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ABSTRACT

Veli-Matti Manninen: Link Prediction In A Temporal Money Flow Network Using Graph Neural
Networks
Master of Science Thesis
Tampere University
Data Science, Computing Sciences
November 2022

Many real-world phenomenon can be described as a graph that changes over time. Predicting
what changes are likely to happen next is a common desire that machine learning pursues to
answer. More recently, Graph Neural Networks (GNNs) have emerged as a powerful tool when
answering graph related challenges, including link prediction. In this thesis, GNNs are used to
study, how the investors of the Helsinki Stock Exchange fund their stock purchases by selling
other stocks. This dynamic can be viewed as a flow of money from one stock to another, and
can be presented as a network. The goal of this thesis is to establish the base predictability of
the money flows for future research with a suitable GNN-based implementation.

The experimental results show that there is predictability in the money flow network that is
captured by the methods used. The results are verified against a naive baseline. The findings
justify further research on predicting the dynamics of the money flows, and offer themselves as
a new baseline for future models.

Keywords: Graph Neural Network, Temporal graph, Link prediction

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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1. Introduction

Graphs are ubiquitous part of everyday life. Many real-world phenomena can be described
as a graph, including road networks, social networks, and the internet. Moreover, graphs
are often not static, and instead the connectivity of the graph may change over time.
For example, when a road in a road network undergoes maintenance, or an accident
happens, the road becomes unusable for traffic. The connection provided by the road
therefore ceases for some time period, and resumes when the road is reopened. Similar
logic can be assigned to the cables of the internet. In social networks, new friends can
be made, and the existing friendships may fluctuate in strength over time. All of the
mentioned graphs have a temporal dimension attached to them, but when observed at
any given point in time, only a single snapshot of the network is visible. By examining
real-world networks that are labeled as static, it quickly becomes apparent, a temporal
dimension hides underneath many of them.

Because of their prevalence in describing many useful real-world phenomena, graphs have
been studied to a great extent by various disciplinaries. Machine learning as a field is
no different. In machine learning, Graph Neural Networks (GNNs) have been proven to
be powerful deep learning methods for static graphs. Recently, the focus has shifted to
studying GNNs for temporal graphs. In this thesis, the task is to tap into the recent
advancements in the research of temporal GNNs, and to perform temporal link prediction
on a real-world temporal network dataset of this thesis.

The dataset for this thesis is a weekly binary money flow network between stocks that
have been active for trading in the Helsinki Stock Exchange between years 2000 and
2008. The network is observed in weekly snapshots that capture the connectivity of the
network at the time of the snapshot. This network is possible to be built based on a
unique access to all transactions made by the investors in the Helsinki Stock Exchange.
The access is provided by Euroclear Finland.

The definition of the money flow network starts by identifying the stocks that an investor
has net sold and net bought during a time period, here weekly. This means, that during a
period of one week, an investor can buy and sell a stock, and only their net is considered.
To label the stock as net sold, the investor has sold the stock more in euro amount than
bought during that week. Respectively, if an investor has bought a specific stock more
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in euro amount, the stock is labeled as net bought for that investor for that week. Each
investor gets their own weekly labels for the stocks based on their trading.

The money flows emerge, when the stocks are viewed to be linked from the net sold to
the net bought. Each investor has their own money flows based on their net sold and net
bought stocks. In this setting, the investor’s money can be understood to be "flowing"
from the stocks net sold to the stocks net bought. Another way to view this is to think
that the stocks net bought are financed by the stocks net sold. The worth of the money
flows can be approximated, as was done by Karaila [1] in his network analysis of the
Finnish financial markets during the financial crisis of 2008. However, in this thesis, the
money flows are treated as binary, where a money flow either exists or it does not. For a
money flow to exist, any amount of money flow from one stock to another is sufficient.
Additionally, money flows that enter or exit the stock market are ignored. For example,
if an investor buys stocks but does not sell stocks, money enters the stock market, and
is thus ignored. Similarly, if an investor sells stocks but does not buy stocks, the money
exits the stock market.

To represent the money flows on the level of the whole stock market, the investors’ money
flows are aggregated. An aggregated weekly money flow from one stock to another is
likewise binary. For it to exist, it is sufficient to know that there exists at least one
investor that has a money flow between the said stocks. In other words, it is sufficient
to know that at least one investor has net sold and net bought the said stocks. The
weekly aggregated money flows can then be represented as a directed network, where
the stocks are nodes and the money flows are links. This network constructed by the
aggregated weekly money flows represents one snapshot of the money flow network of
the Helsinki Stock Exchange. Each week gets its own snapshot network, and the dataset
of this thesis is the sequence of those weekly snapshots.

Separate from the weekly snapshots, weekly features for the stocks are observed. These
features include: revenue, number of days the market has been open, shares outstanding,
volatility, volume, and the number of trades.

Other than the research done by Karaila [1], the author of this thesis is not aware of any
other research made on money flows between stocks or temporal link prediction between
them. Therefore, the contribution of this thesis is to establish the base predictability of
the money flow network for future research, using binary money flows with a suitable
GNN-based method.

Since the money flow network is observed as a series of weekly snapshots, the goal is to
predict the connectivity of the money flow network at time t + 1, where t is the time
step of the last observed snapshot. Because the graph is directed, predicting merely the
existence of a connection between two stocks is not sufficient, and instead the direction
of the connection must also be predicted. This is an extra challenge, especially because
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the research on directed temporal GNNs is understudied.

The methodology used for predicting the next snapshot is tackled with an autoencoder
[2] architecture along with the following methods: a Graph Attention Network (GAT) [3],
a Gated Recurrent Unit (GRU) [4], and a reconstruction neural network. The division of
labor between the methods is such that GAT learns the local dynamics in the snapshots
the same way as it would on a static graph. GRU is then used to differentiate the learned
local dynamics produced by the GAT, in order to mine the temporal dynamics between
the snapshots into a new temporal representation of the graph. GAT is chosen to model
the structural dependency because it is not bound to model similarity between stocks,
unlike many other alternatives. Instead, GAT has the ability to model more complex
relationships between stocks, such as repulsion. GRU is chosen because of its ability to
efficiently model sequential data, which the sequence of graph snapshots essentially is.

An autoencoder architecture arises, when the model learns a new representation for the
input data, which is reconstructed back into the shape of the input [2]. Here, GAT and
GRU learn a representation from the snapshots, and this representation is reconstructed
into the new prediction snapshot with a neural network. The autoencoder architecture
is chosen for this work because it permits the model to learn the temporal representation
of the money flow network, and to solve the added challenge of predicting the direction
of the links.

The chosen model should be able to perform better than a naive baseline prediction. As
for the baseline, the current graph snapshot acts as the prediction for the next snapshot.
The baseline is denoted as H0 : Gt = Gt+1.

In total, 3 research questions (RQ) are introduced for this thesis:

RQ1: Does the model outperform the baseline?

RQ2: Do the available input features improve the performance of the model?

RQ3: Does modeling the temporal evolution improve the performance of the model

The rest of the thesis is organized as follows. Chapter 2 introduces graphs and a math-
ematical definition for the binary money flow network. Chapter 3 introduces machine
learning, GNNs, and link prediction. Chapter 4 presents the descriptive statistics of the
dataset, dissects the methodology used, and covers the experimental setup for the link
prediction task. Chapter 5 presents the results of the link prediction task. Chapter 6
provides suggestions for future research. Chapter 7 draws conclusion from the contents
of this thesis.
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2. Graphs And Networks

A graph is a set of objects that can have relationships between each other. The objects
are called nodes, and the relationships are called links. A graph is not to be confused
with the graph of a function or to a data visualization chart. Instead, a graph can simply
be understood as a synonym to a network. Mathematicians typically tend to discuss in
terms of graphs when talking about arbitrary and theoretical concepts of relationships
between objects. A network on the other hand typically is a real-world phenomenon,
such as a social network, road network or the internet. Further arguments, how a graph
and a network differ from each other can be made, but for all practical purposes they
can be viewed as synonyms to each other. However, the established naming conventions
are honored in this work, and graphs are mostly discussed in theoretical settings and
networks with real-world phenomenons.

A static graph can be denoted as G = {V , E}, where the nodes are V = {1,...,n} and
the links are E ⊆ V × V . A graph is said to be static if the contents of V and E do
not change. This is in contrast to temporal graphs, where changes in the set of nodes
and links are allowed. Temporal graphs are discussed in more detail later.

A link is defined between a source node i and a destination node j. This definition
implies, that while a node j is connected to node i with a link lij, it does not mean
that node i is connected node j. For this to happen, there needs to exist another link
lj i that connects j to i. Therefore, to connect a pair of nodes bidirectionally, two links
are required.

A graph is said to be undirected if every connection between two nodes is bidirectional.
Conversely, if there exists at least one connection between a pair nodes that is not
bidirectional, the graph is called directed. The World Wide Web is an example of a
directed network, where a website can have a link to another website, but not necessarily
the other way around. A network of friends is an example of an undirected network, where
two people either are friends or they are not. The strength of the friendship may vary,
but the connection must be bidirectional by definition for friendship to exist.

The number of connections a node has in an undirected network is called the degree of
the node. For directed graphs, the degree can further be divided to in- and out-degree
by calculating the incoming and outgoing connections respectively.
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n1

n2 n3

n4 n5

(a) Undirected

n1

n2 n3

n4 n5

(b) Directed⎡⎢⎢⎢⎢⎢⎢⎣
0 1 1 0 0

1 0 0 1 1

1 0 0 0 1

0 1 0 0 1

0 1 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 1 0 0

0 0 0 1 1

0 0 0 0 1

0 1 0 0 1

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
Figure 2.1. Graph (a) is undirected and (b) is directed. The corresponding adjacency
matrices are below.

2.1 Graph Representations

A typical way of representing graph is by matrices. A matrix that encodes the connectivity
between the nodes is called an adjacency matrix. In an adjacency matrix, each row and
column represents a node. The value of the element at row i and column j determines,
if the two nodes have a link between them. In other words, if the nodes are adjacent.

Typically the ordering of the nodes is assumed to be the same in both row and column
axis. An example of an undirected and directed graph is illustrated both visually and
with an adjacency matrix representation in Figure 2.1.

If the value of the link in the adjacency matrix is 0, the link is considered not existing.
The values of the adjacency matrix do not need to be binary, as is illustrated in Figure
2.2. Rather, the values in the adjacency matrix can be viewed as the weight of the link,
where non-zero values indicate that the link exists with the said value as its weight.

It is possible for a node to be connected to itself, creating a so called self-loop. Self-
loops appear as diagonal elements in the adjacency matrix, where the row index i is
equal to column index j. In the previously mentioned examples, there are no self-loops
and therefore, every diagonal element is zero.

The adjacency matrix of an undirected graph is symmetric, meaning, the values of both
sides of the diagonal are mirror images of each other. This is due to the fact that every
link in an undirected graph is bidirectional. The adjacency matrix of a directed graph
is asymmetric, because not every link is guaranteed to be bidirectional. This creates
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⎡⎢⎢⎢⎢⎢⎢⎣
0 0.5 0.3 0 0

0 0 0 0.7 0.8

0 0 0 0 0.1

0 0.7 0 0 1

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

n1

n2 n3

n4 n5

0.5 0.3

0.7

1

0.1
0.8

Figure 2.2. Example of a weighted graph. The weights of the links can be placed
directly into the adjacency matrix.

the need to define, which axis of the matrix represents the source nodes and which the
destination nodes. This convention varies within disciplines [5, 6]. In this thesis, the
directed adjacency matrix is defined as the row-axis representing the source nodes and
the column-axis representing the destination nodes.

2.2 Temporal Graphs

A temporal graph (also dynamic graph) is a graph that changes over time. The changes
can occur in the structure, meaning the number of the nodes or the connectivity between
the nodes, or in the contents of the nodes or links. When a change occurs, the time
of the change is associated with the change. Based on how the time is recorded, the
temporal graphs can be divided into two categories: continuous and discrete temporal
graphs [7].

Continuous temporal graphs can change at any given time. Many real-world networks,
such as social networks, can be viewed to be continuous temporal graphs, where every
change can be individually recorded and attached with a timestamp. Sometimes the
underlying continuous temporal graph is not possible to be observed in continuous time,
and is therefore limited to be observed in discrete time. This is called discretization
of the temporal graph. In fact, it is often the case that discrete temporal graphs arise
as a result of discretization of the continuous counterpart, instead of them occurring
naturally in discrete time domain.

It should be noted, that if a continuous temporal graph is discretizated, some temporal
information is lost. It is not possible recover the exact temporal timestamps for the
changes when they happened in the graph between two discrete observations. Instead,
every change will receive a timestamp when it was first observed.

In simplistic terms, continuous temporal graph is a sequence of individual graph changes,
while a discrete temporal graph is a sequence of graph snapshots. Interest in continuous
temporal graphs is increasing, and they are the subject of active research [8]. However,
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the focus in this thesis is on discrete temporal graphs.

2.3 Money Flow Network

The money flow network can be represented as a discrete temporal graph that is observed
as a sequence of snapshots, denoted as:

G = {G1, G2, ..., Gt} (2.1)

where Gt is the graph snapshot that represents the aggregated money flows of the
investors at time t.

To define the money flows for the investors, the stocks first need to be labeled, whether
they have been net sold or net bought:

ski (t) :
∑︂

Sk
i (t) >

∑︂
Bk

i (t) (2.2)

bki (t) :
∑︂

Bk
i (t) >

∑︂
Sk
i (t) (2.3)

where ski (t) and bki (t) are the respective truth labels for net sold and net bought for
stock i by investor k in time period t, Sk

i (t) is the set of sales and Bk
i (t) is the set of

purchases of the stock i by investor k in time period t in euro amounts. By convention,
the sum of an empty set if zero.

If the truth labels are treated as binaries, where True = 1 and False = 0, the existence
of an investor’s money flow from stock i to stock j in time period t can be expressed as:

lkij(t) = ski (t)b
k
j (t) (2.4)

This definition implies that any amount of money flow is sufficient for the money flow
to exist. To aggregate the investors’ money flows to represent the existence of a money
flow on the level of the whole stock market in time period t, finding only one investor
with the money flow from stock i to stock j is sufficient:

ltij : ∃k ∈ Dt : M(k, t, i, j) (2.5)

where Dt is the set of investors at time t, k is an investor, M(k, t, i, j) means the
investor k has net sold the stock i and net bought stock j in the time period t.

Again, if the truth values are treated as binaries, ltij directly implies, whether the money
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Gt =

⎡⎢⎢⎣
lt11 . . . lt1N
... . . . ...

ltN1 . . . ltNN

⎤⎥⎥⎦
Figure 2.3. A snapshot of the money flow network at time t represented as an adjacency
matrix. N is the number of stocks in the network.

flow exists on the aggregate level. The aggregated money flows may be placed in an
adjacency matrix, as in Figure 2.3, to represent the money flows in the snapshot Gt as
a directed binary network.

2.4 Isomorphism, Permutation Invariance and Equivariance

The nodes in a graph have no canonical order between them. For example, even though
Figure 2.4 shows two different visual graph representations, the underlying structure is
identical in both of them. Every node has the same adjacent nodes, and only the order
of the nodes on the 2D plane has changed. This property is called isomorphism.

Representing isomorphic graphs by adjacency matrices becomes with a challenge. A
single graph can be represented by multiple different adjacency matrix forms, yet the
underlying graph is the same. For example, in Figure 2.5, the graph is represented with
two different adjacency matrices, both of which encode the same connectivity as the
visual graph depicted on their left side. Note the order of the nodes in the adjacency
matrices is not equal. This is emphasized with row and column headers.

In fact, every graph can be encoded by n! isomorphic adjacency matrices, where n is
the number of nodes, and ! is the symbol for factorial. The graph in Figure 2.5 can
be represented, not by two, but by 5! different adjacency matrices, resulting in a total
number of 120 different adjacency matrices. The connectivity remains the same in the
adjacency matrices because the links are merely permuted correspondingly. They key

n1

n2 n3

n4 n5

n3

n5

n4

n1n2

Figure 2.4. Two isomorphic graphs embedded arbitrarily on a 2D plane.
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n1

n2 n3

n4 n5

n1 n2 n3 n4 n5⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠
n1 0 1 1 0 0

n2 1 0 0 1 1

n3 1 0 0 0 1

n4 0 1 0 0 1

n5 0 1 1 1 0

n2 n1 n5 n4 n3⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠
n2 0 1 1 1 0

n1 1 0 0 0 1

n5 1 0 0 1 1

n4 1 0 1 0 0

n3 0 1 1 0 0

Figure 2.5. An undirected network with two possible adjacency matrix representations
out of many.

point in the context of this thesis is that if any adjacency matrix were to be fed into a
function, the output of the function should be the same, because the underlying graph
is the same [9]. In other words, the function must be agnostic, or invariant, of the
permutation of the nodes in the adjacency matrix.

Linear algebra is a branch of mathematics, where matrices play an integral role. Conse-
quently, it provides a mathematical definition for permuting the rows and columns of a
matrix. A single permutation of both the the rows and columns of the adjacency matrix
is done by a matrix multiplication: PAP⊤, where A is the adjacency matrix, P is a per-
mutation matrix, and P⊤ is the transpose of P. The result of this matrix multiplication
is an adjacency matrix, where both the rows and columns are correspondingly permuted
according to the permutation matrix P.

In order to design a permutation invariant function f(·) that takes the adjacency matrix
A as input, it must be of form:

f(PAP⊤) = f(A) (2.6)

Additionally, other information regarding the nodes, called node features, are often de-
sired to be included as input to the function. These node features are often in matrix
form, and this feature matrix also needs to permuted with the same permutation matrix:

f(PAP⊤,PX) = f(A,X) (2.7)

where X is the node feature matrix of form RN×F , N being the number of nodes, and
F is the number of node features.

It should be noted, that a permutation invariant function will destroy the information
about which permutation was used on the input. Sometimes this is a desirable property
and sometimes not. When it is important that the function preserves the order of the
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input, permutation invariant functions are not applicable. In contrast to a permutation
invariant function, a function that preserves the order of the input is called a permutation
equivariant function, and can be denoted as:

f(PAP⊤,PX) = Pf(A,X) (2.8)

In other terms, the output of a permutation equivariant function is the same regardless
if the permutation matrix is applied on the input or the output.
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3. Machine Learning

Machine learning is a study of algorithms that are able to learn from data. Often a
practical goal of machine learning is to teach machines abilities to solve tasks that:
humans are unable to perform, are too laborious to perform, or to improve the cost
benefit to perform.

This chapter covers the basics of machine learning in order to understand, how graph
neural networks work, and how they may be utilized to perform link prediction on the
dataset of this thesis. While link prediction has utilization outside of machine learning,
since it is performed with machine learning methods in this thesis, it is presented under
this chapter.

3.1 Temporal Link Prediction

Link prediction is a task of predicting the existence of a link between two nodes in a
graph. The predictions can be for new links, or for discovering unobserved links in a
partially observed graph.

Temporal link prediction differs from the traditional link prediction by taking into account
the removal of links [10]. This is important because in many real world networks the
dynamicity stems from reappearing links [10]. A link might be removed at some point
and appear again at later time. This requires the link prediction method to produce
predictions not only for new links but also for currently existing links because they might
be removed [10]. Respectively, the method also has to accurately predict non-links to
remain non-links.

In temporal networks, the links are not independent and identically distributed (iid) [10,
11]. Yang et al. [11] showed that the geodesic distance between nodes strongly influences
the probability of forming a link. Nodes with shorter geodesic distance to each other are
more likely to have a link. Geodesic distance between two nodes in a binary network is
defined as the fewest number of links connecting a pair of nodes.

Junuthula et al. [10] expanded this idea to temporal networks and observed that links
that have previously existed are much more likely to reappear in the future, compared
to links that have never existed. In their work, they treated the geodesic distance of two
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Ground truth
Positive Negative

Prediction
Positive TP FP

Negative FN TN

Table 3.1. Confusion matrix.

previously connected nodes as 1. The phenomenon of classifying links to previously seen
and never seen links is amplified in sparse networks, where the proportion of unseen links
is typically more pronounced. These observations also have implications on how the link
prediction method should be evaluated.

Typically the link prediction method outputs a score matrix S, where Sij is the real
valued score between [0, 1]. The scores represent the predictor’s confidence for the link
Sij to exist. In order to compare the results to the ground truth, the scores are converted
to ones and zeros based on a threshold. Above or at the threshold, the score is converted
to 1, otherwise to 0. The converted values are then compared to the ground truth binary
values. Based on the comparison, the predictions can be divided into 4 categories: true
positive (TP), false positive (FP), true negative (TN), and false negative (FN). These
categories can be summarized as a confusion matrix, depicted in Table 3.1. In link
prediction, the positive class means the existence of a link.

By calculating different ratios between the 4 categories, various metrics can be created.
In this thesis, the most important metrics to consider are: true positive rate (TPR),
false positive rate (FPR), positive predictive value (PPV). Below are their respective
equations and their often used aliases:

True Positive Rate (TPR/recall/sensitivity) =
TP

TP + FN
(3.1)

False Positive Rate (FPR) =
FP

FP + TN
(3.2)

Positive Predictive Value (PPV/precision) =
TP

TP + FP
(3.3)

The metrics depend on what threshold was used to compute the confusion matrix. By
choosing a different threshold, the contents of the confusion matrix may be different, and
thus the ratios would also be different. Selecting a fixed threshold is difficult, and instead
a sliding threshold between [0, 1] is used to compute every possible unique confusion
matrix. The metrics are then calculated for each unique confusion matrix.

In binary classification, which link prediction often is, common metrics for evaluation are
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true positive rate and false positive rate. Creating the metrics with a sliding threshold
and comparing them against each other results in the Receiver Operating Characteristic
(ROC) curve. Calculating the area under the curve is a common method to summarize
the performance of the link prediction method. The area under the ROC curve is often
abbreviated to AUROC.

The problem with AUROC in temporal link prediction is that it tends to over emphasize
the easier problem of predicting previously seen links [10]. Predicting solely zeros for the
harder problem (new links) has the effect of inflating the evaluation score of AUROC,
while simultaneously obfuscating the model’s performance on predicting new links. This
is because an unseen link has a lower probability of appearing, and often times most
of the unseen links will remain unseen. Therefore, predicting unseen links to remain
unseen produces a lot of correct true negative classifications, which will in turn inflate
the AUROC score, making it a biased evaluation metric.

The inflation caused by the true negatives can be bypassed by using a different metric.
Comparing TPR and PPV against each other will result in the Precision Recall (PR)
curve. Calculating the area under the PR curve (PRAUC) is used to evaluate how well
the model performs exclusively on the positive class. However, in reality, predicting when
a link does not exist is still a relevant task in temporal networks and cannot simply be
ignored [10].

As a solution, Junuthula et al. suggest evaluating the problems of predicting previous and
new links separately. For evaluating the previously seen links, where predicting both the
negative and positive classes are relevant, Junuthula et al. suggest using the AUROC.
For the new links, where the focus is predicting the occurrence of rare new links, while
ignoring the prevalent negative class, Junuthula et al. suggest using PRAUC.

3.2 Supervised Learning

Supervised learning is a circumstance in machine learning, where the dataset provides
both the input data and the labels for the data [12]. A label is the correct output value
for the corresponding item in the dataset. For example, in image recognition, if the task
is to determine the existence of a cancer tumor in x-ray images, the image itself would
be the data item, and the information whether the image contains a tumor is the label.

The learning is "supervised" by letting the model make label predictions for the data
items, after which the true labels are shown to the model. The learning happens, when
the model adjusts its reasoning on how it makes the prediction, based on how wrong the
prediction is compared to the true label.

Furthermore, the goal is to teach the model to make generalized predictions for all
possible inputs, not just for the seen data [12]. In the x-ray image example, the goal
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would be to teach the model to classify future, unseen x-rays correctly, and not merely
the existing ones.

The advantage of supervised learning is that the labels offer a natural way to harness
the information within the data. They also offer clarity how to approach the problem.
By defining the labels, humans have control over what is being modeled and how to
measure the progress. The disadvantage is that the model can only learn what it is told
to and cannot discover unknown information [12].

The ultimate obstacle in supervised learning is that sometimes the labels are not available,
or are only available for a portion of data. In these cases supervised learning is not
applicable and other machine learning paradigms need to be used.

3.3 Artificial Neural Network (ANN)

An Artificial Neural Network (ANN) is a paradigm in machine learning, that attempts to
loosely imitate the biological brain. The motivation behind the ANN is to try to harness
the complex problem solving capabilities the brain has by emulating the learning process
of the brain. Often artificial neural networks are simply called Neural Networks (NN), if
the concept is within machine learning.

In brains, the neurons are connected to other neurons by synapses. If a neuron receives
a strong enough signal through its synapses, they become activated and fire an output
signal. The output signal is then forwarded to all neighboring neurons via a connecting
synapse. These neurons will then treat the arriving signal as their input signal, and the
procedure repeats. Multiple neurons interconnected this way form a neural network. This
biological concept can be translated into mathematics, and subsequently for the use of
machine learning, through the lens of matrices, activation functions, and differentiation.

In an ANN, each connection to an artificial neuron is accompanied by a weight. The
input that travels via the connection is then multiplied with the corresponding weight,
producing a weighted signal. The inputs to the neuron can be the original inputs for
the ANN, or the outputs from the other connected neurons. The sum of the weighted
signals is then inserted into an activation function, which determines the output of the
neuron.

Typically the artificial neurons are arranged in layers, where the neurons in a layer are
exclusively connected to the neurons in the preceding layer and to the neurons in the
following layer. Thus, the output of the neurons in the previous layer is the input of
the neurons in the next layer. This setup is referred as a feedforward neural network
(FNN), because the passage of information travels only forward. If there exists more
than 2 layers, the layers between the first and last are called hidden layers. An example
of a feedforward network is illustrated in Figure 3.1. Other architectures exist, such as
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Figure 3.1. An example of a feedforward network [13], where k = 2. The number
of hidden layers and neurons is arbitrary. Only one hidden layer containing 5 hidden
neurons is used here. The number of output neurons is task dependent, here is a single
output neuron.

a Recurrent Neural Network (RNN) [14], where neurons can be connected within the
layer, or to the previous layers. The output of a layer in a feedforward network can be
expressed mathematically with matrices:

Hk = σ (WkHk−1) (3.4)

where k is the layer number, where k = 0 is the input layer, Wk is the weight matrix of
layer k, Hk−1 is the output matrix of the previous the layer, σ is a non-linear activation
function, and Hk is the output matrix of the layer k.

Supervised learning with an ANN is achieved by comparing the final output of the ANN
to the expected result, finding their difference, and minimizing the difference by adjusting
the weights appropriately. The function that calculates the difference is commonly called
the cost, error, or loss function. To know how to adjust the weights, the loss function is
differentiated with respect to the current weights. The differentiation reveals whether to
increase or decrease the weights, in order to reach a local minimum of the function. The
weights are then updated slightly towards that direction, that minimizes the function.
After the update, the learning procedure repeats until the output of the loss function no
longer decreases.

The process of minimizing the loss function is not guaranteed to perfectly learn the
problem, because differentiation can only find local minimums of the loss function, based
on the initial weights. There exists various different strategies for updating the weights
and they are all commonly referred as optimizers.
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3.4 Feature Learning

The data in a dataset can be viewed to be represented by variables and their realisations.
In machine learning, the variables are typically called features [15].

The original features are often not suitable as an input for machine learning algorithms,
and therefore need to be converted to a more suitable form [15]. In addition, many
machine learning tasks benefit, if the features are as informant, discriminant and in-
dependent as possible [16]. Humans can craft relevant features based on their natural
cognitive intuition and through previously gathered domain expertise. While it has been
shown that this kind of feature engineering is important, the process is often very time
consuming [15].

Feature learning is a concept, where a system, such as a neural network, tries to learn
how to convert the input data into relevant features for the machine learning task [16].
The features learned by a machine might not be obvious for humans, or they might be
completely unreachable due to the amount of labour needed. At the same time they
perform as well or better as human designed features [16].

Feature learning is also called representation learning [16]. The process of converting the
input features into new learned features can be viewed as mapping of the original feature
space into a new vector space. The new vector space is called latent or hidden space,
because its not directly accessible for humans. The naming of the new vector space and
the new representations vary because feature learning techniques have independently
developed from different branches of mathematics and machine learning. In this thesis,
the new representations of the data in the latent vector space are called latent/hidden
representations/features, or embeddings.

3.5 Deep (Feature) Learning

The concept of deep learning roots from the idea, that by performing feature learning
again on the latent features, machines can learn more abstract and complex latent fea-
tures [17]. After applying feature learning on the input data, the resulting latent features
are fed as an input to another feature learning operation. This in turn outputs new la-
tent features, which in turn can be fed to yet another feature learning operation. This
hierarchical process can go even further, or "deeper", arbitrarily many times, provoking
the notion of deep (feature) learning.

One of the most successful neural network in deep learning is the Convolutional Neural
Network (CNN) [18]. However, the problem with CNN, and deep learning in general, is
that the success has been achieved by operating on Euclidean domain. Graphs by contrast
are generally non-Euclidean. CNN can only operate on regular Euclidean graphs, such
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as text (1D chain-graph) and images (2D grid-graph), making it an invalid choice for
arbitrarily shaped graphs [19].

Recent interest in research has been to find ways to extend deep learning to non-Euclidean
domains, such as graphs. Many different methods have emerged independently from
different disciplines. In order to unify these methods under an umbrella term, Bronstein
et al. [9, 20] propose the term geometric deep learning for those deep learning methods
that generalize to non-Euclidean domains.

3.6 Encoder & Decoder

Latent features produced by feature learning are not themselves that meaningful. They
can often times be viewed as an intermediate stage of the deep learning process. In
order to obtain tangible results from the latent representations, the information encoded
in the latent representation need to be decoded into something meaningful. What is
meaningful is in turn determined by the task at hand. For example, when the task is to
produce captions for images, the information encoded in the latent features need to be
somehow translated into text that represents, what is depicted in the image [21]. The
function that does that is called a decoder. Respectively, the function that creates the
latents is called an encoder. Both working together form the encoder-decoder pair.

The encoder-decoder pair operates such that the encoder receives the original input and
creates latents that encode useful information from the input. The decoder then receives
the latents as its own input and outputs a meaningful and task-dependant answer to the
problem. The decoder can be a learnable function, which is trained simultaneously with
the encoder. This all depends on the task in hand and on the architecture of the model.

A special case of the encoder-decoder pair is the autoencoder [22, 23]. The output of
the decoder in the autoencoder is as close as possible to the shape of the input of the
encoder [23]. For example, if an autoencoder receives an image as an input, the output
should also be an image. Respectively, if the input is a graph, the output should also be
a graph.

Autoencoders have traditionally been used as a dimensionality reduction technique, since
the latent features in the autoencoder act as a sort of an information bottleneck [23]. An
information bottleneck is achieved by setting the output dimension of the encoder low.
For an autoencoder to be able to decode a meaningful output from the low dimensional
latent representation, the unnecessary information has to dissipate. This makes room
for the most relevant information to be condensed in the latent representation.

After the decoding, the dimensionality of the original input can viewed to have been
reduced to the size of the latent space, because the output could be decoded from the
low latent space alone. This makes it possible to discard the original input data and
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keep only the low dimensional latent features. However, the dimensionality of the latent
features does not have to be low, and instead can be set arbitrarily. This means that
the autoencoders are not bound to perform dimensionality reduction.

3.7 Graph Neural Networks (GNNs)

A Graph Neural Network (GNN) is a neural network that takes a graph as an input.
GNNs have been around for almost two decades [24, 25] but in recent years they have
garnered particular interest. Zhou et al. [19] attribute the resurgence of GNNs to the
following motivations.

The first motivation is to benefit from the success of deep learning, but for graph-
structured data [19]. As stated earlier, deep learning has earned its renown by operating
on Euclidean domain, whereas graphs are typically non-Euclidean.

The second motivation is to find better solutions for graph feature learning [19]. Feature
learning has previously been applied on graphs with so called shallow encoders, such
as node2vec [26] and DeepWalk [27]. However, these methods lack some important
properties that a desirable feature learning algorithm would possess when dealing with
graphs. The limitations of shallow encoders include: their inability to scale efficiently to
large graphs, they cannot be used for dynamic graphs, they cannot generalize to unseen
nodes, and they cannot take into account node features [28, 29]. GNNs are free of these
limitations [28, 29].

GNNs are currently experiencing a lot of attention because of their ability to produce
great results in many graph related tasks [30]. As a result, they are an actively researched
topic in machine learning [31].

The rest of this chapter will cover how the GNN learns latent node representations by
aggregating the node neighborhoods, how the node representations can be decoded for
common down stream tasks, and how GNNs can be utilized with temporal graphs.

3.7.1 Neighborhood Aggregation

The neighborhood of node i consists all the nodes adjacent to node i and is denoted
as N (i). The latent representation of node i is created by feeding the features of the
nodes in the neighborhood N (i) into some permutation invariant aggregation function,
such as sum, max or mean. The result of the aggregation is then ran through some
non-linear function, resulting to the new latent representation of node i.

If the process is repeated, with the latent features in place of the original features, the
node i will learn information from nodes outside of its neighborhood. Namely, informa-
tion about the neighbors of the neighbors. This is because in the previous iteration, every
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Figure 3.2. Input graph (left) and the computation graph for 2-hop neighborhood
aggregation of node A (right). [28]

Figure 3.3. Computation graphs for 2-hop neighborhoods for all nodes in the graph.
[32]

other node has performed its own neighborhood aggregation, and encoded information
about their own neighborhood in their own latents. When the nodes perform neighbor-
hood aggregation again, the nodes will indirectly learn about nodes further away, even
though each node only ever aggregates its own neighborhood.

If the process is repeated k times, the nodes will receive information from nodes k-
distance away. All of the nodes reached within this radius are called the k-hop neigh-
borhood. This setup is analogous to layers in a neural network, where k is the number
of layers.

The process of neighborhood aggregation is illustrated in Figure 3.2, where the neigh-
borhood aggregation is performed on node A when k = 2. The graph on the right is
the computation graph of A, and it shows, how the latent feature is calculated from
the features of the neighbors. The black and grey boxes represent the layer in a neural
network. Respectively, each other node in the graph will create their own computation
graph, which is illustrated in Figure 3.3.
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More formally, a neighborhood aggregation of a node can be denoted as:

hk+1
i = σ

⎛⎝⨁︂
j∈N(i)

hk
j

⎞⎠ (3.5)

where hi is the latent feature of the node i, k is the number of hops, ⊕ is a permutation
invariant aggregation function, N(i) is the neighborhood of node i, and σ is a non-
linear function. If the graph is directed, it must be specified, whether the neighborhood
consists of the incoming or outgoing nodes.

After applying a permutation invariant function to every node’s neighborhood, the output
of the GNN is a permutation equivariant latent feature matrix. This ensures that the
latent features can be identified to be belonging to a certain node, because the order
of the nodes persists in the output matrix. Therefore, the function of GNN can be
expressed as:

f(PAPT ,PX) = P

⎡⎢⎢⎢⎢⎢⎢⎣
g(x1,XN (1))

g(x2,XN (2))
...

g(xi,XN (i))

⎤⎥⎥⎥⎥⎥⎥⎦ = PH (3.6)

where f(·, ·) is the function of the GNN, P is a permutation matrix, A is the adjacency
matrix, g(·) is the permutation invariant neighborhood aggregation function, XN (i) is
the multiset of features of the neighborhood N (i), and H is the latent feature matrix.
Typically the function g(·) includes the node i’s own features in the aggregation, here
denoted as xi.

The k-hop neighborhood aggregation is calculated by running the GNN again, but with
the latents in place of the original features. It should however be noted, that sufficiently
many neighborhood hop aggregations will lead to latent features that are indistinguish-
able from each other [33, 34]. This is because stacking too many layers of GNN will no
longer learn relevant and useful latent features for the nodes. Rather, the features of
the nodes become equally similar, or "smoothed", losing all unique expressiveness in the
process. This phenomenon is called over-smoothing. Depending if the graph is small, or
if the information in the graph is heavily localized, a fewer k-hops might be opted.
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3.7.2 Encoding

The permutation invariant function g(·) of the GNN encodes the latent features. This
function can be customized. Designing the function g(·) is an intense topic of active
research, and multiple interdisciplinary approaches have independently come up with a
myriad of different approaches. In order to unify the previous research, Bronstein et al.
[9] propose a blueprint to classify the function g(·) into 3 different paradigms, which
would cover most of the contemporary approaches. These paradigms are: convolutional,
attentional and message-passing GNNs.

Convolutional GNN

Figure 3.4. Convolutional GNN [9].

Convolutional GNN can be viewed as weighted neighborhood aggregation, where the
weights are constant. Each neighboring node is associated with a constant coefficient,
or a weight, which is used to multiply the node’s feature vector. The neighborhood ag-
gregation with constants is illustrated in Figure 3.4, where each link in the neighborhood
is assigned a single constant, which is used to multiply the features of the corresponding
neighbors. The weighted features are then aggregated, making the function of convolu-
tional GNN of form:

hk+1
i = σ

⎛⎝⨁︂
j∈N(i)

cijh
k
j

⎞⎠ (3.7)

where the coefficient of node i and j is denoted as cij.

Typically the weights depend on the adjacency matrix. In the most simplest case, only
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the adjacency matrix can be used. For example, if the adjacency matrix is binary, the
constant would be 1 for neighbor nodes and 0 to others. The weights can also depend
on the adjacency matrix in more complex ways, such as matrix decompositions.

Implementations based on the dependency of the adjacency matrix include: the ChebyNet
[35], Graph Convolutional Network (GCN) [36] and Simple Graph Convolution (SGC)
[37].

Convolutional GNNs can be advantageous in situations where the graph is homophilious,
meaning similar nodes are more likely to be connected with a link [9]. Furthermore,
convolutional GNNs are scalable and easy to implement as basic matrix operations,
making them especially attractive for large homophilious graphs [9].

Attentional GNN

Figure 3.5. Attentional GNN [9].

Graphs can encode more complex type of information in their links than homophily
[9]. For example, when sharing content on a social media platform, people might share
content that they support and agree on but also content they disagree on. Therefore the
link does not strictly need to encode similarity, rather it can encode repulsion or more
complex relationships.

Attention is a concept that origins from psychological cognitive attention. In humans,
cognitive attention emerges as a selection on certain inputs, while ignoring other per-
ceivable information [38]. When applied to neural networks, attention mimics cognitive
attention by using coefficients, or weights, as a scale to determine how meaningful the
given input is. A greater weight implies greater attention, and therefore a greater im-
portance, while a smaller weight implies a lesser importance.
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In the setting of GNN, this can be modeled by replacing the constant weights, as was done
in the convolutional GNN, with learnable attentive weights. The function for attentional
GNN then becomes:

hk+1
i = σ

⎛⎝⨁︂
j∈N(i)

a(hk
i ,h

k
j ) h

k
j

⎞⎠ (3.8)

where a(h(k)
i ,h

(k)
j ) is the attention function that calculates the importance of the features

of the neighbor node j to node i. The attentive coefficient for each neighboring node is
illustrated in Figure 3.5.

Compared to convolutional GNN, attentional GNN requires more computation and space,
since a coefficient needs to be calculated for each link [9]. However, the additional
computational cost can be viewed as a reasonable requirement, when it enables to process
non-homophilious graphs.

Implementations with attentive weights include: Mixture Model Networks (MoNet) [39],
Graph Attention Network (GAT) [3], Gated Attention Network (GaAN) [40].

Message-passing GNN

Figure 3.6. Message-passing GNN [9].

Sometimes a single weight multiplication on features is not sufficient to capture the
complexity encoded in the links. In these cases, the concept of weighing the features
is discarded. Instead, an arbitrary vector, or a "message", can be created between the
neighboring nodes. The message is then "passed" along with the links to the aggregating
node. This process is illustrated in Figure 3.6.
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The function takes in the features of the neighboring nodes and outputs an arbitrary
message that is then aggregated. The message creating function can be task depen-
dent, making message-passing GNN the most generalized approach. The function of a
message-passing GNN is therefore of form:

hk+1
i = σ

⎛⎝⨁︂
j∈N(i)

m(hk
i ,h

k
j )

⎞⎠ (3.9)

where m(h
(k)
i ,h

(k)
j ) is the arbitrary function that takes in the features of sender node j

and receiver i, and outputs a vector for aggregation.

The benefit of doing this is that a message-passing GNN can model complex phe-
nomenons, like algorithmic reasoning and computational chemistry [9]. The downside
is that computing and storing the messages can be expensive and therefore it does not
scale well. Learnability issues might also be introduced [20].

Implementations with message-passing GNNs include: Interaction Networks [41], Mes-
sage Passsing Neural Networks (MPNN) [42] and GraphNets [43].

It should however be noted, that fundamentally both of the previously presented con-
volutional and attentional GNNs can be reduced to be special cases of message-passing
GNNs [9]. In those cases, the arbitrary message-passing function takes the previously
discussed form in the convolutional and attentional GNN sections. However, due to their
applicability and popularity, Bronstein et al. elevated them as their own categories.

3.7.3 Decoding

Link prediction, classification of nodes, and classification of (sub)graphs are common
tasks when dealing with graphs. A decoder can be trained to take the latent features as
input and to produce predictions for the task.

In node classification, a decoder can be trained to classify each node:

zi = f(hi) (3.10)

where zi is the classification prediction for the node, and hi is the latent feature vector
of node i.

For a graph classification task, the nodes can be aggregated together and given as an
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input for the classifier:

zG = d

(︄⨁︂
i∈N

hi

)︄
(3.11)

where zG is the classification prediction for the graph, hi is the feature vector of node
i,
⨁︁

is a typically permutation invariant aggregation function, though an RNN can also
be employed [44].

For predicting links between a pair of nodes, the classifier predicts the existence of the
link based on the features of both nodes:

zij = d(hi,hj) (3.12)

where zij is the prediction for the link between nodes i and j, hi and hj are the latent
feature vectors of node i and j respectively.

If the graph is undirected, this implies the link is bidirectional. In directed graphs,
the feature vectors need to be distinguished in order to predict the direction. One
technique is to concatenate the vectors, and predict the existence of the link based on
the concatenated vector. The act of concatenation will produce two different vectors
based on which order the vectors were concatenated.

3.7.4 Temporal GNNs

Previously mentioned GNN-methods assume the underlying graph is static. In reality,
many real-world graphs are fundamentally temporal. It is a much harder problem to
create node representations for a dynamic graph compared to a static graph, because
the links and nodes can change over time.

To capture the temporal information in the discrete time domain, many have utilized
recurrent neural networks (RNNs) along with the GNN. In this setting, the GNN gen-
erates the node feature matrix for each graph snapshot that are then fed into an RNN.
This setup allows the RNN to process the node embeddings in sequence and to mine the
temporal information between the snapshots. This is also called spatio-temporal model-
ing. Different variations of GNN and RNN can be used. The final output of the RNN is
a graph embedding that has learned both the structural and temporal information of the
graph. This graph embedding can then be used in downstream tasks. A generalization
of the GNN+RNN setup is illustrated in Figure 3.7.

Implementations with the GNN+RNN setup include: GCRN [45], STGCN [46], GC-
LSTM [47], T-GCN [48], and TGC-LSTM [49].
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Figure 3.7. A generalization of the GNN+RNN setup. The structural information of
the graph is captured with a GNN. The output of the GNN is the input to an RNN,
which in turn captures the temporal information in the graph.

Pareja et al. [50] point out that in order for GNN+RNN to function properly, the node
set must be known now, and in the future. This is not always a realistic assumption in
real-world networks. Repeated changes in the node set make the GNN+RNN setup less
desirable. To tackle this problem, Pareja et al. propose EvolveGCN [50], which modifies
the weights of the GNN with an RNN instead of modifying the node embeddings with
an RNN.

Overall, the research in deep learning and GNNs on temporal graphs is still new and
developing. This is especially true with continuous temporal graphs, which is out of
scope of this thesis. The field is advancing quickly, and currently best performing results
in discrete time domain have been produced with GNNs and RNNs. They are next
employed in a link prediction task with the temporal network dataset of this thesis.
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4. Experiments

4.1 Dataset

The dataset for this thesis is a binary money flow network gathered from the Helsinki
Stock Exchange, between the time span of 2000-01-31 to 2008-12-21. The nodes in the
network are stocks that were publicly listed and active for trading during the complete
time span. The names of the stocks are listed in Appendix A.

4.1.1 Statistics

The summary statistics of the snapshots of the money flow network can be seen in
Table 4.1. The statistics are obtained by first calculating the respective statistic for an
individual snapshot, or in the graph connectivity case, from 2 consecutive snapshots. The
summary statistics are then aggregated by the said aggregation function in the table.

The link probability is calculated by:

Link probability =
|Lt|
N2

(4.1)

where |Lt| is the number of links at time t, and N is is the number of stocks in the
network.

The connectivity function calculates, how many links have remained unchanged between
two consecutive snapshots, and divides that number with the number of all possible
links. A link remains unchanged, if the value of the element in the adjacency matrix is
the same in both of the consecutive snapshots. The connectivity function between two
consecutive graph snapshots is defined as:

Connectivity(Gt, Gt+1) =
e⊤Be

N2
(4.2)

where B is the binary elementwise equality comparison matrix between the adjacency
matrices of the two consecutive snapshots, e is a vector of ones, and N is the number
of stocks in the network.
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Time steps (weeks) 463

N (nodes) 93

Degree mean 26.2

Links mean 2400

Links std 690

Link probability mean 0.28

Connectivity(Gt, Gt+1) mean 0.78

Connectivity(Gt, Gt+1) std 0.04

Table 4.1. Summary statistics of the snapshots of the money flow network.

(a) Link probability at time t. (b) Percentage of unseen links at time t.

Figure 4.1. Links over time in the money flow network.

Since the money flows are created from any amount of money flow, it could be expected
that it would ultimately lead to a fully, or nearly fully connected network, where every pair
of stock would be linked bidirectionally. However, this is not the case with the Helsinki
Stock Exchange during this time period. The maximum amount of possible links in this
network (self-loops allowed) is: N ∗N = 93 ∗ 93 = 8649. The amount of links observed
is not even close to the maximum, as is illustrated with link probability at any given time
step t in Figure 4.1(a). Some other stock exchanges could have a different situation,
and it would then be necessary to somehow design more advanced conditions for the
existence of money flow. For example, to set thresholds for the number of investors
required, amount of money transferred, or by using some statistical methods to validate
the links against a null hypothesis.

The connectivity between two consecutive graph snapshots is on average 0.78 similar,
with standard deviation of 0.04. This means that there is a relatively strong base
predictability present in the previous snapshot for predicting the connectivity of the
next snapshot.

Uncharacteristically to many temporal networks, the money flow network does not pos-
sess a high class imbalance between the previously observed links and the never observed
links. Overwhelmingly many links have been observed at least once, as can be seen in
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Feature Description
Revenue The sum of daily natural logarithmic revenues over a week. Daily natural log-

arithmic revenue log(pt/pp) is calculated by taking the natural logarithm of the
quotient of today’s last paid price pt divided by the previous market open day’s
last paid price pp.

Market open Number of days the market has been open during the week.
Shares outstanding Weighted mean of the company’s shares outstanding. For example, the market is

open for 5 days, and for 4 days the number of shares is 100, and for 1 day 200:
(4 ∗ 100 + 1 ∗ 200)/5 = 120.

Volatility Standard deviation of daily natural logarithmic revenues during the week.
Volume Number of stocks traded during the week.
Trade count Number of trades during the week.

Table 4.2. Feature descriptions.

Figure 4.1(b). 95 percent of all possible links have been observed at least once by the
time step 158. At the end of the dataset (t = 463), 99 percent of the links have been
observed at least once. The absence of class imbalance in this dataset is most likely due
to the loose criterion of what constitutes a money flow.

4.1.2 Input Features

Along with the weekly money flows, weekly features are observed. There are 6 temporal
features: revenue, number of open market days, shares outstanding, volatility, volume,
and the number of trades. Their meanings are described in Table 4.2. The natural
logarithm of revenue is used to make the revenue additive over time. The number of
shares outstanding typically does not fluctuate as often as the other features. However,
in case of the number of shares outstanding changing during the week, a weighted mean
is calculated.

The correlation matrix of the averaged input features using Pearson correlation can be
seen in Table 4.3. Note, that the in- and out degrees of the correlation matrix are not
considered as input features and are not used to train the model. The input features are
averaged over all the snapshots in the dataset. It can be seen that volume, trade count,
and shares outstanding are strongly positively correlated with each other. Revenue and
volatility are negatively correlated. In- and out-degree are strongly positively correlated.
Both in- and out-degree are somewhat correlated with shares outstanding, volume, and
trade count. Rest of the features and degrees are substantially less correlated. Pearson’s
correlation coefficient is defined as:

PX,Y =
cov(X, Y )

std(X)std(Y )
(4.3)

where PX,Y is the Pearson correlation coefficient and cov(X, Y ) is the covariance be-
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Revenue Market open Shares Volatility Volume Trade count In-degree Out-degree

Revenue 1 0.092 -0.037 -0.675 -0.041 -0.014 -0.008 0.001
Market open 0.092 1 0.027 -0.032 0.024 0.033 0.137 0.132

Shares -0.037 0.027 1 0.063 0.991 0.975 0.4 0.399
Volatility -0.675 -0.032 0.063 1 0.082 0.011 -0.076 -0.092
Volume -0.041 0.024 0.991 0.082 1 0.978 0.385 0.382

Trade count -0.014 0.033 0.975 0.011 0.978 1 0.501 0.5
In-degree -0.008 0.137 0.4 -0.076 0.385 0.501 1 0.998

Out-degree 0.001 0.132 0.399 -0.092 0.382 0.5 0.998 1

Table 4.3. Correlation matrix of the averaged features and node degrees. The node
degrees are not used in the training of the model.

tween the features X and Y respectively, std(·) is the standard deviation.

Normalization (scaling) of the input features is a common practice with neural networks
because it helps to stabilize the learning process [51]. In this dataset, the features
are normalized with min-max normalization. The complete time span of 463 weeks is
considered when determining the maximum and minimum value of a feature. Min-max
normalization is defined as:

x′ =
x− min(x)

max(x)− min(x)
(4.4)

where x is a feature and x′ is the normalized feature.

Based on all of the previous, it can be summarized that the network is a fully observed
temporal binary network, which is observed as snapshots at discrete time intervals. The
number of nodes is fixed, the links are temporal, and the node features are temporal. The
money flow network can be denoted as G = {V , Et, Xt}, where V is the set of static
nodes, Et is the set of links and Xt is the node feature matrix at time t respectively.

4.2 Methodology

Since the network dataset is observed discretely, only models that require discrete obser-
vations of the network are considered. Continuous models may be employed in discrete
settings, but for all practical purposes, they can be ignored. Another thing that can
be ignored is the concern about repeated changes in the node set and its effect on the
quality of the node representations. This is because the node set is static.

The framework for this link prediction task is the GNN+RNN setup. The main influence
for this methodology stems from the works of Zhao et al. (T-GCN) [48], where they
focused on predicting traffic volumes in a traffic network, and Li et al. (TSAM) [52],
where they focused on link prediction on directed graphs with autoencoders, a temporal
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attention mechanism, and adjacency matrix transformations.

The encoder of T-GCN encodes the temporal network into one single latent vector, as
is typical for a GNN+RNN setup. As for the decoder, T-GCN uses a fully connected
network, which is trained along the model. The authors used T-GCN to predict traffic
volumes between nodes. With a proper choice of the loss function, this concept can be
converted to predict connections (links) between nodes. This would end up being the
autoencoder architecture, where the input and output are of similar shape.

Li et al. (TSAM) used the autoencoder architecture to decode the latent graph feature
vector into an asymmetric matrix, which represents a directed graph. The autoencoder
architecture solves the problem of predicting the direction of the link, which is an extra
challenge with directed networks. Mainly because of this reason, the autoencoder is
chosen as the architecture for the model in this thesis.

Out of the possible GNN-paradigms (convolutional, attentional, message-passing GNNs),
the convolutional GNNs are not well suited for this task as the GNN. There are two
reasons for this. Firstly, many successful convolutional methods are only available for
undirected networks. Therefore, they would not be suited for the money flow network,
which is directed. Secondly, the money flow network cannot easily be justified to be
homophilious, and for the links to encode similarity. On the contrary, the stocks might
be viewed to possess a repulsion to each other. For example, it could be viewed that
a certain stock is no longer favorable to own, and is thus sold, in order to buy a more
favorable stock. This interaction would not encode similarity between the stocks, but
rather a dissatisfaction to the stock sold, which manifests itself as a money flow to
another stock.

From the 2 remaining GNN paradigms, the attentional GNN is chosen for this work over
the message-passing GNN. This is because in order to answer the research questions
posed, the simpler attentional GNN is sufficient to reach conclusions. Moreover, it is
not entirely clear, how the message-passing function should be designed for this dataset.
It is also not clear, what benefits it would possess, compared to the single weighted
attentional approach. Therefore, developing a more complex message-passing function
to model the relationships in the dataset is left for future research.

The chosen variant for the attentional GNN is the Graph Attention Network (GAT) [3].
For the RNN, the Gated Recurrent Unit (GRU) [4] is chosen as the variant.

In order to justify the significance of temporal modeling as part of the model, a simpler,
competing ablation model is additionally trained. The encoder of the ablation model
consists only of a static GAT-layer to model the structural dependency without modeling
the temporal dependency. The overview of the GAT+GRU model is depicted in Figure
4.2, and the static-GAT ablation model in Figure 4.3.
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Figure 4.2. Overall architecture of the GAT+GRU model.

Figure 4.3. Overall architecture of the static-GAT ablation model.

Since the solution is an autoencoder architecture, the size of the latent dimension can
have impact on the performance of the model. Therefore, its impact is tested with
multiple values.

To assess the importance of the input features, both models are run with and without
the input features. To test the model without input features, a vector of ones is fed to
the model in place of the original input features. The size of this vector is 6, which cor-
responds to the number of original input features. This setup is analogous to smoothed
features, where no information is encoded in the input features.
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4.2.1 Structural Modeling (GAT)

GAT [3] takes the adjacency matrix At and the input feature matrix Xt as input. GAT
performs attentional aggregation of the node neighborhoods by first applying a linear
transformation to every node. After that, a shared attention mechanism a calculates
attention weights between pairs of nodes to distinguish the importance of the features of
node j to node i. GAT is agnostic to the choice of the attention mechanism. The authors
of GAT used a single layer feedforward neural network as the attention mechanism, and
this approach is opted here. The complete attention weight eij is calculated as:

eij = LeakyReLU
(︁
aT · Concat(Wxi,Wxj)

)︁
(4.5)

where W is the weight matrix for the linear transformation, Concat(·, ·) is the vector
concatenation operation, aT is the transposed weight vector for the single layer feedfor-
ward neural network attention mechanism, and LeakyReLU(·) is a non-linear activation
function with negative input slope of 0.2.

Not every pair of nodes gets an attention weight however. Ignoring some pairs on
a certain criterion is called masked attention. In this thesis, the attention weight is
calculated between node i in its 1-hop in-neighborhood. The in-neighborhood of node
i consists of the neighboring nodes of node i, that are connected to node i with an
incoming link. The neighborhood needs to be defined because the dataset network is
directed, which causes the in- and out-neighborhoods to be different. More formally,
the attention weight is calculated for nodes j ∈ Nin(i), where Nin(i) is the 1-hop
in-neighborhood of node i.

To make the attention weights comparable, they are normalized with the softmax func-
tion, denoted as:

αij =
exp(eij)∑︁

k∈Nin(i)
exp(eik)

(4.6)

where αij is the normalized attention weight.

The output of GAT is a new latent feature matrix Yt = {yt
1,y

t
2, . . . ,y

t
N}, where t is

the time step. The size of the latent dimension is F ∗. In this work, the matrix Yt is
flattened in both GAT+GRU and static-GAT models in order to feed it forward in the
model pipeline.
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4.2.2 Temporal Modeling (GRU)

The GRU consists of a sequence of GRU cells that take two inputs: the main input and
the output of the previous GRU cell [4]. Here the main input is the flattened latent
feature matrix from GAT. The output of a GRU cell at time t is a vector zt. The size of
the vector in this work is predetermined to be the same size as the latent node features
F ∗ in GAT . When t = 0, there is no previous output from a GRU cell, and in its place
a vector of zeros is used. The output vector zt of the GRU cell can be denoted as:

at = σ(Wayt +Uaz(t−1) + ba) (4.7)

rt = σ(Wryt +Urz(t−1) + br) (4.8)

nt = tanh(Wnyt + at ⊙Wnz(t−1) + bn) (4.9)

zt = (1− rt)⊙ nt + rt ⊙ z(t−1) (4.10)

where W,U,b are learnable parameters of the respective gates for update gate a, reset
gate r, and the new memory gate n at time t, σ(·) is the sigmoid function, ⊙ represents
the Hadamard product.

4.2.3 The Decoder Network

The output of the encoder is fed into the decoder. In GAT+GRU, this is the output of
the last GRU cell zt. In static-GAT, the output of the encoder is the flattened latent
feature matrix Yt. The decoder network consist of 2 layers, and is denoted as:

d(h∗
t) = sigmoid (LeakyReLU(h∗

tWh∗ + bh∗)Wo + bo) (4.11)

where h∗
t is the output of the encoder (either GAT+GRU or static-GAT), Wh∗ and

Wo are the weights of the latent layer and the final output layer of the decoder network
respectively.

The output of the decoder network is another vector, which is reshaped into a matrix
of shape N ×N , where N is the number of nodes in the network. The final output of
the autoencoder is a score matrix St+1, which represents the prediction of links existing
in the next graph snapshot Gt+1. The elements inside the matrix are between 0 and 1
and represent the model’s confidence for the link to exist.

The decoder network is similar in TSAM. However, in TSAM, both activation functions in
the decoder are ReLUs. In this work, the outer activation function is sigmoid, and inner is
LeakyReLU. During the experiments it became apparent, that these activation functions
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yielded more stable and faster results compared to ReLU. Sigmoid squishes the output
between [0,1] and is therefore directly usable as the final score for the corresponding
links.

4.2.4 Optimization

Li et al. stated in TSAM, that the score matrix St+1 should be geometrically close to
the ground truth adjacency matrix At+1. This means, that if the link exists in At+1, the
corresponding score in St+1 should approach 1 for a good prediction and 0 otherwise. In
TSAM, they used Frobenius norm to calculate the distance between the two matrices,
and this approach is is also used in this work. Frobenius norm of a matrix is the square
root of the sum of the squared elements.

Regularization is utilized to penalize the model for complexity [53]. Excess complexity
can cause the model to learn the training data too well without the ability to generalize
to unseen data. This phenomenon is called overfitting, and regularization aids to prevent
it. The model is optimized by the following loss function:

loss = ∥(St+1 −At+1)∥F + λ∥θ∥22 (4.12)

where θ contains all the trainable parameters of the model, and λ∥θ∥22 is the L2 regu-
larizer.

L2 regularizer takes the norm of the squared weights of the model and adds it to the
loss. L2 regularizer aims penalize large weights, since they are indicative of overfitting
[54]. λ, sometimes called weight decay, is a predetermined hyperparameter for the L2

regularizer, which scales the importance of the regularizer in the loss function. The loss
function is optimized with the Adaptive Moment Estimation (Adam) optimizer [55].

4.2.5 Evaluation Metrics

The model is evaluated with the best performing parameters, which were detected during
the validation. Since the money flow network dataset does not suffer from a severe
class imbalance, the performance of the model can be evaluated with a single evaluation
metric. The chosen metric is therefore the area under the receiver operating characteristic
curve (AUROC). This choice implies, that every link and non-link is considered equally
worthy of predicting and is given equal weight in the evaluation.
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4.2.6 Baseline

The model should be able to perform better than a naive baseline prediction. As for
the baseline, the current graph observation acts as the prediction for the next snapshot.
The baseline is denoted as H0 : Gt = Gt+1.

This baseline is chosen for two reasons. Firstly, even though the baseline is by definition
unable to predict new (unseen) links, it is not vital in this dataset, because the typical
class imbalance between previous and new links is not present. This makes it a viable
baseline in the first place. Secondly, the connectivity between two consecutive snapshots
remains almost 80% similar with only little deviation. This can be argued to be a
relatively good base predictability.

4.3 Setup

4.3.1 Programming

The chosen programming language for this work is Python [56]. Python is chosen because
Python encompasses a well-rounded and well-established collection of data science and
machine learning libraries.

The back-bone libraries for the work are PyTorch [57, 58] and PyTorch Geometric (PyG)
[59, 60]. PyTorch is an open source machine learning and deep learning framework, which
provides an object oriented approach for programmers to implement machine learning
in Python. PyTorch Geometric is a geometric deep learning framework, which focuses
mainly on deep learning methods for graphs, such as GNNs and their implementations.
For the implementation of graph attention network (GAT), the implementation from
PyG is used. For the GRU, the implementation from PyTorch is used.

4.3.2 Dataset Partitioning

The dataset is partitioned into training, validation, and testing sets. The training set
contains 313 snapshots, validation set 50 snapshots, and testing set 100 snapshots.
Together they sum up to the length of the dataset, 463 snapshots. The chronological
order of the graph snapshots persists between the partitions. This means that the
snapshots in the training set are the earliest, and snapshots in the testing set are the
newest. Respectively, the chronological order persists within a given partition.

The length of a partition is denoted as T . For the GAT+GRU -model, the model is
given a sliding window of data from the start of the partition up to the snapshot t. The
static-GAT -model is only given a single snapshot t. Both models predict the snapshot
t+ 1 for each t = 1, ..., T .



38

Training set is used to train the model. Training the model over the training set once is
called an epoch. Training the model over multiple epochs improves the performance of
the model. However, training the model for too many epochs will result in overfitting
and bad generalization for unseen data.

Finding the optimal number of epochs for training is a difficult problem. To alleviate
this, the performance of the model is validated after each epoch with the validation set,
which was not used in training. Validation enables to keep track of the model parameters
(weights) of the best performing epoch, and to execute early stopping in order to avoid
overfitting [61].

The principle of early stopping is to stop the training when the validation loss no longer
decreases. The model is given a chance to decrease the loss for a fixed number of
consecutive epochs, called patience. If the loss decreases during the patience period,
the patience resets back to its original value. If not, the training is stopped and the
model parameters from the epoch with the lowest validation loss are selected as the final
parameters of the model. Lastly, the testing set is used to evaluate the model with the
final parameters.

4.3.3 Hyperparameters

Hyperparameter is a parameter in the model, that typically cannot be estimated or
learned from the data itself. Instead, tuning the hyperparameter is left for the exper-
imenter’s discretion. Usually, tuning the hyperparameters requires running the model
multiple times with different values for the hyperparameters.

The hyperparameters for this work are the following.

Hyperparameter Values

Latent space size [2, 4, 8, 16, 32, 64, 128, 256]
λ 5 ∗ 10−7

Learning rate GAT+GRU: 0.01 | static-GAT: 0.001
Patience 40

Table 4.4. Hyperparameters.
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5. Results

All of the experiments on the models are run independently 5 times. The AUROC
and loss of the models are reported as their average of those 5 experiments along with
standard deviation. AUROC is reported in Table 5.1 and loss in Table 5.2. Both AUROC
and loss are reported based on the dimension of the latent space. The results for AUROC
are also plotted in Figure 5.1(a), and for loss in Figure 5.1(b).

Overall, it can be seen the size of the latent feature space matters in the results. However,
even the lowest value (2) for the latent features is able to reach over 81 AUROC in all of
the models. GAT+GRU -model performs better with fewer latent features than static-
GAT. The highest AUROC score of 83.6 ± 0.1 is reached with GAT+GRU without
features when the latent dimension size is 8, and with features when the dimension size
is 64. However, the margins are extremely slim between all of the models as the size of
the latent feature space is 128.

It is not outruled that even higher dimensions of the latent space could reach better re-
sults. However, this is unlikely. The computational complexity increases drastically, when
the size keeps increasing. Too much complexity generally leads to poorer performance
after some point. In this work, the computer that was used to conduct this research
could not process dimensions greater than 256. If higher dimensions are necessary to
use, a possible remedy can be to to use LayerNorm [62] to normalize weights between
layers. This is because normalizing the weights between layers can have the impact of
reducing the computational burden. In this work, LayerNorm was not used.

Dim GAT w/o feats GAT with feats GAT+GRU w/o feats GAT+GRU with feats

2 81.2 ± 0.1 81.5 ± 0.6 82.2 ± 0.9 82.3 ± 0.9
4 81.5 ± 0.3 81.9 ± 1.0 83.4 ± 0.1 83.4 ± 0.1
8 81.5 ± 0.3 81.9 ± 0.9 83.6 ± 0.1 83.3 ± 0.2
16 82.2 ± 0.1 82.9 ± 0.3 83.5 ± 0.1 83.5 ± 0.1
32 83.0 ± 0.0 83.1 ± 0.1 83.5 ± 0.0 83.5 ± 0.0
64 83.3 ± 0.0 83.3 ± 0.1 83.5 ± 0.1 83.6 ± 0.1
128 83.5 ± 0.0 83.5 ± 0.0 83.5 ± 0.1 83.5 ± 0.1
256 83.5 ± 0.1 83.2 ± 0.2 83.4 ± 0.2 83.2 ± 0.3

Table 5.1. AUROC of the models with different sizes of latent feature dimension.
Highest (best) values are in bold, lowest are underscored.
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Dim GAT w/o feats GAT with feats GAT+GRU w/o feats GAT+GRU with feats

2 37.7 ± 0.3 37.5 ± 0.7 36.7 ± 0.8 36.7 ± 0.8
4 37.4 ± 0.4 36.8 ± 0.7 35.8 ± 0.1 35.7 ± 0.1
8 37.2 ± 0.2 36.9 ± 0.6 35.7 ± 0.1 35.9 ± 0.1
16 36.7 ± 0.1 36.2 ± 0.2 35.8 ± 0.1 35.8 ± 0.0
32 36.0 ± 0.0 36.1 ± 0.1 35.7 ± 0.0 35.8 ± 0.1
64 35.8 ± 0.0 35.8 ± 0.0 35.7 ± 0.1 35.7 ± 0.1
128 35.7 ± 0.0 35.8 ± 0.1 35.8 ± 0.1 35.8 ± 0.1
256 35.8 ± 0.0 36.0 ± 0.1 35.9 ± 0.1 36.1 ± 0.1

Table 5.2. Loss of the models with different sizes of latent feature dimension. Lowest
(best) values are in bold, highest are underscored.

(a) AUROC (b) Loss

Figure 5.1. AUROC (a) and loss (b) of the models with different latent space dimension
sizes.

RQ1: Baseline. The AUROC performance of the baseline Gt = Gt+1 is 73.0. Both
Static-GAT and GAT+GRU outperform the baseline by significant margins. The models
are able to learn more complex and meaningful relationships in the data, compared to
the baseline of predicting the next snapshot equaling the previous snapshot.

RQ2: Input features. Both of the models yield similar results with or without the
input features. This is somewhat surprising. It can be concluded that the available input
features do not improve the performance of the models.

The available input features are general information about how the securities are traded
in the market. Because of this, one possible reason for this result is that the connectivity
of a snapshot already contains the information encoded in the general features of the
securities. Thus, making the input features redundant.

RQ3: Modeling temporal evolution. Both Static-GAT and GAT+GRU -models
yield similar results. It can therefore be concluded that modeling the temporal evolution
does not improve the performance of the model. This is not as surprising as it seems.
Compared to traffic volume predictions, a stock market does not have clear temporal
seasonalities, like yearly seasons and day-night cycles. On the contrary, stock markets
are widely known for their independence of timing.
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6. Suggestions For Future Research

The GNN+RNN setup allows different variations. To name a few possibilities: GRU
can be replaced with LSTM, more GNN-layers can be added, the attentional GNN can
be replaced with a custom message-passing function, and an attention mechanism can
be applied on temporal level. However, as demonstrated in this thesis, modeling the
temporal evolution should be ablated from the model, and compared to a model with
structural modeling only. This is because the extra complexity is not guaranteed to
mine information in the temporal evolution. This would also adhere to the principles of
machine learning, where in the event of two models with different complexities perform
similarly, the model with less complexity is favored.

Tweaking the GNN+RNN setup might not be the realistic path for future research for
this dataset. For example, it is hard to imagine replacing GRU with LSTM would yield
significantly better results than the static-GAT. The difference between the temporal
and static modeling in this thesis should have been clearly visible in order to warrant the
extra adjusting of the temporal model.

Instead of tweaking the GNN+RNN setup, the dataset itself could be modified. The
criterion for money flow is loose in this dataset and could be tightened. The links could
be created more meaningful by applying thresholds on the number investors involved, or
the amount of money transferred, or by validating the links to be statistically significant.
In these scenarios, it might be possible that modeling temporal evolution of the graph,
and the presence of the input features would be of aid to the performance of the model.

Another scenario that might arise from more strictly defined money flows, is that a
bigger portion of the links would remain unseen. This would open up the challenge of
predicting the appearance of previously unseen links, which is characteristic to many
real-world temporal networks, and ultimately to yield more relevant insight of the money
flows in the Helsinki Stock Exchange.
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7. Conclusion

In this thesis, Graph Neural Networks (GNNs) were used to study the temporal link
prediction problem in a binary money flow network between stocks in the Helsinki Stock
Exchange. The goal was to establish the base predictability in the money flow network
using a suitable GNN-based method. A money flow from one stock to another indi-
cated, if there has been any flow of money during the observation period. The money
flow network was gathered between years 2000 and 2008, and was observed in weekly
snapshots. Additionally, weekly features for the stocks were observed, and used as an
input to the model.

Based on the analysis made for the suitable GNN-paradigms and methods, the chosen
model consisted of a combination of the Graph Attention Network (GAT) to model the
structural dependency, and the Gated Recurrent Unit (GRU) to model the temporal
dependency. In order to distinguish the importance of the temporal modeling as part of
the model, an ablation model without the temporal modeling was additionally trained.
Autoencoder architecture was used to solve the problem of predicting the direction of the
links. A baseline model was used to contrast the performance of the used model. The
baseline predicted the previous snapshot to be equal to the next snapshot: Gt = Gt+1.

The performance of the model was evaluated with the area under the receiver operating
characteristics curve (AUROC). This is because the money flow network did not exhibit
the typical class imbalance between previously seen and never seen links, and therefore
all possible links were evaluated to be equally worthy of predicting.

The used model outperformed the naive baseline by clear margins. However, the model
did not benefit from the input features, and performed equally well without them. More-
over, the model did not benefit from modeling the temporal dependency, and performed
equally well by modeling the structural dependency only.
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APPENDIX A: LIST OF STOCKS

Afarak Group Se
Alandsbanken (A)
Alandsbanken (B)
Amer Sports
Apetit
Aspo
Aspocomp Group
Atria
Biohit (B)
Bittium
Citycon
Comptel
Cramo
Digia
Digitalist Group
Dovre Group
Efore
Elcoteq Se
Elecster (A)
Elisa
Evia
F-secure
Finnair
Finnlines
Fiskars
Fiskars (K)
Fortum
Geosentric
Hkscan (A)
Honkarakenne (B)
Huhtamaki
Ilkka
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Incap
Innofactor
Kemira
Keskisuomalainen (A)
Kesko (A)
Kesko (B)
Kesla (A)
Konecranes
Lemminkainen
Marimekko
Martela
Metsa Board (A)
Metsa Board (B)
Metso
Nokia
Nokian Renkaat
Nordea Bank
Norvestia
Olvi (A)
Op Corporate Bank
Oral Hammaslaakarit
Outokumpu
Pkc Group
Ponsse
Poyry
Raisio (K)
Raisio (V)
Ramirent
Rapala Vmc
Rautaruukki
Reka Industrial
Rocla Oy
Saga Furs
Sampo (A)
Sanoma
Solteq
Sponda
Stockmann (A)
Stockmann (B)
Stonesoft
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Stora Enso (A)
Stora Enso (R)
Stromsdal
Symphonyeyc Finland
Takoma
Talentum
Tamfelt
Tamfelt
Technopolis
Teleste
Tietoevry
Tiimari
Tulikivi (A)
Turvatiimi
Upm-Kymmene
Uponor
Vaisala (A)
Valoe
Viking Line
Wartsila
Yit
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