
Jami-Petteri Rafael Kimpimäki

APPLYING EVENT SOURCING TO

OCCASIONALLY CONNECTED SYSTEMS

Master of Science Thesis

Faculty on Engineering and Natural Sciences

Examiners: Prof. Hannu Koivisto, Prof. Mikko Salmenperä

September 2022

i

ABSTRACT

Jami-Petteri Rafael Kimpimäki: Applying Event Sourcing to Occasionally Connected Systems
Master of Science Thesis
Tampere University
Master’s Programme in Automation Engineering
September 2022

As an information storing technique, event sourcing provides some useful properties over more
traditional techniques. There is value for both application developers and end-users to be able to
inspect the whole history of the application states.

Event sourcing is usually used in environments with a constant network connection and a cen-
tralized database. This thesis aimed to provide necessary means to allow use of event sourcing
in occasionally connected systems.

This thesis started off the research by assuming an occasionally connected, event sourced
system with a distributed multi-leader database. Problems emerging from this approach were first
identified, and then solved on a conceptual level by using methods from existing literature and
research. At last, a fictional case study was conducted to produce a system showcasing that the
concepts introduced can be applied in practice.

There were a total of three primary problems that were identified. By making event sourcing
data model bi-temporal, retroactive sharing of events proved to be achievable without violating the
immutability and append-only principle of event sourcing. Conflict and concurrency detection and
handling emerging from moving from single leader to multi-leader replication revealed to be a well-
known problem in distributed system research around data replication. Last problem was how the
system can give guarantees that information it provides to external systems will not change. This
proved to be solvable by applying stability properties of distributed systems to the event sourced
data model, which allowed to identify a point in the event log dividing the log into stable and
unstable parts. These results together provide a foundation for building occasionally connected
event sourced systems.

Keywords: Event Sourcing, Distributed Systems, CRDT, Bi-temporal, Occasionally Connected
Systems

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Jami-Petteri Rafael Kimpimäki: Applying Event Sourcing to Occasionally Connected Systems
Diplomityö
Tampereen yliopisto
Automaatiotekniikan DI-ohjelma
Syyskuu 2022

Tiedon tallennuksen Event Sourcing -tekniikka tarjoaa useita hyödyllisiä ominaisuuksia, joihin
perinteisemmät tekniikat eivät kykene. Sekä sovelluskehittäjät, että loppukäyttäjät saavat etua
tekniikan tarjoamasta mahdollisuudesta tarkastella sovelluksen koko tilahistoriaa.

Event Sourcing -tekniikkaa hyödynnetään yleensä ympäristöissä, joissa on vakaat verkkoyh-
teydet, sekä keskitetty tietokantaratkaisu. Tämä diplomityö pyrki tuottamaan tarpeelliset keinot,
jotta Event Sourcing -tekniikan käyttö olisi mahdollista myös ajoittaisen yhteyden järjestelmissä.

Diplomityössä tutkimus aloitettiin olemattamalla Event Sourcing-tekniikkaa hyödyntävä ajoit-
taisen yhteyden järjestelmä, joka käyttää hajautettua, usean johtajan tietokantaa. Ensiksi tästä
lähestymistavasta esiinnousevat ongelmat tunnistettiin, jonka jälkeen ne ratkaistiin konseptuaali-
sella tasolla olemassaolevasta kirjallisuudesta ja tutkimuksesta löydetyin metodein. Lopuksi suo-
ritettiin fiktiivinen tapaustutkimus, jonka lopputuloksena saatiin järjestelmä, joka osoitti ratkaisujen
olevan sovellettavissa käytäntöön.

Yhteensä kolme pääasiallista ongelmaa tunnistettiin. Lisäämällä Event Sourcing -tekniikalla
toteutettuun tietomalliin toinen aika-akseli, retroaktiivinen tapahtumien jakaminen mahdollistui rik-
komatta Event Sourcing -tekniikan tapahtumalokin muuttamattomuusperiaatetta. Yhden johtajan
tietokantajärjestelmästä usean johtajan tietokantajärjestelmään siirtyminen nosti esiin ongelmia
ristiriitaisten ja rinnakkaisten päivitysten tunnistamisen ja käsittelyn suhteen. Nämä ongelmat pal-
jastuivat olevan entuudestaan tunnistettuja ongelmia hajautettujen järjestelmien tutkimuksen alle
kuuluvan datan replikoimisen parissa. Viimeinen ongelma liittyi siihen, miten järjestelmä kykenee
antamaan takuut siitä, ettei ulkopuolisille järjestelmille toimitettuun dataan tule enää päivityksiä.
Tämä osoittautui ratkaistavaksi soveltamalla hajautettujen järjestelmien stabiliteetti ominaisuuk-
sia Event Sourcing -tekniikalla toteutettuun tietomalliin, mikä mahdollisti tapahtumalokin jakami-
sen vakaaseen ja epävakaaseen osioon. Yhdessä nämä tulokset muodostavat perustan Event
Sourcing -tekniikkaa hyödyntävien, ajoittaisten yhteyksien järjestelmien rakentamiselle.

Avainsanat: Event Sourcing, hajautetut järjestelmät, CRDT, bi-temporal, ajoittaisen yhteyden jär-
jestelmät

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.

iii

CONTENTS

1. Introduction . 1

1.1 Motivation . 2

1.2 Goals and Non-goals . 3

2. Background and Definitions . 4

2.1 Occasionally Connected System. 4

2.2 Properties of Operations . 4

2.3 Persistence . 4

2.4 Active Record and CRUD . 5

2.5 Replication and Consistency 5

2.6 Conflict-free Replicated Data Types 6

2.7 Immutability . 6

2.8 Event Sourcing . 7

2.9 Command Query Responsibility Segregation 9

2.10Domain-Driven Design . 9

2.11Modeling Time . 10

2.12Versioning . 11

2.13Stability in Distributed Systems 11

3. Methodologies. 12

3.1 Assumptions and Restrictions 12

3.2 The Conceptual Model . 13

3.3 Proof of Concept . 13

4. The Conceptual Model . 14

4.1 Retroactive Updates . 14

4.1.1 Bi-temporal Event Sourcing 15

4.2 Detecting Concurrent Updates 17

4.2.1 Concurrency Detection Within a Single Event Store System 17

4.2.2 Version Vectors for Detecting Concurrent Modifications 18

4.3 Resolving and Avoiding Conflicts from Concurrent Updates 18

4.3.1 Dynamic Ownership . 19

4.3.2 Conflict-free Replicated Data Types 19

4.3.3 Priority Groups . 19

4.3.4 Human Assisted Resolution 20

4.4 Information Stability for External Systems 20

4.4.1 Stable Timestamp. 20

iv

4.4.2 Stable History . 20

4.4.3 Stable History and Retroactive Updates 21

4.5 Event Processors: Events as Inputs 21

4.5.1 Event Processors: Rules for Persistence 22

4.5.2 Event Processors: Ownership of Event Source 22

4.6 Summary . 22

5. Proof of Concept . 24

5.1 Goals . 24

5.2 Overview . 24

5.3 Event Store . 25

5.3.1 Synchronization and Stability 27

5.3.2 Concurrency Detection 27

5.4 Framework . 28

5.4.1 Node . 29

5.4.2 Aggregates . 30

5.4.3 Projections . 30

5.4.4 Policies . 31

5.5 Case Study . 31

5.5.1 System model . 32

5.5.2 System Evaluation . 36

5.6 Summary . 38

6. Conclusions . 39

6.1 Summary of Results . 39

6.2 Known Problems and Future Research 39

6.2.1 Limitations of Proposed Solutions 40

6.2.2 Known Issues in Event Sourced Systems 40

6.3 Conclusions . 40

References . 41

Appendix A: Implementation of Version Vector 44

Appendix B: Implementation of Version Matrix 49

Appendix C: Implementation of Event 56

Appendix D: Scenario Test for Bi-Temporality 61

Appendix E: Scenario Test for Stability 63

Appendix F: Scenario Test for Conflict Detection 65

v

LYHENTEET JA MERKINNÄT

CmCRDT Commutative Replicated Data Type, Operation-Based CRDT

CQRS Command Query Responsibility Seggregation

CQS Command Query Separation

CRDT Conflict-free Replicated Data Type

CRUD Create Read Update Delete

CvCRDT Convergent Replicated Data Type, State-Based CRDT

DDD Domain-Driven Design

JSON JavaScript Object Notation

LPC Local Procedure Call

OCS Occasionally Connected System

SEC Strong Eventual Consistency

TAU Tampere University

TUNI Tampere Universities

URL Uniform Resource Locator

1

1. INTRODUCTION

Traditionally object-oriented software systems are developed around datastore models

that try to accurately model only the most recent state of the world. When data is updated,

it is updated in place, causing loss of the data the update replaces. Also often enough,

without an explicit audit log, user intention behind the update is lost. Data was updated,

but data itself does not describe why. When data is deleted, data is physically lost, the

result is as the data never existed, and again without an explicit audit log nobody can tell

the reason why data was removed.

In some cases, this kind of data loss is unacceptable, one such example is accounting.

Accountants have been using append-only ledgers thorough the known history, where

transactions once written into a ledger are never removed nor they are ever updated.

If somehow an incorrect transaction is recorded into the ledger, another transaction is

written to compensate the incorrect one, letting the ledger to show that a mistake was

made, and it was corrected.

Significance and value of information for businesses has been rising for decades and

continues to rise. Accurate data is no longer providing only a competitive advantage but is

vital for the success in the markets. Simultaneously cost of storage space is dramatically

lowering, allowing more and more data to be collected and stored. As a result, data

storage techniques that prevents described kind of data loss at the cost of storage space

have been adopted.

One of such techniques is called event sourcing. It is an idea that instead of storing a

single state that is being updated arbitrarily in place, software should store changes to

the state represented as a sequence of semantically meaningful, self-describing events

that carries the business meaning with them.

At the same time environment for software systems have been changing dramatically.

Computers are everywhere, and with the computers, software. Consequently, software

systems are getting more and more distributed. Unfortunately, while networks are also

getting better and their coverage is increasing, fundamental problems behind network-

ing remains. Distributed software systems must be built to tolerate these fundamentals.

There is no guarantee that devices like mobile phones, vehicles or laptops would have

constant network connection available. In despite of that users of these devices more

2

and more often expect the ability to work while being offline. Software must be designed

around the fact that connection to network is available only occasionally.

This master’s thesis is a study on applying event sourcing, an information storing archi-

tecture, to occasionally connected information systems.

1.1 Motivation

Event sourcing provides many businesses as well technical benefits to its adopters. Strong

auditability is not only a luxury, but a must have property in heavily regulated sectors such

as finance and health care. Being able to derive new projections from the event streams

makes software extremely adaptable to future’s business requirements. Ability to reach

every state of an application by replaying changes against system provides developers a

very powerful debugging tool. [9] [16, pp. 457-458] [18] [21, pp. 595-597]

Motivation for this thesis is that event sourced systems are often developed to run in

an environment with a consistent and stable network, with a centralized database. The

architecture for such systems is illustrated in the figure 1.1.

Figure 1.1. A system with a centralized event store. Every application requires a constant
connection to function properly.

However, many software systems working in distributed occasionally connected environ-

ments where autonomy for decision making is needed and centralization of information is

not an option could also benefit from event sourcing. The architecture for such systems

is illustrated in the figure 1.2.

3

Figure 1.2. A system with distributed event stores. Every application can work indepen-
dently regardless of the connection.

While migrating from a system with a single centralized event store to a distributed sys-

tem of multiple event stores relaxes requirements for network conditions, distributing the

system also brings up many challenges, such as keeping the data consistent and conflict-

free. This thesis targets to identify practices and rules which would allow systems running

in above-mentioned environments to gain benefits of event sourcing.

1.2 Goals and Non-goals

Research done in this thesis is applied research. First goal is to identify problems and lim-

itations emerging from distributed event log and decision making, and to provide solutions

or workarounds for them if such solutions exist. Expectation is that most of the problems

are already well-known in research. This part of the thesis will be performed by use of

literature and research around related topics. Second goal is to build a simple proof-of-

concept, which works as a simple reference application that represented solutions can be

implemented in practice.

Thus, research question is: How and with what limitations and alterations can event

sourcing be used as a replicated persistence mechanism in a distributed, occasionally

connected system?

This thesis does not consider aspects of solutions and problems regarding to computa-

tional complexity, networking, or performance. Problems related to development of the

software, such as versioning and deprecation strategies are also disregarded. Proof-of-

concept system does not aim to provide production ready solutions.

4

2. BACKGROUND AND DEFINITIONS

This section provides theoretical background and definitions of terms relevant to this the-

sis.

2.1 Occasionally Connected System

Occasionally connected system (OCS) is a term used to describe a distributed system

where there is an occasional connection between the nodes, and nodes can continue

working offline with local data. A node within OCS can disconnect from the network

and continue working offline and is able to synchronize with the rest of the system upon

connection. [18] [4]

2.2 Properties of Operations

To reason about event sourcing and related techniques, some mathematical properties of

operations must be defined.

Commutativity A binary operation ∗ is deemed as commutative, if a ∗ b = b ∗ a
holds. [28]

Associativity A binary operation ∗ is deemed as associative, if (a ∗ b) ∗ c =

a ∗ (b ∗ c) holds. [27]

Idempotence A binary operation ∗ is deemed as idempotent, if a ∗ a = a holds.

[29]

2.3 Persistence

In context of this thesis, persistence of an event means the act of appending that event

to the event log in a durable way. After event is persisted into an event log, it is part of

the application state. During persistence of an event the event store may add additional

metadata to the persisted event, such as timestamps.

5

2.4 Active Record and CRUD

Active record is a design pattern, where objects represented in the software code contains

both logic for acting on the data and loading and saving the data from and to the database.

In addition to the pattern itself, the objects following this design are also called active

records. Using active record pattern classes are modeled around the database structure,

and each field of the class should be represented as a column in an SQL-database. [13,

p. 160]

Models such as active record are often called CRUD-based models, where the CRUD is

an acronym from Create, Read, Update and Delete -operations used to model interactions

with the data.

2.5 Replication and Consistency

In distributed systems consistency refers to the problem keeping replicas of the same

data consistent between different nodes of the system. Because replicas are copies of

each other, updates to one replica should be reflected to other replicas as well. [30, p.

357]

Need for replication may raise from many different reasons. First primary reason is that

replicating data can be used to improve system reliability. Second primary reason is

performance, as data access may be a performance bottleneck for large systems. [30,

pp. 357-359]

The case of occasionally connected systems falls into the category of second reason.

Within occasionally connected systems there just isn’t a centralized location where data

could be stored so it could be accessed by every node within a reasonable time.

There are many ways to keep replicas consistent called consistency models, and each

model have different limitations they impose to the system. Consistency models relevant

to this research are introduced here:

Tight consistency or synchronous replication is a model, where every replicate

is updated in a single, atomic operation. This is often not a feasible model in sys-

tems distributed over large networks, where quick response times are expected.

[30, pp. 359-360]

Causal consistency states that potentially causally related writes must be seen

in the same order by all processes. Write B is said to be potentially causally de-

pendent on write A, if write B may have had an effect to outcome of write A. Events

are said to be potentially causally related if one is potentially causally dependent on

the other. Events that are not potentially causally related are said to be concurrent.

[16, pp. 186-187] [30, pp. 370-372]

6

Eventual consistency is a weak-consistency model, with a guarantee that in

absence of conflicting writes replicas will converge towards an identical state, as

long as every update is propagated to all replicas. It is often seen used within large-

scale distributed systems, as replication delay does not affect write operations. [30,

pp. 374-376]

Strong eventual consistency (SEC) is a special case of eventual consistency.

SEC guarantees that replicates will converge towards an identical state without any

conflicts. However, SEC requires that underlying datatype of the replica satisfies

set of conditions. Datatype that satisfies these conditions is called Conflict-free

Replicated Data Type (see 2.6). [26]

2.6 Conflict-free Replicated Data Types

Different applications require different kind of consistency levels. Standard strong consis-

tency in centralized applications may be sacrificed for better performance and scalability

provided by eventual consistency in distributed applications. By accepting lower consis-

tency, risk for conflicts rise, and with them the need for conflict resolution mechanisms

such as rollbacks. [26]

Conflict-free replicated data types (CRDT) are data types, that provides strong eventual

consistency (see 2.5) when they satisfy set of conditions, meaning that convergence of

replicas of an CRDT is guaranteed. There are two basic types of CRDTs [26]:

1. State-based CRDTs.

2. Operation-based CRDTs.

Above-mentioned can and has been used to implement non-trivial types of CRDTs such

as JSON CRDTs. [17]

2.7 Immutability

Immutability is a principle that states after some piece of data is written, it is never

changed anymore. Immutable object is an object, which state does not change after it

has been initialized. [24, pp. 233-235]

There exists many levels and kinds of immutability. On level of a programming language,

immutability may be shallow and deep, and abstract or concrete. In deep immutability

every object an immutable object references must be itself deeply immutable, whereas

shallow immutability forbids reassignments only to fields of the object itself but does not

prevent editing states of referenced objects. Concrete immutability mandates that an

objects in-memory representation must stay the same, whereas abstract immutability only

forbids changes that would cause the abstraction to change. [24, pp. 233-235]

7

In context of databases immutability generally implies to existence of an append-only

log. Write-operations do not update objects (such as rows in SQL-database) in place,

but instead write-operations are appended into a sequential log, and current state of the

object is then derived from the log. Write-operations and history of the log are immutable.

[16, pp. 70-71, 458–460]

Immutability provides many benefits from software engineering standpoint. As the im-

mutability of an object guarantees that object does not change, by extension any replicas

of said object are guaranteed not to change as well, and after creation of the replica no

change detection is needed, making replication of immutable data trivial. Also, any deter-

ministically derived information from immutable data will be immutable as well. [3, p. 766]

[24, pp. 233-235]

As in the heart of event sourcing is an immutable, append-only log, discussion about its

benefits is left for the section 2.8.

2.8 Event Sourcing

Event sourcing is a technique for storing application state as a sequence of domain

events. Events are defined within the application, and views providing information about

application state are derived from the events themselves. [16, pp. 457-461] [21, pp.

595-597] [9]

Current system state (state(now)) in event sourcing can be defined in a pseudo math-

ematical format as an integral over a stream of events over time (stream(t)) as seen in

the formula 2.1. [16, p. 460]

state(now) =

∫︂ now

t=0

stream(t) dt (2.1)

Events are considered to be immutable, and they are stored into a database in an append-

only manner [16, p. 461]. By default, events in event sourcing are non-commutative and

non-idempotent [22, p. 40].

There are many concepts that are central for the event sourcing. Below are definitions

used in this thesis.

Event An immutable fact about something that has happened in the past. Events

can be categorized to domain events, integration events and external events. None

of these are exclusive to event sourcing, but domain events are in the center of it

and as a result in context of event sourcing domain events are usually referenced

just as events. Details related to different types of events are described in 2.9 and

2.10.

8

Event log An ordered sequency of domain events describing history of changes

within the application state.

Event store A database storing the event log. 1

Event stream Logical stream of events. A common solution is to have a single

event stream per aggregate instance.

Actor A term originating from actor model, which is a mathematical model of

concurrent computation. Actor is a computational primitive, that may have a state,

and interacts with other actors using only messages. [16, pp. 138-139]

Aggregate Term originating from domain driven design. Write model of an event

sourced application. Contains domain logic to be executed based on the input and

generates events as output. More detailed description given in 2.10. Aggregate

can be seen as a specific type of an actor.

Projection Read-only model generated from a stream of events. Queries are

executed against projections. [21, pp. 599-600] Projection can be seen as a specific

type of an actor.

Event processor A stateless object, that transforms incoming external events

into internal representation. Event processor can be seen as a specific type of an

actor.

Rehydration Process of applying historical events to an aggregate so it can

achieve desired state. [21, pp. 605-608]

By designing events semantically meaningful, and by treating events and event log as

immutable many benefits are gained over CRUD-based models such as active record

described in 2.4. Event log not only tells what the current state is, but also how the

current state was achieved. Every historical state becomes reproduceable.

From business perspective this can be useful, as new insights can be derived from the

data retroactively even if the need was not identified during development. Another busi-

ness benefit is software’s ability to answer to temporal queries. [21, pp. 595-597].

Audit log As an event sourced system derives system state from a sequence of

immutable events, the event log itself works as a strong audit log. [16, p. 461] [18]

Time travel Application state can be inspected in any point of time. From techni-

cal perspective this can be used as a powerful debugging tool, and from business

perspective it may provide retrospective information about historical decision mak-

ing as it enables temporal queries. [16, p. 461] [18]

Replay and reshape Existing events can be used to derive new insights from

the data. As the read model is just a view or a projection for the application state,

1Not to be confused with Eventstore, which is a commercial implementation of an event store. [18]

9

and all changes to the state are recorded into events, new views can be generated

retroactively. [16, pp. 461-462] [18]

Alternative realities Event sourced data can be used in "what if"-analysis for

simulating outcomes of future scenarios. [16, pp. 461-462] [18]

2.9 Command Query Responsibility Segregation

Command query responsibility segregation (CQRS) is an extension of command query

separation (CQS) principle. CQS states that there are two types of functions, queries, and

commands. Queries are used to get information about the object and should be free of

any side-effects, whereas commands are used to modify object’s state. [20, pp. 748-749]

CQRS extends CQS by stating that read and write operations should be handled by differ-

ent models. Reasoning behind this is that a single model would usually be a compromise

between different and asymmetrical needs for write and read operations. By separating

models with different set of responsibilities, both can be optimized more precisely without

need for compromise. [21, pp. 669-670] [16, p. 462]

2.10 Domain-Driven Design

The name for domain-driven design (DDD) comes from a book called Domain-Driven

Design: Tackling Complexity in the Heart of Software written by Eric Evans in 2003 [7]. It

is an approach that emphasizes building a rich domain model with a deep understanding

of business rules and processes of a complex domain. DDD guides its practitioners to

build ubiquitous language which can be used to describe things in the model, but also

to discuss with domain experts. It also describes many patterns for developers to take

advantage of, classifies different kind of objects to categories, and offers tools how to split

large domains into more manageable pieces called bounded contexts. [8] [21, pp. 3-4]

In DDD aggregate is a term used to describe a group of related stateful domain entities,

that can be treated as a single unit. Generally, there is a single domain object defined

within an aggregate which is called an aggregate root and performs as a single point of

access to the aggregate. [8]

An aggregate’s internal state is always guaranteed to be consistent, and every operation

executed against an aggregate transactionally either succeeds completely or no changes

are persisted. As aggregates are also responsible for protecting their internal invariants

and business rules, aggregates provide a consistency boundary. Inside this boundary

changes are made using strong consistency, but between aggregates changes are usu-

ally done with eventual consistency (see 2.5). [21, pp. 434-442]

Aggregates are often a central piece in event sourced applications. In event sourcing

10

aggregate can be seen as a function that takes in event history and a command as inputs

and produces new events. [21, pp. 600-602]

aggregate([e0, e1, ..., et−1], command) => [et, ..., et+n] (2.2)

From event history aggregate can rehydrate its internal state and projections it needs to

react to given command. [21, pp. 600-602]

DDD definition for the policy is similar to the strategy-pattern, which enables selection of

an implementation of an algorithm during runtime. Policy is a pattern that is used to model

the process of making a domain decision automatically when something has happened

that fulfills predefined conditions. In other words, a policy listens for events, and emits

commands as result. [7]

2.11 Modeling Time

In distributed system three types of clocks exists:

Physical clock or a wall clock is a clock representing time of the day.

Logical clock is a mechanism for capturing causalities between events in dis-

tributed systems.

Hybrid clock is a hybrid of the two above, used in special kind of distributed

systems.

Problem with physical clocks is that they are not precise. Even if different physical clocks

synchronized themselves to the same time, as soon as synchronization is finished, clocks

will start to drift. If order of events generated by different nodes within a distributed system

is defined by the physical timestamp, difference between clocks of nodes is included into

event timestamps, and this may break causal ordering. To ensure causal ordering is

preserved within timestamps, logical clocks such as vector clock were invented. [16, pp.

291-293]

Vector clock is a logical clock, where each node has its own named counted within a

vector. Rules for vector clock are [3, pp. 608-609]:

1. Each counter starts from zero.

2. Whenever internal event happens, process increases it’s counter by one.

3. Whenever message is sent by process, process first increases it’s counter by one

and then version clock is attached to the message.

4. Whenever message is received by process, it increases it’s counter by one, exe-

cutes cellwise max-operation between it’s local version clock and message’s ver-

11

sion clock, and saves this result as new local version clock value.

Rules for comparing vector clocks are [3, pp. 609-610] [16, p. 191] [12]:

A is equal with B if both have same value for each of the counters.

A is greater than B if at least one of A’s counters has greater and every counter

has equal or greater value.

A is concurrent with B if both vectors have some value greater than in the other.

Matrix clocks are a generalization of the notion for vector clocks allowing local node to

know what other nodes in the system knows. [6] [3, p. 610] Matrix clock can be repre-

sented as a matrix where each column is a version clock timestamp of a single node.

2.12 Versioning

Purpose of versioning is to track changes made to different replicas of the same data.

With a proper versioning mechanism in addition of detecting which of the replicas is ahead

and which is behind, one can detect concurrent updates.

Version vectors and version matrix are very similar to vector clocks and matrix clocks (see

2.11). Difference comes from the different purpose of use, and slightly simpler rules of

update. Whereas vector clocks are a mechanism for providing a partial order for events

within a distributed system, version vectors and matrices are used to track updates on

replicated data. Rules for comparison are same as in vector clocks, but rules for updates

differs a bit [12]:

1. Each replica has its own counter within the vector, each counter starts from zero.

2. When an update happens, replica increases it’s counter by one.

3. When two replicas are synchronized, resulting version vector is a cellwise maximum

of the two synchronized vectors. In case version vectors are concurrent, conflict

resolution may be needed (see 4.3).

Version matrix is similarly a generalization of version vectors, where as matrix clock is

generalization of vector clock.

2.13 Stability in Distributed Systems

A function which maps the set of global state of nodes to a Boolean value is called a

global state predicate. A property of the system is defined to be stable, if once the system

enters to a state where predicate associated with property returns true, it will return true

in all future states. [3, pp. 614-615]

12

3. METHODOLOGIES

Research problem in this thesis is both a computer science problem and a software engi-

neering problem, and thus approach used in this thesis is both theoretical and practical.

System under research shares characteristics across many known types of system, and

as such shares many known properties and problems of these types of systems.

First goal was to first identify these problems by their properties and then to review what

literature exists around them. Second goal was to find solutions for these problems from

the literature. At last final goal was to build a proof-of-concept system to showcase that

these concepts can be implemented.

3.1 Assumptions and Restrictions

To define goals, solution space must be constrained first. There are following assumptions

made about the system under research:

1. System consists of nodes that requires autonomy in decision making and can op-

erate offline.

2. Nodes are distributed and databases within nodes can be seen as a distributed

database with a multi-leader replication.

3. Connection between nodes is occasional.

4. System nodes are running the same application code.

5. Information is learned in real-time, but nodes may exchange it retroactively.

6. Amount and identities of the system nodes is known and fixed.

Proposed solutions have to adhere following restrictions:

1. System nodes must use event sourcing or it’s variant to store their state.

2. System nodes must be able to share information between each other.

3. System nodes must be able to build a common view of the world’s state.

4. System nodes must not lose information when sharing information between nodes.

This includes system’s ability to tell what was known when each decision was made.

13

3.2 The Conceptual Model

In the chapter 4 problems were analyzed, and solutions were provided on a conceptual

level. Literature was used as a main source for information. However, this was not a

pure literature review, and reflection is present in the chapter. This was a necessary ap-

proach as the subject is one that presents combination of multiple problems known under

distributed system research, and literature alone couldn’t provide ready made answers.

3.3 Proof of Concept

During the research a system was built for testing and proving the solutions. Resulted

system was divided into two parts. First part was a framework that provides necessary

tools to work with the data in a generic manner. Second part was an application using

said library to implement functionalities for an imaginary domain. Both the framework and

the application were implemented using C#-programming language and Microsoft Visual

Studio.

14

4. THE CONCEPTUAL MODEL

There is no silver bullet solving all the problems within distributed systems, and occasion-

ally connected systems as a subset of distributed system are not an exception. During

this research no generic solutions that fits all systems were found, but many problems

identified in this thesis proved to be solvable.

This chapter goes through problems and possible solutions for them in a conceptual level.

It forms a theoretical toolbox for developers working with systems similar to one described.

These solutions are then implemented in practice in the chapter 5.

4.1 Retroactive Updates

First problem to be solved was to give nodes ability to receive new data retroactively, with-

out compromising auditability which is provided by an append-only log. Different nodes

need to be able to share their understanding of the history between each other. Informa-

tion that is old for one node may be new for another, and that must be accounted in the

modeling.

Simple way to join two event logs of different nodes together would be doing a sort-merge

join between them, especially as both event logs are already sorted by definition. [19] [9]

There are two reasons why this wouldn’t work as one could hope:

1. Many event sourcing benefits are gained from the assumption that event log is

append-only, and thus editing event logs is considered to be a bad practice and

even forbidden. [5] [16, p. 457]

2. Knowledge is encoded into the events, but also into the ordering of the sequence

which the events were applied, which is information that doing a simple sort-merge

join would lose. [9]

In order to retain information stored into the ordering of the events and thus full auditability,

a different solution is needed.

15

4.1.1 Bi-temporal Event Sourcing

As nodes learn retroactively about the past events from each other, normal uni-temporal

event sourcing is inadequate to retain all necessary information such as causalities. So-

lution to make editing history possible with append-only event log is making the event log

bi-temporal.

Making event log bi-temporal means that each event has two timestamps instead of one:

1. Actual time, valid time or "occurred at".

2. Record time, transaction time or "recorded at".

Valid time of an event tells when the event occurred whereas record time tells when the

event was recorded, or in other words when did a node learn about each event. [11] [31]

As there are multiple nodes each recording its knowledge about history, each will have a

unique record time for each of the events. With this solution auditability of the event log

and context of decisions made by each node are not lost, as each node is able to know

what they knew at the moment of each decision, even when the history is supplemented

with new data retroactively.

Figure 4.1. Bi-temporal event logs of two nodes. Location of events shows record time,
and arrows point to actual time.

16

Visualization of this can be seen in the figure 4.1. At point of time t = 8 both nodes

1 and 2 has the full knowledge of the history. However, if either one of them made a

decision at t = 6, the decision would be made based only on partial knowledge. With a

uni-temporal model the context of decision would be lost during synchronization at t = 8,

but bi-temporal model is able to preserve this information.

Reading Bi-temporal Event Log

Uni-temporal event log can be queried by simply by reading and applying events sorted

by occuration time toccurred starting from the oldest. In order to query what the state was

at specific time system simply needs to stop reading events when toccurred > tprojection

becomes true. [21, pp. 595-597]

In bi-temporal model there is another aspect to consider. Instead of only asking what

system state was at specific projection time tprojection, query must also provide the time

for the viewpoint tviewpoint. This means that when in a uni-temporal system query can be

described as following:

What does system think state was at tprojection?

In a bi-temporal system query also includes the viewpoint time and can be described as

following:

At tviewpoint what did system think state was at tprojection?

This type of bi-temporal query allows three different projections. The first two can be

thought as special cases of the third one.

1. "As at": System state at given time as seen at given time (tprojection = tviewpoint).

2. "As of": System state at given time as seen at current time (tviewpoint = tnow).

3. "As of until": System state at given time as seen at other specific time. [31] [23]

To make such queries algorithm for reading uni-temporal event log must be edited only

slightly. By adding condition to skip events for which is true trecorded > tviewpoint to the

algorithm.

Retroactive Events

Software rarely can count on that there wouldn’t be any erroneous inputs. Problem is

that inputs with errors usually means that there will be errors in the outputs too. When

there are problems in the output, tools to fix those errors retroactively are needed. For

event sourcing that tool is retroactive events. There are three types of errors occurring in

events:

17

1. Out-of-order event that was processed late. When bi-temporal model is used, this

means an event with incorrect toccurred.

2. Rejected event that never should have been processed.

3. Incorrect event that contained incorrect data. [10]

As editing event log is discouraged, to correct these events system must support append-

ing retroactive events. For uni-temporal system this would violate append-only mechanic,

but bi-temporal system can handle these without violations, as history can be edited with

appended events. As events are processed in order defined by toccurred, incorrect events

can be corrected by using retroactive by injecting suitable events:

1. Rejected event: Inject an event that makes the system ignore the rejected event at

process time.

2. Incorrect event: Inject a correction event with corrected information and reject the

incorrect event.

3. Out-of-order event: Inject an event that makes the system process event at given

time and ignore the original process time. [10]

Use of retroactive events needs careful consideration in regard to causalities. If incorrect

events already have affected to more recent events making them causally dependent,

editing incorrect ones retroactively could cause problems that needs to be attended.

4.2 Detecting Concurrent Updates

If aggregates can be modified by multiple nodes or users, concurrent modifications will

appear. To detect concurrent modifications, and possible causal dependencies between

events, a strategy is needed.

4.2.1 Concurrency Detection Within a Single Event Store System

Within a system with a single event store possible causality tracking and concurrency

detection with optimistic concurrency is quite trivial. Because there is a centralized en-

tity, concurrency can be detected during operation time. This can be implemented in a

following way:

1. Each aggregate should have a version number.

2. When aggregate generates an event, it increments version number by one, and this

new expected version is included to the event.

3. When event is sent to event store for persisting, event store compares event’s ver-

sion number to the latest stored one. If latest version is equal or greater than the

18

expected version in the event being persisted, event store knows that events were

concurrent and can return an error response to the client.

4. Client/aggregate can then handle the conflict as it sees fit. It may reload aggregate

from the memory and reapply the command, or it may return an error to the user.

As concurrent events are not accepted by event store, event streams are totally ordered

and free of conflicts. [21, pp. 618-620]

4.2.2 Version Vectors for Detecting Concurrent Modifications

Within an OCS concurrent updates cannot be detected during persisting. Instead, all up-

dates must be persisted into event log, and event log should record necessary metadata

which can be then used for concurrency detection during synchronization. To detect con-

current updates between replicas of an aggregate within an OCS, version vectors can be

used.

Version vector is an object containing a named counter for each node that can update the

replica of the aggregate. Every time a node updates it’s local replica of an aggregate, it

increments its counter inside the version vector. [16, p. 191] [12]

Comparison between version vectors is done by comparing counters within the vectors.

Absence of a counter can be thought to be equal to zero. Rules of comparison and

updating are described in 2.11 and 2.12.

In an event sourced system every update applied to an aggregate generates events, so

version vectors can be included to events themselves. During a synchronization of two

streams between two nodes, following actions should be taken:

1. If both streams have equal versions, no synchronization is needed.

2. If one stream has greater version than other, changes should be replicated to the

one with smaller version.

3. If streams were updated concurrently, conflict resolution may be needed. See 4.3

for details.

After synchronization current version is the one of the latest updates, or in case of con-

current updates cell-wise max-operation between latest concurrent vectors. With this

approach consumer of an event stream can detect whether the events happened concur-

rently or not. [16, p. 191] [12]

4.3 Resolving and Avoiding Conflicts from Concurrent Updates

Previous chapter represented solutions for conflict detection. However, system’s ability to

detect conflicts is not enough, and application must be able to avoid or handle them as

19

well. This chapter introduces a few ways to avoid or to resolve conflicts.

4.3.1 Dynamic Ownership

One way to avoid conflicting updates between aggregates is to ensure that updates are

never applied concurrently. If system can ensure that all updates to a single aggregate

are generated by the same node, this is achieved. [16, p. 172]

This can be done using a mechanism called dynamic ownership or mutual exclusion

token, which is a mutual exclusion mechanism implemented by using token passing. [3,

pp. 634-635] [2]

Applying these principles to system under research, implementing dynamic ownership

should comply with following rules:

1. Ownership initially belongs to the node that created the aggregate.

2. Ownership belongs only to a single node at time.

3. Ownership can be transferred to another node only during synchronization. This

effectively happens if transferring of ownership is modeled as an event.

4. Only node with ownership is allowed to modify aggregate’s state.

5. Nodes without ownership are allowed only to read aggregate’s state.

With these rules conflicting updates are avoided.

4.3.2 Conflict-free Replicated Data Types

By designing aggregates as CRDTs, states of replicas will always converge without con-

flicts. [26]

Aggregates designed using CQRS and event sourcing area already good candidates for

commutative replicated data types (CmRDTs) / operation-based CRDTs. This is because

two-phase operation of CmCRDTs matches to command-event -separation, where com-

mand does not mutate the state but prepares an event based on the invocation arguments

(command) and current state of the aggregate. [25]

4.3.3 Priority Groups

Priority group is a method for automatic conflict resolution which can be used when

amount possible values are limited, and each can be given a unique priority. It can be

useful when target property models a workflow. [1]

20

4.3.4 Human Assisted Resolution

Sometimes conflict avoidance or automatic conflict resolution is just not possible, and

human interaction is required. To ensure that conflicts are handled deterministically, only

one of the nodes can generate the resolution event. To enforce this there must be rules

which node and when conflicts can be resolved. Some possibilities for this are:

1. Conflicts are always resolved during synchronization, or synchronization is rejected.

2. Conflict resolver is decided during synchronization. Appending to stream is forbid-

den until conflict is resolved. Node without resolver status will have to synchronize

with resolver node again after conflict is resolved.

3. Conflict resolver is decided based on static rule. Otherwise, rules are the same as

above.

4.4 Information Stability for External Systems

Second problem was that not all systems can deal with volatile information. For example,

software systems may be expected to be able to generate weekly/monthly/annual reports

providing a snapshot about the current state. If the state is volatile, data derived from it

will be volatile too. For a system to be able to answer queries with stable responses, the

system must be able to identify when its state is stable.

4.4.1 Stable Timestamp

Timestamp is defined to be stable if every node has seen updates predating said times-

tamp. With vector clocks described in 2.11 stable timestamp can be defined as a cellwise

minimum over current timestamp of each node. With matrix clocks described in 2.11 sta-

ble timestamp from perspective of a single node can be defined as a row wise minimum

over current timestamp. [3]

In this thesis no vector clocks or matrix clocks are used. However same rules apply to

version vectors and version matrices used here.

4.4.2 Stable History

History (event log) can be divided into stable and unstable parts. Stable part is the part

preceding stable timestamp (including event with stable timestamp).

Temporal queries can take advantage of this property. As long as query targets to only

the stable part of the history, result is guaranteed to be stable as well.

21

Table 4.1. Illustration of a stable timestamp. Synchronization is defined as an atomic
operation

T Event A B Stable

0 - [0, 0] [0, 0] [0, 0]

1 E1 at A [1, 0] [0, 0] [0, 0]

2 E2 at B [1, 0] [0, 1] [0, 0]

3 E3 at B [1, 0] [0, 2] [0, 0]

4 Sync A <-> B [1, 2] [1, 2] [1, 2]

In table 4.1 there would be two stable timestamps: [0, 0] until sync, and [1, 2] after.

4.4.3 Stable History and Retroactive Updates

For history to gain stability, retroactive updates (see 4.1.1) cannot be allowed to be ap-

pended further than the unsynchronized part of the event log. It is also good to note that

unsynchronized part is not the same as unstable part mentioned in the 4.4.2. If nodes

were allowed to add any new information that predates any synchronization operation,

stable timestamp could not anymore be calculated.

4.5 Event Processors: Events as Inputs

As aggregates are constructs that take in commands to update state while protecting

invariants (see 2.10), events as inputs must be treated differently. Source of external

events may be a physical entity the system is monitoring, or it may be another software

application. In both cases from system’s perspective external event is just a notification

received from outside about something that has happened.

Even with assumption that every external event will eventually be received, important

thing to consider is that there may not be guarantee that external events are delivered in

causal order. Thus, there are times when the system is operating with partial information

only, and the system can not guarantee that invariants are valid. Problem is same as the

one described in 4.4, with the exception that with external events requirements for stability

comes from outside.

In search of solutions a few assumptions were made:

1. All external events are eventually received.

2. External events can be treated as unique. In case of an external source, the source

should provide a unique identifier for each event. In case of a physical entity

22

being monitored, duplicate observations made simultaneously by different nodes

should produce (nearly) identical events which can be differentiated by tuple of

(timestamp, payload), where payload includes necessary information to identify

the physical entity.

3. External events are delivered in causal order to the system, even if events are

received by different node.

4. External events contain necessary information for determining causal order, or it

can be determined during receiving.

4.5.1 Event Processors: Rules for Persistence

To maintain full world view, every incoming event must be persisted (see 2.3). System

most likely needs to add data to incoming events before persisting them, but there are

some limitations what kind of data can be included. Because causal delivery order is not

guaranteed, until event history achieves stability, any computed state can’t be guaranteed

to be causally consistent. This limits use of events, as users will have to deal with potential

changes until stability is reached. This also means that transformation of incoming events

to persisted events cannot rely on a computed, potentially unstable state, before stable

timestamp within the system reaches the event, as persisted events should be treated

immutable.

4.5.2 Event Processors: Ownership of Event Source

In the special case when system can guarantee that only one specific node is the listener

for a stream of events, node has guarantees about ordering of events and limitations from

previous section do not apply. This is because in this case events are always observed in

a causal order.

4.6 Summary

Results found from the literature show that most of the problems identified in this thesis

do have known solutions.

First problem identified here was maintaining auditability provided by event sourcing when

receiving data retroactively from other nodes. Solution for this problem turned out to be

making event log bi-temporal.

Second problem was related to detecting and resolving concurrent and conflicting up-

dates. This problem could be generalized as multileader replication, which is a well-

known research problem within context of distributed systems and databases, and thus

there were plenty of literature around the topic. Version vectors described in the litera-

23

ture provided a good solution for detecting concurrency and thus possible conflicts. For

automatic conflict resolution no universal solution was found, but JSON-CRDTs were the

closest one.

Third problem emerged from solving the first problem with bi-temporality: if data can

change retroactively, how can system provide robust information for external systems to

consume? Answer was provided from distributed system research, where matrix clocks

are used to keep track of other nodes vector clocks. Same technique could be used with

version vectors, providing nodes an ability to know what other nodes at least know.

Fourth part was focused on events and event flow. They were identified to be a spe-

cial case, but after all identified problems related to them could be solved with solutions

above.

24

5. PROOF OF CONCEPT

Proof of concept product created as a part of this thesis contains three main parts. First

part is an implementation for an event store. To keep things simple, event store uses

only in-memory persistence, and communication happens in-process using local proce-

dure calls (LPC). However, abstraction of the event store client could also be used also

with remote protocols. Second part is a framework with some generic components that

provides application developers necessary building blocks. As a third part an application

using said framework and event store was implemented. Source code for the application

is provided in a Github-repository [14].

5.1 Goals

As the topic of research in this thesis was quite wide and goal was to collect known

methods from literature, not every solution described in theoretical level in this thesis

were included in the proof-of-concept work. Goals for the implementation were following:

1. System should retain auditability and not lose information during synchronization.

2. System should allow temporal queries.

3. System should be able to detect conflicts on stream level.

4. System should be able to detect when and what information is stable.

Library provides an implementation for dynamic ownership for conflict avoidance, but

generic CRDT-implementation (such as Automerge1) or interactive conflict resolution was

not provided. CRDTs are already formally proven to avoid conflicts when correctly imple-

mented and re-implementing well-known CRDTs here does not increase research value

of this thesis.

5.2 Overview

Overview of system architecture of a system with three nodes is presented in figure 5.1.

As seen from the picture, each node is running its own instances of an application and an

event store.
1Martin Kleppman’s library implementation for generic JSON-CRDTs. [15]

25

Figure 5.1. Overview of system architecture with three nodes. Communication channels
between nodes 1 and 3 are not drawn to keep the picture clear.

Application defines projections and aggregates (as they are domain specific constructs),

but framework provides frame for them. Application itself can interact with aggregates and

projections only through framework, which handles rehydration and other generic issues

(see 5.4).

5.3 Event Store

In addition to storing the events, event store implementation is responsible for tracking

versions of nodes and streams. As discussed in 4.4 and 4.3, these features are needed

to detect conflicts and stable state of the system.

Event store organizes events into streams, and every event appended to the event store

needs to specify to which stream (other than main stream) it belongs to. Stream structure

is shown in the figure 5.2. Each stream indexes events in the order they are recorded by

the event store. Main stream indexes all the events, and other streams only the events

appended to that particular stream.

26

Figure 5.2. Overview of logical streams in event store. Streams are identified by
StreamId.

Primary reason behind dividing events into streams is to isolate events with potential

causal dependencies from each other. Each stream has its own version vector, which is

updated every time event is appended into the stream. Having this version vector allows

event store to detect differences and concurrent writes between replicated streams during

synchronization. Secondary reason for separation is to allow performant rehydration for

stateful entities such as aggregates. If there were only a single stream (main stream),

every rehydration would require reading all of the events in the event store, but with stream

per aggregate approach this can be avoided.

Because the main stream is also a stream, it also has a version vector. This version

vector is updated every time the event store instance receives an event and is used for

synchronization and stability.

These versions are also stored within the events themselves. There are total of three

different version vectors and two physical clock timestamps that the event store stores

within events. While physical timestamps are not necessary from system perspective,

they are much more convenient to use from business perspective that version vectors.

OccurredAtNodeVersion which is node version which existed when the event

was raised. This is used for stability and for concurrency detection between nodes.

RecordedAtNodeVersion which is node version which existed when the event

was recorded by a particular node. This is used for providing information about in

what order did node learn about events. RecordedAtNodeVersion is unique for

each node.

StreamVersion which is stream version of the stream when the said event was

27

raised. This is used for concurrency detection. This is stream level equivalent for

OccurredAtNodeVersion. Because RecordedAtNodeVersion already provides

total order on node level, it also provides total order on stream level, and no stream

level equivalent is needed.

OccurredAt is physical time when event originally occurred. This is used to allow

temporal queries against projections.

RecordedAt is physical time when event was recorded by a particular node. This

is used together with OccurredAt to allow bi-temporal queries against projections.

RecordedAt is unique for each node.

5.3.1 Synchronization and Stability

Synchronization is initiated by nodes, but the protocol itself is included within the event

store. In the implementation node sends a synchronization command to its own event

store (referenced as local now on) and includes URL for the target event store (referenced

as remote now on). Local event store then handles the protocol, which consists of

following steps:

1. Get current node versions (main stream versions) of both local and remote.

2. Read all events from local that have OccurredAtNodeVersion that is newer or

concurrent to node version of remote.

3. Read all events from remote that have OccurredAtNodeVersion that is newer or

concurrent to node version of local.

4. Store all events read from remote to local.

5. Send all events read from local to remote.

6. Read version matrices from both local and remote.

7. Send version matrix read from local to remote, and version matrix read from

remote to local.

After synchronization both event stores have same set of events, and identical system

version matrices. As stable timestamp is derived from the system version matrix, stable

timestamp is also updated. This mechanism guarantees that all events that are older than

current stable timestamp are known by every node (see 4.4.2).

5.3.2 Concurrency Detection

Event store allows detection of concurrent updates within a stream by using version vec-

tors (StreamVersion). Figure 5.3 shows how concurrency is detected within a single

stream with two replicas being updated concurrently. Arrows in the figure represents

28

potential causality where potential cause points to an effect.

Figure 5.3. Stream versioning. Picture shows a single stream that is replicated to two
nodes. StreamVersion can be used to detect concurrent updates and potential causality
between events. Events e3 and e5 raised by node 1 are concurrent with event e4 raised
by node 2.

StreamVersion saved to each event is provided to the framework and application when

rehydrating, allowing conflict handling mechanisms to utilize this information.

5.4 Framework

Framework defines a collection of generic components and a frame, that allows building

occasionally connected systems using event sourcing without mixing the details of topics

discussed in this thesis into the business logic.

Communication within the framework is built around different types of messages: com-

29

mands, events, and queries. Information is stored only as events (except for version ma-

trix within the event store), and information from events is derived using aggregates and

projections. For event store framework defines an interface and provides an in-memory

implementation by default.

5.4.1 Node

Entry point for the framework is called Node. It was designed to work as a simple facade,

that applications built around the framework can easily take use of. Node exposes three

methods:

Handle which is a method for executing commands.

Query which is a method for executing queries.

Synchronize which is a method for initiating a synchronization.

Because business logic is defined by the application, and Node needs to have access

there, some integration is required. Frameworks solution to define integration is to have

a NodeBuilder which provides a convenient and guided way to do the wiring. The

NodeBuilder exposes following methods:

AddThisNode which registers identity of this current node and a URL for it’s event

store.

AddKnownNode which registers another node in the system and a URL for that

nodes event store.

RegisterSerializer which registers a serializer that handles serialization for

a specific event.

UseEventstore which registers client used for connecting to the event store.

RegisterSimpleAggregate which registers an aggregate that doesn’t imple-

ment kind of conflict handling mechanism.

RegisterDynamicallyOwnedAggregate which registers an aggregate with dy-

namic ownership conflict avoidance model.

RegisterCommand which maps a command to an aggregate.

RegisterProjectionQueryHandler which registers a query and a projection

that handles the said query.

Build which returns an instance of the node with registered capabilities.

Builder-pattern was chosen as it makes building process of complex objects a more

straight forward and clean from the application perspective. Details are described in later

sections.

30

5.4.2 Aggregates

Aggregates represents individual, independent pieces of state that can be changed atom-

ically. Framework defines an interface that aggregates must implement to integrate with

the framework. This interface consists of four methods/properties:

StreamId is the ID that identifies the aggregate. This is needed for rehydration

and event persistance logic, so existing events can be read from, and any new

events can be appended to the correct stream.

UncommittedEvents is a list containing all the events a command execution cre-

ated before they are stored to the event store.

Commit is a method that commits the uncommitted events. If aggregates are

cached in-memory and not re-instantiated for every command, this needs to at

least clear the uncommitted event list. Framework will call this after successfully

saving events to the event store.

Rehydrate is called before executing commands. Rehydrate method should

playback given events so aggregate reaches the state that the command should

be executed against, which is usually the current state.

In addition to the bare interface, framework offers a few base classes that has some

features implemented.

AggregateBase which requires inheritors to implement only Rehydrate-method.

DynamicallyOwnedAggregate which implements dynamic ownership model.

OperationBasedCRDTAggregate which works as an operation-based CRDT as

long as user defined commands and events satisfies requirements of operation-

based CRDTs (see 2.6).

Workflow with the aggregates is simple. User sends a command via INode, this is the

only way how user can interact with aggregates. Command contains a StreamId that

identifies the aggregate and matches it to a stream. Framework queries the event store

for events from that stream and rehydrates the aggregate state to its current state. Then

command is executed against the current state, raising new events executing the state

changes. Each command is an atomic operation, meaning that all the events raised by a

single command will be accepted and stored, or none will. After command execution is

finished, framework commits new events to the events store.

5.4.3 Projections

For implementing projections to serve users and external systems in the application side

library defines an interface IProjectionQueryHandler<TQuery, TResult>. Projec-

31

tions in this library supports two query modes: Latest and stable. Each projection can

support only one of these. Based on this mode projection is rehydrated with either lat-

est available data, or data that is guaranteed to be stable system wide. Design choice

was made to restrict projections to these two modes, as this frees queries from carrying

version vectors making implementation of queries and projections simpler. Considered

factor in favor of restriction was also that it is probable that those business cases that

would benefit from using both kind of data from the same projection are rare.

Workflow for projections is similar to aggregates, with some differences. Basic flow is quite

similar: User sends a query via node, application rehydrates projection state, projection

handles the query and returns query result to the user.

First difference to aggregates is that projections support temporal properties in query.

This means that queries contain asAt and asOf properties that are typed as DateTime.

By using these properties applications are given ability to perform temporal queries.

These are forwarded to the event store, which handles them as described in 4.1.1 during

rehydration process.

Second difference is that projections filter events by type instead of StreamId. Each

projection describes which types of events it accepts to, and only these are read during

rehydration. It is good to note that rehydration delivers events in order of recordation, and

causal delivery order is guaranteed only within a single stream.

5.4.4 Policies

Policies (see 2.10) were implemented in a very similar way as projections. Policies de-

clares which events they are interested in, and those events are then provided for them for

rehydration of state. Using this state policies can then make decisions which commands,

if any, should be dispatched. Framework calls the Trigger-method for each policy, and

as a response each policy should return a list of commands to be executed.

5.5 Case Study

Scenario considered in this case study as an example here is a fictional case set into

the forestry industry. Forestry was chosen as an example industry because forestry sites

are often in rural environments with poor network conditions, meaning they are prime

example for occasionally connected systems.

Goal in this scenario is to enable accurate tracking of wood from forests to warehouses.

This data could be used for example to track down from which site and even from which

tree in the site did wood-eating bugs come to the wood warehouse. Let’s start by defining

some terms.

32

Site is an artificially divided geographical area that is a forest or a piece of forest

which is required to be cut down.

Log is a piece of a full tree log that was cut to length.

Bunch is a pile cut-to-length logs.

Harvester is a machine with a human operator that cut downs trees into bunches.

Harvester manager is a harvester on the site, who is responsible for reporting

completion of the harvest in the site.

Forwarder is a machine that transports trees out of the forest and loads them

onto trucks for transportation.

Log truck is a truck that transports logs and bunches on roads.

Warehouse is a physical location, where wood is transported before shipping to

factories and other buyers.

Order is an order to cut down a site. In system context it is issued by a salesper-

son.

In this scenario workflow starts by customer ordering a harvest to customer’s site, and

finishes when site is reported to be completed, logs gathered from the site are transported

to the warehouse, and the salesperson has generated a completion report.

At first order is inserted into the system by a salesperson. After insertion of the order,

order is forwarded to a harvester, appointing said harvester to act as a harvester manager

for the target site. There can be one or more harvesters on a site, but only the harvester

manager will be able to report when the order is completed.

After order is issued, harvesters on the site cuts down trees to make logs and drops

logs onto the ground forming bunches. Forwarders collects these bunches, transports

bunches next to the road for the trucks to pick up, which then transports logs to ware-

house. After whole site is harvested, harvester manager will report the site as harvested.

Then salesperson can generate accurate reports about the harvest and mark the order

as completed.

5.5.1 System model

Most of the complexities and logic are handled by the framework described in the chap-

ter 5.4. Because of framework doing majority of the work there are only two things to

implement, which are the interface to interact with the system, and the domain model.

As this implementation is based on a fictional environment, there are no external systems

feeding inputs to the system. For this reason, only interface that was built into system

was a simple command line interface. This interface can used by giving inputs by hand,

33

or it can be given a special command that reads commands from a text file.

Figure 5.4. Message flow in the proof-of-concept-system. User interacts with the system
using a command line interface.

Figure 5.4 shows an overview how user interaction with the system works. User is able

to send commands and queries by using CLI (command line interface) to be processed

by the aggregates, the event processors and the projections within the system. Results

for queries are printed on the screen.

OrderAggregate

Order represents a workflow involving multiple actors, where each state transition is done

by a different actor. This makes order a prime example to be modeled as a dynamically

owned aggregate. By applying the dynamic ownership to orders, system can enforce that

each state transition of the order is made only once, and by the correct actor. Workflow

for the order is following:

1. Salesperson issues an order.

2. Salesperson assigns the order to a harvester, transferring ownership of the order

to the harvester.

3. After site is harvested, assigned harvester sets order into a harvested state, and

transfers ownership back to the salesperson.

34

4. After system state is stabilized, harvesting report is generated and attached to the

order, and order state is set to completed.

Model and message flow for order created on workflow above contains following mes-

sages:

IssueOrderCommand which creates an order and assigns the ownership to the

initial salesperson. Emits an OrderIssuedEvent.

AssignToHarvesterCommand which sets order into InHarvest-state and then

transfers ownership to assigned harvester. Emits an AssignedToHarvesterEvent

and an OwnershipTransferredEvent.

ReportOrderSiteHarvestedCommand which sets order into Harvested-state

and then transfers ownership to the salesperson. Emits a SiteHarvestedEvent

and an OwnershipTransferredEvent.

CompleteOrderCommand which assigns a report to the order and sets order into

Completed-state. Emits an OrderCompletedEvent.

LogAggregate

LogAggregate is an aggregate that transforms harvester’s actions of cutting down a tree

and into logs to events.

Harvester workflow to cut down a tree into logs starts by first identifying a tree. In the

identification process harvester saves the location and the species of the tree. After

identification it cuts the tree down, and then cuts it to logs of specific length.

It could also be modeled as an event processor because it is only a monitoring system

monitoring the actions taken by the operator of the harvester. However, it was mod-

eled as an aggregate, because assumption was made that the same harvester will finish

the workflow from identifying the tree to cutting the log, so statefulness can be allowed.

LogAggregate deals with following messages:

IdentifyTreeCommand emits a TreeIdentifiedEvent.

CutDownTreeCommand emits a TreeCutDownEvent.

CutLogToLengthCommand emits a LogCutToLengthEvent.

LogLocationsEventProcessor

In regard of tracking log movements and to track which log ended up where, first assump-

tion made was that a forwarder operator or a forwarder does not possess an ability to

identify the logs on the ground. Another assumption was that the forwarder may move the

logs without the system having information about them, as the operator can see the logs

35

physically on the ground without help of the monitoring system.

Keeping these assumptions in mind, only way to identify log at its current location at the

site is to have a record of complete chain of movements starting from the location of the

cut down. LogLocationsEventProcessor was modeled as an event processor because

it must be stateless, as it cannot rely on having received information about movements

executed by other forwarders. LogLocationsEventProcessor list of messages is:

PickBunchCommand emits a BunchPickedByForwarderEvent

GroundBunchCommand emits a BunchGroundedByForwarderEvent

LoadBunchToTruckCommand emits a BunchLoadedToTruckEvent

StoreToWarehouseCommand emits a StoredToWarehouseEvent

As LogLocationsEventProcessor cannot differentiate between the logs with the same

coordinates, and an assumption is made that in the case where the logs are indistin-

guishable by location, assumption is made that forwarder/truck will pick them all as a

single bunch. Without this assumption system would not be able to accurately track the

logs, unless forwarder were able to identify logs it separated from the bunch.

CompleteOrderAfterHarvestedPolicy

To automate the process of completing orders after all the required information is gath-

ered, instead of requiring the salesperson to manually generate and request order com-

pletion, a policy (see 2.10) can be used. In that case policy’s state would be rehydrated

just like projection’s state, but instead of replying to queries it causes a dispatch for a

CompleteOrderCommand directly.

Implementation of CompleteOrderAfterHarvestedPolicy is quite simple. As order

completion requires a stable state, the policy subscribes only for stable events. It sub-

scribes for events of type SiteHarvestedEvent and OrderCompletedEvent, and all

the movement events generated by LogLocationsEventProcessor. Each order that

is harvested, but not yet completed, should be generated a order completion report and

given a CompleteOrderCommand with the generated report. This report fulfills the re-

quirement for the case by providing information from which tree were each of the logs

was cut down, and what was the route each log did take to get from the tree to the ware-

house.

Report generation ignores default event ordering defined by NodeVersion, and instead

uses physical timestamp OccurredAt to order them. It can do this, because movement

events from LogLocationsEventProcessor are generated by a physical source, mean-

ing that even though events may happen concurrently from the system’s viewpoint, in the

reality they are causally dependent, and because SiteHarvestedEvent is always gen-

36

erated only after OrderIssuedEvent has already occurred. Thus, as long as physical

timestamps are correct, no causality violations will happen.

A minor issue that this approach will cause is commands to be generated on multiple

nodes. However, because targeted OrderAggregate is a dynamically owned aggregate,

commands executed on nodes without the ownership will be rejected, and possibility for

duplicated actions to be performed is avoided.

For simplicity, in the system policies are triggered on both nodes after every synchro-

nization by the CLI. This is an acceptable simplification, as the only policy in the system

is CompleteOrderAfterHarvestedPolicy, which subscribes to a stable state (hence

triggers only on synchronization) and is known not to cause any kind of chain reaction

(e.g., a policy sends commands, which cause new events, which cause another policy

to send commands). In an event store implementation targeting to an actual production

system, some kind of event streaming solution would probably be required.

CompletedOrdersProjection

CompletedOrdersProjection’s responsibility is to allow user to query completed or-

ders and see reports attached to them. As all the information it needs from each order

can be found from OrderCompletedEvents alone, and thus there are no causality re-

lated concerns to keep in mind, OrderReportProjection does not need to use stable

projection mode. Reports are generated using stable projection mode, so they can be

shared externally.

IssuedOrdersProjection

IssuedOrdersProjection’s responsibility is to allow user to query issued orders and

see who issued them, and when. This projection listens only for OrderIssuedEvents,

which contains all the information it needs. Report is generated using latest projection

mode.

5.5.2 System Evaluation

Evaluation of how system met criterias set for it was conducted using a suite of auto-

mated tests. These test scenarios were built in order to produce situations, in which

problems demonstrated in this thesis would occur. In these scenarios nodes simulate the

work, share information between each other and then resulting state is queried and query

results validated. Testing was focused to validate three things:

1. Bi-temporal data should work as expected. This allows system to retain auditability,

prevent information loss on synchronization and makes temporal queries possible.

37

2. Stable and unstable parts of the event log should identified correctly.

3. Concurrent updates to streams should be detected.

4. Concurrent updates to streams with dynamic ownership should be prevented.

The axes of bi-temporal data in the system were OccurredAt and RecordedAt, or in

other words when did an event occur and when did the node learn about it. Idea behind

validating bi-temporality is exemplified by following:

1. Let’s assume a system of two nodes, A and B.

2. At t0 do work e1 on a node A.

3. At t2 synchronize nodes A and B.

4. Validate that when queried from A, work e1 occurred at t0 and was recorded at t0.

5. Validate that when queried from B, work e1 occurred at t0 and was recorded at t2.

6. Validate that when queried from A, using t1 as a viewpoint (RecordedAt <= t1),

work e1 occurred at t0 and was recorded at t0.

7. Validate that when queried from B, using t1 as a viewpoint (RecordedAt <= t1),

no work has occurred.

A node considers a timestamp to be a stable timestamp, when the node knows for sure

that every node in the system has seen all the events prior to the stable timestamp. To

validate information stability properly, an example of a system of three nodes can be

studied.

1. Let’s assume a system of three nodes, A, B and C.

2. At t0 do work e1 on a node A.

3. At t1 synchronize nodes A and B.

4. At t2 synchronize nodes A and C.

5. Validate that when queried from A or C, e1 is considered stable. A and C knows

that both of them and B knows about e1.

6. Validate that when queried from B, e1 isn’t considered stable. B doesn’t know if C

does know about e1.

7. At t3 synchronize nodes A and B.

8. Validate that when queried from A, B, or C, e1 is considered stable, as B now knows

that C knows about e1.

Synchronization protocol detects concurrent updates by checking, if both nodes involved

in synchronization contains uncommited events for the same stream. This can be de-

tected during synchronization.

1. Let’s assume a system of two nodes, A and B.

38

2. At t0 do work e1 on a node A, where e1 targets stream s.

3. At t1 do work e2 on a node B, where e1 targets stream s.

4. At t2 synchronize nodes A and B. Validate that synchronization protocol reported

that there were concurrent updates to stream s.

These testing concepts were put into practice by using matching automated test scenarios

which are described in appendices D, E, and F.

5.6 Summary

Proof of concept demonstrates how the concepts introduced works together. Framework

and concepts presented in this thesis were used successfully to build a system providing

required capabilities:

1. System nodes are capable of independent decision making.

2. System is capable of sharing the information between nodes, while detecting con-

current updates and avoiding data conflicts.

3. System uses bi-temporal event sourcing preserving context for each decision made.

4. System is able to provide stable information for external systems to consume.

As such this proof-of-concept demonstrates that solutions introduced in chapter 4 can be

applied to a real system on a logical level. Whether limitations regarding performance or

other non-functional characteristics makes demonstrated solutions unfeasible for produc-

tion systems is left unknown, as that question was outside of the scope of this thesis.

39

6. CONCLUSIONS

This chapter gives an overview of the results and provides some considerations about

limitations of the proposed solutions. After summarising results, possible future research

ideas are discussed.

6.1 Summary of Results

There was a total of four fundamental problems to be solved, when moving from central-

ized to distributed event log. Bi-temporal event sourcing described in section 4.1 provided

a way to share events between nodes without compromising the append-only nature of

the event log. Bi-temporal data has been around for a long time, but bi-temporal event

sourcing seemed to be quite rare occurrence. Section 4.2 presented version vectors

as a solution for the concurrency detection. Conflict handling in event sourcing is an

application-level issue, and section 4.3 provided a few different ways to deal with them.

Both concurrency detection and conflict handling are well-known problems, and a lot of

research and literature can be found around the topics. Final conceptual problem solved

was related to the information stability in the section 4.4. Without being able to tell when

the information is subject to change, external software systems would need to take this

into account as well, rendering use of event sourcing in occasionally connected systems

infeasible.

With the tools above, a simple proof-of-concept was built. It consisted of an event store

with support for bi-temporal events, an application framework providing conflict handling

mechanisms and a demo application showcasing that all these parts do work together.

While there remains lot of other things to consider when building systems in the real

world, results did show that event sourcing can be applied successfully to occasionally

connected systems.

6.2 Known Problems and Future Research

While solutions for the identified problems were found, some limitations exist. Some of

these limitations are well known and ways over these can be found from the literature, but

others may require more research.

40

6.2.1 Limitations of Proposed Solutions

Because stable timestamp is calculated by default using all the nodes from the system,

even a single node being offline for a long time can prevent the system as a whole reach-

ing a stable state for long periods of time. To allow large systems to reach stability, large

systems should be divided into smaller sets of nodes in order to allow relevant sub-states

to stabilize faster. Mechanisms for this are not in the scope of this thesis but should be

considered if results are applied into practice.

A well-known problem in the distributed system research related to version vectors is state

explosion. In large systems where may be over hundreds or thousands of nodes, version

vectors become quite large, consuming a lot of space. There are mechanisms such as

dotted version vectors and interval tree clocks that solves some practical issues related

to version vectors.

This thesis considered mainly systems with fixed number of known members. In the

actual production environment, there often is a need to allow nodes to join or leave the

system, which would require consideration from stability and version vector perspective.

6.2.2 Known Issues in Event Sourced Systems

Practical drawback for event sourced systems is that they require more resources from

the infrastructure, than equivalent non-event sourced system. Rehydration of the state is

quite expensive operation, and events requires a lot of disk space. Storing the rehydrated

state in a form of snapshots periodically can lower the cost for rehydration, as not all

events in the stream will have to be reapplied from the start of time. If old events are

not an area of interest, combined with snapshotting old event logs can be pruned, trading

some benefits gained from event sourcing to reduced disk usage.

Software systems are rarely ready when they are first released. In event sourced systems

known issue is related to event versioning. To have future systems to work with legacy

events, and sometimes other way around, careful planning is required.

6.3 Conclusions

Event sourcing is a powerful technique, that provides many capabilities absent in tradi-

tional systems. It is traditionally applied in domains requiring strong audit capabilities,

operating in environment with constant network. To give application developers ability to

use event sourcing in new domains, this thesis provides a way to apply event sourcing to

occasionally connected systems. It collects a set of methods from the field of distributed

systems research, provides known limitations of these methods, and describes how to

apply those to allow use of event sourcing in occasionally connected systems.

41

REFERENCES

[1] Oracle Corporation. Conflict Resolution Concepts and Architecture. Accessed 13.02.2022.

URL: https://docs.oracle.com/cd/B12037_01/server.101/b10732/repconfl.htm#

23858.

[2] Oracle Corporation. Using Dynamic Ownership Conflict Avoidance. Accessed 06.02.2022.

URL: https://docs.oracle.com/cd/A81042_01/DOC/server.816/a76959/repadv.htm#

1767.

[3] George Coulouris et al. Distributed Systems: Concepts and Design, Fifth edition.

Addison-Wesley, 2011. ISBN: 978-0-13-214301-1.

[4] Udi Dahan. Occasionally Connected Systems Architecture. Accessed 22.01.2022.

Apr. 2007. URL: https : / / udidahan . com / 2007 / 04 / 04 / occasionally - connected -

systems-architecture/.

[5] Microsoft documentation. Event Sourcing pattern. Accessed 12.12.2021. URL: https:

//docs.microsoft.com/en-us/azure/architecture/patterns/event-sourcing.

[6] Lúcia M.A. Drummond and Valmir C. Barbosa. “On reducing the complexity of ma-

trix clocks”. In: Parallel Computing 29.7 (2003), pp. 895–905. ISSN: 0167-8191. DOI:

https://doi.org/10.1016/S0167-8191(03)00066-8. URL: https://www.sciencedirect.

com/science/article/pii/S0167819103000668.

[7] Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software.

Addison-Wesley, 2004. ISBN: 978-0321125217.

[8] Martin Fowler. DomainDrivenDesign. Accessed 01.02.2022. Apr. 2020. URL: https:

//martinfowler.com/bliki/DomainDrivenDesign.html.

[9] Martin Fowler. Event Sourcing. Accessed 12.12.2021. Dec. 2005. URL: https : / /

martinfowler.com/eaaDev/EventSourcing.html.

[10] Martin Fowler. Retroactive Event. Accessed 19.12.2021. Feb. 2005. URL: https :

//martinfowler.com/eaaDev/RetroactiveEvent.html.

[11] Martin Fowler. Temporal Patterns. Accessed 13.12.2021. Feb. 2005. URL: https :

//martinfowler.com/eaaDev/timeNarrative.html.

[12] Martin Fowler. Version Vector. Accessed 06.02.2022. June 2021. URL: https : / /

martinfowler.com/articles/patterns-of-distributed-systems/version-vector.html.

[13] Martin Fowler et al. Patterns of Enterprise Application Architecture. Addison-Wesley

Professional, 2002. ISBN: 978-0-3211-2742-6. URL: https://www.martinfowler.com/

books/eaa.html.

[14] Jami-Petteri Kimpimäki. Forester Application. Source code for the proof-of-concept

implementation. URL: https://github.com/kimpimaj/forester.

https://docs.oracle.com/cd/B12037_01/server.101/b10732/repconfl.htm#23858
https://docs.oracle.com/cd/B12037_01/server.101/b10732/repconfl.htm#23858
https://docs.oracle.com/cd/A81042_01/DOC/server.816/a76959/repadv.htm#1767
https://docs.oracle.com/cd/A81042_01/DOC/server.816/a76959/repadv.htm#1767
https://udidahan.com/2007/04/04/occasionally-connected-systems-architecture/
https://udidahan.com/2007/04/04/occasionally-connected-systems-architecture/
https://docs.microsoft.com/en-us/azure/architecture/patterns/event-sourcing
https://docs.microsoft.com/en-us/azure/architecture/patterns/event-sourcing
https://doi.org/https://doi.org/10.1016/S0167-8191(03)00066-8
https://www.sciencedirect.com/science/article/pii/S0167819103000668
https://www.sciencedirect.com/science/article/pii/S0167819103000668
https://martinfowler.com/bliki/DomainDrivenDesign.html
https://martinfowler.com/bliki/DomainDrivenDesign.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/eaaDev/RetroactiveEvent.html
https://martinfowler.com/eaaDev/RetroactiveEvent.html
https://martinfowler.com/eaaDev/timeNarrative.html
https://martinfowler.com/eaaDev/timeNarrative.html
https://martinfowler.com/articles/patterns-of-distributed-systems/version-vector.html
https://martinfowler.com/articles/patterns-of-distributed-systems/version-vector.html
https://www.martinfowler.com/books/eaa.html
https://www.martinfowler.com/books/eaa.html
https://github.com/kimpimaj/forester

42

[15] Martin Kleppmann. Automerge. Accessed 29.03.2022. URL: https : / / github.com/

automerge/automerge.

[16] Martin Kleppmann. Designing Data-Intensive Applications. O’Reilly Media, Inc.,

2017. ISBN: 978-1-4493-7332-0. URL: https://www.oreilly.com/library/view/designing-

data-intensive-applications/9781491903063/.

[17] Martin Kleppmann and Alastair R. Beresford. “A Conflict-Free Replicated JSON

Datatype”. In: CoRR abs/1608.03960 (2016). URL: http://arxiv.org/abs/1608.03960.

[18] Event Store Ltd. Event Store. Accessed 22.01.2021. 2022. URL: https : / / www.

eventstore.com/.

[19] Merge Join Algorithm. Accessed 12.12.2021. URL: https : / /www. javatpoint . com/

merge-join-algorithm.

[20] Bertrand Meyer. Object-Oriented Software Construction. 2nd ed. CQS. 1997, pp. 748–

751.

[21] Scott Millett and Nick Tune. Patterns, Principles, and Practices of Domain-Driven

Design. Wrox, 2015. ISBN: 978-1-1187-1470-6. URL: https:/ /www.wiley.com/en-

ie/Patterns%2C+Principles%2C+and+Practices+of+Domain+Driven+Design-p-

9781118714690.

[22] Michael L. Perry. The Art of Immutable Architecture: Theory and Practice of Data

Management in Distributed Systems. Apress, 2020. ISBN: 978-1-4842-5954-2. URL:

https://link.springer.com/book/10.1007/978-1-4842-5955-9.

[23] Thomas Pierrain. “As Time Goes By...(a Bi-temporal Event Sourcing story)”. Domain-

Driven Design Europe 2018. Sept. 2018. URL: https : / / 2018 . dddeurope . com /

speakers/thomas-pierrain/#talk2.

[24] Alex Potanin et al. “Immutability”. In: Aliasing in Object-Oriented Programming.

Types, Analysis and Verification. Ed. by Dave Clarke, James Noble, and Tobias

Wrigstad. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 233–269. ISBN:

978-3-642-36946-9. DOI: 10.1007/978-3-642-36946-9_9. URL: https://doi.org/10.

1007/978-3-642-36946-9_9.

[25] Marc Shapiro et al. A comprehensive study of Convergent and Commutative Repli-

cated Data Types. 2011. URL: https://hal.inria.fr/file/index/docid/555588/filename/

techreport.pdf.

[26] Marc Shapiro et al. “Conflict-Free Replicated Data Types”. In: Stabilization, Safety,

and Security of Distributed Systems. Ed. by Xavierand Petit Dfago and Vincent

Franckand Villain. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 386–

400. ISBN: 978-3-642-24550-3.

[27] European Mathematical Society Springer Verlag GmbH. Associviaty. Accessed

30.01.2022. 2016. URL: http://encyclopediaofmath.org/index.php?title=Associativity&

oldid=37385.

https://github.com/automerge/automerge
https://github.com/automerge/automerge
https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/
https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/
http://arxiv.org/abs/1608.03960
https://www.eventstore.com/
https://www.eventstore.com/
https://www.javatpoint.com/merge-join-algorithm
https://www.javatpoint.com/merge-join-algorithm
https://www.wiley.com/en-ie/Patterns%2C+Principles%2C+and+Practices+of+Domain+Driven+Design-p-9781118714690
https://www.wiley.com/en-ie/Patterns%2C+Principles%2C+and+Practices+of+Domain+Driven+Design-p-9781118714690
https://www.wiley.com/en-ie/Patterns%2C+Principles%2C+and+Practices+of+Domain+Driven+Design-p-9781118714690
https://link.springer.com/book/10.1007/978-1-4842-5955-9
https://2018.dddeurope.com/speakers/thomas-pierrain/#talk2
https://2018.dddeurope.com/speakers/thomas-pierrain/#talk2
https://doi.org/10.1007/978-3-642-36946-9_9
https://doi.org/10.1007/978-3-642-36946-9_9
https://doi.org/10.1007/978-3-642-36946-9_9
https://hal.inria.fr/file/index/docid/555588/filename/techreport.pdf
https://hal.inria.fr/file/index/docid/555588/filename/techreport.pdf
http://encyclopediaofmath.org/index.php?title=Associativity&oldid=37385
http://encyclopediaofmath.org/index.php?title=Associativity&oldid=37385

43

[28] European Mathematical Society Springer Verlag GmbH. Commutativity. Accessed

30.01.2022. 2014. URL: http://encyclopediaofmath.org/index.php?title=Commutativity&

oldid=34081.

[29] European Mathematical Society Springer Verlag GmbH. Idempotence. Accessed

30.01.2022. 2016. URL: http://encyclopediaofmath.org/index.php?title=Idempotence&

oldid=39755.

[30] Maarten van Steen and Andrew S. Tanenbaum. Distributed Systems. Third edi-

tion. Maarten van Steen, previously Pearson Education, Inc., 2020. ISBN: 978-90-

815406-2-9.

[31] Jan Stenberg. Retroactive and Future Events in an Event Sourced System. Ac-

cessed 13.12.2021. Feb. 2018. URL: https : / / www. infoq . com / news / 2018 / 02 /

retroactive-future-event-sourced/.

http://encyclopediaofmath.org/index.php?title=Commutativity&oldid=34081
http://encyclopediaofmath.org/index.php?title=Commutativity&oldid=34081
http://encyclopediaofmath.org/index.php?title=Idempotence&oldid=39755
http://encyclopediaofmath.org/index.php?title=Idempotence&oldid=39755
https://www.infoq.com/news/2018/02/retroactive-future-event-sourced/
https://www.infoq.com/news/2018/02/retroactive-future-event-sourced/

44

APPENDIX A: IMPLEMENTATION OF VERSION VECTOR

Listing A.1. Implementation for version vector.

1 public class Vers ionVector

2 {

3 public enum Comparison

4 {

5 AreSame ,

6 IsOlder ,

7 IsNewer ,

8 AreConcurrent

9 }

10

11 private readonly Dic t i ona ry <string , int > _value ;

12

13 public Vers ionVector ()

14 {

15 _value = new Dic t i ona ry <string , int > () ;

16 }

17

18 public Vers ionVector (D ic t i ona ry <string , int > value)

19 {

20 _value = Copy (value) ;

21 }

22

23 / / / <summary>

24 / / / Updates value f o r a node

25 / / / </summary>

26 / / / <param name="node">Node to be updated </param>

27 / / / < re tu rns >Vers ionVector w i th updated value </ re tu rns >

28 public Vers ionVector Next (str ing node)

29 {

30 var copy = Copy (_value) ;

45

31

32 i f (! copy . ContainsKey (node))

33 {

34 copy [node] = 0 ;

35 }

36

37 copy [node]++ ;

38

39 return new Vers ionVector (copy) ;

40 }

41

42 / / / <summary>

43 / / / Compares two vers ion vec to rs .

44 / / / </summary>

45 / / / <param name=" another ">Comparison ta rge t </param>

46 / / / < re tu rns >Comparison r e s u l t < / re tu rns >

47 public Comparison ComparedTo (Vers ionVector another)

48 {

49 var a = Copy (_value) ;

50 var b = Copy (another . _value) ;

51

52 var notInB = a . Where (kvp => ! b . ContainsKey (kvp . Key)) . ToL is t () ;

53 var notInA = b . Where (kvp => ! a . ContainsKey (kvp . Key)) . ToL is t () ;

54

55 / / Empty value equals zero value

56 notInA . ForEach (kvp => a . Add (kvp . Key , 0)) ;

57 notInB . ForEach (kvp => b . Add (kvp . Key , 0)) ;

58

59 var areSame = a . A l l (kvp => b [kvp . Key] == kvp . Value) ;

60 i f (areSame)

61 {

62 / / A l l values were same .

63 return Comparison . AreSame ;

64 }

65

66 var a IsA f te rB = a . A l l (kvp => kvp . Value >= b [kvp . Key]) ;

67 i f (a IsA f te rB)

68 {

69 / / Every value i n A was grea te r

70 / / than or equal to values i n B .

46

71 return Comparison . IsNewer ;

72 }

73

74 var b IsA f te rA = b . A l l (kvp => kvp . Value >= a [kvp . Key]) ;

75 i f (b IsA f te rA)

76 {

77 / / Every value i n B was grea te r

78 / / than or equal to values i n A .

79 return Comparison . IsOlder ;

80 }

81

82 / / Both conta ined values grea te r

83 / / than i n o ther .

84 return Comparison . AreConcurrent ;

85 }

86

87 public s t a t i c bool operator >(Vers ionVector a , Vers ionVector b)

88 {

89 return a . ComparedTo (b) == Comparison . IsNewer ;

90 }

91

92 public s t a t i c bool operator <(Vers ionVector a , Vers ionVector b)

93 {

94 return a . ComparedTo (b) == Comparison . IsOlder ;

95 }

96

97 public s t a t i c bool operator ==(Vers ionVector a , Vers ionVector b)

98 {

99 return a . ComparedTo (b) == Comparison . AreSame ;

100 }

101

102 public s t a t i c bool operator ! = (Vers ionVector a , Vers ionVector b)

103 {

104 return a . ComparedTo (b) != Comparison . AreSame ;

105 }

106

107 public s t a t i c bool operator <=(Vers ionVector a , Vers ionVector b)

108 {

109 var comparison = a . ComparedTo (b) ;

110 return comparison == Comparison . AreSame | | comparison == Comparison . IsOlder ;

47

111 }

112

113 public s t a t i c bool operator >=(Vers ionVector a , Vers ionVector b)

114 {

115 var comparison = a . ComparedTo (b) ;

116 return comparison == Comparison . AreSame | | comparison == Comparison . IsNewer ;

117 }

118

119 / / / <summary>

120 / / / Does c e l l wise maximum of two vers ion vec to rs .

121 / / / Used f o r synchron iz ing vers ions .

122 / / / </summary>

123 / / / <param name=" another " > </param>

124 / / / < re tu rns >Synchronized vers ion </ re tu rns >

125 public Vers ionVector Ce i l (Vers ionVector another)

126 {

127 D ic t i ona ry <string , int > a = Copy (_value) ;

128 D ic t i ona ry <string , int > b = Copy (another . _value) ;

129

130 / / Transforming i n t o hashset removes dup l i ca tes .

131 var keys = a . Keys . Union (b . Keys) . ToHashSet () ;

132

133 var r e s u l t = new Dic t i ona ry <string , int > () ;

134

135 foreach (str ing key in keys)

136 {

137 i n t valueA = a . ContainsKey (key) ? a [key] : 0 ;

138 i n t valueB = b . ContainsKey (key) ? b [key] : 0 ;

139 r e s u l t [key] = Math .Max(valueB , valueA) ;

140 }

141

142 return new Vers ionVector (r e s u l t) ;

143 }

144

145 / / / <summary>

146 / / / Does c e l l wise minimum of two vers ion vec to rs .

147 / / / Used f o r c a l c u l a t i n g s tab le vers ion .

148 / / / </summary>

149 / / / <param name=" another " > </param>

150 / / / < re tu rns >Stable vers ion </ re tu rns >

48

151 public Vers ionVector F loor (Vers ionVector another)

152 {

153 D ic t i ona ry <string , int > a = Copy (_value) ;

154 D ic t i ona ry <string , int > b = Copy (another . _value) ;

155

156 / / Transforming i n t o hashset removes dup l i ca tes .

157 var keys = a . Keys . Union (b . Keys) . ToHashSet () ;

158

159 var r e s u l t = new Dic t i ona ry <string , int > () ;

160

161 foreach (str ing key in keys)

162 {

163 i n t valueA = a . ContainsKey (key) ? a [key] : 0 ;

164 i n t valueB = b . ContainsKey (key) ? b [key] : 0 ;

165 r e s u l t [key] = Math . Min (valueB , valueA) ;

166 }

167

168 return new Vers ionVector (r e s u l t) ;

169 }

170

171 / / / <summary>

172 / / / Returns a copy of the vers ion vec to r

173 / / / </summary>

174 / / / < re tu rns > </ re tu rns >

175 public Vers ionVector Copy ()

176 {

177 return new Vers ionVector (_value) ;

178 }

179

180 private Dic t i ona ry <string , int > Copy (D ic t i ona ry <string , int > o r i g i n a l)

181 {

182 return o r i g i n a l . ToDic t ionary (k => k . Key , k => k . Value) ;

183 }

184

185 public override str ing ToStr ing ()

186 {

187 return $ " [{ S t r i n g . Jo in (" , " , _value . OrderBy (v => v . Key) . Se lec t (kvp => $ " { kvp . Key } : { kvp . Value } ")) }] " ;

188 }

189 }

49

APPENDIX B: IMPLEMENTATION OF VERSION MATRIX

Listing B.1. Implementation for version matrix.

1 public class Vers ionMat r i x

2 {

3 private Dic t i ona ry <string , VersionVector > _vers ions ;

4

5 public Vers ionMat r i x ()

6 {

7 _vers ions = new Dic t i ona ry <string , VersionVector > () ;

8 }

9

10 public Vers ionMat r i x (D ic t i ona ry <string , VersionVector > vers ions)

11 {

12 _vers ions = vers ions ;

13 }

14

15 / / / <summary>

16 / / / Returns a vers ion vec to r t h a t descr ibes observed

17 / / / s t a t e f o r a node .

18 / / / </summary>

19 / / / <param name="node" > </param>

20 / / / < re tu rns > </ re tu rns >

21 public Vers ionVector th is [str ing node]

22 {

23 get => _vers ions . ContainsKey (node)

24 ? _vers ions [node]

25 : new Vers ionVector () ;

26 }

27

28 / / / <summary>

29 / / / Returns a vers ion t h a t descr ibes s ta te o f

30 / / / a t a r g e t node observed by an observ ing node

50

31 / / / </summary>

32 / / / <param name=" key " > </param>

33 / / / < re tu rns > </ re tu rns >

34 public i n t th is [str ing observingNode , str ing targetNode]

35 {

36 get

37 {

38 i f (! _vers ions . ContainsKey (observingNode))

39 {

40 return 0;

41 }

42

43 return _vers ions [observingNode] [targetNode] ;

44 }

45 }

46

47 / / / <summary>

48 / / / Creates a deep copy of the mat r i x .

49 / / / </summary>

50 / / / < re tu rns >

51 / / / Deep copy of the vers ion mat r i x

52 / / / </ re tu rns >

53 public Vers ionMat r i x Copy ()

54 {

55 return new Vers ionMat r i x (_vers ions . ToDic t ionary (

56 x => x . Key ,

57 x => x . Value . Copy ())) ;

58 }

59

60 / / / <summary>

61 / / / Returns vers ion vec to rs as d i c t i o n a r y .

62 / / / </summary>

63 / / / < re tu rns >

64 / / / Mappings o f node <−> vers ion vec to r

65 / / / </ re tu rns >

66 public Dic t i ona ry <string , VersionVector > GetVectors ()

67 {

68 return _vers ions . ToDic t ionary (

69 x => x . Key ,

70 x => x . Value . Copy ()) ;

51

71 }

72

73 / / / <summary>

74 / / / Replaces vers ion vec to r f o r given node .

75 / / / </summary>

76 / / / <param name="node">Node to be updated </param>

77 / / / <param name=" vers ion ">Updated vers ion vector </param>

78 / / / < re tu rns >Updated vers ion matr ix </ re tu rns >

79 public Vers ionMat r i x Update (str ing node , Vers ionVector vers ion)

80 {

81 var copy = Copy () ;

82

83 copy . _vers ions [node] = vers ion ;

84

85 return copy ;

86 }

87

88 / / / <summary>

89 / / / Ce l l wise maximum between two vers ion matr ices ,

90 / / / and takes c e l l −wise maximum between vers ions o f

91 / / / the two given nodes p u t t i n g them i n t o same s ta te .

92 / / / </summary>

93 / / / <param name=" o ther ">

94 / / / Version mat r i x to be compared .

95 / / / </param>

96 / / / < re tu rns >

97 / / / Synchronized vers ion mat r i x .

98 / / / </ re tu rns >

99 public Vers ionMat r i x Sync (Vers ionMat r ix other ,

100 str ing node1 ,

101 str ing node2)

102 {

103 var c e i l e d = Ce i l (o ther) ;

104

105 var f i r s t = c e i l e d . GetVectors () [node1] ;

106 var second = c e i l e d . GetVectors () [node2] ;

107

108 var synced = f i r s t . Ce i l (second) ;

109

110 c e i l e d = c e i l e d . Update (node1 , synced) ;

52

111 c e i l e d = c e i l e d . Update (node2 , synced) ;

112

113 return c e i l e d ;

114 }

115

116 / / / <summary>

117 / / / Ce l l wise maximum between two vers ion matr ices .

118 / / / </summary>

119 / / / <param name=" o ther ">

120 / / / Version mat r i x to be compared .

121 / / / </param>

122 / / / < re tu rns >

123 / / / Version mat r i x w i th maximum c e l l values .

124 / / / </ re tu rns >

125 public Vers ionMat r i x Ce i l (Vers ionMat r ix o ther)

126 {

127 var r e s u l t s = new Dic t i ona ry <string , VersionVector > () ;

128

129 var f i r s t = Copy () . _vers ions ;

130 var second = other . Copy () . _vers ions ;

131

132 var nodes = new HashSet<string >(

133 f i r s t . Keys . Union (second . Keys)

134) ;

135

136 foreach (var node in nodes)

137 {

138 var f i r s t V e r s i o n = f i r s t . ContainsKey (node)

139 ? f i r s t [node]

140 : new Vers ionVector (new Dic t i ona ry <string , int > {

141 { node , 0 }

142 }) ;

143 var secondVersion = second . ContainsKey (node)

144 ? second [node]

145 : new Vers ionVector (new Dic t i ona ry <string , int > {

146 { node , 0 }

147 }) ;

148

149 var c e i l V e r s i o n = f i r s t V e r s i o n . Ce i l (secondVersion) ;

150 r e s u l t s . Add (node , c e i l V e r s i o n) ;

53

151 }

152

153 return new Vers ionMat r i x (r e s u l t s) ;

154 }

155

156 / / / <summary>

157 / / / Ce l l wise minimum between two vers ion matr ices .

158 / / / </summary>

159 / / / <param name=" o ther ">

160 / / / Version mat r i x to be compared .

161 / / / </param>

162 / / / < re tu rns >

163 / / / Version mat r i x w i th minimum c e l l values .

164 / / / </ re tu rns >

165 public Vers ionMat r i x F loor (Vers ionMat r ix o ther)

166 {

167 var r e s u l t s = new Dic t i ona ry <string , VersionVector > () ;

168

169 var f i r s t = _vers ions ;

170 var second = other . _vers ions ;

171

172 var nodes = new HashSet<string >(

173 f i r s t . Keys . Union (second . Keys)

174) ;

175

176 foreach (var node in nodes)

177 {

178 var f i r s t V e r s i o n = f i r s t . ContainsKey (node)

179 ? f i r s t [node]

180 : new Vers ionVector (new Dic t i ona ry <string , int > {

181 { node , 0 }

182 }) ;

183

184 var secondVersion = second . ContainsKey (node)

185 ? second [node]

186 : new Vers ionVector (new Dic t i ona ry <string , int > {

187 { node , 0 }

188 }) ;

189

190 var c e i l V e r s i o n = f i r s t V e r s i o n . F loor (secondVersion) ;

54

191 r e s u l t s . Add (node , c e i l V e r s i o n) ;

192 }

193

194 return new Vers ionMat r i x (r e s u l t s) ;

195 }

196

197 / / / <summary>

198 / / / Returns s tab le timestamp among given nodes .

199 / / / I f any o f the nodes i s not known , an empty

200 / / / ve rs ion vec to r w i th a l l zero values w i l l be

201 / / / re tu rned .

202 / / / </summary>

203 / / / <param name="nodes">

204 / / / Nodes the s t a b i l i t y i s checked among .

205 / / / </param>

206 / / / < re tu rns >Stable timestamp </ re tu rns >

207 public Vers ionVector Stable (L i s t <string > nodes)

208 {

209 Vers ionVector? stableStamp = nul l ;

210

211 foreach (var node in nodes)

212 {

213 var vers ion = _vers ions . ContainsKey (node) ?

214 _vers ions [node]

215 : new Vers ionVector (new Dic t i ona ry <string , int > {

216 { node , 0 }

217 }) ;

218

219 i f (ReferenceEquals (stableStamp , nul l))

220 {

221 stableStamp = vers ion ;

222 }

223 else

224 {

225 stableStamp = vers ion . F loor (stableStamp) ;

226 }

227 }

228

229 return stableStamp ?? new Vers ionVector () ;

230 }

55

231 }

56

APPENDIX C: IMPLEMENTATION OF EVENT

Listing C.1. Definition for a uncommitted event.

1 public class UncommittedEvent

2 {

3 / / / <summary>

4 / / / Type of the event .

5 / / / </summary>

6 public str ing Type { get ; }

7

8 / / / <summary>

9 / / / A p p l i c a t i o n data r e l a t e d to the event .

10 / / / </summary>

11 public byte [] Payload { get ; }

12

13 public UncommittedEvent (str ing type , byte [] payload)

14 {

15 th is . Type = type ;

16 th is . Payload = payload ;

17 }

18 }

Listing C.2. Definition for a committed event.

1 public class CommittedEvent

2 {

3 / / / <summary>

4 / / / Unique i d e n t i f i e r f o r the event .

5 / / / I d e n t i f i e r i s generated when event i s created

6 / / / f o r the f i r s t t ime , and does not change dur ing

7 / / / r e p l i c a t i o n .

8 / / / </summary>

9 public Guid EventId { get ; }

10

11 / / / <summary>

57

12 / / / The stream event was generated from .

13 / / / </summary>

14 public str ing StreamId { get ; }

15

16 / / / <summary>

17 / / / Node t h a t generated the event .

18 / / / </summary>

19 public str ing I ssuer { get ; }

20

21 / / / <summary>

22 / / / Type of the event .

23 / / / </summary>

24 public str ing Type { get ; }

25

26 / / / <summary>

27 / / / A p p l i c a t i o n data r e l a t e d to the event .

28 / / / </summary>

29 public byte [] Payload { get ; }

30

31 / / / <summary>

32 / / / Log ica l vers ion o f stream when event was generated .

33 / / / I s used f o r o rder ing events w i t h i n the stream , and

34 / / / f o r concurrency / c o n f l i c t de tec t i on .

35 / / / </summary>

36 public Vers ionVector StreamVersion { get ; }

37

38 / / / <summary>

39 / / / Log ica l vers ion o f node when event was generated .

40 / / / I s used mainly f o r r e p l i c a t i o n .

41 / / / </summary>

42 public Vers ionVector OccurredAtNodeVersion { get ; }

43

44 / / / <summary>

45 / / / Log ica l vers ion o f node when event was recorded .

46 / / / I s used to prov ide t o t a l order w i t h i n node .

47 / / / I s unique f o r each node , and set when event i s

48 / / / rece ived dur ing synchron iza t ion .

49 / / / Could be replaced wi th Version Mat r i x f o r complet ion .

50 / / / </summary>

51 public Vers ionVector RecordedAtNodeVersion { get ; }

58

52

53 / / / <summary>

54 / / / Phys ica l t ime when event was generated .

55 / / / Used f o r bi −temporal quer ies .

56 / / / </summary>

57 public DateTime OccurredAt { get ; }

58

59 / / / <summary>

60 / / / Phys ica l t ime when event was recorded .

61 / / / Used f o r bi −temporal quer ies .

62 / / / Replaced dur ing r e p l i c a t i o n .

63 / / / </summary>

64 public DateTime RecordedAt { get ; }

65

66 public CommittedEvent (

67 Guid eventId ,

68 str ing type ,

69 byte [] payload ,

70 str ing streamId ,

71 str ing i ssuer ,

72 Vers ionVector streamVersion ,

73 Vers ionVector occurredAtNodeVersion ,

74 DateTime occurredAt)

75 {

76 Payload = payload ;

77 EventId = event Id ;

78 Type = type ;

79 StreamId = streamId ;

80 Issuer = i ssue r ;

81 StreamVersion = streamVersion ;

82 OccurredAtNodeVersion = occurredAtNodeVersion ;

83 RecordedAtNodeVersion = occurredAtNodeVersion ;

84 OccurredAt = occurredAt ;

85 RecordedAt = occurredAt ;

86 }

87

88 public CommittedEvent (

89 Guid eventId ,

90 str ing type ,

91 byte [] payload ,

59

92 str ing streamId ,

93 str ing i ssuer ,

94 Vers ionVector streamVersion ,

95 Vers ionVector occurredAtNodeVersion ,

96 Vers ionVector recordedAtNodeVersion ,

97 DateTime occurredAt ,

98 DateTime recordedAt)

99 {

100 Payload = payload ;

101 EventId = event Id ;

102 Type = type ;

103 StreamId = streamId ;

104 Issuer = i ssue r ;

105 StreamVersion = streamVersion ;

106 OccurredAtNodeVersion = occurredAtNodeVersion ;

107 RecordedAtNodeVersion = recordedAtNodeVersion ;

108 OccurredAt = occurredAt ;

109 RecordedAt = recordedAt ;

110 }

111

112 / / / <summary>

113 / / / Copies the event f o r r e p l i c a t i o n .

114 / / / Replaces recordedAt stamps .

115 / / / </summary>

116 / / / <param name=" recordedAtNodeVersion " > </param>

117 / / / <param name=" recordedAt " > </param>

118 / / / < re tu rns >Repl ica ted event </ re tu rns >

119 public CommittedEvent AsRecordedAt (

120 Vers ionVector recordedAtNodeVersion ,

121 DateTime recordedAt)

122 {

123 return new CommittedEvent (

124 EventId ,

125 Type ,

126 Payload ,

127 StreamId ,

128 Issuer ,

129 StreamVersion ,

130 OccurredAtNodeVersion ,

131 recordedAtNodeVersion ,

60

132 OccurredAt ,

133 recordedAt) ;

134 }

135 }

61

APPENDIX D: SCENARIO TEST FOR BI-TEMPORALITY

Listing D.1. Scenario test for bi-temporality.

1 ###

2 # This scenar io t e s t s bi − t e m p o r a l i t y .

3 ###

4

5 # Setup phase

6 i n i t −add−node salespersonA

7 i n i t −add−node harvesterB

8

9 # Use c o n t r o l l e d c lock to manipulate t ime dur ing scenar io

10 i n i t −−use− con t ro l l ed −c lock

11

12 # Issue order a t t0

13 time −set 2022 −01 −01|13:00:00

14 cmd−order − issue salespersonA order1 s i t e 1 salespersonA

15

16 # Sync at t2

17 time −set 2022 −01 −01|14:00:00

18 cmd−sync salespersonA harvesterB

19

20 va l i da te −output Scenarios / Bi −Tempora l i ty / output −1. t x t query −issued −orders salespersonA

21 va l i da te −output Scenarios / Bi −Tempora l i ty / output −2. t x t query −issued −orders harvesterB

22

23 # Do v a l i d a t i o n s using t1 as v iewpo in t .

24 va l i da te −output Scenarios / Bi −Tempora l i ty / output −3. t x t query −issued −orders salespersonA 2022 −01 −01|13:30:00 2022 −01 −01|13:30:00

25 va l i da te −output Scenarios / Bi −Tempora l i ty / output −4. t x t query −issued −orders harvesterB 2022 −01 −01|13:30:00 2022 −01 −01|13:30:00

Listing D.2. Expected output (line 20).

1 GetCompletedOrdersQueryResult {

2 IssuedOrder { OrderId = order1 , I ssuer = salespersonA , occurredAt = 01/01/2022 13.00.00 , recordedAt = 01/01/2022 13.00.00 }

3 }

62

Listing D.3. Expected output (line 21).

1 GetCompletedOrdersQueryResult {

2 IssuedOrder { OrderId = order1 , I ssuer = salespersonA , occurredAt = 01/01/2022 13.00.00 , recordedAt = 01/01/2022 14.00.00 }

3 }

Listing D.4. Expected output (line 24).

1 GetCompletedOrdersQueryResult {

2 IssuedOrder { OrderId = order1 , I ssuer = salespersonA , occurredAt = 01/01/2022 13.00.00 , recordedAt = 01/01/2022 13.00.00 }

3 }

Listing D.5. Expected output (line 25).

1 GetCompletedOrdersQueryResult {

2 }

63

APPENDIX E: SCENARIO TEST FOR STABILITY

Listing E.1. Scenario test for stability.

1 #######################################

2 # This scenar io t e s t s i n f o rma t i on s t a b i l i t y .

3 ###

4

5 # Setup phase

6 i n i t −add−node salespersonA

7 i n i t −add−node harvesterB

8 i n i t −add−node harvesterC

9

10 # Use c o n t r o l l e d c lock to manipulate t ime dur ing scenar io

11 i n i t −−use− con t ro l l ed −c lock

12

13 # Order ’ order1 ’ issued by ’ salespersonA ’ i n

14 # node ’ salespersonA ’ to harvest ’ s i te1 ’ .

15 time −set 2022 −01 −01|13:00:00

16 cmd−order − issue salespersonA order1 s i t e 1 salespersonA

17

18 # Assing (t r a n s f e r ownership) or ’ order ’ a t

19 # node ’ salespersonA ’ to node ’ harvesterB ’

20 time −set 2022 −01 −01|13:05:00

21 cmd−order −assign salespersonA order1 harvesterB

22

23 # Do sync to get the order placed to harves te r

24 time −set 2022 −01 −01|13:10:00

25 cmd−sync salespersonA harvesterB

26

27 cmd−order −harvested harvesterB order1 salespersonA

28

29 # Sync nodes harvesterB and salespersonA

30 cmd−sync salespersonA harvesterB

64

31 cmd−sync harvesterC salespersonA

32

33 # Check completed orders (uses stab le −mode) , there

34 # should not be any , as A t h i n k s t h a t B does not

35 # yet know t h a t C knows about complet ion o f order .

36 # Note , \ i s not pa r t o f the syntax , j u s t a l i n e break .

37 va l i da te −output Scenarios / S t a b i l i t y / output −1. t x t \

38 query −completed −orders salespersonA

39

40 # Synchronize so Completion o f order1 i s s t a b i l i z e d ,

41 # as B gets i n f o rma t i on about what C knows , and can

42 # guarantee t h a t every node knows about the complet ion .

43 cmd−sync salespersonA harvesterB

44

45 # A now knows t h a t B knows about t h a t C knows order1

46 # i s completed .

47 # Note , \ i s not pa r t o f the syntax , j u s t a l i n e break .

48 va l i da te −output Scenarios / S t a b i l i t y / output −2. t x t \

49 query −completed −orders salespersonA

Listing E.2. Expected output (line 37) before completion of order is stabilized.

1 CompletedOrder { OrderId = order1 , Report = To ta l o f 0 logs :

2 }

3 }

Listing E.3. Expected output (line 48) after completion of order is stabilized.

1 GetCompletedOrdersQueryResult {

2 }

65

APPENDIX F: SCENARIO TEST FOR CONFLICT

DETECTION

Listing F.1. Scenario test for conflict-detection.

1 ###

2 # This scenar io t e s t s f o r c o n f l i c t de tec t i on .

3 ###

4

5 # Setup phase

6 i n i t −add−node salespersonA

7 i n i t −add−node harvesterB

8 i n i t −add−node harvesterC

9

10 # Use c o n t r o l l e d c lock to manipulate t ime dur ing scenar io

11 i n i t −−use− con t ro l l ed −c lock

12

13 # Order ’ order1 ’ issued by ’ salespersonA ’ i n node ’ salespersonA ’ to harvest ’ s i te1 ’ .

14 time −set 2022 −01 −01|13:00:00

15 cmd−order − issue salespersonA order1 s i t e 1 salespersonA

16

17 # Assing (t r a n s f e r ownership) or ’ order ’ a t node ’ salespersonA ’ to node ’ harvesterB ’

18 time −set 2022 −01 −01|13:05:00

19 cmd−order −assign salespersonA order1 harvesterB

20

21 cmd− i d e n t i f y − t ree harvesterB s i t e t ree0 1000 1000 spruce

22 cmd−cut −down harvesterB t ree0

23 cmd−cut −to − leng th harvesterB t ree0 tree0 −log1 1000 1100 6 2

24 cmd−cut −to − leng th harvesterB t ree0 tree0 −log2 1000 1100 6 2

25

26 cmd−sync salespersonA harvesterB

27 cmd−sync harvesterB harvesterC

28

29 # Both harves ters i d e n t i f i e s t ree1 . This causes concur rent update to the stream ’ tree1 ’ .

66

30 cmd− i d e n t i f y − t ree harvesterC s i t e t ree1 1000 1000 spruce

31 cmd− i d e n t i f y − t ree harvesterB s i t e t ree1 1000 1000 spruce

32 cmd− i d e n t i f y − t ree harvesterC s i t e t ree2 2000 2000 spruce

33

34 # Va l i da te t h a t c o n f l i c t i s detected .

35 va l i da te −output Scenarios / C o n f l i c t −Detec t ion / output . t x t cmd−sync harvesterB harvesterC

Listing F.2. Expected output (line 35).

1 C o n f l i c t a t t ree1 .

	Introduction
	Motivation
	Goals and Non-goals

	Background and Definitions
	Occasionally Connected System
	Properties of Operations
	Persistence
	Active Record and CRUD
	Replication and Consistency
	Conflict-free Replicated Data Types
	Immutability
	Event Sourcing
	Command Query Responsibility Segregation
	Domain-Driven Design
	Modeling Time
	Versioning
	Stability in Distributed Systems

	Methodologies
	Assumptions and Restrictions
	The Conceptual Model
	Proof of Concept

	The Conceptual Model
	Retroactive Updates
	Bi-temporal Event Sourcing

	Detecting Concurrent Updates
	Concurrency Detection Within a Single Event Store System
	Version Vectors for Detecting Concurrent Modifications

	Resolving and Avoiding Conflicts from Concurrent Updates
	Dynamic Ownership
	Conflict-free Replicated Data Types
	Priority Groups
	Human Assisted Resolution

	Information Stability for External Systems
	Stable Timestamp
	Stable History
	Stable History and Retroactive Updates

	Event Processors: Events as Inputs
	Event Processors: Rules for Persistence
	Event Processors: Ownership of Event Source

	Summary

	Proof of Concept
	Goals
	Overview
	Event Store
	Synchronization and Stability
	Concurrency Detection

	Framework
	Node
	Aggregates
	Projections
	Policies

	Case Study
	System model
	System Evaluation

	Summary

	Conclusions
	Summary of Results
	Known Problems and Future Research
	Limitations of Proposed Solutions
	Known Issues in Event Sourced Systems

	Conclusions

	References
	Implementation of Version Vector
	Implementation of Version Matrix
	Implementation of Event
	Scenario Test for Bi-Temporality
	Scenario Test for Stability
	Scenario Test for Conflict Detection

