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Abstract— Learning-based grasping models typically require
a large amount of training data and training time to generate
an effective grasping model. Alternatively, small non-generic
grasp models have been proposed that are tailored to specific
objects by, for example, directly predicting the object’s location
in 2/3D space, and determining suitable grasp poses by post
processing. In both cases, data generation is a bottleneck, as
this needs to be separately collected and annotated for each
individual object and image. In this work, we tackle these
issues and propose a grasping model that is developed in four
main steps: 1. Visual object grasp demonstration, 2. Data
augmentation, 3. Grasp detection model training and 4. Robot
grasping action. Four different vision-based grasp models are
evaluated with industrial and 3D printed objects, robot and
standard gripper, in both simulation and real environments.
The grasping model is implemented in the OpenDR toolkit
at: https://github.com/opendr-eu/opendr/tree/
master/projects/control/single_demo_grasp.

Index Terms— Grasping, Deep Learning in Grasping and
Manipulation, Perception for Grasping and Manipulation

I. INTRODUCTION

Collaborative robots have gained popularity in industry
as they are designed to be safe, particularly where human
and robot share the workspace. Accompanied by intuitive
programming interfaces, robot tasks can be programmed
efficiently [1]. Despite the benefits, the application of cobots
in industrial settings are mainly limited to offline tasks where
the actions and targets are defined to the system beforehand
[2]. For example, in the majority of pick and place tasks,
object poses are fixed, and the robotic arm should reach
a predefined grasp pose. Although there is great interest
in the generation of object grasp models from visual data,
[3], limitations still exist, for example, in terms of object
type coverage, grasp success, training complexity, model
inference time, etc. In particular, while grasp models have
reported high success rate (e.g., Dex-Net 4.0 [4] achieves
above 95% accuracy), this typically only holds for the task
at hand, i.e., bin picking with generic household items. Eval-
uating such grasping model on objects that exhibit different
properties (e.g., industrial parts) might result in unsuccessful
grasp attempts and an overall lower accuracy. In addition,
grasp modelling requires vast amounts of training data and
considerable training time on high-performance computing
clusters. Consequently, state of the art grasping models can
be large in size and slow to execute [5].
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Fig. 1: Overview of the proposed grasping model.

Extending an existing dataset and retraining a grasping
model is in most cases not an option, due to unavailable data
or limitations in resources and computation power. These
problems exist in particular for small and medium sized
enterprises (SME), which typically don’t have the knowledge
and resources available for data collection, model training
and fine-tuning.

Our main observation to motivate this work is that collect-
ing or generating training data for a grasp detection model
is a tedious, time-consuming and costly task, which is often
out of reach in industrial environments. Even though plenty
datasets can be found [6], [7], each are limited (to some
extend) to the objects they contain. Industrial SMEs require
the handling of objects that, in most cases, do not resemble
objects in these datasets, or the objects themselves can
change depending on a customer’s requirement. Moreover,
as the handling of such objects requires a human pre-
selected grasp pose, a single generic model for all objects is
unfeasible.

In this work, we aimed to tackle this issue by investigating
visual learning-based approaches for object grasp detection,
with human annotation of a desired object grasp pose.
For this, different variants of the R-CNN architecture from
Detectron2 [8] are evaluated for the fast generation of a
grasping model. Single or multiple image demonstrations
with human annotations of an object grasp are collected and
utilized to generate an augmented object training dataset,
from which a detection model is trained. Object grasp
detection results (object grasp position and orientation on
a plane) are transformed to a 3D grasp pose and given as
input for robot motion planning (see Fig. [I). Four different
networks are developed and evaluated in simulation (Webots)
with eight different objects. The grasp detection model with
best performance was then implemented and evaluated in
real robot experiments (Franka robot with standard gripper).
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The main contributions of our work are as follows:

« Four different planar grasp models based on pre-
trained object detection models.

o Data generation by image augmentation of image
demonstrations with human annotation.

o Training of grasp detection networks in short time.

o Evaluation of the grasping approach in simulation
and with real experiments.

The paper is organized as follows: Section [II] reviews
related works and state of the art in computer vision and
grasping methods. Section and Section define the
considered problem statement and research methodology,
respectively. Section [V|describes the implementation details
of the proposed grasping model, and Section reports
the results and provides an analysis. Finally, Section
concludes the work.

II. RELATED WORK

In the context of robotics, object detection, pose estimation
and grasp detection are closely related, as grasp poses or
grasp actions can be directly generated from an object pose.
This section presents a brief overview of related approaches.

A. Object Detection and Pose Estimation

Traditionally, object detection and pose estimation algo-
rithms have utilized classical 2D features that exploit local
salient details, such as corners, edges and ridges. Well-known
detectors like SIFT [9] can extract robust keypoints from a
scene by relying on texture on objects or of the scene itself.
Texture-less keypoint detection, on the other hand, utilizes
geometrical primitives as features in methods such as BIND
[10]. In addition, alternatives to traditional keypoints are tem-
plate matching, where a image patch provides the template
to localize within an image, or deep features that extract
keypoints based on high-level cues captured by convolutional
neural networks. The latter is a recent development that
has gained popularity due to their data-driven property and
promising performance [11], as compared to hand-crafted
features. Analogous to 2D keypoints for RGB images, 3D
keypoints can be extracted from 3D data representations,
such as pointclouds or volumetric images [12]. Following
the detection of keypoints from a raw image, follow-up steps
include the description of the keypoint and the matching
of them over two or multiple images. In a similar manner,
Convolutional Neural Network (CNN) based detectors, such
as Faster R-CNN [13], could be utilized to detect objects,
after which a grasp pose needs to be be extracted.

Object pose estimation on the other hand directly estimates
the 6D pose of an object. Similar to object detection, different
approaches exist, such as correspondence-based methods
3DMatch [14], template-based methods such as PoseCNN
[15] and voting based methods such as DenseFusion [16].
Again, once an object pose is extracted, this needs to be
converted to a grasp pose suitable for a robot to hold an
object.

B. Grasp Detection

Object grasp detection aims to derive a grasp pose directly
from sensor measurements and can be divided in several
categories to differentiate between approaches and their
assumptions. For example, the representation of a grasp is
an important consideration and determines the complexity
of the problem and its application. When considering only a
planar grasp pose representation, grasp detection is simplified
to finding the object and its orientation on a planar surface,
typically represented as an (oriented) bounding box, where
the center of the box is the grasp position [17], [18]. On
the other hand, in case a complete 3D pose is required for
grasping, detection should return the full 3D position and
3D orientation [19]. In context of learning-based grasp de-
tection, typical data-driven approaches differentiate between
the utilization of RGB [20], depth (in form of pointclouds
[21], [22]) or a combination of both (RGB-D, [23], [24]).
In addition, objects to be grasped can be known, similar
(i.e., different instance of a known category) or novel, which
should be considered when deciding (or developing) on the
data representation, collection and training approach [25].

The methods explained generate a grasp pose and require
motion planning to execute a grasping action. Such mo-
tion planning approaches can be generally listed as motion
primitive-based methods, imitation learning and reinforce-
ment learning methods [5], [25].

C. Datasets

Existing datasets for 2D object detection, such as Pascal
VOC [26], COCO [27] and, more recently, Objectron [28]
for 3D objects, are widely available, including common
objects that are present in everyday scenes. There are also
datasets designed specifically for grasping such as EGAD!
that contains 3D meshes with diverse properties [6] to
cover variations in object properties, and datasets that uti-
lize simulation for the grasp data collection, e.g., Jacquard
[29] and ACRONYM [7]. These publicly available datasets
include different categories of objects enabling a reasonable
comparison and performance evaluation of grasping models.
However, they are not suitable for applications where the
target objects are not included in the dataset, simply because
no success rate can be guaranteed.

III. PROBLEM STATEMENT

The robot object grasping scenario considers a robot ma-
nipulator with standard gripper and objects that are located
on a planar table in front of it (see Fig. 2). Objects of interest
are unknown beforehand (e.g., industrial objects) and can
have both simple or complex geometry. All objects should
allow for a stable grasp, without alteration to the gripper or
object pose and be light enough to be lifted (< 1 kg). As
general rule, we denote that each object can be represented
by a 2D planar position and 1D orientation {z,y, 0}, from
which a grasp pose is extracted, with rotation and translation
defined as R(#) € SO(3) and t(z,y) € R3. Our observation
is that one common grasp model for a selection of objects is
difficult to generate. Instead, our approach aims to generate



Fig. 2: Object grasping scenario.

a grasp model for individual objects, thereby avoiding mod-
elling conflicts with objects that have different properties. In
addition, grasp models need to be generated and deployed
fast, without large computational resources, thus restricting
the data generation and model training process. This implies
that for perception only RGB images are used, with a camera
located on the end-effector of the robot.

In summary, the grasping problem can then be stated as
follows: from a single image demonstrations of an object
annotated with its grasp, generate suitable training data and
train a grasp detection model that can run in real-time to
successfully grasp the object.

IV. METHODOLOGY

Four different grasp detection modules are developed and
implemented to find the most robust approach for extracting
planar grasp poses. In all cases, the grasping approach
consists of the following four distinct steps (Fig. [I):

1) Human input - captures and annotates the object in

the field of view of the camera.

2) Training data - is generated automatically by applying

data augmentation techniques.

3) Object grasp pose - is estimated based on different

state of the art neural networks.

4) Grasping action - is done after converting planar grasp

to 3D Cartesian pose.
Following, we describe the four different grasp detection
modules and their required image annotations. An overview
of the models is depicted in Fig. 3] and described in Table

A. Faster R-CNN-based Grasp Detection

Model A separates the object grasp location and orien-
tation estimation into two different detection models, i.e.,
Faster R-CNN and CNN, respectively. The Faster R-CNN
network takes images and their corresponding annotation as
input for training, and generates a bounding box around the
objects if they are present in the image scene. The center
location of the bounding box is then used as grasp position.
In order to predict the grasp orientation, a CNN network

is implemented where the final layer consists of 360 output
nodes to represent the object’s orientation. The first layer
of this CNN network accepts image arrays with a size of
(224 x 224 x 3) to extract features and classifies the object
based on the highest score to predict the corresponding
orientation. Input annotation on the image is done by defining
a bounding box around the object. One additional step is
required for the orientation, by using the bounding box to
crop and resize the region of interest that are labeled with
the corresponding orientation.

B. Keypoint R-CNN-based Grasp Detection by Bounding box

Model B utilizes the Keypoint R-CNN network to detect
both object, represented as a bounding box, and keypoints
of an object. For human annotation, a bounding box and two
keypoints on the object need to be defined. The keypoints
represent the reference orientation for the grasp, from which
the augmentation will add ten more keypoints. The estimated
bounding box center can then be used as the robot’s interme-
diate hover position, before a relative orientation is extracted
from the keypoints to form the grasp pose.

C. Keypoint R-CNN-based Grasp Detection

Model C is an improvement of Model B by retrieving the
grasp position and orientation directly from the keypoints.
Therefore, the same network as in model B is used, and the
bounding box information is not utilized. Annotation follows
the same approach as Model B, with 12 keypoints used in
total for grasp detection.

D. Mask R-CNN-based grasp detection

Model D utilizes Mask R-CNN to predict an object mask
and returns a planar object position and orientation. This is
possible, as the grasping approach only requires 2D object
information, based on the object mask that separates the
object from the background. One additional step is necessary
to determine the grasp orientation, which is done by con-
verting the mask over the object to a binary image followed
by local feature extraction methods (SIFT) to estimate the
relative orientation. Annotation of the input image requires
a bounding box to be drawn around the object and also a set
of keypoints to construct a mask/polygon around the object.

E. Augmented Dataset Generation

Dataset generation utilizes a single or multiple input
images (RGB, 480 x 640 x 3, see Fig. E}a) taken above the
workspace in which the target object is visible. These images
are then annotated by a person as explained in previous
sections and as illustrated in Fig. @b, depending on their
corresponding model input format (see Table [). Then, a
sequence of image augmentation techniques are performed
to the input annotation, consisting of cropping, zooming,
rotation, translation, etc. (see Fig. Ek). For each model, 1500
training samples and 200 validation samples are generated,
for position and orientation data, respectively. For the CNN
network of model A, the number of generated samples for
training an orientation predictor is 5000. More details about
each model can be found in Table [
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Fig. 3: Overview of the grasp detection approach from a single RGB image demonstration. The grasp detection models
utilize the R-CNN architecture family from Detectron2 to generate keypoints, mask and bounding box and extract an object
grasp pose. Separately, one CNN network is developed to obtain the object grasp orientation for model A. Abbreviations
denote; FPN: Feature Pyramid Network, RPN: Region Proposal Network, ROI: Region Of Interest, KP: Keypoints, BB:

bounding box.

TABLE I: Object grasp detection models. Abbreviations: BB - bounding box, KP - keypoints, CL - class label.

Object position estimation Object orientation estimation
Grasping Pre-trained Pre-trained Human input ..
Output format Method . Training data
model model model annotation
A Faster R-CNN BB CNN Classification BB BB, cropped box
B Keypoint R-CNN | BB and KP Keypoint R-CNN | KP BB, 2 KP BB, KP, CL
C Keypoint R-CNN | KP Keypoint R-CNN | KP 2 KP KP, CL
D Mask R-CNN BB and object mask | Mask R-CNN mask + SIFT BB, mask BB, mask, CL

V. IMPLEMENTATION

Implementation of the proposed grasping models include
the overall architecture, the grasp detection networks, as well
as simulation environment.

A. Architecture

The grasping approach is divided into two major compu-
tation nodes, which are explained as follows.

Perception - feeds the neural network models with the
input images, runs inference and generates an output. The
raw output of the models as explained in Section [[V] are
then used to calculate the planar grasp pose of the object
with respect to the image plane. This 2D information is then
transformed into 3D coordinates in the world frame and sent
to the motion controller node. The transformation from 2D
to 3D is done by utilizing a pin-hole camera model, as all the
intrinsic and extrinsic parameters of the camera are available.
The structure of the perception node is illustrated in Fig. 3

Motion control - generates the actions and motions of
the robot manipulator and gripper in order to execute a
grasp. It receives input from the perception node, and directly
commands a grasping action. Motion generation is done
using ROS Moveltﬂ with a Cartesian position controller
running on the robot at 1000 Hz.

https://moveit.ros.org

B. Grasp Detection Networks

All the models utilize Detectron2 [8] as their perception
module. The generated training data and their corresponding
labels are fed to the learner, according to the corresponding
model input format (see Table [), resulting in one unique
grasp detection model for each object. The object grasping
approach is implemented in PyTorch, with ROS for commu-
nication, and integrated in the OpenDR toolkit [30]. As for
the training hyperparameters, object detection for model A
utilizes a learning rate of 0.005 and 8 images per batch to
train for 500 iterations. For orientation prediction in model
A training utilizes a batch size of 32, for 15 epochs with
a categorical cross-entropy loss function. Models B, C and
D utilize the same hyperparameters, with a learning rate of
0.0008, 2 images per batch for 1000 iterations.

C. Simulation Environment

For fast evaluation of the developed grasp detection mod-
els, the entire grasp detection and execution framework has
been implemented in robotics simulation. This enables grasp-
ing models to be assessed without costly robotic hardware,
speeding up developments considerably. For this purpose,
3D models of all objects are included and relevant object
and physics parameters can be changed to understand the
capabilities and limitations of the grasping models. Webots
(see Fig. @ is utilized to demonstrate the functionalities,
and is freely available to the research community.
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Fig. 4: Training data generation for the planar grasp models. (a) depicts examples of input images for human annotation. (b)
depicts the annotations for the four different grasp models (bounding box, keypoints and/or mask, see Table [I). (c) depicts
augmented images, with variation in brightness, translation, rotation and scale, generated from input and annotated images.

VI. RESULTS AND COMPARISON

Experimental results, their analysis and a comparison to
other related work follows in this section.

A. Object Grasping Scenario

To evaluate the performance of the developed models, the
grasping scenario is first performed in simulation, after which
the best performing model is evaluated by experiments on a
real robot. In both cases the scenario includes a collaborative
robot (Franka Emika), RGB camera (Intel Realsense D-435)
and standard gripper (see Fig. [2). The objects selected for
evaluation are depicted in Fig. [5b] and include parts from a
real Diesel engine and several 3D-printed objects. Variations
in object properties are thereby included in terms of mass
distribution, texture, symmetry and scale, which is useful as
human annotation input determines the object grasp pose.
For example, the Diesel engine fuel line (curved pipe) has
a small width and a non symmetric shape with even mass
distribution, while the Diesel engine piston has a symmetric
shape, low aspect ratio and an uneven mass distribution. All
objects are placed at random configuration on the table in
front of the robot and 10 robot grasp attempts are executed
for each object from different robot starting configurations.

B. Grasp Detection Results

Table [[I] lists the performance of each developed model for
all objects, expressed as the percentage of successful grasps.
For each object 10 grasp detections and grasp attempts
are made, therefore, for each model 80 grasp attempts are
made in total. While the success rate of all models are
within a similar range (i.e., between 78%-93%), some crucial
differences can be identified as follows.

Model A is essentially a two-stage detector, with two
separate training datasets and training steps, and, during in-
ference, two consecutive predictions, to estimate the position
and orientation of an object grasp. This, unfortunately, makes
the model computationally and practically less efficient,
compared to the other models. The high success rate is found
to be due to a more robust bounding box detection by Faster

R-CNN, compared to the keypoint detectors, in terms of the
Minimum Area Rectangle (MAR).

Model B and C utilize keypoints for object grasp detection,
with the difference that model B utilizes an estimated bound-
ing box for the grasp orientation, while model C extracts
this information from the keypoints themselves. While model
C demonstrated the highest success rate among all models,
keypoints have the limitation that a direct relation between
detected keypoints and the actual grasp pose is difficult to
realize. We discuss this further in Section [VI-D] The high
grasp success rate is in this case also achieved by increasing
the number of input images and their annotations to seven.

Finally, model D achieved the lowest grasp success rate,
partly due to the complexity of detecting the mask of an
object. This requires a large number of features on the object,
complicating the problem when objects share similarities
with each other. In addition, the annotation of an input
image is slightly more difficult as the user has to draw
a mask/polygon over the object. Fig. [ depicts several
successful object grasping results with model C.

C. Computational Performance

All developed models could be trained to relatively high
success rate (i.e., &~ 80%) with a manageable dataset size.
This implies around 1500 image samples, leading to a
training time below ten minutes. The only exception is
model A, where a slightly larger set of images was required
for the object grasp orientation estimation and a longer
overall training time. All trained models are light-weight
(below 0.5GB), meaning they allow for training and real-
time execution on a standard GPU (see Table |H|) In all,
with the required data augmentation, dataset size and grasp
model training time, it is possible to generate an object grasp
model from single or multiple image demonstrations in under
15 minutes. This is very short, compared to other state of the
art, e.g., 24hrs in case of [4]. However, it has to be noted that
such comparison should take into account crucial differences
between each method, such as grasp representation (planar
vs. 6DOF) and image format (RGB vs. depth).
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Fig. 5: Evaluation of the grasp detection models is done in Webots simulation environment (a) and by experiments with
real objects (b). Objects used for evaluation include Diesel engine parts and 3D printed objects.

TABLE II: Object grasping results are averaged for eight objects, with 10 attempts per object (80 attempts in total).

Training Inference
Model Dataset size Trl?rn:::ng Stel‘r:ne Model size GT)EFLOS%O T GeFo(rl(;(;S9)4 Omx Succ(e;os ) rate
A Faster R-CNN: 1500 00:14:00 Faster R-CNN: 300 MB 9]
CNN: 5000 00:02:00 CNN: 8 MB
B 1500 00:07:30 450 MB 20 25 83
C (simulation) 1500 00:07:00 450 MB : 94
C (real experiment) | 2000 00:08:00 450 MB 89
D 1500 00:06:30 330 MB 78

D. Limitations

During the experiments, random objects were placed in the
view of the camera to observe the effect of unseen and similar
objects to the grasp detection models. Even though this did
not pose any major issues (i.e., no false positives), typical
challenges in visual detection, such as illumination effects
and object overlap, remain. While such effects can be taken
into account in the training dataset, this would increase the
size of the grasp model. Similarly, since only a single view of
an object is used for demonstration, situations might occur
where a current viewpoint of the camera does not capture
the object well. One solution to this is to include multiple
views of an object, each with their individual annotations,
which increases the robustness of grasp detection. In our
experiments, the results for model C where obtained with
seven different views and annotations of the object.

The proposed approach only utilizes RGB images, mean-
ing depth information is not taken into account, as compared
to other work [21], [22]. Therefore, the grasping height must
be known or estimated prior to a grasp action. This can be
solved either by calibrating the camera with respect to the
robot and its work area and assuming a fixed grasp height
above the table, or by hand-guiding the robot to a desired
grasp height. In this work, the former approach was taken.

A further limitation of our approach is the choice of object
grasp annotations. For all models, an object grasp is only
defined by a bounding box around the object (similar to
[18]) and/or several keypoints. In some cases, this does not
represent well the grasp pose of an object, for example when

a grasp position is not in the center of the bounding box or
keypoint set. In such case, the grasp position should be offset
by the required distance from the center.

Finally, the planar grasp representation limits the approach
to only top grasps with an end-effector pose perpendicular to
the table (see Fig. [2). Other end-effector and/or grasp poses,
would need to be modelled and integrated separately. One
possible solution is to include depth sensing to extract the
distance between object and gripper for 6D grasps.

VII. CONCLUSIONS

This work proposed a fast modelling approach for vision-
based object grasp detection. Based on a single human object
grasp annotation, an augmented dataset of RGB training
images is generated, to be utilized for training a grasp de-
tection model. Four different planar grasp detection models,
each with different human annotations and grasp detection
approach, are evaluated and implemented in simulation. All
models are light-weight (below 0.5GB), enabling real-time
inference. Best results were obtained with a keypoint-based
model, which was further demonstrated with real robot
grasping experiments. In all, from a human object grasp
annotation, the augmented dataset and grasp model training,
the approach enables the generation of a planar object grasp
model in under 15 minutes.
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Fig. 6: Successful object grasping results with model C for different parts: (a) bolt, (b), gear casing, (c) Diesel engine
common rail, (d) 3D printed part and (e) Diesel engine fuel line.
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