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Abstract—DevOps practices are the de facto sandard when
developing software. The increased adoption of machine learning
(ML) to solve problems urges us to adapt all the current
approaches to developing a new standard that can take full
benefit from the new solution. In this work we propose a
graphical representation for DevOps for ML-based applications,
namely MLOps, and also outline open research challenges. The
pipeline aims to get the best of both worlds by maintaining
the simple and iconic pipeline of DevOps, yet improving it by
adding new circular steps for ML incorporation. This aims to
create an ML-based development subsystem that can be self-
maintained, and is capable of evolving side-by-side with the
software development.

Index Terms—MLOps, AIOps, Software Engineering, DevOps

I. INTRODUCTION

Companies are getting more and more interested in ap-
plying DevOps principles for Machine Learning (ML) based
software. DevOps brings people, processes, and tools together
to produce continuous values at high velocity [1], connecting
Development and Operations as a continuous pipeline.

Developing agile software based on ML requires different
steps compared to normal DevOps. The incorporation process
of an ML pipeline when developing software needs to be
carefully addressed so that the ML-based software system can
be assured of long-term maintainability and evolvability.

The goal of this paper is to define a clear pipeline when
practicing DevOps to ML-based software, namely MLOps.
Such a pipeline will provide essential guidelines when de-
veloping ML-based software starting from DevOps.

Therefore, we propose an extension of the DevOps pipeline,
adapted to MLOps. In this work we aim at highlighting
the diversification yet affinity when developing both software
and ML procedures essential for the creation of ML-based
software, providing a more comprehensive list of steps, dif-
ferentiating the steps required for the development of the ML-
specific code and the whole system development. Our work
differs from [2] in that we aim to give a high level overview
of the process.

Multiple works faced the problem of defining a new pipeline
capable of describing the process in a simple yet complete
way. Zhou et al. [3] verified the feasibility of building an
ML pipeline with CI/CD capabilities. In [4] and [5] multiple
challenges have been addressed when adopting MLOps. Such
challenges have been categorized in context and data and
educating for AI operations. John et al. [6] conducted a
literature review to present the state of the adoption of MLOps

in practice to derive and validate a framework for the identi-
fication of activity involved when adopting MLOps. Mäkinen
et al. [7] performed a survey with the goal of understanding to
what extent MLOps is needed in today’s ML operations. The
result of the survey showed that as we are moving towards
ecosystems where teams of developers are working closely in
ML development, there is an urge to define a clear MLOps
pipeline. The reasons behind this are the inability to simply
apply plug-and-play DevOps tools and principles, and the lack
of a definition of a full stack ML pipeline. Colantoni et al. [8]
defined a theoretical model to integrate ML into DevOps,
however the model does not propose a visualization of the
whole pipeline, nor a complete integration of the ML steps.

Researchers investigated different aspects of MLOps, but
did not provide a clear picture of the different processes
adopted for the ML and for the non-ML software processes.

In the remainder of this paper, we present our proposal of
MLOps representation, as well as open research challenges
towards a joint research plan on MLOps practices.

II. FROM DEVOPS TO MLOPS

The adoption of DevOps practices in software development
has become a requirement in most scenarios nowadays. The
reason behind this is not only related to the improved results
achieved, but also the culture created by the adoption of these
practices. In a world where the new mantra is be faster, be
more agile, DevOps fits perfectly in, due to its dynamic nature
based on continuous learning and improving.

The infinite DevOps loop aims to portray the role division
of application Developers (Dev) and the IT Operations (Ops)
teams in a singular team. The Dev is responsible for planning,
coding, building and testing while the release, deploy and
monitor are the tasks of the Ops. The rapid adoption of ML-
based software created a new figure: the ML developer. Such
figures exist and operate in parallel with the software developer
and therefore needs to be embedded in the DevOps pipeline.

III. THE EVOLUTION OF DEV

In this Section, we make our proposal for a new graphical
representation for MLOps (Figure 1). The introduction of ML,
does not interfere with the operations. Therefore, our proposal
mainly lies in the DEVELOPMENT cycle. The OPERATIONS
cycle is mostly unchanged from traditional DevOps (i.e., the
ML models might need to be updated in production with new
data collection [9])
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Fig. 1. MLOps pipeline.

The PLANNING phase covers everything that happens be-
fore the developers start writing code, including requirement
gathering and architectural design. While considering ML,
the planning refers to the identification of the problem to
be solved and the available data. Based on these, the most
appropriate data analysis approaches can be selected (e.g.,
classification or regression, supervised or unsupervised), and
suitable algorithms can be selected (e.g. Random Forest,
Deep Learning). In the case of supervised algorithms, a data
labelling step might be also needed.

In the CODING phase, both the system and the ML code
need to be implemented and then locally validated.

The VALIDATION, in the traditional DevOps, is usually
performed before committing the code, running tests locally.
The ML validation refers to the evaluation of the performance
of the ML model, with data not previously encountered. If the
validation proves that the ML-based approach is not suitable
for the data or for the algorithms, it is necessary to return
to the planning step to optimize the model to better tackle
the problem. Once the ML optimizations and local testing of
the system have been performed, the ML code needs to be
integrated into the system code.

The system BUILDING and TESTING phases are then per-
formed as in traditional DevOps.

IV. OPEN RESEARCH CHALLENGES

Our roadmap, towards an integrated MLOps process, in-
cludes several challenges that might be investigated within the
software engineering and the ML community. We started our
investigation [10] [5], highlighting the main software quality
issues of AI systems. In the future we aim at:

• Understand how MLOps is adopted in companies.
• Delineate what kind of problems MLOps practices may

be best suited for.
• Define MLOps by adapting the concepts, methods and

tools used in DevOps.
• Explore other fields of research where MLOps practices

can be performed (e.g. CVOps [11]).

V. CONCLUSIONS

The increased adoption of ML-based software generated
a demand for ML developers who need to perform tasks in
parallel to software developers.

In this paper we propose a better representation for MLOps,
including ML development steps into the traditional DevOps
practices. The MLOps pipeline focuses on the dualism be-
tween software and ML developers and their tasks. Compared
to normal DevOps we have a new block (validation) and those
related to plan and code are now field-specific. Moreover, the
validation blocks produce two extra loops (optimization and
debug) for the ML side and one for the software side (debug).

This work is part of a roadmap for the development of
MLOps practices that will be investigated collaboratively with
the ML and software engineering communities.
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