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Abstract—Whenever a diagnosis is given, a procedure is
performed, or a drug is prescribed, it leads to an entry into
an electronic health record (EHR) system. Previously, this data
was difficult to utilize because of rules regarding confidentiality,
but new security approaches and pseudonymization have enabled
us to work with this data.

Health-related data is voluminous and complex, and it can
be difficult to abstract a meaningful overview. One of the
complexities is its longitudinality. Often medical research is cross-
sectional – we often take a point in time for analysis, when
instead, it might be more beneficial to see the trajectory that led
to the point in time.

We are currently developing a trajectory visualization tool for
longitudinal electronic health data. It is a web-based tool that
interfaces with the OHDSI data infrastructure and visualizes the
cohorts and concept sets (groups of medical codes) defined via
the OHDSI Atlas GUI.

Currently, our tool is in user testing and it will be deployed to a
wider user group during the spring. The user feedback has been
positive. Users find the tool especially useful in understanding
and debugging their OHDSI Atlas cohort definitions.

Index Terms—health information management; data visualiza-
tion; glyphs

I. INTRODUCTION

The value of real-world health data has been recognized
in clinical decision-making and biomedical research, whether
investigator-led or industry-initiated studies. Different health
registries and electronic health records (EHRs) provide valu-
able data to develop better treatments, design medicinal prod-
ucts, and even predict health problems before they arise.

During the last years, access to health data has improved.
The change has been possible due to the development of
secure analysis environments and improved regulation of data
protection (e.g. in Finland, the law of “Secondary use of
health and social data”1). Additionally, there are global efforts
to develop a common data model (CDM) for health data,
allowing one to perform studies with hundreds of thousands
of cases and controls and make discoveries affected by genetic
makeup and environmental exposures.

The health data is voluminous, complicated, and longitudi-
nal by nature. As known, we should always visualize the data
before analyzing. Without a comprehensive understanding of
the data set, it is possible to take an approach that leads to
wrong conclusions [1]. We address how to make longitudinal

1https://stm.fi/en/secondary-use-of-health-and-social-data

health data visible and therefore enable better understanding
of the proportion of missing/unreliable data, view individual
patient profiles and their potential clustering with other sim-
ilar profiles, and to find outliers and the relations between
variables.

In this paper we present an interactive visualization tool
for longitudinal health data. This tool is under development in
the FinnGen2 research project [2] and will eventually be made
available as an open-source tool. The aims of the tool are as
follows:

• to help understanding the change over time aspect of
health register data;

• to visualize a large number of longitudinal cases;
• to facilitate understanding of cohorts and concept sets

created within OHDSI Atlas tool.
We call our visualization program Trajectory Visualization

Tool (TVT). In the following, we will discuss the previous
work in the area, introduce our tool by using mock data and
discuss the ideas for further development.

II. BACKGROUND

Visualization of individual patient history has been dis-
cussed, for example, in the context of the LifeLines tool
[3], [4], which has been applied not only to patient history
but also to the visualization of a person’s criminal record.
LifeLines creates interactive timelines to which events have
been attached and can be handled differently. The events
are divided into different categories that can be hidden and
displayed, and the timeline scaling and focus can be changed
as needed. LifeLines implements Shneiderman’s data visual-
ization mantra (“overview first, zoom and filter, then details-
on-demand”, [5]). A newer version, LifeLines2, can be used to
visualize the timelines of up to a dozen people at the same time
[6], and there is also an proposed extension to the technique
to show temporal uncertainties [7].

The visualization of large amounts of patient information
has been dealt with relatively little in literature. Rind et al.
[8] conducted a survey where they went through 14 systems
presented in the literature. They evaluated systems with the
following criteria: number of data types, multidimensional pre-
sentation capability, maximum number of patient records that

2https://www.finngen.fi/en
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can be seen at a time, and support for different intent [9]. Of
the evaluated systems, only eight supported the visualization of
more than one patient record at the same time, and they were
also able to present a maximum of ten record variables. Thus,
systems developed to visualize large patient cohorts were not
found in the mapping. Rind at al. [8] state that the main
reason for this is the lack of a benchmark database – it is very
difficult to access the right patient information, so you should
create an example database that is quite similar to real patient
information. It would then be possible to better compare the
systems developed for the visualization of patient information.
This has been later accomplished in OHDSI project3 [10], [11].

Müller et al. have proposed using adaptive and multilevel
glyphs [12], [13] for presenting large biomedical data sets.
They use more complex visual encoding and 3D elements.

Wang et al. [14] have presented a visual analysis approach
to analyze EHRs. Their method can process and display
thousands of patient records as informative plots that are based
on the Sankey diagram [15]. Their system can be used to
visualize, e.g., comorbidity trajectories of patient cohorts.

The Danish Disease Trajectory Browser (DTB) [16] is a tool
developed to explore almost 25 years of data from the Danish
National Patient Register, containing about 7.2M patients and
122M observations. It can show visually disease progression
patterns and combine them into disease trajectory networks,
displaying an entire multimorbidity spectrum of a disease in
a single connected graph.

III. THE DATA PROTECTION ISSUE

Data protection is a top priority in research systems that
process personal health information. Ideally, the data should
be completely anonymous, but that goal is difficult to achieve.
The practical approach recommended by WHO [17] is to
pseudonymize and aggregate the data, and limit the access to
systems processing it. This approach has been adopted also in
FinnGen: register holders supply the data pseudonymized and
it is processed in a system without network connection. The
data analysis system can only be accessed after a successful
completion of training course on data protection issues. While
the pseudonymized personal-level data is available in the
system, only aggregated results (N>5) are allowed to be
exported (after approval process).

In the analysis of trajectory data, the aggregation of time-
lines does not make sense, and the data must be aggregated
longitudinally, into months and years. In addition, a random
but same error of +/- 15 days is introduced to all dates of a
person. While the data is transformed like this, we can still
separate intermittent and continuous drug administration and
diagnoses, and detect seasonal changes.

Currently, the data protection requirements allow only users
having person-level data access to use TVT. We are exploring
other trajectory abstractions to find a representation method
that would not have this limitation.

3http://atlas-demo.ohdsi.org/

IV. GLYPH TIMELINES

A glyph in TVT is a construct of six rectangles. Color
of the rectangle can be freely chosen, and the height of the
rectangle depicts the relative frequency of events encoded
by the rectangle. Figure 1 shows a simple single-rectangle
timeline with the values depicted below the bar.

Fig. 1. Representing a simple data trajectory with bars.

The event frequencies in TVT are always aggregated, usu-
ally per year, but also per month in some situations. Seeing the
exact date of an event is not needed when you are interested
in the trend of events.

The event frequencies are scaled within each timeline by
default. There is an option to use global scaling which enables
easier comparison of frequencies between timelines. However,
this is not generally useful as very high-frequency events in
one timeline can minimize trends in other timelines so much
that they cannot be seen.

Showing the variation of a single value over time is some-
times useful, but generally we want to see an interplay of
several variables. The glyph design we propose is a simple
one, considering the design space [18], but the data volume
requires visual simplicity. TVT uses a six-segment glyph to
show the trajectories of six variables. The encoding for a single
glyph segment is defined as in Figure 2.

The top-level menu structure of TVT user interface is also
shown in Figure 2. The main functions are:

• select a database where the data is extracted from (“Data
sources”)

• save and restore a snapshot of the extracted data (“File”)
• assign concept sets, visit types and colors to glyph

segments (“Encoding”)
• filter data, both horizontally and vertically (“Filtering”)
• reorder data timelines, both horizontally and vertically

(“Reordering”)
• cluster data to gain overview (“Clustering”)
As an example, suppose we are interested in visualizing a

cohort of patients having the most common asthma comor-
bidities as a timeline visualization. Beasley et al. [19] report
a dozen asthma comorbidities, and nine more with elevated
co-occurrence rate. As we can select six conditions at a time,
we could choose chronic rhinitis and sinusitis, reflux, sleep
apnea, and hyperventilation. In a real analysis scenario we
would detect and select the most frequent comorbidities in
OHDSI Atlas, when defining our cohort. In our mock data,
we have 639 cases having at least one of the comorbidities
observed (2101 observations altogether).



Fig. 2. The top-level of TVT menu strcuture on the left, and the set encoding
for a glyph segment on the right: choose concept set, visit type, and color.
Leaving the visit type empty allows all possible visit types. The non-standard
checkbox is chosen for concept sets outside the OHDSI Atlas standard ones.

Figure 3 shows one possible glyph encoding. The fifth
segment (the black one) is reserved for asthma diagnoses, the
others are for comorbidities. For each glyph segment, the top
line of text box gives the name of the concept set, the following
line lists the included concepts, and “N” and “C” give the
number of observed concepts and the number of found cases,
respectively. After the concept set name there might be a list
of visit types, if limited, otherwise all visit types are searched
for. The “visit type” is OHDSI terminology, it can be several
things like given diagnosis or drug, procedure made, device
used, etc.

Fig. 3. Glyph legend for asthma comorbidities, ’N’ is the number of entries
extracted, and ’C’ is the number of cases (timelines) they appeared on.

Seeing six variables on a timeline may seem like a signif-
icant limitation. Originally, our tool extracted the data from
the raw health register data, and it soon became evident that
defining a cohort with this approach is too complicated and
limiting. The current approach uses the OHDSI Atlas tool [10]
to define cohorts and concept sets. Each glyph segment is

Fig. 4. Overview of data.

assigned to one OHDSI Atlas concept set. A concept set has
a considerable expressiveness, and since OHDSI databases im-
plement OMOP Common Data Model (Observational Medical
Outcomes, [11]), the data can contain both standard OHDSI
concepts and non-standard (usually national) vocabularies to
describe the observations. Additionally, a concept-set can
provide an abstraction that makes it easier to see the trend
of the glyph; for example, one concept could contain all the
medical codes from different eras (ICD8, 9, and 10) that refer
to the same diagnosis.

Figure 9 shows the current TVT user interface and how the
mock asthma comorbidity data appears in it. The shinydash-
board [20], [21] user interface has a hierarchical menu on the
left which can also be hidden. The default view in TVT is a
timeline. For each person, there is a solid line extending from
the cohort entry to the cohort exit, and there is a dashed line
to the birth date. The line’s color encodes the gender (red =
female, blue = male).

V. OVERVIEW OF GLYPH TIMELINES

The typical size of a cohort can vary from a few dozens to
several thousand cases. TVT shows such cohorts as pages of
timelines, displaying 500 cases per page. This is fine if you
want to browse and look at individual cases, but it is hard
to get an overview of the data. To gain overview, we provide
both static and interactive views into data.

Figure 4 shows the data breakdown in three different ways.
The plot on the top shows the number of observations per
glyph sector, basically giving the counts of concept sets
(showing an increasing trend of visits). The plot in the middle
shows the number of observations per data source (showing
that the registries were founded at different time points), and
finally, the plot on the bottom shows the total number of cases
per year (indicating that the number of individuals is growing
over time).



Fig. 5. Upset plot of data. The horizontal bars on the left depict the set sizes, and the vertical bars on the top indicate the size of intersection. The matrix
shows the sets in intersection.

Another method to characterize the data is to show how
the cases in the glyph sectors intersect (overlap of the co-
morbidities, Fig. 5). We use UpSet plot [22] to visualize this
information. The bars on the left side of the plot show the
number of cases in the concept sets of glyph segments. The
bars on the top shows the sizes of concept set intersections,
and the plot with connected dots indicate the intersection in
that column.

Figure 5 indicates that sleep apnea is the most common
asthma comorbidity in this (mock) data set, having 126 cases.
On the other end, only eight cases have three of these
comorbidities.

VI. INTERACTING WITH THE GLYPH TIMELINES

Being able to interact with a visualization has many benefits.
If you can interactively manipulate a visualization, there is a
good chance that you see something that was not obvious by
just looking at it. Shneiderman’s information-seeking mantra
[5] recommends “overview first, zoom and filter, then details-
on-demand.” In addition, Bertin’s classic idea of reordering the
data to produce insight-generating views is also a powerful
one. He wrote that “a graphic is never an end in itself; it
is a moment in the process of decision-making” [23, p. 16].
We have applied some of these ideas in TVT (see [19] for a
comprehensive list of interaction methods in visualization).

A. Detail view – details-on-demand

Selecting a single timeline from the TVT’s main view (Fig.
9) will open up a detail view (Fig. 6), implementing details-
on-demand. In this view, the concepts within the concept sets
are split into separate timelines according to source, and the

Fig. 6. Detail view of a single timeline. The concepts within concepts sets
are split into separate timelines according to data source.

concept occurrences are aggregated per month. The color-
coding here is just to distinguish between concept sets – it
is not possible to use the color-coding of the glyph, because
glyph segment can include several concepts in its concept set.

B. Filter

Figure 7(1) shows the filter menu. The current set of
timelines can be filtered according to

• age at event (lower and upper limit)



Fig. 7. Filter (1) and Reorder menus (2).

• period (beginning and end)
• gender
• event count (lower and upper limit)
Filtering the timelines also affects other views (Overview,

UpSet plot), making it easy to ask what-if questions about the
data.

C. Reorder
Figure 7(2) shows the reorder menu, both for horizontal and

vertical alignment. Horizontally, the timelines can be made
to start or end at the same time point, effectively removing
the calendar time. Aligned timelines are easier to compare
for patterns. For vertical alignment (or sorting) there are the
following options:

• hierarchical sort (for bringing similar timelines together)
• sort (simple, fast sort according to glyph segment values)
• event count
• path length
• age
In Figure 9 the timelines are reordered according to event

count, and the top timeline has the highest event count in this
cohort.

D. Cluster
The hierarchical sorting of timelines will show some struc-

ture of the data but is slow when the amount of data is large,
and the view is spread out on several pages. The Pheatmap
package [24] provides an interesting alternative to get a ‘birds-
eye view’ of the data.

With Pheatmap package, the clustering process can be
divided into phases. In Figure 8(1), one row in the heatmap
represents one case (or KMeans-aggregated cluster of cases,
if so chosen), and the row is divided into six parts, one for
each glyph segment, and time runs from left to right within
each part. A cluster dendrogram for the rows is attached on
the left side of the heatmap.[ˆ6]

The heatmap rows (cases) of the heatmap have been pre-
processed by grouping similar rows together into clusters of
100 cases with KMeans clustering. This step will expedite the
heatmap generation and simplify both the dendrogram and the
heatmap.

Finally, in Figure 8(2), the clusters are shown as density
plots, allowing one to make observations between clusters.
Unfortunately, the mock data does not have interesting subsets
in it, but perhaps the idea is communicated. A similar analysis
with real data placed 99% of cases into a cluster having all of
the comorbidities, a bit over 0.5% into a cluster that did not
have sleep apnea and hyperventilation, and the rest into small
cluster having only reflux as comorbidity. The parameters for
the KMeans clustering and the dendrogram’s cut height are
set in the user interface.

VII. DISCUSSION

Our approach to use a glyph-based timeline to represent a
trajectory of health data has received positive feedback from
the early users. We are currently deploying TVT into wider use
within FinnGen community. At the same time, we start one-on-
one sessions with volunteer users to improve the usability of
TVT. We expect to get new ideas to improve the user interface
and develop its functionality. So far, TVT has gained the most
positive comments on helping to debug and understand OHDSI
Atlas cohorts.

The majority of previous studies have focused on visualizing
the individuals in great detail. We have consciously raised
the level of abstraction for two reasons. Firstly, we want to
obfuscate the data enough for data protection reasons, and thus
make the visualization available to wider audience. Secondly,
we want to focus on the patterns in the data, instead of raw
counts or measures. The goal is to give an approximate answer
that is precise enough to see the patterns and understand the
data [25].



Fig. 8. (1) shows a heatmap of clustered timelines, divided per glyph segment. A line represents one case or a set of cases clustered together with KMeans
pre-processing. (2) shows density plots for each glyph segment, divided into clusters.

VIII. CONCLUSION

In cohort-based studies it is essential to understand what
you have in your cohort. Without considering the changes
over time, the picture of the cohort might be misleading. It
is essential to visualize the cohort in sufficient detail to see
what’s really in there. It is also important to look at the cohort
at different levels: an individual, a subset, and the whole cohort
level.

In this paper, we have presented an interactive visualiza-
tion tool for longitudinal health data. What distinguishes our
method from the prior work is the ability to visualize really
large data sets, having even 40,000 cases or more.

This approach is not limited to health data, and it can
be applied to any domain where gaining insight into data
trajectories is valuable.
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