
  

  

Abstract— Inherent nonlinearities, external disturbances and 

model uncertainties hinder the performance of controlling real-

world systems. In the present study, we proposed a robust model 

prediction-based virtual decomposition control method (RMP-

VDC) as a modification of the VDC using the model predictive 

control (MPC) to offer a practical solution for the real system 

control problem. The proposed method deals with uncertainties 

and external forces, as well as constraint matters, for complex 

nonlinear robot manipulators. By modifying the ideas from the 

VDC with MPC techniques, the time-varying state feedback 

control law for the ancillary controller is provided. The 

proposed method benefits from the introduction of a prediction 

horizon, which induces robustness and increases accuracy. The 

constrained optimization problem is analytically solved online 

by the continuous linearization of the nonlinear model and by 

employing the active set method. To validate the proposed 

controller, we performed the implementation on a real 7-

degrees-of-freedom upper body exoskeleton robot, and the 

results were compared with those obtained using the adaptive 

VDC. The experimental results revealed increased accuracy for 

the proposed RMP-VDC in dealing with model uncertainties and 

interaction forces between humans and exoskeleton robots. 

I. INTRODUCTION 

Modelling complexity, external disturbances, and inherent 
nonlinearities of real-world systems make dynamics models 
inaccurate and present evident challenges for system control. 
Various control methods are presented and developed to deal 
with these challenges. For instance, computed torque control 
is introduced in [1] for considering structured and unstructured 
uncertainties in manipulators and has provided satisfactory 
results. In [2], an adaptive control is offered based on an 
artificial neural network to deal with uncertainties in friction 
models. An adaptive sliding mode control is presented in [3] 
to considerably guarantee the fast convergence of system 
outputs toward balancing and reducing the chattering issues. 
In [4], a fuzzy system-based sliding mode control is proposed 
whose benefits are both reducing computational costs and 
improving uncertainty handling for the modelling and control 
of nonlinear systems. 

Furthermore, to deal with uncertainties and reduce 
conservatism simultaneously, an adaptive control based on 
model reference has been developed [5]. Although, weak 
performance at the start of adaptation and slow convergence 
are challenges of the model reference adaptive control. In [5], 

 
 

a new method for adaptive control based on model reference 
and the normalised Lyapunov strategy is proposed to avoid 
oscillatory response and to reach quick convergence.  

The control of interaction forces between humans and 
systems is the main challenge of other studies. For example, 
the proportional derivative and neural network-based 
biological controller in [6], computed torque control in [7], 
output feedback assistive controller in [8], an assist-as-needed 
control based on a new strength index in [9] and real-time 
model predictive control (MPC) [10] are proposed to control 
the interaction force between patients and exoskeleton robots. 

However, these controllers are designed for systems with a 
small number of degrees of freedom (DoF) (e.g. two-link 
elbow planar manipulator [1]; 2-DoF [2] and 4-DoF SCARA 
robot [5]; 2-DoF forearm and wrist rehabilitation robot [3]; 3-
DoF parallel robot [4]; 3-DoF arm exoskeletons robot [6]; 4-
DoF orthosis [7]; 1-DoF knee exoskeleton [8]; 2-DoF hip 
exoskeleton [9]; and 2-DoF lower limb exoskeleton [10]). 
Therefore, control methods are now being developed to 
overcome the challenges in highly complex robot systems, 
e.g., exoskeleton robots with higher number of DoF and 
system variability, due to the interaction force between the 
system and environment. In [11], a review of the challenges 
in the 7-DoF exoskeleton is presented to improve 
functionality. In addition, a time-delay estimator-based 
adaptive tracking control is proposed in [12] to deal with 
uncertain dynamics, and an adaptive impedance control with 
backstepping approach, disturbance observer, and time-delay 
estimation methods is presented in [13] to deal with unknown 
torque disturbances. 

In [14], a virtual decomposition control (VDC) approach is 
proposed, which provides a computationally effective solution 
for precision model-based control with practically proven 
capabilities in handling complex robotic systems [15, 16]. The 
kinematics and dynamics modelling [17], the control forming, 
and stability analysis all rely heavily on the modularity 
property, which is perceived as the main property required in 
future industrial innovations for handling complexity [18]. 
Control actions in the VDC mostly rely on feed-forward 
forces/moments, which are generated with inverse dynamical 
calculations. Also, feedback is considered to provide stability, 
to secure smooth transitions, and to deal with model parameter 
uncertainties. 

Moreover, control values are formed on a subsystem level, 
where making physical or mathematical changes regarding 
one subsystem does not affect the control equations for the rest 
of the system. Care is also taken to rigorously maintain the 𝐿2 
and 𝐿∞ stability of the total robot manipulator systems. In a 
virtually partitioned system, the dynamic interactions between 
subsystems mathematically are handled by the VDC methods 
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through the virtual power flows [17]. The two adjacent virtual 
subsystems have the opposite signed virtual power flow with 
the same magnitude, which adds up to zero in the stability 
analysis, which is how stability analysis benefits from 
modularity [14]. Problem of the model complexity is also kept 
constant, indicating that by increasing the DoF of the robot, 
the total complexity also rises exponentially. To account for 
the facilitation of implementing a 7-DoF robot, as well as to 
deal with dynamics variability resulting from different 
biomechanical and physiological factors in patients, [19] 
presents a VDC approach to deal with model parameter 
uncertainties such as stiffness of the joints, different masses, 
and various user with biomechanical variations while model 
uncertainties, external disturbances, and constraints of 
actuators are not considered. 

By contrast, the MPC methods have also been widely used 
in the industrial fields, and results show the performance 
superiority of the MPC due to its prediction and optimization 
in controlling multivariable systems and handling hard 
constraints for complex industry systems [20]. The main 
challenge of the MPC method, however, is the computational 
burden for solving the nonlinear optimization problem which 
grows exponentially when system uncertainty is involved. 
Thus, the real-time implementation of the MPC scheme is the 
main challenge of this method since the optimization problem 
for nonlinear systems needs to be solved and the cost of 
prediction for systems is time. Because of the efforts made by 
researchers, real-time frameworks for MPC have been 
proposed in recent years [10, 21, 22] and have been employed 
as control methods in robotic applications such as lower limb 
exoskeleton robots [10], mobile robots [21] and humanoids 
[22]. In addition, robust tube-based MPC methods have been 
developed and presented for other applications such as 
industrial robots [23], mobile robots [24], and humanoids [25] 
to deal with model uncertainties and external disturbances. 

Here, inspired from the above, we proposed a robust model 
predictive (RMP)-VDC method. The proposed controller 
benefits from the advantages of the MPC and VDC methods 
to deal with inherent nonlinearity, model uncertainties and 
external disturbances as well as input saturations for complex 
systems. To the best of our knowledge, the VDC method is not 
yet equipped with tools to overcome these challenges. Given 
the real-time implementation of the RMP-VDC, the 
constrained optimisation problem is solved online by the 
linearisation of the nonlinear model and employing the active 
set method. The analytical solution to the problem is then 
obtained, and the real-time implementation of our approach is 
achieved by calculating the greatest number of mathematical 
processes required for an arbitrary prediction horizon. For 
validation, the proposed RMP-VDC method is implemented 
on a commercial 7-DoF upper body exoskeleton robot called 
ABLE by Haption Co. (www.haption.com). The results are 
compared with the adaptive VDC in [14]. The main 
contributions of this study can be summarised as follows:  

1. A new RMP-VDC method that benefits from both the 

prediction and modelling of complex systems is proposed. 

2. The robustness of the proposed controller is then 

guaranteed to deal with inherent nonlinearities and 

dynamics model uncertainties. 

3. An analytical solution is offered for the optimisation 

problem, enabling real-time implementation.  

4. The proposed method is implemented on a real complex 

7-DoF upper body exoskeleton robot. 

This paper is prepared as follows: section II describes the 
mathematical preliminaries; section III presents the proposed 
robust model prediction-based VDC method; section IV 
includes the experimental results of the proposed method on a 
real exoskeleton robot; and finally, section V shows the 
conclusions. 

II. MATHEMATICAL PRELIMINARIES 

In this section, summary of the mathematical preliminaries 
used for the next section is presented. By reviewing [14], an 
orthogonal coordinate system (i.e. a frame) {𝑆1} attached to a 
rigid body is first considered. The force/moment vector 𝐹 

𝑠  ∈
 𝑅6 and the linear/angular velocity vector 𝑉 

𝑠  ∈  𝑅6 of the rigid 
body, as demonstrated in frame {𝑆1}, is: 

𝑉 
𝑆1 = [

𝑣  
 

𝑆1

 𝜔 
𝑆1

]

 

 and 𝐹 
𝑆1 = [

𝑓 
𝑆1

 𝑚 
𝑆1

]

 

, (1) 

where 𝑣 
𝑆1 ∈  𝑅3 and 𝜔 

𝑆1  ∈  𝑅3 are the linear and angular 

velocity vectors of frame {𝑆1}, respectively; and 𝑓 
𝑆1  ∈  𝑅3 is 

the force and 𝑚 
𝑆1  ∈  𝑅3 is the moment vectors that are 

presented in frame {𝑆1}. By considering 𝑈𝑆2
 

 
𝑆1 ∈  𝑅6×6 as a 

force/moment transformation matrix, the force/moment and 

linear/angular velocity vectors can be transformed between 

{𝑆1} and {𝑆2} frames as follows: 

𝑉 
𝑆2 = 𝑈𝑆2

𝑇
 

𝑆1 𝑉 
𝑆1  and 𝐹 

𝑆1 = 𝑈𝑆2

 
 

𝑆1 𝐹 
𝑆2 , (2) 

Then, the rigid body dynamics for frame {𝑆1} is: 

𝑀𝑆1

 �̇� 
𝑆1 + 𝐶𝑆1

𝑉 
𝑆1 + 𝐺𝑆1

= 𝐹∗
 

𝑆1 , (3) 

where 𝐺𝑆1
∈  𝑅6 denotes the gravity vector, 𝑀𝑆1

 ∈  𝑅6×6 

indicates the mass matrix, 𝐶𝑆1
∈  𝑅6×6 is the matrix of the 

Coriolis and centrifugal terms, and 𝐹∗
 

𝑆1 ∈  𝑅6 is the net 
force/moment vector. For a detailed formulation of 𝑀𝑆1

 , 𝐶𝑆1
 

and 𝐺𝑆1
, see [14]. 

III. ROBUST MODEL PREDICTIVE-BASED VDC 

The overall structure of the proposed robust model 
prediction-based VDC is depicted in Fig. 1. A system–
environment with an interaction force is considered. Thus, the 
dynamics equation of the system according to the VDC 
method is: 

𝑀𝑠
 �̇� 

𝑠 + 𝐶𝑠 𝑉 
𝑠 + 𝐺𝑠 = 𝐹 

𝑠 − �̅� 
𝑠 , (4) 

where 𝐹 
𝑠 ∈  𝑅6 and �̅� 

𝑠 ∈  𝑅6 are the force/moment vector in 

the frame {S} and the interaction/external forces expressed in 

frame {S}, respectively. In other words, 𝐹 
𝑠  and �̅� 

𝑠  are the 

control signal and external disturbances, respectively. As 

shown in Figure 1, the dynamics equation for the real system 

can be rewritten as: 

�̇� 
𝑠 = 𝑀𝑠

−1(−𝐶𝑠 𝑉 
𝑠 + 𝐹 

𝑠 − �̅� 
𝑠 − 𝐺𝑠). (5) 

The control signal for each joint can be considered as:  
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𝐹 
𝑠 = 𝐹𝑟 

𝑠 + 𝐹∗ = �̂�𝑠
 �̇�𝑟 

𝑠 + �̂�𝑠 𝑉𝑟 
𝑠 + �̂�𝑠 + 𝐹�̅� 

𝑠 + 𝐾𝑠( 𝑉𝑟 
𝑠 −

𝑉 
𝑠 ) + 𝐹∗, 

(6) 

where 𝐹∗ is the signal control from the MPC method, and �̂�𝑠
 , 

�̂�𝑠 and �̂�𝑠 matrices are the approximation matrices of the 𝑀𝑠
 , 

𝐶𝑠 and 𝐺𝑠, respectively. In addition, 𝐹𝑟 
𝑠  and 𝑉𝑟 

𝑠  are the 
required force and velocity, respectively. In the VDC 
framework, the required velocity is an important notion, and 
note that it is different from the desired velocity [17]. The 
required velocity is: 

�̇�𝑟 = �̇�𝑑 + 𝛼 (𝜃𝑑 − 𝜃𝑎), (7) 

where �̇�𝑑 is desired velocity and 𝛼 is a positive constant. Also, 
𝜃𝑑 and 𝜃𝑎are the desired and actual positions of the joint, 
respectively. By replacing the 𝐹  

𝑠  in (5), we have: 

�̇� 
𝑠 = −𝑀𝑠

−1𝐶𝑠 𝑉 
𝑠 + 𝑀𝑠

−1�̂�𝑠
 �̇�𝑟 

𝑠 + 𝑀𝑠
−1�̂�𝑠 𝑉𝑟 

𝑠 + 𝑀𝑠
−1(𝐹∗) +

𝑀𝑠
−1𝐾𝑠( 𝑉𝑟 

𝑠 − 𝑉 
𝑠 ) + 𝑀𝑠

−1( 𝐹�̅� 
𝑠 − �̅� 

𝑠 ) + 𝑀𝑠
−1(�̂�𝑠 − 𝐺𝑠). 

(8) 

By adding the ± �̇�𝑟 
𝑠  and ±𝑀𝑠

−1�̂�𝑠 𝑉 
𝑠  and considering the 

𝑒𝑉 
𝑠 = 𝑉𝑟 

𝑠 − 𝑉 
𝑠 , we have: 

�̇�𝑉 
𝑠 = −𝑀𝑠

−1(𝐶𝑠 + 𝐾𝑠𝐼6) 𝑒𝑉 
𝑠 − 𝑀𝑠

−1 (𝐹∗) + 𝑊, (9) 

where: 

𝑊 = 𝑀𝑠
−1[(𝑀𝑠

 − �̂�𝑠
 ) �̇�𝑟 

𝑠 + (𝐶𝑠 − �̂�𝑠) 𝑉 
𝑠 + (𝐺𝑠 − �̂�𝑠) +

( �̅� 
𝑠 − 𝐹�̅� 

𝑠 )]. 
(10) 

The discrete-time system is: 

𝑋(𝑘 + 1) = 𝐴 𝑋(𝑘) + 𝐵 𝑢(𝑘) + �̃�, (11) 

where: 

𝑋(𝑘) = 𝑒𝑉 
𝑠 (𝑘), (12) 

𝑢(𝑘) = 𝐹∗, (13) 

𝐴 = 𝐼6 − Δ𝑡𝑀𝑠
−1(𝐶𝑠 + 𝐾𝑠𝐼6), (14) 

𝐵 = −Δ𝑡 𝑀𝑠
−1, (15) 

�̃� = Δ𝑡𝑊, (16) 

where ∆𝑡 is the sampling time. 𝐴 and 𝐵 have parametric 
uncertainties such that the function 𝜌(𝑥) ≔ (𝐴, 𝐵) can take 
any value in the convex set 𝛲(𝑥) at any time 𝑘, where: 

𝛲(𝒙) ≔ 𝑐𝑜(𝐴 , 𝐵) |𝑗 ∈ ℒ, (17) 

with ℒ ≔ 1,2, … , ℐ where 𝑐𝑜(∙) specifies the convex hull set, 
and ℐ is the corner number of the polytopic 𝛲. The nominal 
system is defined as: 

𝑍(𝑘 + 1) = 𝒜 𝑍(𝑘) + ℬ 𝓊(𝑘), (18) 

where 𝓊(𝑘) is the input of the nominal system, and 

𝒜 =
1

ℐ
 ∑ 𝐴𝑗

ℐ
𝑗=1 , and ℬ =

1

ℐ
∑ 𝐵𝑗

ℐ
𝑗=1 . (19) 

Hence, (11) is rewritten as 

𝑥(𝑘 + 1) =  𝒜 𝑥(𝑘) + ℬ 𝑢(𝑘) + 𝒲(𝑘), (20) 

where: 

𝒲(𝑘) ≔ (𝐴 − 𝒜)𝑥(𝑘) + (𝐵 − ℬ)𝑢(𝑘) + �̃�, (21) 

and 𝒲 ∈ �̅̅̅�. 

Assumption 1 (Boundedness of the uncertainty set �̅̅̅�). 

Presumably, the uncertainty set �̅̅̅� is a compact bounded set 
that holds the origin. 

Therefore, the ancillary control law can be defined as: 

 𝑢(𝑘) = 𝓊(𝑘) + 𝐾(𝑘)(𝑋(𝑘) − 𝑍(𝑘)), (22) 

where 𝑋(𝑘) is the current state of the actual system, 𝑍(𝑘) is 
the current state of the nominal system, and 𝐾(𝑘) is a time-
varying state feedback matrix. Therefore, the closed-loop 
system dynamic is: 

𝒙(𝑘 + 1) =  𝐴 𝒙(𝑘) + 𝐵 𝓊(𝑘) + 𝐵 𝐾(𝑘)𝑒(𝑘) + 𝒲, (23) 

 
Figure 1. The overall structure of the proposed robust model prediction-based virtual decomposition. 

 



  

where 

𝑒(𝑘) ≔ 𝑥(𝑘) − 𝑧(𝑘) (24) 

is the state error, with the following dynamics equation: 

𝑒(𝑘 + 1) = (𝒜 + ℬ 𝐾(𝑘))𝑒(𝑘) + 𝒲 

≔ �̅�𝑘(𝑧(𝑘))𝑒(𝑘) + 𝒲. 
(25) 

Therefore, we obtained the following: 

𝑒(𝑘) = 𝑒(0) ∏ �̅�𝑖(𝑧(𝑘))𝑘−1
𝑖=0 +

∑ (𝒲(𝑗) ∏ �̅�𝑖(𝑧(𝑘))𝑘−1
𝑖=𝑗+1 )𝑘−1

𝑗=0 . 
(26) 

By setting 𝑥(0) = 𝑧(0), we have 𝑒(0) = 0. Now, the 
controller gain is set as: 

𝐾(𝑘) = ℬ+(𝐴𝑘 − 𝒜), (27) 

where 𝐴𝑘 is a positive stable matrix, and ℬ+ indicates the 
pseudoinverse of the matrix ℬ. The corresponding uncertainty 
sets 𝑆𝑘 are then defined by: 

𝑆𝑘(𝑘) ≔ ∑ 𝐴𝑘
𝑖𝑘−1

𝑖=1  �̅̅̅� = �̅̅̅�⨁𝐴𝑘
1 �̅̅̅� ⨁ … ⨁𝐴𝑘

𝑘−1�̅̅̅�, (28) 

where ⊕ denotes the set addition. Since 𝐴𝑘 is stable, the set 

𝑆𝑘(∞) ∶=  ∑ 𝐴𝑘
𝑖∞

𝑖=1 �̅̅̅� exists and is the positive invariant for 
𝑒(𝑘 + 1)  =  𝐴𝐾𝑒(𝑘) + 𝒲; furthermore, 𝑆𝑘(𝑖)  →  𝑆𝑘(∞) is 
in the Hausdorff metric by 𝑖 →  ∞. The above-mentioned 
procedure delivers the design for the ancillary controller. 
Consequently, 𝑒(𝑘 + 1) = 𝐴𝑘𝑒(𝑘) + 𝒲 is bounded 
according to Assumption 1.   ∎ 

To achieve real-time properties, we linearised the nominal 
system at each sample time 𝑘 to achieve a linear time-varying 
(LTV) model for prediction: 

𝑧̅(𝑘 + 1) =
∂(𝒜 𝑍(𝑘))

∂z
 𝑧̅(𝑘) +

∂(ℬ)

∂𝓊
𝓊(𝑘), (29) 

�̅�|𝑘 ≔
∂(𝒜 𝑍(𝑘))

∂z
, 

 ℬ̅|𝑘 ≔
∂(ℬ(𝑧(𝑘))

∂𝓊
, 

𝑧̅(𝑘) = 𝑧(𝑘), 

(30) 

𝑧̅(𝑘 + 1) = �̅�|𝑘𝑧̅(𝑘) + ℬ̅|𝑘  𝓊(𝑘). (31) 

Consequently, the system outputs are predicted as: 

�̅�(𝑘) = 𝐶𝑧̅(𝑘), (32) 

where 𝐶 = [𝐼   𝑍𝑜], 𝐼 is the identity matrix, and 𝑍𝑜 is a zero 
matrix with proper dimensions. Consequently, the optimal 
problem of the proposed RMP-VDC is defined as: 

𝑉(𝑦, 𝑘) = min
𝑢

  𝐽(�̅�, 𝓊, 𝑘) 

Subject to: 
(33) 

𝑧̅(𝑘 + 𝑖 + 1) = �̅�|𝑘  𝑧̅(𝑘 + 𝑖) + ℬ̅|𝑘  𝓊(𝑘 + 𝑖). 𝑖 =
0, 1, 2, … , 𝑁 − 1, 

(34) 

�̅�(𝑘 + 𝑖) = 𝑧̅(𝑘 + 𝑖), (35) 

|𝓊(𝑘 + 𝑖)| ≤ 𝓊𝑚𝑎𝑥(𝑘), (36) 

where 𝐽(�̅�, 𝓊, 𝑘) is: 

𝐽(�̅�, 𝓊, 𝑘) = ∑ [(𝑦𝑑(𝑘 + 𝑖|𝑘) −𝑁
𝑖=1

�̅�(𝑘 + 𝑖|𝑘))
𝑇

𝑄𝑖(𝑦𝑑(𝑘 + 𝑖|𝑘) − �̅�(𝑘 + 𝑖|𝑘)) +

𝓊 (𝑘 + 𝑖 − 1|𝑘)𝑇 𝑅𝑖𝓊 (𝑘 + 𝑖 − 1|𝑘)], 

(37) 

where 𝑁 is the prediction horizon, whereas 𝑦𝑑(𝑘 + 𝑖|𝑘) and 
�̅�(𝑘 + 𝑖|𝑘) represent the desired trajectory and the predicted 
system output for 𝑖 = 1, … , 𝑁 at time 𝑘, respectively. The 
positive definite matrices 𝑄𝑖  and 𝑅𝑖 are the designing weights 
for the tracking error and the control effort for 𝑖 = 1, … , 𝑁, 
respectively. 

The constraint 𝑢𝑚𝑎𝑥 is considered as: 

𝓊𝑚𝑎𝑥(𝑘) = 𝑢𝑚𝑎𝑥 − 𝐾(𝑘)𝑒𝑚𝑎𝑥 − 𝐹𝑟 
𝑠 , (38) 

with: 

𝑒𝑚𝑎𝑥 = sup
𝒲∈�̅̅̅�

𝒲. 
(39) 

Therefore, the optimal control vector 𝑈∗(𝑘) is:  

𝑈∗(𝑘) ≔ arg min
𝑢

  𝐽(�̅�، 𝓊، 𝑘) s. t. Eq. (34) − (36))}

= [𝓊∗(𝑘|𝑘), 𝓊∗(𝑘 + 1|𝑘), … , 𝓊∗(𝑘 + 𝑁 − 1|𝑘)]𝑇 , 
(40) 

and control input is the first element of 𝑈∗[𝑘], 𝓊∗(𝑘|𝑘), to 

apply to the system at 𝑡 = 𝑘∆𝑡. The analytically solution of 

the optimal problem with an active set method is obtained as 

in [10]. Consequently, the input signal of the proposed RMP-

VDC shown in (6) for the system can be rewritten as: 

𝐹 
𝑠 = �̂�𝑠

 �̇�𝑟 
𝑠 + �̂�𝑠 𝑉𝑟 

𝑠 + �̂�𝑠 + 𝐹�̅� 
𝑠 + 𝐾𝑠( 𝑉𝑟 

𝑠 − 𝑉 
𝑠 ) +

𝓊∗(𝑘|𝑘) + 𝐾(𝑘)𝑒(𝑘). 
(41) 

In summary, in this section, a new VDC method is 
presented based on the robust model predictor for a system 
with model uncertainties and interaction/external forces. The 
given mathematics of the proposed method is then used for 
implementation, which is presented in the following section. 

IV. EXPERIMENTAL RESULTS 

In this section, the proposed RMP-VDC is experimentally 
implemented on a real 7-DoF upper body exoskeleton robot 
(ABLE). After placing a marker pen in the exoskeleton end-
effector, the implementation test is then to draw a  square with  
10 cm sides on the whiteboard. Fig. 2 (a) depicts the real 
process of drawing this square by the exoskeleton robot. 
Moreover, for improved validation, the results of the proposed 
method are compared with the adaptive VDC method in [14]. 
The implemented control parameters of both control methods 
are given in TABLE I, which are selected after trial and error to 
achieve the best results.  

The results of the implementation are demonstrated in Fig. 
2 (b), Fig. 3 and Fig. 4. Fig. 2 (b) shows the desired and actual 
trajectories of the exoskeleton end-effector for the adaptive 
VDC and the proposed RMP-VDC. As shown in Fig. 2 (b), 
both controllers have stable performances; however, the 
performances were somewhat different. To better compare this 
difference, Fig. 3 (a) shows the desired and actual trajectory of 
the end-effector, while the error of each axis is depicted in Fig. 
3 (b). For better validation, the outputs and tracking errors of 
each joint are depicted in Fig. 4 (a) and (b), respectively.  

https://en.wikipedia.org/wiki/Matrix_(mathematics)


  

Additionally, mean square errors (MSEs), energy 
consumption (𝐽𝑓) and performance indicator (𝜌) are calculated 

to evaluate the performances of the control methods and 
numerical comparison. The normalising performance 
indicator (see [26] for additional details) and 𝐽𝑓 are defined as: 

𝜌 =
max(|𝜃𝑑𝑒𝑠−𝜃𝑎|)

max(|�̇�𝑎|)
=

|𝑒𝜃|𝑚𝑎𝑥 

|�̇�𝑎|
𝑚𝑎𝑥

, (42) 

𝐽𝑓 =  
1

𝑇
∫ | 𝐹 

𝑠 |
𝑇

0
𝑑𝑡, (43) 

where 𝜃𝑑𝑒𝑠 and 𝜃𝑎 are the desired and actual positions, 

respectively, and �̇�𝑎 and 𝑇 are actual velocity and total 
implementation time, respectively. TABLE II indicates the 
MSEs and 𝜌 of the x-, y- and z-axes for the exoskeleton end-
effector. In addition, the MSEs, 𝜌 and 𝐽𝑓 are calculated for 

each joint and are provided in TABLE III. The best results are 
shown in bold in TABLE II and TABLE III to facilitate reading. 
Furthermore, the comparative percentages of the methods are 
given under each numerical value. 

In conclusion, as shown in TABLE II, the proposed 
controller performs better in all variables, meaning that it has 
lower MSEs and 𝜌 compared with the adaptive VDC for the 
x-, y- and z-axes. In TABLE III, the results of most variables 
show that the performance of the proposed controller 
improved. For example, the 𝐽𝑓 of all joints is highly optimal 

for the proposed RMP-VDC method, except for joint number 
5, where the performance of the adaptive VDC improved by 
only 7%. Although the results show a considerable advantage 
for the adaptive VDC method in joint number 6, the overall 
end-effector performance is decidedly better with the proposed 
method. Therefore, the end-effector and joint results show the 
superiority of the proposed RMP-VDC method for the 
complex real 7-DoF exoskeleton robot, specifically when 

handling the model uncertainties, disturbances and interaction 
forces between humans and the robot. 

V. CONCLUSION 

Here, we proposed a robust model predictive-based VDC 
method to tackle the inherent nonlinearity, model uncertainties 
and external disturbances for complex and high DoF robot 
manipulators by considering the input saturations. We first 
developed the VDC method based on a robust model predictor. 
The constraint optimal problem was then solved using the 
LTV approach to analytically calculate the ancillary controller 
of the prediction scheme and to provide the real-time 
controller. Consequently, the proposed controller was 
validated with implementation on a real 7-DoF arm 
exoskeleton robot, and the output results were compared with 
the adaptive VDC method. These experimental results reveal 

 
(a) 

 
(b) 

Figure 2. End-effector results. a) The real process of drawing a square by 
the exoskeleton robot and b) the desired and actual trajectories of the 

exoskeleton end-effector for adaptive VDC and the proposed RMP-VDC. 

 

TABLE I. CONTROL PARAMETERS OF ADAPTIVE VIRTUAL 

DECOMPOSITION CONTROL (VDC) AND THE PROPOSED ROBUST 

MODEL PREDICTIVE (RMP)-VDC FOR 7-DOF EXOSKELETON ROBOT 

Controllers Δ𝑡 𝛼 𝐾𝑠 𝑄 R 𝑁 

Adaptive VDC 1 𝑚𝑠 10 0.1 − − − 

The proposed RMP-

VDC 
5 𝑚𝑠 10 0.01 10 0.1 5 

 

TABLE II. MEAN SQUARE ERRORS (MSES) AND PERFORMANCE 

INDICATOR (𝜌) OF X-, Y- AND Z-AXES FOR ADAPTIVE VIRTUAL 

DECOMPOSITION CONTROL (VDC) AND THE PROPOSED ROBUST 

MODEL PREDICTIVE (RMP)-VDC 

 
 

Axis 

Adaptive VDC 
The proposed 

Robust VD-based MPC 

MSE 

× 10−5 

𝜌 

× 10−3 

MSE 

× 10−5 

𝜌 

× 10−3 

X 
1.92 

(32%) 
92.8 

(63%) 
𝟏. 𝟒𝟔 
(𝟎%) 

56.9 

(𝟎%) 

Y 
3.62 

(96%) 

87.8 

(51%) 

1.84 

(𝟎%) 

83.6 

(𝟎%) 

Z 
2.18 

(47%) 

77.0 

(202%) 

2.47 

(𝟎%) 

25.5 

(𝟎%) 

 

TABLE III. MEAN SQUARE ERRORS (MSES), PERFORMANCE 

INDICATOR (𝜌) AND ENERGY CONSUMPTION (𝐽) OF EACH JOINT FOR 

ADAPTIVE VIRTUAL DECOMPOSITION CONTROL (VDC) AND THE 

PROPOSED ROBUST MODEL PREDICTIVE (RMP)-VDC 

Jo
in

t 

Adaptive VDC 
The Proposed 

Robust VD-based MPC 

MSE 

× 10−5 

𝜌 

× 10−3 
𝐽𝑓 

MSE 

× 10−5 

𝜌 

× 10−3 
𝐽𝑓 

#1 
10.23 

(267%) 
84.1 

(107%) 

1.48 

(11%) 

𝟐. 𝟕𝟗 
(𝟎%) 

40.6 

(𝟎%) 

𝟏. 𝟑𝟒 
(𝟎%) 

#2 
7.74 

(67%) 

56.1 

(18%) 

1.32 

(1%) 

4.63 

(𝟎%) 

47.5 

(𝟎%) 

𝟏. 𝟑𝟏 
(𝟎%) 

#3 
25.65 

(168%) 

52.1 

(𝟎%) 

1.18 

(34%) 

9.54 

(𝟎%) 

77.7 

(49%) 

𝟎. 𝟖𝟖 
(𝟎%) 

#4 
27.50 

(𝟎%) 

165.9 

(280%) 

1.08 

(33%) 

62.1 

(125%) 

43.7 

(𝟎%) 

𝟎. 𝟖𝟏 

(𝟎%) 

#5 
4.01 

(7%) 

35.8 

(50%) 

𝟎. 𝟐𝟔 

(𝟎%) 

3.75 

(𝟎%) 

24.0 

(𝟎%) 

0.27 

(7%) 

#6 
15.17 

(𝟎%) 

23.3 

(𝟎%) 

0.21 

(1%) 

48.9 

(223%) 

98.1 

(322%) 

𝟎. 𝟐𝟎 

(𝟎%) 

#7 
4.56 

(𝟎%) 

39.2 

(21%) 

0.14 

(76%) 

5.45 

(20%) 

32.4 

(𝟎%) 

𝟎. 𝟎𝟖 

(𝟎%) 

 



  

increased accuracy for the proposed RMP-VDC in dealing 
with interaction forces between humans and exoskeleton 
robots. 

Hence, in the future, we will investigate the proposed 
RMP-VDC algorithms for highly complex systems, such as 
multi-robot manipulators and teleoperating master–slave 
systems [16]. Given that the proposed method enables optimal 
cooperation of multi-robot manipulators by considering the 
constraints of the environment and actuators, as well as 
handling the model uncertainties and external disturbances, it 
can be introduced in the control of multi-robot systems. 

Furthermore, equipping the VDC method with tools that 
benefit from the advantage of dynamic behaviour prediction 
can provide the required scaled forces for our dissimilar master 
and slave systems. 
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(a) (b) 
Figure 3. End-effector results. a) The desired and actual trajectory of x-, y- and z-axes and b) tracking error for adaptive VDC and the proposed RMP-

VDC. 

 

 

(a) (b) 
Figure 4. Joint results. a) The desired and actual position of each joint and b) tracking error for adaptive VDC and the proposed RMP-VDC. 
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