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Background. In telecommunications, a cellular network is a radio network dis-
tributed over land through cells. These cells are network elements. To perform
network management operations it is vital to calculate relationships between them
and represent such relationships over knowledge graph. Due to large scale of data
in real-time, calculating such relationship require potential computation power.
Objective. We aim to leverage the capability of parallel processing frameworks to
calculate relationships between network elements and perform parallelized interac-
tion with knowledge graphs to help reduce overall execution time.
Method. An empirical study conducted where ten days of performance metric data
was used to calculate relationships. Ray Core and Apache Spark were used as parallel
processing frameworks where their efficiency to parallelize relationship calculation
was compared with a normal sequential execution. A similar study designed to check
the interaction with orientDB graph databases to perform parallelized relationship
creation and updates.
Results. Frameworks were evaluated based on the growth of problem size i.e effi-
ciency of parallelizing from one to several days of data. Ray Core showed better
throughput compared to Apache Spark and normal execution for relationship calcu-
lation. Around 80% reduction in time observed compared to sequential execution.
Relationship calculation and updates in the knowledge graph can also be parallelized
using Ray, where efficiency reduces on increase in amount of data.
Conclusion. Current work involved the use of OrientDB as a graph database which
is considered a sub-optimal choice to perform parallel edge creation and updates.
Future work might investigate the use of other databases like Neo4j and evaluate its
interaction with Ray Core and Apache Spark.
Keywords: Ray Core, Apache Spark, Correlation, Knowledge Graph, Network
Elements.
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1 Introduction
In telecommunications, network management system is essential to manage the un-
derlying mobile network. Network element cells called as LNCELLS forms such
a network which facilitates the exchange of messages and signals. Several daily
network management operations like identifying group of best or worst performing
LNCELLS or group of LNCELLS on which software upgrade needs to be done on
same time to minimize the overall impact needs to be performed. In order to per-
form such operation it is essential to calculate relationships, to obtain the group of
cells having similar behavior and represent them over a knowledge graph.

1.1 Problem statement

In real-time huge volume of network traffic leads to a massive generation of data.
Processing such a volume is computationally expensive and non-trivial. Hence it is
essential to optimize multiple bottlenecks to reduce the processing time significantly,
such that each day of data processes within a few hours.

1.2 Research objectives

Parallel computing architectures provides considerable computational performance
to solve such data scalability problem. In V., Venkata, and Preethi 2017 it is demon-
strated that parallel processing improves the overall processing time as CPUs are
not ideal for such large-scale data processing because of their sequential process-
ing nature. In this thesis, we aim to study multiple parallel processing frameworks
and advancing them to optimize multiple bottlenecks present to calculate LNCELL
relationships and their representation over a knowledge graph.

1.3 Research Questions

The following research questions (RQs) are explored in this study.
RQ1 What is the usability of different modern parallel processing frameworks when
optimizing bottlenecks?
RQ2 How we can perform optimal parallel computation?
RQ3 Can we perform parallel computation while working with graph database?
RQ4 Which are the best frameworks/tools to parallelize the bottlenecks?
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1.4 Research Method

The research methodology of this work includes:

• Stating the goal and establishing a hypothesis.

• Describing data collection strategies.

• Data analysis strategy including the data prepossessing and scalability com-
parison metrics.

• Replicability.

1.5 Benefits (for academia or industry)

The study reveals significant findings, where the parallel processing framework pro-
vided 60 percent better throughput compared to sequential execution. Framework-
s/tools analyzed within the study are quite responsive that can scale dynamically
with robust handling of machine failures. The contribution of this work involves:

• Study modern parallel frameworks Apache Spark and Ray to understand their
implementation, responsiveness, ease of use, availability, cluster support, and
handling of machine failures.

• A comparative study between Ray and Apache Spark to optimize relationship
calculation between network elements.

• Test the capability of Ray and Apache Spark to parallelize edge creation,
updates, and deletion in the knowledge graph.

1.6 Structure of the paper

The rest of thesis is structures as follows. In second section, we introduce the back-
ground in this work, the cellular network, the context, and the discussion about
parallel processing frameworks. Third section discuss the related work, fourth sec-
tion describes the Research Methodology, and fifth section presents the solutions.
Sixth section evaluates the solution, while seventh section states the conclusion.

https://github.com/apache/spark
https://github.com/ray-project/ray
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2 Background
In this section, we illustrate the background of this work, introducing the cellular
network, context, and the parallel processing tools used in this study.

2.1 The Cellular network

In telecommunications, a cellular network is a radio network distributed over land
through cells. These cells are network elements. Network elements provide net-
work coverage over diverse locations. Mobile phone can connect even if it is moving
through cells during transmission. In order to enable communication and passage
of traffic cells are connected as a group to exchange messages and signals. Configu-
ration of each network element is set based on its position within the network and
tweaked by the network operator to configure the behavior of the cell. To corrobo-
rate the quality and stability of the network cell performance management metrics
are also monitored for each based on several key performance indicators. As stated
in Martinez-Mosquera, Navarrete, and Luján-Mora 2020 such data is collected from
network elements to a centralized system, which is analysed for monitoring and re-
porting network performance. Performance management files contain the metrics
and named counters used to quantify performance of the network.

A network management system (NMS) enables engineers to manage a network’s
independent components inside the network management framework and perform
several vital operations. NMS has data associated with network elements. The data
can be CM (Configuration Management) and PM (Performance Management). By
performing analysis on this data we can get Insights about the behavior of the
network elements.

2.2 Context

Network elements interconnect with relationships present between them. For exam-
ple, the KPIs forecast of network elements present strong correlations where some
network cells behave similarly based on their performance. Networks cells have the
same set of values over configuration parameters that can be related. These relation-
ships between network elements are represented as a graph, where network elements
are nodes associated with knowledge attributes and the relationships between the
attributes as edges.

Figure 2.1 demonstrate the knowledge graphs created from different input sources
and stored in the knowledge store. Knowledge Store shows the knowledge graphs
and Services triggering the operations to perform over-represented knowledge.
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Figure 2.1 Knowledge Representation

Upon discussion with Network Management Team, it was identified that net-
work cells are highly correlated to performance management metrics. To identify
such groups of entities based on several KPIs measuring KPI-based cell correla-
tion, querying, and updating knowledge graph in real-time is essential. Performance
management data is a time series with new performance metrics available at every
15 minutes interval. Real-time data scales up where processing a massive amount
of data is computationally expensive and non-trivial. Some relevant bottlenecks
identified as follows:

• Parallel loading of excel files.

• Calculating Correlations.

• Generating Nodes (Network Cells) and KPIs in the graph.

• Edge creation and updates within the nodes.

Time utilized in processing one day worth of performance metrics are stated below
within Figure 2.2. Based on the time consumed over each bottleneck it was identified
that Correlation Calculation and Edge Creation within knowledge graphs are the
major bottlenecks that need to be optimized.

Direct use of CPU is not ideal for such large-scale data processing. Parallel com-
puting architectures can provide substantial computational performance to solve
such data scalability problems. Though the idea of parallelization is attractive but
evaluation of the best alternative among available frameworks is not trivial and
depends on the architecture of the machine. In the current work optimizing these
bottlenecks is of importance. Parallel computing can break input data into batches
and parallelize file reading, data transformation, correlation calculation, and data
querying with feeding. Interweaving these steps in such a way can massively opti-
mize resource utilization. Python provides a native library known as multiprocessing



5

Figure 2.2 Bottlenecks time consumption

to parallelize jobs where modern parallel processing frameworks like Ray as demon-
strated by Moritz et al. 2017 and Spark as shown in Zaharia et al. 2016 can also
help to achieve such parallelism.

2.3 Parallel Processing Framework

In this section, we will discuss python workload parallelization and the frameworks
used for parallelization such as Ray and Apache Spark.

2.3.1 Python Multiprocessing

Python provides Multiprocessing library, which helps to parallelize the workload by
creating child processes. The creation of child processes involves sub classing the
multiprocessing process, which in turn creates the process that can run indepen-
dently. A simple code snippet below demonstrates the implementation.

import m u l t i p r o c e s s i n g
import time
c l a s s Proce s s ( m u l t i p r o c e s s i n g . Proce s s )

de f __init__ ( s e l f , i d ) :
super ( Process , s e l f ) . __init__ ( )
s e l f . i d = id

de f run ( s e l f ) :
t ime . s l e e p (1 )
p r i n t (” I ’m the p r o c e s s with id : {}” . format ( s e l f . i d ) )

i f __name__==’__main__ ’ :
p = Proce s s ( 0 )
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p . s t a r t ( )
p = Proce s s ( 1 )
p . s t a r t ( )

Hereafter initiating the process with ID 0, process one will start immediately and
hence will not wait for process 0 to finish. However, there are multiple drawbacks
identified with multiprocessing:

• There is Input/Output time complexity involved when data shuffles between
processes.

• Entire memory copies into each sub-process, which builds a lot of overtime.

• Difficulty in scaling existing code to a cluster of computers.

Hence to overcome such limitations, modern parallel processing frameworks are de-
signed, which are discussed in next sections.

2.3.2 Ray

Ray, an open-source project, was initiated in the U.C Berkeley RISE lab in 2018.
Designing and developing distributed systems need extensive deep programming and
infrastructure knowledge. The understanding behind this work is to overcome this
challenge and enable the user to build a distributed application over a laptop and
even scale the same to the cluster without any changes. The python code is scalable
using Ray Core functionalities.

Ray Core is a distributed execution framework that runs the python code as a
distributed application with minimal code changes. The function to be parallelized
is assigned as a task using the decorator @ray.remote over the function definition.
Function calls will run in parallel on separate CPU cores. Ray also comes with a
dashboard that lets to understand memory utilization, per actor resource usage, ex-
ecuted tasks, logs, and more. Some advantages of using Ray as a parallel processing
engine are:

• Possible to scale without code rewriting.

• A multi-cloud solution.

• Dynamic Scaling.

• Open-source.

• Capability to run the same code on more than one machine.

• Users can specify required resources to allocate for a particular function call.
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@ray . remote (num_cpus=4, num_gpus=2)
de f my_function ( ) :

r e tu rn 1

2.3.3 Apache Spark

Apache Spark is an open-source project developed by U.C Berkeley AMP Lab. It is
a unified analytics engine to scale up computationally expensive tasks. It is designed
over top of RDD (Resilient distributed database) using which multiple operations
over multiple clusters are done on the same data frame. Spark comes up in various
flavors.

• Spark Core: It is a base execution engine over which other top functionalities
are developed.

• Spark SQL: Built over the top of spark core, provides SQL language support,
with command line interface and several database connection drivers.

• Spark Streaming: Provide usability and optimizations for streaming analytics.

• Machine Learning Library: Provide spark-specific implementations of native
machine learning libraries.

• GraphX: Parallelized graph-processing functionality built over the top of spark.
Advantages:

– Parallel Processing possible.

– Open-Source.

– Dynamic Scaling.

Disadvantages:

– Rewriting of code required.
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3 Related Work
Parallel Programming is one of the most active research areas in data engineering.
An increase in the data to process and availability of multi-core architectures led to
parallelizing the existing systems to reduce process time and generate faster results.

In recent years, parallelization strategies developed for specific use-cases as in
Asgari et al. 2022 parallel computing frameworks reviewed for calibrating watershed
hydro-logic models. Xu, H. Liu, and Long 2020 demonstrated the use of hybrid
distributed computing framework to perform wind speed big-data forecasting, the
wind speeds were divided into Resilient Distributed database groups and operated
in parallel. Husain et al. 2022 discussed use of multi-core parallel algorithm to
compute fractal dimensions to understand the geometric irregularity present in In-
dian coastline. Yang et al. 2020 implemented parallel computing accelerated path
independent DIC method using C++ language for two type of devices (GPU and
multi-core CPU). Feature matching done with multi-core CPU resulted in 3.4x faster
speed than sequential execution. All such reviewed studies reported a speedup gain
of at least 60-70 percent in comparison to sequential execution.

Researchers also showed a great interest in parallelizing correlation calculation
for various use-cases. For instance, Mu, X. Liu, and Wang 2018 state Pearson-based
correlation decision tree (PCC-Tree) with its parallel implementation developed in
Map-Reduce (MR-PCC-Tree). To parallelize computationally expensive tasks pro-
posed MR-PCC-Tree algorithm performs on the cluster of processors for 8 datasets.
The performance was discussed on three factors: Speedup, Scaleup, and Size up. The
processor numbers are grown from 1 to 7. On larger datasets the speedup tends to
be approximately linear as the proportion of communication cost becomes smaller.
Scaleup had a downward trend with an increase in data and processors, whereas
the algorithm displays good size-up performance in the given system. In Joubert
et al. 2019 researcher is calculating the custom coefficient correlation between Single
Nucleotide Polymorphisms (SNPs) using genome sequencing data, genomic data is
huge where a parallel processing algorithm can scale up to the thousands of computer
nodes. Native python multiprocessing libraries.

Pool have also gained sufficient traction in recent years. Xu, H. Liu, and Long
2020 showed the implementation of a hybrid wind speed big data forecasting frame-
work proposed on Apache Spark using the distributed computing strategy. The
framework can divide the wind speed big data into RDD groups and operate them
in parallel. The experimental results indicated that proposed distributed comput-
ing framework on Spark forecast wind-speed big data in multi-steps. It is proved
that the proposed distributed computing framework has a faster computation speed
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when processing big data compared to stand-alone method.
Al-Saqqa, Al-Naymat, and Awajan 2018 demonstrated a relatively new open-

source platform Dask developed by Continuum Analytics for training machine learn-
ing models faster whereby providing the capability to scale NumPy and Pandas
workflows and flexible in implementing custom workloads. Rocklin 2015 showed the
use of dask for parallel computation with blocked algorithms and Task Scheduling.
The constraint in all these works with these processing frameworks is the need to
write the whole code from scratch based on the particular framework to achieve com-
plete parallelism. To solve the constraint and parallelize code fast Moritz et al. 2017
introduces a relatively new parallel programming framework Ray as a distributed
execution framework that runs the python code as a distributed application with
minimal code changes. Python functions can directly be assigned as a task using
@ray.remote over the function definition. Each task as a particular function call can
run parallel on separate CPU cores.

Though understanding parallel processing frameworks is vital, researchers are
also interested in identifying the suitable method to evaluate such frameworks for the
given problem. Zhang, Yan, and He 1994 shows the use of latency metric to evaluate
the parallel program and architecture stability. Latency here involves the delay
caused by communication between processors and memory modules over the network
within a parallel system. It can form the major obstacle to improving parallel
computing performance and stability. Jogalekar and Woodside 2000 explained a
way to measure the Speedup, Efficiency, and Scalability of such frameworks. It also
stated the use of throughput as metric to check scalability of a system based on the
cores.
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4 Research Method
In this section, we describe the research methodology, including the goal and the
hypothesis, the data collection, the data analysis, and the replicability.

4.1 Goal & Hypothesis

In this work the capability of modern computer systems having multiple cores is
leveraged to explore relevant areas of interest such as:

1. Studying modern parallel processing frameworks and understanding their ease
of use.

2. Implementing parallel file loading functionality.

3. Parallelizing the functionality to calculate the relationship between network
elements.

4. Understanding the compatibility to use the respective framework with graph
database.

5. Parallelizing edge creation and updating functionality within knowledge graph.

6. Evaluating and selecting the best framework to parallelize the bottlenecks.

In the first area, the aim is to investigate modern parallel processing frame-
works like Ray Core and Apache Spark. The goal is to understand the scalability
they bring using multiple cores in parallel, their availability as a licensed version
or open-source, programming libraries support, responsiveness, dynamic scalability,
handling of machine failures and pre-emption, and cluster support. In terms of
ease of use, the usability aspect of the framework investigated as the need for code
rewriting, custom resource allocation, configuration setting, and framework flexi-
bility. In the second area, parallelized file loading functionality is implemented to
load multiple files simultaneously. In the third area, the calculated combinations of
available network cells are clustered into partitions equal to available cores i.e each
CPU node is assigned a particular cluster of combinations, correlations are then
calculated in parallel among CPU nodes. In the fourth area, respective availability
of drivers and parallel processing framework/tool connection capability with orient
DB graph database is explored. In the fifth area, in order to represent relationships
between network cells as knowledge graph the process of querying and edge creation
is parallelized to optimize the interaction with graph database. In stheixth area,
evaluation of performance of framework/tool is accessed.



11

Hypothesis testing helps to predict the relationship between two variables. Hence,
a testable working hypothesis is essential for this work. We designed our hypothesis
based on guidelines defined by Misra et al. 2021 for this comparative study. Related
work over parallel processing platforms demonstrated that Spark gained relevance
as a parallel processing framework over the years due to its scalability, wider use,
support, and availability whereas Ray is a relatively new framework in comparison.
Evaluation of Ray for parallelizing bottlenecks is required to understand the frame-
work better. Hence, a null (H0) and alternative hypothesis (H1) for this thesis work
is:

• H0: Ray is equivalent to Spark in terms of usability and scalability.

• H1: Ray is better than Spark in terms of usability and scalability.

4.2 Data Collection

The network management team closely monitors the mobile network based on three
core data metrics: Configuration, Fault & Performance Management Data.

- Configuration Management Data (CM): The Network cell has an array of
parameters set as a configuration based on its position on the mobile network, stated
as configuration management parameters. These configurations are tweaked by the
network operator to alter the functionality of the network cell. Such information of
an array of network cells is aggregated in the form of Configuration Management
Data.

- Performance Management Data (PM): Performance of each network cell
based on various key performance indicators (KPIs) are collected as Performance
Management Data.

Recent reports from Network management team identified that network cells are
highly co-related for their behavior based on various performance metrics. Hence,
evaluating the correlation between them using performance management data is
essential compared to other metrics. The performance data collected from the Nokia
network management team which manages network cells for 4G network and 5G
network based on various performance metrics known as key performance indicators.
29 days of 4G and 5G network cells data was collected from a region in Southern
Italy and stored in excel files. One days’ worth of performance metrics contained in
each excel file.

The sample mock data as shown in Figure 4.1 and Figure 4.2 is a time-series data
where performance metrics of network cells are captured every 15 minutes. The data
contains the timestamp, Network Cell, and various KPIs as columns. The format
of the dataset is entirely numerical (floating point). The Network Cell is called
LNCELLS in the case of 4G networks and NRCELL in the case of 5G networks.
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- 4G Data: 50 LNCELLS were reported and their Performance metrics as time-
series data based on 167 Key performance indicators were captured every 15 minutes.

- 5G Data: 60 NRCELLS reported their Performance metrics as time-series data
based on 116 Key performance indicators captured every 15 minutes.

Figure 4.1 4G Network Performance Data

Figure 4.2 5G Network Performance Data

Access to the data is restricted and not publicly available, hence the mock data
is shown as part of this thesis. Ethical considerations are taken into account and
permissions were in place during data collection and presentation. For instance,
data is sensitive and collected directly from the product architect of the network
management team hence no external tools, API, or scarping technologies were used.
Consent was taken to use the data for this thesis work.
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4.3 Data Analysis

In this section, we report the data analysis protocol adopted in this study including
data prepossessing, data analysis, and scalability comparison metrics.

4.3.1 Data Prepossessing

Performance management data for both 4G and 5G is available in form of separate
excel files, as shown in Figure 4.3. Each excel file contains 24-hour performance
metrics. It is essential to perform data prepossessing before parallelizing correlation
calculation as excel files cannot be fed directly, hence converting the data into the
required format is crucial before proceeding with correlation calculation. The pre-
processing was composed of three operations:

• Conversion into data-frame & appending.

• Finding Combinations.

• Grouping data-set based on network cell name.

Figure 4.3 Data files (4G)

Conversion into dataframe & appending: Usage of performance data within
python functions and implementing mathematical operations on it required conver-
sion of it into a respective data frame. One of the main goals of this thesis work is
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to check the scalability of the frameworks, multiple days of data files combined into
a single data frame for the purpose.

Finding Combinations: Correlation Calculation will be done between the pair
of network cells. Hence, all possible combinations of two network cells within a group
are formed from the list of unique network cells present inside the data frame.

Grouping data-set based on network cell name: Data of a single network
cell is distributed in an entire data frame based on different timestamps, as after
every 15 mins a new metric is available. Hence it is crucial to do grouping of the
entire data frame based on the network cell name, to ease the extraction of single
network cell values while correlation calculation.

4.3.2 Data Analysis

We first analyzed the time taken by standalone CPU execution for doing correlation
calculations. Code was then enhanced to test the execution with parallel processing
frameworks. Lastly, all results compared to choose the best platform. Analysis is
implemented in the remote lab with 64 GB RAM and 16 CPU cores configuration.

Standalone CPU execution: For standalone CPU execution, the data was
fed directly. As performance data scales up in execution, the data was tested based
on the growth of problem size i.e, time is taken to process 1 day of data, then 2 days
of data, and so on until 29 days of data.

Parallel Processing Framework: Ray Core and Apache Spark have been
used as parallel processing frameworks. The functionality is implemented to accom-
modate parallel processing in a way that once several network cell combinations
were identified they were divided into an equal set of combinations based on the
number of CPU cores. Figure 4.4 demonstrates 80 combinations divided based on
8 cores present in the system. The frameworks were tested and compared based on
the growth of the problem with an increase in the number of files based on days as
done in Standalone CPU execution. In addition behavior of both parallel processing
frameworks based on the increase in the number of cores in the system is tested and
compared.

Interaction with Knowledge Graph: For generating business value from the
whole work, it is important to represent relationships over a knowledge graph. Figure
4.5 shows the basic representation of the structure, wherein there is a relationship
present between each node (Node 1, 2, and 3) based on KPI 1 and KPI 2. During
the interaction with the knowledge graph, two major operations can take place as
stated:

• Creation of new edge: Whenever a new relationship is identified a new edge
will be created to show the relationship.
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Figure 4.4 Distribution based on cores

• Updating existing edge: If there is a change in relationship value between ex-
isting two nodes on the graph and the change is above or below some threshold
the relationship value will be updated accordingly. The threshold value pro-
vided by the user within settings.

Figure 4.5 Relationship between nodes

As stated in Parallel Processing Framework section, available cell combinations di-
vided into clusters equal to number of available cores and edge creation with updates
done in parallel among CPU nodes. For instance as shown in Figure 4.6 if we have
300 combinations and 3 cores in the system, 100 combinations per core can be
considered for new edge creation and updates in parallel.

Figure 4.6 Distribution based on cores



16

4.3.3 Scalability Comparison metrics

Scalability metrics for parallel system as demonstrated in P. Jogalekar and M. Wood-
side 2000 used to choose comparison metrics for the current work. In the case of
distributed or parallel processing systems, it is crucial to model their behavior as a
steady-state, as there are always fixed jobs running in parallel based on the number
of cores present in the system. The productivity of the framework will be evaluated
through throughput.

Throughput: Throughput is an inverse of the time taken to complete the job.
In a parallel processing system with N jobs running in parallel the throughput is
equal to N/ (job time). Number of jobs N is stated as the degree of freedom in the
analysis, whereas job time is the average time processors take to finish the job.

The current system does not involve any communication between the parallel
running jobs, hence no network communication overhead is considered during this
analysis. To check the behavior of the framework based on growth in problem size,
a throughout obtained versus number of input files graph will be plotted as shown
in Figure 4.7. Each file contains the performance data for a single day. In such a
scenario, the number of the CPUs used in parallel is kept fixed i.e. 16.

In addition to the execution speed, the goal of this thesis work is to explore
multiple aspects of framework like responsiveness, dynamic scalability, handling of
machine failures, and pre-emption. Quality of Service (QOS) will also be calculated
to include a measure of the goodness of a service. Factors included under quality of
service are:

• Responsiveness.

• Dynamic Scalability.

• Handling of machine failures and pre-emption.

• Cluster Support.

In addition to evaluating the solution based on the stated metrics productizing the
framework requires evaluation of additional costs like the cost of software licenses,
and perhaps the cost of operation such as management and help desks.

4.4 Replicability

Access to data is restricted within the company, hence results cannot be replicated
directly.
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Figure 4.7 Performance comparison based on growth of files
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5 Solutions
In this section, we will discuss the parallel processing frameworks used and the
results obtained by their application to answer the goals established in the Research
Methodology section.

5.1 General Evaluation:

5.1.1 Ray:

Ray is a flexible python first distributed computing framework. Python on its own
is ineffective for distributed computing. Its interpreter is effectively single threaded
that makes it difficult to, for example, leverage multiple CPU’s on the same machine,
let alone a whole cluster of machine, using plain python. Using Ray as a framework,
the user can parallelize python programs on a laptop and run the code tested locally
on the cluster practically without any changes. Ray provides extensive high-level li-
braries that are easy to configure, for instance Ray’s Reinforcement learning library.
Ray is useful when we combine several of its modules to facilitate custom machine
learning heavy workloads, by doing this user can design flexible distributed python.
Programming distributed systems is not trivial and using currently available frame-
works to get clusters of computers to do what we want is considerably difficult. Ray
is built over top three layers:

• Low-level distributed computing framework for python with concise core API.

• A set of high-level libraries.

• Integration and partnerships with notable projects.

Ray is capable of setting up and managing a cluster of computers that can run
distributed tasks, a Ray cluster nodes are connected via a network. A driver pro-
grammed called a head node that can run jobs as a collection of tasks on the nodes
in a cluster. The basic structure of the Ray configuration can be found in Figure
5.1. Within a python session user can easily import and initialize Ray as follows:

import ray
ray . i n i t ( )

These two lines of code will start a Ray Cluster on a local machine. This clus-
ter can utilize all the cores available on a computer as workers, and Ray will be
initialised as shown in Figure 5.2, which indicates that Ray cluster is up and run-
ning, Ray comes with its own pre-packaged dashboard which can be check out at
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Figure 5.1 The basic components of a Ray cluster

Figure 5.2 Ray Initialisation

http://127.0.0.1:8265. In terms of ease of use, the best and most successful frame-
works are the ones that integrate well with existing solutions and ideas. Ray is a
compute-first framework whereas other modern frameworks are data-first where it
achieves the functionality to distribute computing over nodes using tasks and actors.
In the python program, a Ray API uses the concept of decorators. The function
can be made as a remote task by assigning a remote decorator over the definition of
it. As shown in the below code syntax user can also specify required resources for a
particular function call.

@ray . remote (num_cpus=4)
de f my_function ( ) :

r e tu rn 1

These remote tasks are stored as objects in memory storage and referred to as
futures. The results after execution are retrieved from these futures by using
ray.get(future). Figure 5.3 shows the functionality where a compute-intensive
function parallelized based on the available cores within a CPU environment. Such
capability can be enhanced over multi-nodes if used within a cluster environment.
Ray’s API designed for simplicity and generality where its system architecture is
designed for performance and scalability. As shown in Figure 5.3, the functionality
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Figure 5.3 Distribution based on cores

to divide execution over code needs just a few lines of change of code. Ray manages
task distribution and coordination under the hood. Ray is flexible when it comes to
the heterogeneity of computations. For instance, a complex simulation decomposed
into several tasks or steps. Tasks can be related in a way that subsequent tasks
may depend on the outcome of an upstream task, Ray as a framework allows for
dynamic execution that deals well with task dependencies. Flexible resource usage
is also mandatory in task execution, as some tasks might require a GPU while other
tasks can simply run on a CPU. Ray provides the flexibility to use the type by
mentioning it in the remote call.

As discussed, a Ray cluster consists of several worker nodes, each worker node
consists of several worker processes or simply workers. Each worker has a unique ID,
an IP (Internet Protocol) address, and a port by which they can be referenced. To
manage the allocation of tasks, and resources, and facilitate coordination between
them. Ray has a component known as Raylet integrated with workers. These are the
smart components that manage the worker processes. Raylets are shared between
jobs and consist of two components namely a task scheduler and an object store.
Figure 5.4 shows the basic structure where the object store takes care of memory
management and ultimately makes sure workers have access to the data they need.
The second component i.e scheduler takes care of resource management, among
other things. For instance, if a task requires 4 CPUs, the scheduler needs to make
sure it can find a free worker process that can grant access to said resources.

Coming to robustness, in distributed system there is a potential chance for things
to go wrong in a way that machine might have an outage, abort a task or go up in
flames. Ray has the capacity of fault tolerance when worker dies unexpectedly, the
Ray will rerun the task until either the task succeeds or minimum tries exceeded. In
overall execution, Ray is quite responsive system with server getting created quickly
and remote functions parallelized the instant objects are created.
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Figure 5.4 System Components of Ray Worker Node

5.1.2 Apache Spark:

Apache Spark identified as a unified analytics engine for large-scale data processing.
By being unified it combines data processing with AI technologies. Originally writ-
ten in Scala, it provides the Python functionality in the form of high-level API (Ap-
plication Programming Interface). For instance, pandas API on Spark for pandas
workloads. Fundamentally Spark was built using the concept of RDD’s (Resilient
Distributed Database), which is immutable distributed collection of objects. Each
data-set in an RDD divided into logical partitions, which computes over different
nodes of cluster. It supports in-memory processing computation i.e it stores the
state of memory as an object across the jobs and the object is sharable between
those jobs. Figure 5.5, shows the iterative operations in Spark RDD, where it stores
intermediate results in a distributed memory instead of stable storage and make
the system faster. Here MR1, MR2, MR3 represents parallel process running over
the chunk of data, and after two such iterations final result is stored under Stable
storage. As data is not transferred over clusters, this increase the overall rate of
execution, User can define the number of iterations as per the need. Python im-

Figure 5.5 Parallelization using RDD(Resilient Distributed Database)
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plementation of Apache Spark is provided by Pyspark. It allows to write Spark
applications using python APIs and provides a Pyspark shell for interactively ana-
lyzing data in a distributed environment. An entry point to any Spark application
is to create a Spark session. Spark session provides a way to interact with various
Spark functionality such as RDDs, data frames, and datasets with a lesser number
of constructs. In Pyspark, such a session can be created by following a code snippet.

import pyspark
from pyspark.sql import SparkSession
spark=SparkSession.builder.master("local[1]").appName("Test").

getOrCreate()

Using the above code snippet a Spark-Shell is initialized and a dashboard with UI
(User Interface) is created to view all submitted Spark jobs and their status. Apache
Spark also provides quite a good cluster support in a way that Spark applications can
run as an independent set of processes on a cluster. All of them are coordinated by
SparkContext in the main program. To run on a cluster Spark connects to the cluster
manager. As shown in Figure 5.6, once connected Spark acquires executors on nodes,
which act as a process to run computation and store data of the application. Spark
Context sends tasks to the executors to run. Cluster managers can act as an external
service for acquiring resources in the cluster. The driver program listen to incoming
connections from executors throughout its lifetime. Coming to dynamic scalability,

Figure 5.6 Spark Cluster

Spark gives control over resource allocation both across applications and within
applications. Spark provides a mechanism to dynamically adjust the resources the
application occupies based on workload, wherein the application can give resources
back to the cluster if they are no longer used and request them again later when
there is demand. Such a feature is useful when multiple applications share resources
in a Spark cluster.

In terms of ease of use, code needs to be rewritten according to rules and stan-
dards defined by Spark, hence Spark functionalities cannot be added directly into
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the application code. To provide usability, Apache Spark provides the abstraction
library known as Pyspark. Pyspark provides a custom library wrapped around ba-
sic python libraries to scale the processing. For instance, Pyspark Dataframe API
implemented on top of RDDs, and as explained before it is possible to parallelize
operations using RDDs. A code snippet showing the creation of the Pyspark data
frame is shown below.

import pandas as pd
from pyspark.sql import Row
pandas_df = pd.DataFrame({

'a': [1,2,3],
'b': [2.,3.,4.],
'c': ['string1', 'string2', 'string3'],
'd': [date(2000, 1, 1), date(2000, 2, 1), date(2000, 3, 1)],
'3':[datetime(2000, 1, 1, 12, 0), datetime(2000, 1, 2, 12, 0),
datetime(2000, 1, 3, 12, 0)] })

df = spark.createDataFrame(pandas_df)

In this way, a distributed data frame is set-up, which is executed over executors.
df. collect() operation helps to collect distributed data to the driver side as
local data in python. Hence using Pyspark with the available code is not very
straightforward and trivial and a significant amount of code-rewriting is required.

In terms of robustness, Apache Spark uses the concept of lineage graphs. When
a series of transformations is performed on an RDD, they are not evaluated immedi-
ately but lazily. When a new RDD is created from an existing RDD, the new RDD
contains a pointer to the parent RDD. Similarly, all dependencies between RDDs
are logged in a graph as metadata rather than actual data. This graph is called a
lineage graph. Consider the following steps as mentioned below:

• Create a new RDD from a text file.

• Apply map operation on first RDD to get second RDD.

• Apply filter operation on second RDD to get third RDD.

• Apply count operation on third RDD to get fourth RDD.

Figure 5.7, shows the lineage graph of these operations:

Figure 5.7 Lineage Graph
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This lineage graph is useful in case any of the partitions are lost. Spark can
replay the transformation on that partition using the lineage graph existing in DAG
(Directed Acyclic Graph) to achieve the same computation, rather than replicating
the data across different nodes as in HDFS (Hadoop distributed file system).

5.2 Parallelization using Ray:

5.2.1 Parallelized File Loading:

In terms of Performance Management Data, there is a possibility that several perfor-
mance metric files are available to process at the same time. Each file represents 24
hours of data as stated under Research Methodology. Hence, to make input pipeline
fast parallel loading of these files into the application is essential for optimization.
This section shows, how this functionality can be acheived using Ray.

Figure 5.8 shows a function where LoadXLSX() is designed that takes all the file-
names as an input list and transfer to function calculatingFuturesExcelLoad()
which loops to all the filenames and execute parallel loading by calling the function
loadExcel(). For instance, if there are three files available to load and three scores
in the system. Each file can be loaded in parallel as shown in Figure 5.8 as parallel
futures and the result can be aggregated in the output data frame.

Figure 5.8 Parallel File loading

5.3 Correlation Calculation:

Correlation calculation between network elements is essential to establishing rela-
tionships. As part of a prepossessing step, possible combinations of two network
cells within a group are identified from the available list as shown in Figure 5.9.
Within one day itself, there are performance metrics of one network cell on various
timestamps. Hence, to simplify the calculation for the correlation they were grouped
using a groupby() function so that unique LNCELL values are present together.
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In order to parallelize the correlation calculation, all the combinations of LN-
CELLS are now divided based on the number of cores present in the system, As
shown in Figure 5.10, for instance of there are 900 combinations of LNCELLS and 3
cores are present in the system, than correlation between 300 combinations per core
will be calculated in parallel. Inside ComputeCorrelation() a for loop is traversed
over the supplied combination list. In each iteration, values of each network cell
within a combination is fetched i.e value of entire timestamps from a supplied group
list, correlation is calculated between that particular combination based on several
KPI’s.

Figure 5.9 Groups

Figure 5.10 Correlation Parallelization

5.4 Knowledge Graph Interaction:

OrientDB is an open-source NoSQL graph database that was used to store and gen-
erate knowledge graphs. Pyorient is an open-source library identified as a medium
to connect existing python code with the knowledge graph. Pyorient is composed of
two layers. At the foundation, it is the python wrapper around the orientDB binary
protocol. Built upon that is orientDB’s SQL language called object graph mapper.
A client can be created with the code shown below to connect existing python code
with the knowledge graph.

https://orientdb.org/
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import pyorient
client = pyorient.OrientDB(<<orient_db_server_url")
client.set_session_token(True)
session_id = client.connect("Username", "Password")
return client

It will be identified whether the database exists or not. If no, then a new database
is created and a client is returned. Figure 5.11, shows the general flow of knowledge
graph interactions in which first all the available network cells (nodes) are identified
and inserted into the knowledge graph, post that all the relevant KPIs are identified
and pushed within the knowledge graph. Edge creation or updation process initi-
ated based on available nodes or combinations. Table 5.1 shows the time taken by

Figure 5.11 Graph Operations

different operations for loading 1 day of performance metric edge creation operation
was identified as a major bottleneck , hence need to be optimized.

Operation Time Taken Decision
Generating Nodes 0:00:00.470364 No Optimization needed
Generating KPI’s 0:01:08.276279 No Optimization needed

Edge Creation 1-2 Days Optimization needed

Table 5.1 Knowledge graph operation times

A created() function was designed to take care of general knowledge graph
interactions. It loops over the number of combinations present and executes two
operations either create an edge if a new correlation value is identified or update
the edge if there is a change in the previous value more than the previously defined
threshold. The queries used to perform such operations are:
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• To add a node: ”insert into Cells set Name = ’Node Name’”

• To add a edge: ”create edge ’KPI Name’ from(select from Cells where
Name=’Node Name’) to (select from Cells where Name = ’Node Name’) con-
tent value: ’Value to insert’”

Hence, to increase the speed of execution createEdge() function can be parallelized.
Parallelization performed in Ray by making createEdge() as a remote function. As
shown in Figure 5.12, available network cell combinations were divided based on the
available cores. A separate client connection initiated by each remote function. As
orient DB does not allow multiple client connections at same time, a 20-second gap
scheduled between each client connection.

Figure 5.12 Edge Creation

5.5 Parallelization using Apache Spark:

5.5.1 Parallelized File Loading:

As data is available in form of an excel file, Apache Spark doesn’t support parallel
loading of such files directly, hence parallel file loading was not possible within it
respectively.

5.5.2 Correlation Calculation:

As existing code was not directly parallelizable using Apache Spark hence an imple-
mentation using Pyspark was done, and the code rewritten accordingly. Pyspark
has its own set of native libraries to do correlation calculations, hence the data
needs to be fed in a particular format. To do that separate data frame for each
combination set and each KPI set is created as shown below. Figure 5.13, shows
a data frame for Cell C1 and C2 concerning KPI 1. The index represents different
timestamps of a day. Such a step needs to be repeated for all available parameters.
After calculating each data frame it is important to convert them into a vectorized
format using a vector assembler, as the correlation calculation function takes input
into the vectorized format. Figure 5.14 shows the whole sequence of the process
explained above.
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Figure 5.13 Dataframe

Figure 5.14 Dataframe

5.5.3 Knowledge Graph Interaction:

As code is rewritten into the Pyspark format, it is not possible directly to connect
python with orientDB using Pyorient as was in the case of Ray. Hence a specific
driver is needed to connect Pyspark with orientDB. Pyspark does not support any
such driver to provide integration with knowledge graph, hence such implementation
is not possible using Apache Spark.
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6 Evaluation
In this section, we will present and discuss results obtained after implementing
parallel processing frameworks to answer the established goal questions. The ex-
perimentation achieved enough insights that may lead to a concrete comparison
between frameworks and evaluate the best to solve established problems.

General Evaluation and ease of use: General evaluation of the framework
involved examining multiple aspects of the framework like their scalability, avail-
ability, programming libraries support, responsiveness, dynamic scalability, cluster
support, handling of machine failures, and preemption. The below table shows the
comparison of these aspects between Ray and Apache Spark.

Measure Ray Apache Spark
Responsiveness Responsive Responsive

Dynamic Scalability Possible Possible
Cluster Support Possible Possible
Machine Failures Fault tolerance capacity Possible through lineage graphs

Table 6.1 Comparison

From the comparison table above, it is noted that Ray and Apache Spark quite
equates each other in terms of responsiveness as both can process parallelization
instantly. In terms of dynamic scalability and cluster support, Ray is better in terms
of usability as local code can be deployed over a cluster directly with few changes
where proper YARN(Yet Another Resource Negotiator) configuration setup and
code-rewriting required for Apache Spark. In handling machine failures and pre-
emption both provide good support where Ray has a capacity for fault tolerance
and Apache Spark has the concept of lineage graph. In terms of availability, both
are open-source. In terms of programmability, both support python where code
rewriting is required in Apache Spark hence Ray is better in terms of usability here.
Quality of Service as a metric was identified as stated in the research methodology
section for comparison which includes responsiveness, dynamic scalability, handling
of machine failures, and preemption and cluster support. Both platforms are equal
in all aspects but Ray performs better in terms of usability for dynamic scalability.
In general, Ray is better for the use case in terms of programmability.

Parallelized file loading: As stated in the solution section, Ray provides the
capability to load relevant excel files in parallel, by making LoadExcel() as remote
and executing it in parallel whereas Apache Spark does not provide specific libraries
to load excel files in parallel. Hence, Ray founds to be better here.
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Parallelized Correlation Calculation: As discussed in the Research Method-
ology section, throughout obtained by application of framework based on the growth
of problem size will be compared to evaluate the best framework. Table 6.2 shows
the throughput values obtained by normal execution or execution of Ray over a set
of files for correlation calculation.

No of files Results(Normal) Results(Ray)
1 0:11:22 0:02:50
2 0:18:19 0:03:39
3 0:24:21 0:04:30
4 0:29:37 0:05:24
5 0:36:54 0:07:25
6 0:41:21 0:08:37
7 0:47:87 0:09:06
8 0:53:22 0:10:10
9 0:59:09 0:13:33
10 1:7:10 0:13:35

Table 6.2 Throughput(Normal v/s Ray

As shown in Figure 6.1, based on the growth of problem size Ray showed a
pretty good progress compared to normal sequential execution. Though through-
put decreases on growth of problem size, the performance is better compared to
sequential execution. Table 6.3 shows the throughput values obtained by execution

Figure 6.1 Performance plot Ray v/s Sequential

of Apache Spark over a set of files as compared to normal execution. As shown in
Figure 6.2, the performance over throughput obtained using Apache Spark is much
less than normal execution. This is because there is a lot of overhead involved to
convert input data into a respective data frame that can be processed by Apache
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No of files Results(Normal) Results(Ray)
1 0:11:22 0:18:11
2 0:18:19 0:24:02
3 0:24:21 0:31:22
4 0:29:37 0:38:11
5 0:36:54 0:45:33
6 0:41:21 0:55:21
7 0:47:87 1:05:22
8 0:53:22 0:15:12
9 0:59:09 1:25:14
10 1:7:10 1:36:22

Table 6.3 Throughput(Normal v/s Spark)

Spark libraries for calculating correlation as described under the solution section.
From the analysis done above, it can be concluded that Spark shows no performance

Figure 6.2 Throughput obtained based on growth of files

improvement compared to normal execution, where Ray contributed significantly to
increasing the speed and getting results fast.

Parallelized Edge Creation: As described under the solution section, parallel
edge creation is possible using Ray by parallelizing CreateEdge() function which
created multiple parallel clients on the gap of 20 seconds. Table 6.4 compares time
taken to do edge creation between normal execution and Ray based on no of edges.
Figure 6.3 shows throughput comparison between the two. As can be seen from
both demonstrations Ray performs significantly well in parallelizing edge creation
when the number of edges is low where as number of edges increases performance of
Ray becomes comparable to the normal execution. This degradation in performance
is possible due to the sub-optimal behaviour of orientDB. .

Coming to implementation using Apache Spark, orientDB doesn’t provide any
driver support to connect with Pyspark hence as mentioned in solution section such
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No of Edges Results(Normal) Results(Ray)
300 0:11:08 0:18:11
600 00:26:17 0:24:02
900 0:34:78 0:31:22
1200 0:44:46 0:38:11
1500 0:51:58 0:45:33

Table 6.4 Edge Creation(Normal v/s Ray)

Figure 6.3 Throughput Ray Edge Creation

implementation is not possible. From the analysis done above it can be evaluated
that Ray performs better than sequential for edge creation but only for limited
number of edges and Apache Spark cannot be used.
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7 Conclusions
In this thesis, we investigated application of the parallel processing frameworks
Ray and Apache Spark to parallelize the correlation calculation between network
elements and interaction with knowledge graph.

General Evaluation with ease of use. Based on the comparison done in
the evaluation section it can be concluded that Ray and Spark quite equates each
other in terms of Quality of service i.e Responsiveness, Dynamic Scalability, Cluster
Support and Machine Failures. Ray performs relatively well in terms of usability
due to minimal code changes needed to scale. Hence, Ray is a better alternative for
achieving the goals established under this section.

Parallelized Correlation Calculation. Efficiency of Framework is evaluated
based on the growth of problem size. Hence, in terms of throughout discussed
under Evaluation section, Ray performs relatively well where it is able to optimize
correlation calculation by 70-80 % compared to sequential execution. Apache Spark
relatively under performs due to the need to convert existing code in specific format
to be used by Pyspark, which brings an extra overhead to overall execution time.
Hence, Ray is the better alternative to achieve goals established under this section.

Parallelized Edge Creation. Parallel Edge Creation and updates is possible
using Ray as a parallel processing framework, where in terms of growth of prob-
lem size it performs relatively well for fewer files but as data chunk increases the
performance becomes relatively equal with sequential execution. Spark cannot be
used because of non-availability of drivers to connect with orientDB. Hence, Ray
performs relatively well under this section for fewer chunks of data.

From the discussion done above, it can be concluded that Ray performs relatively
well for the use-case established under this thesis. Hence the alternative hypothesis
established for this work holds. Future work might consider the test with different
database such as neo4j instead of orientDB. As orientDB identified as an sup-optimal
database, it is vital to test if Ray efficiency be improved to interact with knowledge
graphs based on a optimal database.
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8 Abbreviation

Abbreviation Meaning
NE Network Element
KPI Key Performance Indicator
CM Configuration Management
PM Performance Management

RAM Random Access Memory
RDD Resilient Distributed Database
API Application Programming Interface

YARN Yet Another resource negotiator
HDFS Hadoop Distributed File System
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