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Abstract

In graph data, each node often serves multiple func-
tionalities. However, most graph embedding mod-
els assume that each node can only possess one
representation. We address this issue by propos-
ing a nonparametric graph embedding model. The
model allows each node to learn multiple represen-
tations where they are needed to represent the com-
plexity of random walks in the graph. It extends the
Exponential family graph embedding model with
two nonparametric prior settings, the Dirichlet pro-
cess and the uniform process. The model combines
the ability of Exponential family graph embedding
to take the number of occurrences of context nodes
into account with nonparametric priors giving it
the flexibility to learn more than one latent repre-
sentation for each node. The learned embeddings
outperforms other state of the art approaches in
link prediction and node classification tasks.

1 INTRODUCTION

Data in the form of graphs is drastically growing across
disciplines to represent complex observations and their re-
lationships in the graph topology. One common challenge
for such data is unsupervised representation learning (em-
bedding) which discovers underlying functions or charac-
terizations of nodes solely from the graph structure without
requiring availability of node attributes. Such research has
shown encouragingly that the learned latent representations
can be used as features for different predictive tasks with
promising performance.

Despite the success of such models, most of the proposed
methods consider only the co-appearance pattern of nodes in
walks across a graph. The prominence of nodes in their sur-
roundings, for example as hubs or bridges, is an important
trait of the network structure but is often ignored.

Moreover, it is a common phenomenon that each graph node
can serve different functions or roles: a node can, for exam-
ple, act both as a local hub for its nearby nodes and also as a
crucial bridge along a path between far-off connected areas
of a graph. However, most methods are unable to properly
represent this: they are restricted to single representation
learning where each node is only assigned one latent vector
representation. A model that only supports one embedding
per node tries to collapse all underlying roles of the node
into one vector representation could omit necessary informa-
tion: this can yield poor representations that are ’inbetween’
the roles of the node and do not represent any of them well
or represent only some roles while ignoring others.

In this paper we introduce a novel embedding model, which
extends exponential family embedding [Rudolph et al.,
2016] with nonparametric priors and allows a node to have
more than one latent representation. We allocate such la-
tent representations following two nonparametric priors, the
Dirichlet process and the uniform process. While Dirichlet
processes are popular in nonparametric modeling, the uni-
form process has been neglected in such models; our results
show the uniform process is a promising prior for the pro-
posed model. A tailored truncation-free inference algorithm
is developed. Different from the traditional approaches, the
algorithm introduces new latent embedding vectors over
iterations which provides more efficient inference.

We evaluate the proposed model with two tasks, link predic-
tion and node classification. Results over several datasets
show the proposed multiple representation learning method
improves performance compared to state of the art baselines.

The contributions of this work are:

• We introduce the notion of multiple representation to
graph embeddings: each node can have more than one
latent vector representation.

• We propose a graph embedding model leveraging
Bayesian nonparametrics, which is unprecedented and
challenging to do well. The number of latent represen-
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tations are thus decided by the observed data.

• In addition to the Dirichlet process, we explore the
uniform process, and show it is an important option for
achieving best results.

• We develop an adaptive inference algorithm for effi-
cient computation.

The paper is organized as follows. Section 2 describes back-
ground concepts. Section 3 introduces the proposed model.
Section 4 develops the inference algorithm. Experiments are
conducted in Section 5 and Section 6 draws the conclusions.

2 FUNDAMENTAL CONCEPTS

This section provides a brief overview of some basic con-
cepts that are related to our approach.

2.1 EXPONENTIAL FAMILY EMBEDDING

Exponential family embedding (EFE) [Rudolph et al., 2016]
is a probabilistic extension of the CBOW embedding model
[Mikolov et al., 2013a,b]. Observations are made of objects
v that occur at locations n surrounded by a context which
is a set of other objects. In a traditional word embedding
scenario an object would be a word and the context would be
the surrounding words in a sentence; in the graph embedding
scenario that we address, objects are instead nodes of a graph
and contexts are other nodes on a random walk in the graph.

Let xn,v denote the observed value for object v at location
n. Denote the context by a set cn = {v′} of other objects v′

and a vector x̃cn = {x̃n,v′} of their values in the context. In
our graph embedding case, the values represent whether the
object (graph node) occurs at the location and how many
times the context objects (nodes) occur in the context.

In EFE, conditioning on the context set cn and context
values x̃cn , the observed value xn,v for object v is assumed
to be exponential family distributed:

xn,v|cn, x̃cn ∼ ExpFam
(
ηv (cn, x̃cn) , T

(
xn,v

))
(1)

where ExpFam is an exponential family distribution,
ηv (cn, x̃cn) is the natural parameter, and T

(
xn,v

)
denotes

the sufficient statistics.

In EFE, each object v is represented in two ways, with an
embedding vector ρv ∈ RD and a context vector αv ∈ RD

where D is the embedding dimensionality. The EFE cap-
tures the co-occurrence pattern by constructing the natural
parameter based on interaction between the embedding vec-
tor of the center object and the context vectors of its context
objects weighted by their context values. The model can be
seen as a special generalized linear model since the natural
parameter is modeled as a link function of an inner product,

so that

ηv (cn, x̃cn) = g

ρ⊤
v

1

|cn|
∑
v′∈cn

x̃n,v′αv′

 . (2)

Since ExpFam can be any exponential distribution,
CBOW can be seen as the special case of employing a
Bernoulli distribution where the observed value xn,v can be
either 1 or 0. One principal merit of the generalization to
other probability distributions is the capability of capturing
latent patterns by incorporating the observed values. For ex-
ample, in a shopping cart scenario, quantity of an observed
item is modeled by the quantities of its context items (i.e.,
other products in the shopping cart) which are not binary but
positive integers. Similarly, in a graph embedding scenario
counts of graph nodes in a context will be positive integers.

2.2 RANDOM WALK BASED NODE EMBEDDING

Let G = (V,E) be a graph where V denotes the set of ver-
tices, and E ⊆ V× V denotes the edge set. A random walk
w = {w1, . . . , wL} of length L is a simulated sequence
of nodes over the graph where each node is chosen at ran-
dom from the neighbors of the previous node. Extraction of
such random walks is a way to describe a graph by extract-
ing sequence data representing graph connectivity. Such
sequences can then be modeled by a generative model.

Random walk based embedding approaches [Perozzi et al.,
2014, Grover and Leskovec, 2016] model co-occurrence of
nodes in a set of random walksW . The generative process
models the sequence content, and thus the graph connectiv-
ity, through embeddings of nodes: the model is conditional
on the nodes and generates the sequences.

Given a walk w ∈ W , the occurrence of node wn at po-
sition n in the walk is conditional on the set cn of its sur-
rounding (context) nodes in the walk. The occurrence prob-
ability is modeled as depending on embedding vectors of
the node and embedding vectors of the context nodes. The
representation learning aims to optimize the probability
of occurrence of the nodes wn given their contexts, i.e.,∏

w∈W
∏

n p(wn|cn).

2.3 BAYESIAN NONPARAMETICS

In Bayesian nonparametric models, the number of parame-
ters is not fixed in advance but learned during model fitting
up to a potentially infinite number of parameters. The mod-
els are typically described as mixtures: each observation is
modeled by a parameter drawn from a distribution G over
the space of parameters (e.g. RD) where only a finite num-
ber of parameter values have nonzero probability, but G
itself is drawn as

G ∼ NP (G0, γ) (3)



from a stochastic process prior NP with base distribution
G0 and concentration parameter γ. The process NP yields
distributions over the parameter space, with different num-
bers of possible values up to a potentially infinite number,
but each draw from NP has a finite number. Thus fitting
the model to data with the prior NP will infer how many
parameters are needed to describe the data.

2.4 RELATED WORK

Among random walk based unsupervised node embed-
dings, Deepwalk [Perozzi et al., 2014] has been the clas-
sical method. Grover and Leskovec [2016], Ribeiro et al.
[2017] simulate variant random walks emphasizing different
structural features of the graph. Celikkanat and Malliaros
[2020] extend the models with different likelihoods with
EFE framework; in their work, the context vectors are taken
to represents the vertices.

A group of models have been proposed to learn multiple
representations. Among those, Sun et al. [2019] decide the
number of embedding with a community detection task; Liu
et al. [2019], Park et al. [2020], Chen et al. [2020] impose
a fixed number of embedding vectors for all nodes with a
predefined value. The most similar method to ours is Epasto
and Perozzi [2019] which uses local neighborhood clus-
tering to generate multiple representations for nodes where
different nodes can have different number of embedding vec-
tors. Those methods often depend on extra simulations of
the graph data in addition to the random walks data, whereas
our method only requires the generated random walks.

Besides random walk based methods, there are other pro-
posed approches include, for example, methods based on
matrix factorization [Ou et al., 2016, Wang et al., 2017, Qiu
et al., 2018] and neural network based approaches [Li et al.,
2018, Velickovic et al., 2019, Wu et al., 2020].

3 PROPOSED MODEL

The proposed model is a Bayesian nonparametric extension
of exponential family node embedding. We next describe
the two notions and how they are used to learn multiple
node representations. Figure 1 shows an overall illustration.
In the figure, random walks are first extracted from a graph,
yielding sequences whose sliding windows each contain a
center node and counts of other nodes in the context. The
occurrence of the center node will be modeled based on the
context, where dependency is characterized using vectorial
embeddings: each node has one embedding as a context
node and can have multiple embeddings as a center node.
The generation of the observed sequence content can be
written as a graphical plate representation where nonpara-
metric priors are used to generate the embedding vectors of
center nodes, and the center and context embedding vectors

together are used to generate observed values, that is, the
observed center nodes in each window of a random walk.

3.1 EXPONENTIAL FAMILY NODE EMBEDDINGS

Given a simulated random walk node sequence w =
{w1, . . . , wL} of length L, we slide windows of length K
along it. In each window the center node wn is surrounded
by context nodes {wn−K , . . . , wn−1, wn+1, . . . , wn+K}.
For each possible vertex v we denote xn,v = 1 if it was
the center node so that wn = v, otherwise xn,v = 0. The
context is denoted by the set cn of unique vertices in the
context nodes and the counts x̃cn

= {x̃n,v′} how many
times each vertex v′ ∈ cn occurred in them, x̃n,v′ ≤ K − 1.

We will model dependency of node occurrences along a
sequence, based on distributions whose natural parameter
compares observed values to their context. In more detail,
the natural parameter is based on comparison of node em-
bedding vectors that characterize what kind of surroundings
each node tends to appear in. We first describe the distri-
bution and then describe the construction of the natural
parameter for different exponential families (different likeli-
hoods).

We model the co-occurrence pattern between wn and the
context (cn, x̃cn

) with an exponential family

xn,v|cn, x̃cn
∼ ExpFam

(
ηn (cn, x̃cn

) , T
(
xn,v

))
(4)

where ηv (cn, x̃cn) is the natural parameter and T
(
xn,v

)
the sufficient statistics.

In this work occurrence of a node is represented as a one-hot
choice vector and it is modeled as a draw from an exponen-
tial family distribution whose parameters depend on the
surrounding nodes. Concretely, if the vertex appears at the
location n, the positive likelihood is then defined as

p(xn,v = 1) = f(xn,v = 1|ηn (cn, x̃cn
) , T

(
xn,v

)
) (5)

where f is the corresponding probability density function of
the exponential family distribution. For a vertex that does not
appear at location n, the likelihood of the non-appearance
(also called a ‘negative likelihood’) is

p(xn,v = 0) = f(xn,v = 0|ηn (cn, x̃cn
) , T

(
xn,v

)
) . (6)

Since random walks only yield positive samples of vertices
that occurred in the center of their windows, learning from
them alone would bias the model; thus we use a popular
negative sampling approach, and randomly generate several
negative samples (5 in experiments) for each location n.
A negative sample has the same context (cn, x̃cn

) as the
positive sample at n, but xn,v is instead set to 1 for a random
vertex among those that did not appear in the location.In
this work, we explore three different exponential family
distributions: Bernoulli, Poisson, and Gaussian.
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Figure 1: Illustrations of the proposed model. Left: random walk (light blue) along a graph from which windows are
extracted as positive samples (green) of vertices that were center nodes and counts of other nodes in their context, and
corresponding negative samples (red) of vertices that did not occur in the center. Middle: each vertex has one or more
d-dimensional vector representations ρ as center nodes (circles), and one representation α as a context node (diamonds).
The picture shows a d = 3 dimensional example. Right: graphical plate representation of the proposed model.

Bernoulli Likelihood. We employ Bernoulli distribution to
model the co-occurrence patterns of nodes. Let ρn,v∈ RD

denote the embedding vector of the node v at the location n,
αv ∈ RD denote the embedding vector for the vertex v, the
natural parameter is then defined as

pn = S
(
ρ⊤
n,v

1

|cn|
∑
v′∈cn

αv′

)
(7)

where S denotes the sigmoid function S = 1
1+e−x , and

|cn| is the number of distinct nodes in the context. The
appearance of the node v at the location n, i.e. whether
xn,v = 1 or xn,v = 0, is thus sampled from a Bernoulli
distribution with parameter pn so that

xn,v ∼ Bern(pn) . (8)

Note that we use the Bernoulli likelihood to model only
the co-appearance of the nodes, which can be seen as an
extension of Skip-gram based models. The number of occur-
rences of nodes in the context is not taken into the account.
To incorporate the number of occurrences of nodes, we
employ the Poisson and Gaussian distributions.

Poisson Likelihood. For a Poisson distribution, the parame-
ter λn is defined as

λn = exp

(
ρ⊤
n,v

1

|cn|
∑
v′∈cn

x̃n,v′αv′

)
(9)

where |cn| is again the number of distinct nodes in context
and xn,v′ denotes the number of occurrences of node v′ in
the context. The appearance of the node v is generated as

xn,v ∼ Pois(λn) (10)

The pivotal difference between the Bernoulli and Poisson
cases is that the latter takes the number of occurrences of
nodes in the context into account when constructing the
natural parameter. The Gaussian case takes the same setting.

Gaussian Likelihood. Similar to the settings for Poisson
Likelihood, the natural parameter here is defined as

µn = ρ⊤
n,v

1

|cn|
∑
v′∈cn

x̃n,v′αv′ (11)

without a specific link function, and the appearance of the
node v at the location n is generated as

xn,v ∼ Norm(µn, σ) (12)

where we set σ as a fixed hyper-parameter; in the experi-
ments we arbitrarily choose the σ from {1, 5, 10}.

When several different likelihoods are feasible, The model
choice can depend on domain expertise, or cross-validation
can be used as a model selection process.

3.2 NONPARAMETRIC EMBEDDING

Instead of restricting each vertex v to have a single role rep-
resented, to better capture the complexity of vertex roles in
a graph as observed in random walks, we present a multiple
representation learning model which enables each vertex
to have multiple latent vector representations, so that the
ocurrence of the the vertex at each location in a walk can
arise from a different role of the vertex. To do so, we set
a nonparametric prior on the embedding vectors ρ. That
is, we assume that at each location n, an embedding vector
ρn,v is generated from a stochastic process Gv specific to



the vertex, so that

ρn,v = ρ(s)
v ∼ Gv(G0, γ) (13)

where Gv is a stochastic process with a base distribution G0

and a concentration parameter γ. The base distribution G0

has an infinite number of possible embedding vectors and
Gv is a draw from it allocating nonzero probability to a finite
number of possibilities {ρ(1)

v , . . . ,ρ
(s)
v , . . . ,ρ

(S)
v , . . . , }

where S is the number of observed embedding vectors. We
set the base distribution to be a d-dimensional Normal distri-
bution N(0, σ0). In experiments we set σ0 = 5 for Bernoulli
likelihood and σ0 = 10 for both Poisson and Gaussian likeli-
hood. For simplicity, similar to the settings of Rudolph et al.
[2017], Rudolph and Blei [2018], although we allow mul-
tiple embedding vectors ρn,v for a vertex we will use only
one context vector αv per vertex; this setting can already
generate good results in the experiments, and generalization
to allow multiple context vectors is a future work.

In the following, let nv = n+
v ∪ n−

v denote locations related
to vertex v, so that n+

v denotes locations where the v appears
and n−

v locations where v is the negative sample. Moreover,
denote by nv,<n the subset of nv where the location is before
n, and denote by superscript (s) those locations where the
embedding vector was the s:th embedding vector of v.

Dirichlet Process. One of the most common nonparametric
process priors is a Dirichlet process. The predictive proba-
bility of ρn,v is defined based on numbers of occurrences
of embedding vectors of v at earlier locations n′ < n in
positive or negative samples, so that

P (ρn,v|{ρn′,v;n
′ ∈ nv,<n}) =

|n(s)
v,<n|∑

s′ |n
(s′)
v,<n|−1+γ

ρv,n = ρ
(s)
v , ∀ρ(s)

v ∈ {ρ(1)
v . . .ρ

(Sv)
v }

γ∑
s′ |n

(s′)
v,<n|−1+γ

ρv,n = ρ
(Sv+1)
v ∼ G0

(14)

where |n(s)
v,<n| is the number of locations before n where

ρ
(s)
v has been selected, and γ governs the generation of a

new embedding vector.

Uniform process. An alternative to Dirichlet process is a
uniform process [Wallach et al., 2010] with the predictive
probability

P (ρn,v|{ρn′,v;n
′ ∈ nv,<n}) = 1

Sv+γ ρn,v = ρ
(s)
v ,∀ρ(s)

v ∈ {ρ(1)
v . . .ρ

(Sv)
v }

γ
Sv+γ ρn,v = ρ

(Sv+1)
v ∼ G0

(15)

where Sv denotes the number of different embedding vec-
tors used for v before location n, and the embedding vector
ρn,v is generated independently from the occurrence fre-
quencies of previous generated values. The generation is
only controlled by the concentration parameter γ.

Figure 2: A comparison bewteen two nonparametric priors
on the embeedings of the node [YGR078C] in Yeast dataset.
(a): Weights of each embedding vector Dp-Pois model (γ =
0.01). (b): from up-Pois model (γ = 0.000001).

Despite the popularity of Dirichlet process, it suffers from
the “rich get richer” issue, as it tends to repeat previous
values and tends to model the first (or first few) embedding
vectors as highly dominant, which can limit model flexi-
bility. The uniform process was proposed to address this
issue. Figure 2 show an example where the Dirichlet pro-
cess concentrates on the first embedding vector and uniform
process delivers smoother weights. The uniform process
has been neglected by the research community, with most
applications employing Dirichlet processes as priors.

Overall generative process. The proposed model can be
summarized with the generative process shown below (cor-
responding plate model shown in Figure 1, Right):

1. For each vertex v ∈ V:

- Gv ∼ NP (G0, γ)

- αv ∼ N(0, σ2
0I)

2. For each walk w = {w1, . . . , wL} ∈ W
- For location n:

- ρn,v ∼ Gv

- ηn,v = g
(
ρ⊤
n,v

1
|cn|
∑

v′∈cn x̃n,v′αv′

)
- xn,v ∼ P (ηn,v)

4 INFERENCE

We adapt a truncation-free variational inference algorithm
proposed by [Huynh et al., 2016]. Using a stick-breaking
construction [Sethuraman, 1994], for vertex v we have

Gv =

∞∑
s=1

β(s)
v δ

ρ
(s)
v

, ρ(s)
v ∼ G0 , (16)

β(s)
v = ζ(s)v

s−1∏
i=1

(
1− ζ(i)v

)
, ζ(s)v ∼ Beta(1, γ) . (17)



The posterior distribution for the stick breaking parameters
βv = (β

(1)
v , . . . , β

(Sv)
v , β

(Sv+1)
v ) is then

(β(1)
v , . . . , β(S)

v , β(S+1)
v ) ∼ Dir(θ(1)v , . . . , θ(Sv)

v , γ) (18)

where parameter θv governs the general prevalence over all
potential embedding vectors. For each location, the embed-
ding vector ρn,v is decided by a label zn,v sampled from a
Multinomial distribution

zn,v ∼Multinomial(βv) , ρn,v = ρ(zn,v)
v . (19)

The variational distribution q(zv,n) is updated as

exp
(
Eq

[
ln zn,v

])
∝ exp

(
E
[
ln p(xn,v|cn, x̃cn ;ρ

(s)
v ,α)

]
+

E
[
ln p(zn,v|znv\n,v; γ)

])
(20)

where the first term is the fitness of the selected embedding
ρ
(s)
v , and the second term is related to the prior. If the prior

is a Dirichlet process, the second term in Equation (20) is

E
[
ln p(zn,v|zn\n,v; γ)

]
=ln

E[θ
(s)

nv\n,v
]

|nv|−1+γ −
1
2

V ar[θ
(s)

nv\n,v
]

E[θ
(−s)
v ]

2 s ≤ S

ln γ
|nv|−1+γ s > S

(21)

where nv denotes the locations of vertex v and |nv| denotes
its size. We then have

E[θ(s)v ] =
∑
n∈nv

q(zn,v = s) (22)

E[θ
(s)
nv\n,v] =

∑
n∈nv\n

q(zn,v = s) (23)

V ar[θ(s)v ] =
∑
n∈nv

q(zn,v = s)(1− q(zn,v = s)) (24)

V ar[θ
(s)
nv\n,v] =

∑
n∈nv\n

q(zn,v = s)(1− q(zn,v = s))

(25)

On the other hand, if the prior is a uniform process, the
second term in Equation (20) has a simpler form:

E
[
ln p(zn,v|γ)

]
=

{
ln 1

|nv|+γ s ≤ S

ln γ
|nv|+γ s > S

(26)

The truncation-free algorithm starts with setting S = 1,
where q(z

(S+1)
v,n ) = 0. When E[θ

(S+1)
v ] > 1, the algorithm

sets S = S + 1, increasing the dimension of vector zv,n,
and sets q(z(S+1)

v,n ) = 0. We can then use the θv to calculate
the expected weighting of the vector ρ(s)

v .

β̂(s)
v = Eq

[
β(s)
v

]
=

Eq

[
θ
(s)
v

]
∑Sv

s=1 Eq

[
θ
(s)
v

] (27)

Algorithm 1: Inference Algorithm

input :Random walksW , negative samples W̃ , initial
learning rate ξ, number of epochs, number of
mini-batches M

output :embedding vectors Φ = {ρ,α}, embedding
weights {β̂}

foreach v ∈ V do
Set Sv = 1, initialize embedding vectors ρ(1)v , αv

end
foreach epoch do

Divide input data into M random partitions.
for m← 1 to M do

Use the subsetW(m) and W̃(m)

foreach v do
foreach n ∈ n(m)

v do
update zn,v with Equation (20)

end
updata θv with Equation (22) - (25)
Calculate β̂v with Equation (27)
if E[θ

(S+1)
v ] > 1 then

Sv = Sv + 1
foreach n ∈ nv do

increase the dimension of zn,v and
set z(S+1)

n,v = 0
end

end
end
update embedding vectors Φ = {ρ,α}
Φ = Φ− ξ ∗ ∂L

∂Φ
ξ is set with Adam[Kingma and Ba, 2015]

end
end

Inference of embedding vectors.

After updating the Eq

[
zn,v

]
, the inference is conducted by

optimizing the objective function L = Lprior + Llikelihood.

The term Lprior = log p(ρ) + log p(α) is derived from the
Gaussian prior N(0, σ2

0) for the embedding vectors:

log p(ρ(s)
v ) =

∥∥∥ρ(s)
v

∥∥∥2
−2σ2

0

, log p(αv) =
∥αv∥2

−2σ2
0

. (28)



Table 1: Datasets for Link Prediction

Data ∥V ∥ ∥E∥ Avg.deg Density

GitHub 37700 289003 15.332 0.00041
Wikipedia 11631 180020 30.955 0.00266
Twitch 7126 35324 9.914 0.00140

Table 2: Datasets for Node Classification

Data ∥V ∥ ∥E∥ ∥K∥ Avg.deg Density

LastFM 7624 27806 18 7.294 0.00095
CiteSeer 3327 4237 6 2.845 0.00043
Yeast 2617 11855 13 9.060 0.00346

For Bernoulli likelihood we have

Llikelihood =
∑
v∈V

(
∑
n∈n+

v

∑
s∈Sv

Eq

[
zn,v = s

]
pn+

∑
n∈n−

v

∑
s∈Sv

Eq

[
zn,v = s

]
(1− pn)) . (29)

For Poisson likelihood we have

Llikelihood =
∑
v∈V

(
∑
n∈n+

v

∑
s∈Sv

Eq

[
zn,v = s

]
(log λn − λn)

−
∑
n∈n−

v

∑
s∈Sv

Eq

[
zn,v = s

]
λn) . (30)

For Gaussian likelihood, we have

Llikelihood =
∑
v∈V

(
∑
n∈n+

v

∑
s∈Sv

Eq

[
zn,v = s

]( (1− µn)
2

−2σ2

)

+
∑
n∈n−

v

∑
s∈Sv

Eq

[
zn,v = s

]( µ2
n

−2σ2

)
) . (31)

We then use gradient descent to update the embedding vec-
tors over iterations.

4.1 STOCHASTIC INFERENCE

We employ stochastic inference. For each epoch, the input
data is randomly partitioned into M mini-batches and only
one mini-batch is used for each iteration. When mini-batch
m is used, the sum over locations nv can be approximated
by a sum over a subsampled set n(m)

v , so the right-hand side
of (22) is approximated by |nv|

|n(m)
v |

∑
n∈n(m)

v
q(zn,v = s) and

similarly in the other sums. The inference procedure is sum-
marized in Algorithm 1. For all the experiments conducted
in this work, we run two epochs with 1000 mini-batches and
initial learning rate ξ = 0.01. For the negative samples, we

generate W̃ with 5 negative samples for each location fol-
lowing the procedure of Mikolov et al. [2013b], Celikkanat
and Malliaros [2020].

5 EXPERIMENTS

For generality, we run experiments with two standard tasks
commonly adopted in graph embedding works, link predic-
tion and node classification, with 3 data sets [Csardi and
Nepusz, 2006, Rossi and Ahmed, 2015, Rozemberczki et al.,
2020] for each task (Tables 1 and 2). The data sets cover
varied domains and aim to represent typical use scenarios
of the proposed method. We denote our method variants by
prior (dp: Dirichlet process, up: uniform process) and Exp-
Fam distribution (Bern, Pois, Norm), e.g. ‘up-emb (Bern)’.
We compare to random walk based methods DeepWalk [Per-
ozzi et al., 2014], node2Vec [Grover and Leskovec, 2016],
struc2vec [Ribeiro et al., 2017], and EFGE [Celikkanat and
Malliaros, 2020], and Splitter [Epasto and Perozzi, 2019].
To evaluate effect of embedding dimensionality, for each
method we run three dimension settings: D = 50, 100,
and 150. The concentration parameter for our model is cho-
sen from γ = {0.01, 0.05, 0.1} for Dirichlet process and
γ = {0.0000001, 0.0000005, 0.000001} for uniform pro-
cess. The input random walks are generated with the R
package igraph [Csardi and Nepusz, 2006] with 80 walks
per node with length L = 10, the random walks are also
fed to EFGE. For other methods, parameters are all set to
default values.

5.1 TASK: LINK PREDICTION

In link prediction, for each graph we first randomly move
50% of the edges into a held-out test set while keeping the
remaining training graph connected. In both training and test
sets, randomly sampled negative edges are added in equal
amount to the positive edges. A classifier is trained based on
the reduced training graph and the training negative edges;
the classifier is used to classify the held-out test-set edges.
As in the previous single-representation learning works in-
cluding Deepwalk, node2vec, struc2vec, and EFGE, logistic
regression is selected as the classifier. In our approach, to
incorporate multiple representations when training the clas-
sifier, we employ logistic regression with sample weights,

embedding ρ
(s)
v is weighted by

ˆ
β
(s)
v . The Splitter used max-

imum dot-product similarity, we transform the similarity
into a class probability using logistic regression.

Note that when logistic regression is trained with sample
weighting, embeddings of all nodes in our model are sepa-
rate samples weighted in the log-likelihood by their occur-
rence probabilities. The regression learns to classify nodes
based on all their embedding vectors, and at test time, a
node is classified by weighted average of class probabili-
ties predicted for each of its embedding vectors. Thus, the



Table 3: Results for Link Prediction

GitHub Wikipedia Twitch
D = 50 D = 100 D = 150 D = 50 D = 100 D = 150 D = 50 D = 100 D = 150

Deepwalk 0.722 0.695 0.694 0.911 0.915 0.922 0.659 0.649 0.672
node2vec 0.731 0.734 0.731 0.913 0.931 0.941 0.681 0.691 0.698
struc2vec 0.849 0.864 0.874 0.820 0.881 0.863 0.830 0.828 0.840
EFGE (Bern) 0.729 0.726 0.736 0.939 0.950 0.962 0.681 0.687 0.707
EFGE (Pois) 0.728 0.771 0.771 0.950 0.955 0.964 0.679 0.708 0.714
EFGE (Norm) 0.862 0.868 0.888 0.977 0.983 0.985 0.791 0.791 0.802
Splitter 0.898 0.600 0.900 0.876 0.880 0.884 0.836 0.823 0.823

dp-emb (Bern) 0.823 0.831 0.830 0.986 0.991 0.991 0.757 0.787 0.782
dp-emb (Pois) 0.737 0.723 0.780 0.979 0.984 0.986 0.656 0.704 0.716
dp-emb (Norm) 0.923 0.932 0.929 0.985 0.985 0.985 0.847 0.845 0.871
up-emb (Bern) 0.813 0.838 0.843 0.989 0.991 0.992 0.750 0.788 0.784
up-emb (Pois) 0.741 0.767 0.780 0.979 0.982 0.986 0.658 0.706 0.714
up-emb (Norm) 0.926 0.932 0.931 0.985 0.985 0.986 0.849 0.846 0.869

multiple embedding vectors are treated separately instead
of being combined in a simplistic weighted average.

Three different datasets are used for the link prediction task.

GitHub: a social network where each node is a GitHub
developer, links between nodes are mutual follow relations.
Wikipedia: a network of English Wikipedia pages. Edges
between pages reflect their mutual links.
Twitch: a user-user interaction network between gamers.
Edge between two nodes represents mutual friendship.

We evaluate the binary link classification by area under the
curve (AUC). Table 3 shows our model performs well on all
datasets; the model with Gaussian likelihood works best.

5.2 TASK: NODE CLASSIFICATION

In this task, each node has a class. The learned embedding
vectors are used as input features to train a classifier to pre-
dict the class of each node. Again, for Deepwalk, node2vec,
struc2vec and EFGE, a logistic regression classifier is used.
For our model, the logistic regression with sample weights
is used. For Splitter, we take the same procedure with each
embedding equally weighted. Three different datasets are
used for the node classification task.

LastFM Asia: a network of people living in Asia using the
streaming site LastFM. Links represent followership rela-
tions. The class of each node is its location.
CiteSeer: a scientific publication network from the CiteSeer
digital library. Each node belongs to 1 of 6 categories.
Yeast:a protein-protein interaction network. The “Class” at-
tribute of each protein is based on its function (e.g. energy).

We evaluate the performance by Micro-averaged F1, re-
ported in Table 4. Our model outperforms other methods.
Rozemberczki et al. [2020] Additionaly, in general, our

model took 2-4 hours to converge (depends on different
tasks and settings) without GPU. The Splitter, which also
learns multiple representations for each node, took 10+
hours on a GPU machine and 100+ hours without GPU.
Our approach achieved better results with less resources.

6 DISCUSSIONS AND CONCLUSIONS

We proposed nonparametric exponential family graph em-
bedding, allowing multiple node representations, drawn both
with a Dirichlet process prior, and also exploring uniform
processes. A tailored algorithm for efficient computation is
provided. The experiments demonstrate the learned multiple
representations can enhance performance in two tasks. We
considered three classical exponential family distributions,
Bernoulli, Poisson, and Gaussian, which yielded promising
results. Our model can be adapted to other distributions such
as Geometric and Chi-square with the proposed nonparamet-
ric framework. In our experiments, the hyperparameter γ of
the nonparametric prior was fixed for the nodes, which al-
ready yielded promising results in the standard tasks; having
differing γ values could be useful for extending the model
to scenarios such as learning multiple representations for
under-represented nodes, or imbalanced classification tasks.
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