing,” arXiv preprint arXiv:1810.08705, 2018.

[9] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, “Playing for data:
Ground truth from computer games,” in European Conference on
Computer Vision. Springer, 2016, pp. 102–118.

[10] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba,
“Scene parsing through ade20k dataset,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017.

[11] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” IEEE transactions on
pattern analysis and machine intelligence, vol. 40, no. 4, pp. 834–848,
2018.

[12] F. Chollet, “Xception: Deep learning with depthwise separable convolu-
tions,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017, pp. 1251–1258.

[13] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International Journal of Computer
Vision, vol. 115, no. 3, pp. 211–252, 2015.

[14] L. Maciek Chociej, Peter Welinder, “Orrb: Openai remote
rendering backend,” in eprint arXiv, June 2019. [Online]. Available:
https://arxiv.org/abs/1906.11633



PUBLICATION

II

Loop-closure detection by LiDAR scan re-identification

Jukka Peltomäki, Xingyang Ni, Jussi Puura, Joni-Kristian Kämäräinen, and

Heikki Huttunen

In: 2020 25th International Conference on Pattern Recognition (ICPR). 2021,

pp. 9107–9114

© 2021 IEEE. Reprinted, with permission, from Jukka Peltomäki, Xingyang

Ni, Jussi Puura, Joni-Kristian Kämäräinen, and Heikki Huttunen, 2020 25th

International Conference on Pattern Recognition (ICPR), January 2021.





Loop-closure detection by LiDAR scan
re-identification
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Abstract—In this work, loop-closure detection from LiDAR
scans is defined as an image re-identification problem. Re-
identification is performed by computing Euclidean distances of
a query scan to a gallery set of previous scans. The distances
are computed in a feature embedding space where the scans are
mapped by a convolutional neural network (CNN). The network
is trained using the triplet loss training strategy. In our experi-
ments we compare different backbone networks, variants of the
triplet loss and generic and LiDAR specific data augmentation
techniques. With a realistic indoor dataset the best architecture
obtains the mean average precision (mAP) above 0.94.

I. INTRODUCTION

Loop-closure is an important sub-problem in robot naviga-
tion and mapping since visiting the same location again allows
to reduce the map and location uncertainties. This is particu-
larly important for the task of Simultaneous Localization and
Mapping (SLAM) where the robot simultaneously builds a
map and estimates its location on the map [1]. SLAM is based
on incremental localization where current location is estimated
from the last known global pose [2] and uncertainties accumu-
late during the process. When the loop-closure is detected the
uncertainties can be assigned small values in these locations
and propagated to the nearby locations. Visual loop-closure is
particularly important indoors where global positioning system
(GPS) is not available. Vision-based loop-closure detection is
performed by comparing the image of the current location to
the images captured from previous locations. In this sense,
vision-based loop-closure detection comes down to an online
image retrieval task.

A popular method for loop-closure detection is the visual
Bag-of-Words (BoW) [3], [4], [5]. The BoW loop-closure
detection has been shown to work for large scale data [6] and
it has been combined with depth data [7]. However, following
the recent trend in computer vision the more recent methods
are based on convolutional neural network (CNN) embedding
where the feature layers provide a feature vector for image
matching. The re-identification architectures adopt the image
recognition [8], [9] or the autoencoder structure [10], [11]. Xia
et al. provide a comparison of various approaches in [12].

In this work, the type of input data differs substantially
from the previous works where conventional RGB images are
used. Our input is panoramic intensity images obtained from
the intensity channel of a high quality Ouster OS1 LiDAR
sensor (Figure 1). The intensity images are of particularly
low resolution (64 by 2048 pixels), but are invariant to
many imaging distortions such as lighting and shadows since
the intensity correlates with material properties. LiDAR scan

Fig. 1. Examples of loop closure (top) and non-loop closure locations
(bottom) where our method effectively detects the loop closure. In the loop-
closure location the best five matches (red points) are all near the query spatial
location (green point) and within a small feature distance while in the non-
loop-closure location the feature distances are large and the matches are found
in random spatial locations.

results to a 360◦×33◦ view angle image which is suitable for
navigation purposes of heavy machinery in indoor work sites
and mines. The image matching for loop-closure detection is
cast as a re-identification problem. Image re-identification has
been successfully used in vehicle recognition [13], [14] and
face recognition [15], [16], [17].



Contributions – The main contributions of this work are:
• We propose feature space embedding for distance based

matching of panoramic LiDAR intensity scans. Embed-
ding is computed using a convolutional neural network
(CNN) architecture trained using the triplet loss training
strategy.

• We provide an experimental comparison of backbone
networks, variants of the triplet loss and generic and
LiDAR scan specific data augmentation techniques with
a realistic data collected from the path of 1,026 meters
in industrial environment.

II. RELATED WORK

Ability to navigate in known or unknown environments is
an essential skills and research challenge in mobile robotics.
There are various sensor modalities available, such as sonars,
but substantial efforts have been dedicated to vision based
navigation since 1970’s [2]. Navigation can be sub-divided
to map-based navigation and map building, but with the help
of spatial uncertainty modeling [18], [19] the simultaneous
localization and mapping (SLAM) that combines the two sub-
tasks has become an important technique [1]. A critical task
in SLAM is to correctly associate observations of landmarks
(locations) with landmarks held in the map. Incorrect associ-
ation can lead to catastrophic failure of the SLAM algorithm,
but successful association helps to reduce uncertainties. Data
association is particularly important when a vehicle returns to a
previously mapped region after a long excursion, the so-called
loop-closure problem [20].

Vision-based loop-closure detection – The loop-closure
problem can be divided to loop-closure detection and loop
closing where the first refers to detection whether the current
observation is from a previously visited location or not and
the second to data association where the map and location
uncertainties are updated. In our work we focus on the loop-
closure detection only. One of the first vision-based SLAM
method was introduced by Cummins and Newman [4]. They
introduced the Fast Appearance-based Mapping (FAB-MAP)
algorithm that was inspired by the Bag of Visual Words [21]
image classification approach. First a vocabulary of visual
words is established from data and then every scene is repre-
sented as a histogram of the found words. Histogram features
are matched by a distance function and loop-closure is detected
by setting a match threshold. A similar approach during the
same time was proposed by Angeli et al. [3] and these both
works provide methods for the both loop-closure detection and
data association. FAB-MAP 2.0 [6] added an inverted index for
sparse approximation which boosted the matching speed and
scalability so that they did not anymore restrict the map size.
A 3D FAB-MAP 3D was introduced in [7]. In 3D FAB-MAP
the camera image is augmented with depth information that
gives the visual words a relative 3D position. With the help of
depth information they were able to improve the loop closure
recall from 0.42 to 0.71 with the same dataset. A number
of different approaches were compared for monocular visual
SLAM in [22].

In recent works, Convolutional Neural Network (CNN)
based feature embedding [23] has replaced the BoW fea-
tures [24] in image retrieval and in loop-closure detection.
Hou et al. [8] compared hand-crafted features to CNN-learned
features for loop-closure detection. They found that fully
connected layers are not useful for the task by systematically
testing features from different layers. In their experiments,
the features from the last pooling layer were the best for
image matching. Their network was trained for the scene
classification task. Unsupervised visual loop closure method
was introduced by Merrill and Huang in 2018 [11]. Their
method is based on an auto-encoder CNN, where multiple
image transformations are created and used for training. One
of the image transforms is the training input, while another
transform of the same image is used to calculate the histogram
of oriented gradients (HOG), which is then used as the ground
truth to be learned.

LiDAR intensity images have also been studied for local-
ization by Bârsan et al. in 2018 [25], where they introduced a
real-time localization method for self-driving cars, combining
LiDAR intensity images with LiDAR scans to a combined
embedding.

Image re-identification – Image re-identification is closely
related to image retrieval [24], [23] where a query image is
matched against a gallery set to find whether the same object
or place appears in the gallery. Suitable datasets for robotics
are those containing real places and scenes. Gomez et al. [9]
explored the CaffeNet CNN with a triplet loss function to
train the network for appearance-invariant place recognition.
Noh et al. [26] introduced attentive deep local features for
learning local feature descriptors. They also released a big
Google-Landmarks dataset with over a million images and
almost 13,000 different landmarks.

Various other applications and datasets not related to places
and scenes also exist. For example, Lou et al. [13] studied
vehicle re-identification and proposed a hard negative min-
ing scheme for visually similar images. They released the
VERI-Wild dataset of over 400,000 images of over 40,000
vehicles. Kuma et al. [14] provide a solid benchmarking of
vehicle re-identification and experiment with different loss
functions. They acknowledge that vehicle re-identification is
different from, for example, face re-identification, as vehicles
are coarser in details and two cars with the same model and
color are very hard to distinguish without additional data (such
as a visible licence plate). Face re-identification is another
popular application. Schroff et al. [15] introduced FaceNet
which inspired the network architecture and training setup
used in our work. For face re-identification, Ustinova et al. [16]
propose a hybrid architecture of a CNN and a bilinear CNN.

III. METHOD

For loop-closure detection problem, we train a deep neural
network for the task of image re-identification. Our images are
panoramic (360-degree) images generated from the intensity
channel of LiDAR scans. Re-identification is effectively and



efficiently solved by learning a mapping from images to a
compact Euclidean space where distances directly correspond
to semantic similarity, i.e. whether this location is already
visited or not.

Training of an effective embedding network requires a
suitable architecture, loss function, and hard negative/positive
mining. The two popular approaches are the Siamese structure
trained with the contrastive loss [27] and a single CNN
pipeline trained with the triplet loss [15]. In this work, we
adopt the triplet loss approach which is more difficult to
implement but is shown to perform well in face and vehicle re-
identification [15], [14] and place recognition [28]. The triplet
loss has also been shown to outperform many recent loss
functions for person re-identification by large margins [29].
Moreover, we experiment variants of the triplet loss: lifted
structured loss [30] and Hermans triplet loss [29].

Positive and negative samples - As the main difference to
the above works on face, vehicle, and places recognition we
need to define the meaning of positive match between two
LiDAR scans. In our dataset, this is achieved by setting a
spatial distance threshold τpos = 4.0m (four meters) which
means that each sample si within four meters dist(si, sj) <
τpos is defined as a positive sample for the query scan sj
and all other as negative samples. During the data capture the
spatial distances were obtained through an indoor positioning
system available in the industrial work site (Section IV).

A. Backbone network

The backbone network used with the triplet loss has a strong
impact on the training speed and accuracy and the final test
performance. Various backbone networks have been used in
literature and they mainly differ in the number and size of
layers and the types of pooling layers. We adopt the procedure
from other similar works and use only the features from the
convolutional part of the network and ignore the final fully-
connected layers. We add a global average pooling layer the
top of backbones [36] . This gives us the output flattened

TABLE I
THE BACKBONE NETWORKS USED IN OUR EXPERIMENTS FOR LIDAR

SCAN RE-IDENTIFICATION. THE FEATURE VECTOR DIMENSION IS
MANUALLY RESTRICTED FOR OTHER EFFICIENTNET VARIANTS EXCEPT

B3. THE TOTAL NUMBER OF PARAMETERS IS COUNTED BY SUMMING THE
BACKBONE PARAMETERS AND THE PARAMETERS IN EXTRA LAYERS TO

ACCOMMODATE THE FEATURE DIMENSIONS.

Backbone dim(f) # of params

MobileNet V2 [31] 1280 2.3 M
ResNet 50 [32] 2048 23.6 M
SEResNet 50 [33] 2048 26.1 M
DenseNet 121 [34] 1024 7.0 M
EfficientNet B0 [35] 1024 5.4 M
EfficientNet B1 [35] 1024 7.9 M
EfficientNet B2 [35] 1024 9.2 M
EfficientNet B3 [35] 1024 12.4 M
EfficientNet B3 [35] 1536 10.8 M

as a vector, the size of which is dependent on the backbone
architecture and input size. We can conveniently control the
size of the output vector by having a stack of convolution,
batch normalization [37], and ReLU [38] layers between the
backbone and the global average pooling layer. For the lifted
structured loss and the Hermans triplet loss we also added a
batch normalization layer after the average pooling to make
the networks perform properly.

After training the backbone network for image re-
identification the network is used to extract a global feature
vector from a query image (current location) which is matched
against the gallery vectors (previous locations). For matching,
the closest matches are found using the Euclidean distance
which is fast to compute from the query to all gallery vectors.
The backbone networks used in our experiments are listed in
Table I.

B. Loss functions

In image re-identification the network topology is coupled
with a metric learning loss function that minimizes Euclidean
distances in the feature vector space for images that are
close in the spatial space, and maximizes for ones further
away. Since we selected the triplet loss function and a single
backbone architecture we experimented with the three loss
functions that can be considered as variants of the triplet loss:
triplet loss [15], lifted structured loss [30] and Hermans triplet
loss [29].

Triplet loss – Before FaceNet [15] the triplet loss was already
used by Weinberger and Saul [39] for clustering and later in
a number of other works [40], [41]. Our work is similar to
FaceNet in the sense that we apply the triplet loss directly on
top of the convolutional part of the backbone network without
classification layers.

The triplet loss is based on three data samples selected so
that the first is an anchor (a), the second is a positive match
(p) (same location as the anchor), and the third is a negative
match (n) (different location). The loss function minimizes the
squared Euclidean distance from the anchor to the positive
sample and maximizes the distance from the anchor to the
negative sample,

L =

N∑
i

[||f(xa
i )− f(xp

i )||22 − ||f(xa
i )− f(xn

i )||22 + α
]
+

,

(1)
where α sets the distance margin that the loss function tries
to maintain between the locations. The subscript ’+’ denotes
the positive numbers only and therefore the minimum value
for the loss is zero when ideally the first term is zero and the
second term is ≥ α.

Hermans triplet loss – Hermans triplet loss is an im-
provement proposed by Hermans et al. [29] for the face re-
identification task. Hermans triplet loss does not require offline



hard negative mining which makes the loss function itself more
complicated:
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In (2) D is a distance function that does not necessarily need
to be the squared Euclidean distance. The function fθ maps the
semantically close points in the data manifold to a metrically
close points in the feature space, with the parameters θ. In our
case, the fθ is the neural network. The X denotes the batch
of data we are learning from.

Lifted structured loss – Lifted structured embedding loss
by Oh et al. [30] implements a similar concept to the triplet
loss, but utilizes a combination of all images in each batch.
Instead of comparing only three images (A+P+N) with each
other, in the lifted structured loss all the images in the same
batch are compared to each other. As shown in the following
equation all pairings of the negative and positive samples are
compared:

J̃i,j = log
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C. Data augmentation

Our data augmentation schemes include popular 2D image
augmentation techniques and special techniques available for
panoramic images. If not otherwise indicated, the experimental
results are for all below augmentation techniques enabled.

2D image augmentation – For improving generalization, we
employ the standard 2D image augmentation methods during
training. Specifically, we use random erasing [42], horizontal
flipping as proposed by Simonyan and Zisserman [43], and
random cropping proposed by Krizhevsky et al. [44].

Random panoramic rotation – Images constructed from the
LiDAR scans span the full 360 degree circle around the sensor
(panoramic view). Panoramic view enables a simple aug-
mentation scheme through random rotations. In specific, the
Yaw angle of the camera was randomly rotated by [0◦, 360◦[.
Rotation was implemented as a simple pixel shift of the image.

Direction flipping – Direction flipping is a variant of the
random panoramic rotation. In direction flipping the yaw angle
is changed to the opposite direction (180◦) to simulate vehicle
running to the opposite direction. The probability of direction
flipping was set to 50% and it was implemented similar to the
rotation augmentation using pixel shifts.

Fig. 2. Dataset split visualized along the spatial path of image capture.
Training and gallery sets share significant portion with each other, but the
query images as well as substantial zones before and after the gallery images
(including the loop-closure zone) are not used in the training set.

D. Training details

Network training and testing were implemented in Python
using Keras and TensorFlow. All networks were trained for
200 epochs which was clearly sufficient for convergence for
all the networks. The Adam optimizer was used.

The batch size was set according to the available GPU
memory (11 GB). The original 2048×64 LiDAR intensity
images were scaled down to 512×64 to allow faster and more
stable training via bigger batches. For most networks we used
12 anchor images per batch, each with 8 positive examples
(within 4.0 m from the anchor) per anchor. For Densenet-121
the anchors per batch was dropped to 10 and for EfficientNets
to 8, in order to fit into the memory.

The training samples were batched by taking the specified
amount of random anchor points along the training set, and
randomly taking corresponding positive match points from
within τpos as defined in the beginning of this section.

IV. DATA

LiDAR capturing – For gathering the data, we used a first
generation Ouster OS1 LiDAR sensor by Ouster Inc. The
Ouster OS1 (1st gen) is a mid-range high resolution imaging
LiDAR. The minimum range is 0.8 meters and the maximum
range is 120 meters. With an 80% scene reflectivity the sensor
can detect to 105 meters with a detection probability of over
90 %. With 10% reflectivity and 90% probability, the range is
40 meters. The sensor captures a 360 by 33.2 degree field of
view, and can output 2D images at a maximum of horizontal
resolution of 2048 pixels at 10 Hz, and 1024 pixels at 20
Hz. The amount of channels used corresponds to the vertical
pixel resolution, and can be chosen to be 16, 32, or 64. The
Ouster LiDAR uses intrinsic calibration, has fixed resolution
per frame, and boasts a camera-grade ambient and intensity
data.



Fig. 3. Example 2D intensity image output from the Ouster OS1 (first gen) LiDAR. It is 2048 x 64 pixels big and greyscale. The image represents the LiDAR
measurements from 360 by 33.2 degree angles. It is hard to see details in the unedited format, as in the test scene most details show up quite similar and
very dark. The image shown here is colored, brightened up, and split into two 1024 x 64 slices. There is also a zoomed portion (source highlighted in red)
to better show off the sensor detail.

We generated our own dataset consisting of a single contin-
uous path in a decently lit indoors industrial environment (a
factory). The sensor was mounted to a wheeled stable platform
for capture. The height and orientation of the sensor was fixed
within the platform. The scale of the environment was well
matched to the mid-range specification of the OS1 sensor. We
used the highest possible resolution. The path fits into a 173
by 135 meter area, and has less than one meter of vertical
range. The total length of the route is 1,026 meters.

The data from the sensor was exported as intensity images.
The set was culled to 9,707 images. The corresponding po-
sition data are x,y,z coordinates in meters, which is used to
generate the positive and negative ground truth labels. The
position data was collected via a proprietary high quality
SLAM system. The images and the position data was fused
together to finalize the dataset. There are multiple loops in the
path. The data points are nearly uniformly distributed along the
collection path, as there is only slight variance in the distances
between data points.

The Ouster LiDAR conveniently outputs LiDAR attribute
channels as well as 3D point clouds. In this work we utilized
the panoramic intensity images. The sensor is also capable
of outputting depth and ambient 2D images, which were not
used. The images were directly used as the network inputs.
The intensity images are 8-bit greyscale and the resolution of
2048×64.

Evaluation protocol – The dataset was divided into training
(6,600 images), gallery (7,200 images), and query (2,100
images) sets visualized in Figure 2. The training and gallery
sets are overlapping. There is also an unused section (300
images) between query and gallery set paths to prevent trivially
easy matching in the beginning of the query set. Our gallery
set includes a prominent loop area that has a corresponding
half in the query dataset, but is excluded from the training set.

This loop point is manually tagged as being a loop point, while
the non-loop points are tagged as being non-loop points. This
was thought to be the hardest realistic way to test for loop
detection with our dataset.

The mean average precision (mAP) calculation is based on
the fact that we manually determined which samples in the
query and gallery sets formed a loop and which did not. This
gave us a way to determine if the network feature matching
gallery images for a given query were either correct (query
and gallery points both in the loop zone or both off it) or
incorrect (query and gallery points in different zones). This
allowed us to use the standard way to calculate mAP.

All the mAP figures presented in Section V are based on a
full query set and on the top-1 match (closest in the network
computed feature space) from the gallery set. Matches within
τp < 4.0 m are counted as correct recall.

V. EXPERIMENTS

A. Backbone network

In the first experiment, a number of backbone networks
and different loss functions were tested using our data (Sec-
tion IV). All backbone networks had pre-trained weights using
the ImageNet data. The networks were fine-tuned using our
training data (Section IV). In these experiments the random
panoramic rotation augmentation was applied (Section III-C)
with data augmentation procedures of random erasing, hor-
izontal flip, and random cropping. The images were down-
scaled to 512x64 resolution to allow for bigger batches within
available GPU memory. The batch size was 96, but for
DenseNet-121 the size was reduced to 80, and for EfficientNet
to 64.

The backbone networks from Section III-A were tested:
MobileNet V2 [31], Resnet 50 [32], DenseNet 121 [34],
EfficientNet [35], and SEResNet 50 [33]. The networks were



tested with the different triplet loss variants from Section III-B:
lifted structured loss [30], Hermans triplet loss [29] and
the triplet loss [15]. The results for all combinations are in
Table II.

TABLE II
TOP-1 RESULTS (MAP) FOR DIFFERENT BACKBONE NETWORKS AND

DIFFERENT LOSS FUNCTIONS. DIM(f) IS THE FEATURE VECTOR
DIMENSION. EFFICIENTNET HAS MULTIPLE IMPLEMENTATIONS DENOTED

BY B0-B3 [35]. IN THIS EXPERIMENT ONLY THE BEST MATCHES ARE
USED (TOP-1).

Backbone dim(f) Loss function
Lifted Structured Hermans triplet Triplet

MobileNet V2 1280 0.711 0.239 0.460
ResNet 50 2048 0.589 0.754 0.640
SEResNet 50 2048 0.686 0.636 0.685
DenseNet 121 1024 0.607 0.604 0.695
EfficientNet B0 1024 0.583 0.756 0.758
EfficientNet B1 1024 0.389 0.946 0.732
EfficientNet B2 1024 0.847 0.908 0.765
EfficientNet B3 1024 0.918 0.759 0.734
EfficientNet B3 1536 0.846 0.511 0.822

The EfficientNet variants achieved the best mAP across all
three loss functions: 0.918 for lifted structured loss with B3
(1024), 0.946 for Hermans triplet loss with B1 (1024), and
0.822 for conventional triplet loss with B3 (1536). SEResNet
50 and DenseNet 121 performed consistently mAPs ranging
from 60% to 70% across all three loss functions. MobileNet
V2 performed best with the lifted structured loss, and ResNet
50 with the Hermans triplet. The overall best performance was
achieved with EfficientNet B1 (1024) and Hermans triplet loss
(mAP 0.946).

To visualize the image re-identification based loop closure
the top-1 Euclidean feature space distances are plotted to Fig-
ure 4. It is clear the the Euclidean distances are substantially
lower in the loop closure region of the test (query) data, which
indicates that the learned embedding represents discrimina-
tively the images of different locations in our LiDAR intensity
dataset.

Fig. 4. Query-gallery feature space distances (Euclidean) for the dataset. The
green background highlights the loop zone (see Figure 2). The loop-closure is
easily detectable from the feature space distances in the network embedding
space. The distances in the graph are computed in the space obtained using
EfficientNet B1 with Hermans triplet loss and provides mAP of 0.946. (mAP
calculation is described in Section IV - ”Evaluation protocol”)

B. Data augmentation

TABLE III
PERFORMANCE OF THE STRONGEST BASELINE (EFFICIENTNET B1

DIM(f) = 1024 W/ HERMANS TRIPLET LOSS) WITH VARIOUS
COMBINATIONS OF DATA AUGMENTATION (SECTION III-C).

Augmentation mAP

Baseline - EfficientNet B1 (1024) 0.884
+ random erasing 0.471
+ random crop 0.728
+ horizontal flip 0.402

+ random panoramic rotation 0.825
+ random erasing 0.205

+ all above 0.946

We experimented with the image augmentation techniques
in Section III-C: random erasing, horizontal flip (50% chance),
and random crop. The results are shown in Table III. The
results clearly indicate the importance of data augmentation.
It is clear that the most effective data augmentation is achieved
by enabling all augmentation techniques which yielded to
the highest performance (mAP 0.946). Interestingly, the other
combinations of the augmentation techniques degraded the
performance as compared to the baseline without data aug-
mentation (mAP 0.884).

To study further the complementary nature of the 2D and
panoramic augmentation techniques we conducted another set
of experiments with various combinations. The results are
shown in Table IV. Clear, the only combination that is clearly
superior to the baseline using no augmentation is the one that
combines all 2D augmentation techniques and the the random
panoramic rotation.

VI. CONCLUSION

The main goal of this work was to find the best network
architecture, loss function, and data augmentation for CNN-
based metric feature embedding so that the embedding can
be used in LiDAR image loop-closure detection. Potential
applications are heavy machinery localization and SLAM in
industrial indoor work sites. For experiments we collected a
realistic dataset with an industry quality LiDAR.

We formulated embedding network optimization as an im-
age re-identification problem and adopted the triplet loss as
the objective function. The best performance, mAP 0.946,
was obtained using EfficientNet B1 as the backbone network,
using the Hermans triplet loss function and the following data
augmentation techniques: random panoramic rotation, random
erasing, random cropping, and random flipping.

Our future work will include collection of large scale
public datasets, long-term localization, and integration of the
proposed vision-based LiDAR loop-closure detection to a real
robot navigation and SLAM.



TABLE IV
THE PERFORMANCE OF DIFFERENT AUGMENTATION SCHEMES AS TESTED ON EFFICIENTNET B1 (1024) BACKBONE AND HERMANS TRIPLET LOSS. THE

COLUMNS REPRESENT THE COMMON 2D IMAGE AUGMENTATION TECHNIQUES AND THE ROWS ARE THE SPECIFIC AUGMENTATIONS TECHNIQUES FOR
PANORAMIC LIDAR DATA. THE BEST COMBINATION IS RANDOM ERASING, RANDOM CROPPING, AND HORIZONTAL FLIPPING COMBINED WITH THE

RANDOM PANORAMIC ROTATION (0.946 MAP).

Erasing & Erasing & Cropping &
None Erasing Cropping Cropping Horizontal Flipping

None 0.884 0.471 0.312 0.728 0.402
Panoramic direction flipping 0.669 0.526 0.847 0.539 0.420
Random panoramic rotation 0.824 0.205 0.493 0.173 0.946
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Evaluation of Long-term LiDAR Place Recognition
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Abstract— We compare a state-of-the-art deep image re-
trieval and a deep place recognition method for place recog-
nition using LiDAR data. Place recognition aims to detect
previously visited locations and thus provides an important tool
for navigation, mapping, and localisation. Experimental com-
parisons are conducted using challenging outdoor and indoor
datasets, Oxford Radar RobotCar and COLD, in the ”long-
term” setting where the test conditions differ substantially
from the training and gallery data. Based on our results the
image retrieval methods using LiDAR depth images can achieve
accurate localization (the single best match recall 80%) within
5.00 m in urban outdoors. In office indoors the comparable
accuracy is 50 cm but is more sensitive to changes in the
environment.

I. INTRODUCTION

An autonomous robot that operates in an environment
should be able to recognize different places when it revisits
them after some time (Figure 1, top). This is important to
support reliable navigation, mapping, and localisation. Ro-
bust place recognition is therefore a crucial capability for an
autonomous robot. Due to its importance place recognition is
an important research topic in robotics and computer vision
community for which Lowry et al. [1] and Zhang et al. [2]
survey the past works.

The problem of visual place recognition gets more chal-
lenging if the visual appearance of places change over
time. This usually happens due to changes in the lighting
conditions, shadows, different weather conditions, or even
different seasons. Also, people moving around and items be-
ing moved around change the environment. These factors are
particularly addressed in long-term visual place recognition.
Engineered features can be adjusted to be invariant [3], [4],
but the recent deep learning methods are prone to overfitting
and therefore their performance depends on suitability of
the selected training data [5], [6]. These works lack in one
or more terms: they focus either indoor or outdoor place
recognition, limited variability, unrealistic navigation data or
focus on RGB images only.

In this paper, we study deep place recognition using
LiDAR sensor. Compared to typical RGB camera, LiDAR
is less rich in details but more robust to various sources of
imaging distortions such as illumination change and weather
conditions. We perform extensive experiments on two largest
indoor and outdoor datasets that include LiDAR measure-
ments and are suitable for robot navigation: Oxford Radar
RobotCar [7][8] (3D LiDAR) and COLD [9] (2D LiDAR).
Our findings are that LiDAR is competitive modality to RGB

�Tampere University, Finland
†Sandvik Mining and Construction Ltd

Fig. 1. Examples of successful (top) and failed place recognition (bottom)
in the RobotCar dataset. In successful recognition the best five matches (red
points) are all near the query place (green point) and within a small feature
distance while in the failed case the feature distances are larger and matches
are found in random spatial locations.

and especially the range (depth map) measurements are ro-
bust to long-term changes. We also show that the state-of-the-
art image retrieval method by Radenovic et al. [10] performs
well in place recognition even without data specific fine-
tuning and is not sensitive to backbone network selection.
We publish all code and data to facilitate fair comparisons
and future works on place recognition for robot navigation.

Related work – Surveys for RGB-based methods can be
found from Lowry et al. [1] (engineered features) and



Zhang et al. [2] (deep learning). Visual localization com-
bines place recognition and refined localization (inc. 3D
pose) using RGB images. Hierarchical Localization using
SuperPoint and SuperGlue [11], [12] is the top performing
system for visual localization in the recent benchmark by
Pion et al. [13].

A number of methods have been proposed for point
cloud and LiDAR based place recognition. For example,
PointNetVLAD [14] uses global features of point cloud data
for place recognition. Steder et al. [15] use LiDAR range
images. Guo et al. [16] combine the both LiDAR range
(depth) and intensity values and use a probabilistic voting
scheme. A network architecture utilizing the combination of
RGB camera and LiDAR point clouds for place recognition
was introduced by Xie et al. [17]. A place recognition
system featuring adversarial training and octree mapping
was introduced by Yin et al. [18]. Kim and Kim [19]
introduced scan contexts, a type of spatial descriptor, to
improve results with point cloud place recognition. Our work
focus on LiDAR only place recognition to analyze whether
LiDAR depth or intensity images work well in long-term
place recognition.

Several datasets suitable for place recognition are
publicly available: MulRan [20], The Newer College
Dataset [21], COLD [9], NCLR [22], Mapillary Street-Level
Sequences [23], and Oxford Radar RobotCar [7]. For our
experiments we selected COLD and Oxford Radar RobotCar,
as both represent realistic navigation sequences, include
LiDAR, and are large long-term datasets.

II. METHODS

The two methods experimented in our work are NetVLAD
by Arandjelovic et al. [24] and CNN retrieval (CNNRetr)
by Radenovic et al. [25]. NetVLAD [24] was selected as it
is used in Hierarchical Localization using SuperPoint and
SuperGlue [11], [12] that won the 2020 Visual Localization
Challenge (https://www.visuallocalization.net/).
On the other hand, the CNNRetr is at the core of the state-of-
the-art image retrieval architecture of Radenovic et al. [10],
[25], [26]. In the following we briefly introduce these meth-
ods and their adaptation to place recognition.

A. Deep place recognition (NetVLAD)

The core idea of NetVLAD [24] is in deep metric learning
where the deep architecture learns to produce a represen-
tation that encodes the informative content of inputs. The
representation is metric in the sense that similarity of inputs,
such as RGB or LiDAR range images, can be measured by
standard distance functions such as Euclidean distance. In
other words, the objective is to learn a function fθ with
its parameters (network weights) defined by θ that maps
images Ii to a high (D-)dimensional feature vector space
fθ : I → R

D. The high dimensional representation encodes
images from the same place with a small distance value
dθ(Ii, Ij) = ||fθ(Ii) − fθ(Ij)|| and images from different
places with large distance values.

The main building blocks of NetVLAD are 1) the
NetVLAD layer that implements a differentiable version
of the VLAD encoding of SIFT features [27] to replace
maximum pooling, 2) triplet ranking loss, 3) Principal
Component Analysis (PCA) based dimensionality reduction
and 4) training procedure using Google Street View Time
Machine dataset that provides multiple close-by images of
the same spatial locations captured at different times.

The original VLAD representation is a K×D-dimensional
matrix where K denotes cluster centers (visual words) and
D is the number of feature dimensions. The SIFT detector
provides N descriptors that are VLAD encoded using the
following formula:

V (j, k) =

N∑
i=1

ak(xi)(xi(j)− ck(j)), (1)

where xi(j) and ck(j) are the j-th dimensions of the i-th
descriptor and k-th cluster centers. The ak(xi) means that the
descriptor xi belongs to the k-th visual word. In other words,
V encodes feature distances from the visual words that are
obtained by clustering all features in the training set. This
encoding is more powerful than the original Bag-of-Words
(BoW) encoding [27], but with the price of much larger
feature vectors (V can be converted to a vector). NetVLAD
layer uses a differentiable version of (1)

V (j, k) =
N∑
i=1

ew
T
k xi+bk∑

k′ e
wT

k′xi+bk′
(xi(j)− ck(j)), (2)

where {w}k, {b}k and {c}k are sets of parameters optimized
during training. Eq. 2 is obtained from (1) by applying soft-
assignment instead of the original hard assignments. The
downside of the NetVLAD features is their high dimension-
ality and therefore Arandjelovic et al. [24] propose a PCA-
based dimensionality reduction as a post-processing step.
However, in our experiment we found it unnecessary and
therefore used the full NetVLAD feature vectors which for
512-dim deep features and 64 clusters have 512 × 64 =
32, 768 elements.

The typical formulation of the triplet loss [28] is

max
(||fθ(IA)− fθ(IP )||2 − ||fθ(IA)− fθ(IN )||2 + α, 0

)
, (3)

where IA is the ”anchor image” (query image from the
training set), IP is a positive example and IN is a random
negative example and α is the margin enforced between the
anchor and negative images. Instead of the triplet loss the
NetVLAD network is optimized using the triplet ranking loss

max
(
min

i
||(fθ(IA)− fθ(I

(i)
P )||2 − ||fθ(IA)− fθ(IN )||2 + α, 0

)
,

(4)
that can handle multiple positive candidates I

(i)
P and select

only the distance to the best match. The triplet ranking loss is
needed since the Google Street View Time Machine dataset
contains panoramic images that are converted to multiple
projective images and only the images viewing the same
direction are correct matches. However, since in our case
the images come from a LiDAR that can be considered as a
projective sensor we adopt the standard triplet loss from [28].



Oxford Radar RobotCar dataset sample images (left, back, right, front):

Corresponding LiDAR depth export:p ggggg p p

Corresponding LiDAR intensity export:pppppp gg y p

Corresponding LiDAR raw export:ppppppppppp ggg p

Fig. 2. Example from the Oxford Radar RobotCar [7]. The dataset is fully outdoors. The Velodyne LiDAR exports (bottom) are colorized, brightened
and cropped for better visualization. The actual LiDAR-exported images fed to the network are 1024 × 41 pix 8-bit greyscale.

B. Deep image retrieval (CNNRetr)

CNN Retrieval, CNNRetr [10][25], is an image retrieval
method. The key components of CNNRetr are a fully convo-
lutional backbone network, generalized-mean pooling layer,
siamese architecture with contrastive loss, and whitening
with dimension reduction. After training, the image retrieval
is done by exhaustively comparing the Euclidean distances
between the resulting feature vectors.

The fully convolutional neural network used in CN-
NRetr [10][25] can be of any convolutional architecture, such
as the popular VGG or ResNet. The 3D tensor output χ of
size W ∗H ∗K from the network is fed into a pooling layer.

CNNRetr [10] employs the usage of generalized-mean
(GeM) pooling,

f = [f1...fk...fK ]�, fk =

(
1

|χk|
∑
x∈χk

xpk

) 1
pk

, (5)

where the input χ is pooled into a vector f . χk is the
set of activations for the feature map k ∈ {1...K}. The
pooling parameter pk can be learned, as the GeM layer is
differentiable.

The GeM-pooled and l2-normalized feature vector is used
for contrastive loss training in a siamese network architec-
ture. Input images are fed as pairs (i, j) with corresponding
labels Y (i, j) ∈ {0, 1}, where 1 means that the images are
matches, and 0 means that the images are not matches. The
contrastive loss,

L(i, j) =

{
1
2‖f(i)− f(j)‖2, Y (i, j) = 1
1
2 (max{0, τ − ‖f(i)− f(j)‖}2, Y (i, j) = 0

,

(6)

decreases the Euclidean distance between matching images
and increases between non-matching images. The parameter
τ is the enforced margin between the non-matching exam-
ples.

After training, feature vector whitening is performed to
improve search precision, and dimension reduction is option-
ally done to improve performance and resource requirements.
CNNRetr learns whitening by employing a structure from
motion (SfM) pipeline to reconstruct a scene to extract
matching points. They use linear discriminant projections,
which involves two phases: whitening and rotation. Here,
the first part, whitening, is calculated as the inverse square
root of the covariance matrix within each matching class,
C

− 1
2

S , where

CS =
∑

Y (i,j)=1

(f(i)− f(j))(f(i)− f(j))� . (7)

The second part, rotation, of the linear discriminant pro-
jection, is the principal component analysis (PCA) of the
covariance matrix of the non-matching pairs in the whitened
space eig(C

− 1
2

S CDC
− 1

2

S ), where CD is basically the same
calculation as CS (Eq. 7) but for non-matches,

CD =
∑

Y (i,j)=0

(f(i)− f(j))(f(i)− f(j))� . (8)

The two linear discriminant projection steps are
combined as the projection via multiplication P =

C
− 1

2

S eig(C
− 1

2

S CDC
− 1

2

S ). To apply the projection, the mean
GeM vector to perform centering, μ, is taken into account
to get the wanted variance. The applied projection finally is



P�(f(i) − μ), which is also l2-normalized to get the fully
whitened feature vectors to be used in the search process.

III. EXPERIMENTS

A. Datasets and settings

The experiments were conducted on the two largest and
publicly available datasets suitable for outdoor and indoor
navigation: Oxford Radar RobotCar [7] (outdoors) and COsy
Localization Database (COLD) [9] (indoors).

Radar RobotCar – The Oxford Radar RobotCar dataset [7]
is an extension of the original RobotCar dataset [8] and
thus follows the original dataset route in Oxford, UK. It
consists of 32 traversals in different traffic, weather, and
lighting conditions in January 2019. The new dataset contains
measurements from three point cloud radars installed on the
top of the car and all provide full 360-degree panoramic
views around it. In the middle is a Navtech FMCW radar
that provides 400 measurements per scan 4 Hz and on its
both sides two 20 Hz Velodyne LiDARs of 41.3◦ vertical
FoV sensors. For simplicity, we used just one of the two
LiDARs, and we randomly selected the left Velodyne LiDAR
for our experiments. Note that the route is always to the same
direction. See Figure 2 for example images. The velocity
of the car is moderate and thus the distance between two
measurements is rarely more than 0.5 m. We selected the
following sequences for our experiments:

• Train: Jan-10-2019-11:46, Cloudy
• Gallery: Jan-10-2019-12:32, Cloudy
• Query 1: Jan-10-2019-14:50, Cloudy
• Query 2: Jan-11-2019-12:26, Sunny
• Query 3: Jan-16-2019-14:15, Rainy

Train and Gallery set images were used to train the two meth-
ods and the Gallery was also used as the place recognition
database (gallery set). Query sets were chosen from different
days with different weather.

COLD – The COsy Localization Database [9] is an
indoor navigation dataset. The data has been gathered in
76 sequences across three different locations in Europe. The
sequences are varied in lighting conditions such as sunny,
cloudy, and night. The sequences also contain dynamic
elements such as people moving and rearranged furniture.
The room types are annotated, and odometry is used for
localization. The sequences are arranged as some being
”standard” or ”extended”. The standard sequences contain
rooms that are found in the sequences from the other
two locations, as well, and the extended sequences contain
location specific room types.

The data is captured with manually driven mobile robots.
The robots are equipped with two Videre Design MDCS2
cameras, one in typical perspective mode and the other
capturing omnidirectional images. SICK 2D laser scanner is
used to capture range information. SICK 2D provides only a
single 360-degree line scan of 361 samples that we convert
to artificial depth image by expanding it vertically (Figure 3).

For our experiments, we employed datasets similar to the
Oxford Radar RobotCar dataset. We had five sequences from

COLD dataset sample RGB image:

The corresponding 360◦ 2D laser scan export:

Fig. 3. Example from the COsy Localization Database (COLD) [9]. The
dataset is fully indoors. The greyscale images below are the expanded SICK
laser scans spanning 360-degree around the robot (white encodes distances
above 8 m and black is 0 m). The open door on the left-hand-side can
be seen as dark gray region, the opposite wall as light gray and the open
doorway as a completely white strip in the middle of the scan.

the same office. The train set sequence was sunny. The
gallery set sequence was cloudy, and the three tested query
set sequences represented all the different light categories:
sunny, cloudy, and night time:

• Train: Saarbrücken, Part B, Sequence 4, Sunny 3
• Gallery: Saarbrücken, Part B, Sequence 4, Cloudy 1
• Query 1: Saarbrücken, Part B, Sequence 4, Sunny 1
• Query 2: Saarbrücken, Part B, Sequence 4, Cloudy 2
• Query 3: Saarbrücken, Part B, Sequence 4, Night 3

a) Performance measure: All experiments were con-
ducted using the top-1 retrieval results, i.e. only the best
matching image was used. Our performance measure is thus
Recall@1 i.e. the number of correctly retrieved locations
divided by the number of all query images [24].

b) Settings: If not otherwise mentioned the default
parameters of CNNRetr and NetVLAD networks from the
original authors were used.

For the both methods we used the triplet loss as that was
found performing well and makes comparison between the
two architectures fair. The positive P and anchor A samples
were selected randomly within the given distance threshold
used in training. A list of positive matches for each image
was generated prior training. The hard negative mining was
conducted according to [24], [29].

B. Results

a) Method comparison: The two methods compared
were CNNRetr [25] and NetVLAD [24] described in Sec-
tion II. In the first experiment, we compared using the
methods without fine-tuning to our datasets. CNNRetr [10]
is used as is, however for NetVLAD we do not perform
the PCA-based dimensional reduction as the results in [25]



TABLE I
COMPARISON OF THE TWO METHODS WITH THEIR DEFAULT SETTINGS (VGG16 BACKBONE AND WITHOUT FINE-TUNING) AND A TRAINED

CNNRETR.

Outdoor dataset - RobotCar [8] Indoor dataset - COLD [9]
Method Rec@1-25m Rec@1-10m Rec@1-5m Rec@1-2m Rec@1-100cm Rec@1-50cm Rec@1-25cm Rec@1-10cm

Query 1 (same day, 2h later) Query 1 (sunny)
NetVLAD [24] (no train) 0.899 0.867 0.728 0.130 0.838 0.779 0.464 0.008

CNNRetr [10] (no train) 0.926 0.901 0.774 0.134 0.783 0.723 0.439 0.004
CNNRetr [10] (trained) 0.986 0.977 0.869 0.155 0.847 0.774 0.462 0.004

Query 2 (next day, same time) Query 2 (cloudy)
NetVLAD [24] (no train) 0.895 0.863 0.762 0.454 0.230 <0.000 <0.000 <0.000
CNNRetr [10] (no train) 0.887 0.856 0.758 0.468 0.100 <0.000 <0.000 <0.000
CNNRetr [10] (trained) 0.993 0.984 0.902 0.544 0.091 <0.000 <0.000 <0.000

Query 3 (after 6 days, 2h later) Query 3 (night)
NetVLAD [24] (no train) 0.527 0.449 0.325 0.049 0.264 0.005 <0.000 <0.000
CNNRetr [10] (no train) 0.678 0.608 0.465 0.060 0.267 0.005 <0.000 <0.000
CNNRetr [10] (trained) 0.918 0.856 0.642 0.089 0.263 0.005 0.001 <0.000

suggest that PCA may degrade the results, which we also
found out to happen in our experiments. The results for the
two dataset without fine-tuning are in Table I.

These results provide the following three findings: 1) there
is no substantial performance difference between CNNRetr
and NetVLAD; 2) the accuracy of LiDAR-based place
recognition is between 2-5 meters with the RobotCar dataset
and 25-50 centimeters with the COLD dataset (top-1 recall
above 70%); 3) LiDAR-based recognition fails for the indoor
dataset query sequences that are substantially different from
the gallery dataset (Query 2 and Query 3). This can be
explained by the fact that the 360-degree line LiDAR of
the COLD dataset does not provide enough information for
place recognition. Since COLD is the only indoor dataset
for long-term place recognition and including LiDAR there
is obvious need for new indoor navigation datasets.

b) Fine-tuning with training data: The best performing
method (CNNRetr [25]) was trained with dataset specific
training data (gallery sequence and one training sequence).
The top-1 recall (Rec@1) values are shown in Table I.
The results clearly demonstrate that dataset specific training
improves the results by 10-20%. However, the training did
not improve the results for Query 2 and 3 images of the
indoor dataset that still failed.

c) Backbone network: The typical image retrieval back-
bone networks are VGG16 and ResNet-50 which were com-
pared during our experiments. The results are shown only
for the Radar RobotCar dataset as the indoor results overall
were poor for Query 2 and 3 sets. The results are shown in
Table II. Clearly, the selection of backbone has only small
impact and thus VGG16 is preferable as it is computationally
lighter.

d) LiDAR intensity vs. range: LiDAR intensity and
depth scan performance are compared in Table III and as
functions of the training epochs in Figure 4. While in Query
1 the LiDAR intensity is slightly better, the depth is clearly
better in Query 2 and 3 where the conditions are more
challenging. The RGB results with the same network are
also added to demonstrate that LiDAR-only accuracy is
comparable to RGB. Interestingly the ”raw” LiDAR data

TABLE II
BACKBONE COMPARISON USING CNNRETR. THE DETECTION

THRESHOLD OF 5.0 M WAS USED IN TRAINING.

Outdoor dataset - RobotCar [8]
Method Rec@1-25m Rec@1-10m Rec@1-5m Rec@1-2m

Query 1 (same day, 2h later)
VGG16 0.976 0.966 0.866 0.154

ResNet-50 0.970 0.957 0.846 0.154

Query 2 (next day, same time)
VGG16 0.987 0.979 0.897 0.573

ResNet-50 0.953 0.941 0.869 0.555

Query 3 (after 6 days, 2h later)
VGG16 0.832 0.777 0.587 0.081

ResNet-50 0.830 0.773 0.601 0.080

provided with RobotCar data is worse than the depth channel.

IV. CONCLUSION

Our experiments provide the following important findings:
i) LiDAR is competitive sensor modality (vs. RGB camera)
for place recognition, ii) LiDAR depth maps are more robust
to long-term changes than LiDAR intensity images, iii) SoTA
deep image retrieval architecture ”CNNRetr” by Raden-
ovic et al. [10] provides place recognition accuracy of 5
meters urban outdoors and 50 centimeters with recall approx.
80% iv) the backbone network selection is not critical, and
v) feature fine-tuning with dataset specific data provides
improvement of 10-20%. Two important future directions
were also pointed out: a) new indoor navigation datasets with
high quality LiDAR are needed and b) complementarity of
LiDAR depth, LiDAR intensity and RGB should be further
investigated.
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