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Abstract

In this paper we continue our earlier investigations into the asymptotic behaviour of infinite systems of coupled differential
equations. Under the mild assumption that the so-called characteristic function of our system is completely monotonic
we obtain a drastically simplified condition which ensures boundedness of the associates semigroup. If the characteristic
function satisfies certain additional conditions we deduce sharp rates of convergence to equilibrium. We moreover address
the important and delicate issue of the role of the infinite system in understanding the asymptotic behaviour of large
but finite systems, and we provide a precise way of obtaining size-independent rates of convergence for families of
finite-dimensional systems. Finally, we illustrate our abstract results in the setting of the well-known platoon problem.
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1. Introduction

In this paper we continue and expand on our earlier
investigations [1, 2] of infinite coupled systems of ordinary
equations of the form

ẋk(t) = A0xk +A1xk−1(t), t > 0, k ∈ Z, (1)

subject to initial conditions for xk(0), k ∈ Z, and we also
consider one-sided systems of the form{

ẋ1(t) = A0x1(t), t > 0,

ẋk(t) = A0xk(t) +A1xk−1(t), t > 0, k ≥ 2,
(2)

subject to initial conditions for xk(0), k ∈ N. Here the
unknown functions xk take values in Cm for some m ∈ N
and A0, A1 are m × m matrices. In the one-sided case
(2), the dynamics of the agent corresponding to k = 1 is
independent of the others, so this agent can be thought of
as the “leader”. Indeed, systems of this type, which are
sometimes referred to as spatially invariant systems, arise
naturally in so-called platoon problems in control theory,
where each xk describes the state of an agent in an infinite
vehicle platoon, and the aim is to choose the matrices A0,
A1 in such a way that certain control objectives are met in
the large-time limit t→∞; see [3, 4, 5, 6, 7]. We mention
that most of the early work in this area is restricted to
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the `2-setting, in which one may use certain results from
Fourier analysis. A simple but important special case of
a platoon model arises in the so-called robot rendezvous
problem [8, 9, 10], and it was in the context of this problem
that the authors of [8, 9] originally argued for the need to
study more general `p-norms, as was done in [1, 2] and as
will be done here.

Infinite systems of this type have been used as approx-
imations to large but finite systems, for instance in [11].
However, the precise relationship between the dynamical
properties of the infinite system and those of its truncated
versions is a highly delicate matter, as has been pointed
out for instance by Ruth Curtain and her collaborators
in [12, 3, 13]. In particular, each finite truncation of an
infinite system will typically be uniformly exponentially
stable even when the corresponding infinite system is not.
As one of our main new contributions we present rates
of convergence for large finite systems which are uniform
with respect to the size. More specifically, for a class of
finite systems which are exponentially stable but without
a uniform stability margin we obtain optimal subexponen-
tial rates of convergence which are independent of the size
of the system.

As in our previous work [1, 2] we impose certain nat-
ural standing assumptions in order to make the model
amenable to the techniques from semigroup theory. Most
importantly, we assume throughout that A1 6= 0 and that
there exists a rational function φ such that

A1R(λ,A0)A1 = φ(λ)A1, λ ∈ ρ(A0). (3)

As discussed in [1], in this case the set of poles of φ is
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contained (perhaps as a strict subset) in the set of eigen-
values σ(A0) of A0, and moreover |φ(λ)| → 0 as |λ| → ∞.
We call the function φ the characteristic function of our
system. Systems admitting a characteristic function arise
in numerous applications. For instance, a characteristic
function may be found whenever A1 has rank 1.

In Section 2 we consider the abstract Cauchy problem
associated with our infinite system. We focus here on the
one-sided case, which was not treated in [1, 2]. Building on
our earlier work, we first develop a detailed spectral the-
ory of the system generator, before presenting as one of
our first main results, Theorem 2.7, a new and drastically
simplified sufficient condition for the associated semigroup
to be bounded in the important special case where the
characteristic function φ is completely monotonic. In The-
orem 2.11 we present a detailed description of the quan-
tified asymptotic behaviour of the infinite one-sided sys-
tem, and as another of our main results we show in The-
orem 2.14 that one obtains an even sharper (and indeed
optimal) rate of convergence to equilibrium under certain
additional assumptions on φ. We illustrate our abstract
results by providing examples in which φ satisfies the dif-
ferent hypotheses, and we moreover illustrate how the im-
provements in the present paper over [1, 2] carry over to
the two-sided case considered there. Then, in Section 3,
we turn to the important question of the relation between
infinite systems and large but finite ones. We show in
Theorem 3.3 that there is a precise sense in which an un-
derstanding of the infinite system can lead directly to rates
of decay of truncated systems which are uniform with re-
spect to the size of the finite system. This important new
result follows from a simple but powerful abstract result
about families of semigroups. Finally, in Section 4, we il-
lustrate the power of our main results by applying them
to the concrete platoon model studied also in [1, 2].

Our notation is standard and largely follows that used
in [1, 2]. In particular, we write X∗ for the dual space of
a complex Banach space X, and we write KerA for the
kernel and RanA for the range of an element A of B(X),
the set of all bounded linear operators on X. Moreover,
we let σ(A) denote the spectrum of A ∈ B(X) and for
λ in the resolvent set ρ(A) = C \ σ(A) we write R(λ,A)
for the resolvent operator (λ − A)−1. We write σp(A) for
the point spectrum of A. Given A ∈ B(X) we denote
the dual operator of A by A∗, while the transpose of a
matrix A is denoted by AT . We use standard asymptotic
notation such as ‘big O’, and we write f(λ) � g(λ) as
λ → λ0 if both f(λ) = O(g(λ)) and g(λ) = O(f(λ)) as
λ → λ0. Finally, we denote the open right/left half-plane
by C± = {λ ∈ C : Reλ ≷ 0}, and we use a horizontal bar
over a set to denote its closure.

2. Infinite systems of differential equations

We focus here on the one-sided system (2), which was
not treated in our earlier works [1, 2]. We begin by refor-

mulating it as an abstract Cauchy problem of the form{
ẋ(t) = Ax(t), t ≥ 0,

x(0) = x0 ∈ X,
(4)

where X = `p(N,Cm) for 1 ≤ p ≤ ∞ and

Ax = (A0x1, A0x2 +A1x1, A0x3 +A1x2, . . . ) (5)

for x = (xk)k≥1 ∈ X, so that the system operator A is a
bounded linear operator on X. Here and in what follows
we endow X = `p(N,Cm) with its natural Banach space
norm, using the Euclidean norm on Cm. In particular, X
is a Hilbert space if and only if p = 2.

2.1. Spectral properties of the system operator

We begin by investigating the spectrum of the operator
A defined in (5). The following result may be viewed as
an analogue in the one-sided setting of [1, Theorem 2.3].
Here and in what follows we let

Ω+
φ = {λ ∈ ρ(A0) : |φ(λ)| ≥ 1}. (6)

Later on, when we consider the two-sided case, we shall
also consider the set Ωφ = {λ ∈ ρ(A0) : |φ(λ)| = 1}.

Proposition 2.1. Let m ∈ N and 1 ≤ p ≤ ∞, and
consider the operator A on X defined in (5). Then
σ(A) = σ(A0) ∪ Ω+

φ and σp(A) ⊆ σ(A0). Moreover,
Ran(λ−A) 6= X for all λ ∈ σ(A), and Ran(λ−A) is dense
in X if and only if λ ∈ ρ(A0), |φ(λ)| = 1 and 1 < p <∞.

Proof. If λ ∈ ρ(A0) and |φ(λ)| < 1, then it is straightfor-
ward to verify that the operator λ − A is invertible and
that its inverse is given for x ∈ X by

R(λ,A)x =

(
Rλxk +RλA1Rλ

k−2∑
`=0

φ(λ)`xk−`−1

)
k≥1

, (7)

where Rλ = R(λ,A0) for λ ∈ ρ(A0). Hence σ(A) ⊆
σ(A0) ∪ Ω+

φ . Further, it is straightforward to verify that
λ−A is injective whenever λ ∈ ρ(A0), so σp(A) ⊆ σ(A0).
We now prove the statements about the range of λ−A for
λ ∈ σ(A0) ∪ Ω+

φ , which will complete the proof. First, if

λ ∈ σ(A0) and if y1 ∈ Ker(λ−AT0 )\{0} then the sequence
(y1, 0, 0, . . . ), interpreted as an element of the dual space
X∗, lies in Ker(λ−A∗), and hence Ran(λ−A) cannot be
dense in X. Suppose now that λ ∈ ρ(A0). If |φ(λ)| > 1 and
if y0 ∈ Cm is such that RTλA

T
1 y0 6= 0 then the sequence

(φ(λ)−kRTλA
T
1 y0)k≥1, again interpreted as an element of

X∗, is easily seen to lie in Ker(λ−A∗), so Ran(λ−A) again
fails to be dense in X. If |φ(λ)| = 1 the same argument
carries over to the case p = 1, while for p = ∞ we may
proceed as in the proof of [1, Theorem 2.3] to obtain the
same conclusion. It remains to consider the case in which
|φ(λ)| = 1 and 1 < p <∞. We shall show that in this case
Ran(λ− A) is a proper dense subspace of X. To see that
Ran(λ − A) 6= X it suffices to observe that if y1 ∈ Cm is
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such that A1Rλy1 6= 0 then the sequence (y1, 0, 0, . . . ) ∈ X
does not lie in the range of λ−A. Let us identify X∗ with
`q(N,Cm), where q ∈ (1,∞) is the Hölder conjugate of
p and suppose that y = (yk)k≥1 ∈ Ker(λ − A∗). Then
(λ − AT0 )yk = AT1 yk+1 and a simple calculation yields
RTλA

T
1 yk = φ(λ)1−kRTλA

T
1 y1, k ≥ 1. Hence the vectors

zk = yk − φ(λ)1−ky1, k ≥ 1, lie in KerAT1 , and we have

(λ−AT0 )(zk + φ(λ)1−ky1) = φ(λ)−kAT1 y1, k ≥ 1. (8)

For k = 1 this becomes (λ − AT0 )y1 = φ(λ)−1AT1 y1, and
substituting this back into (8) shows that zk = 0 for all k ≥
1. Hence yk = φ(λ)1−ky1, k ≥ 1, so in order to have y ∈
`q(N,Cm) we must have y = 0. Thus λ − A∗ is injective,
and hence Ran(λ−A) is dense in X, as required.

Remark 2.2. Note that σp(A) may be strictly contained
in σ(A0). For instance, it is easy to see that if λ ∈ σ(A0) is
such that A1 Ker(λ−A0) 6⊆ Ran(λ−A0) then λ 6∈ σp(A).
On the other hand if λ ∈ σ(A0) and Ker(λ−A0)∩KerA1 6=
{0} then necessarily λ ∈ σp(A).

We now establish an important resolvent bound for the
operator A. The following result is a one-sided version of
[1, Proposition 2.5]. The proof is the same, except that the
formula for the resolvent in the two-sided case is replaced
by (7); we therefore omit it.

Proposition 2.3. Let m ∈ N and 1 ≤ p ≤ ∞, and con-
sider the operator A on X defined in (5). Let λ ∈ ρ(A0)
be such that |φ(λ)| < 1. Then λ ∈ ρ(A) and∣∣∣∣‖R(λ,A)‖ − ‖R(λ,A0)A1R(λ,A0)‖

1− |φ(λ)|

∣∣∣∣ ≤ ‖R(λ,A0)‖.

In particular, for λ0 ∈ ρ(A0) satisfying |φ(λ0)| = 1 we
have

‖R(λ,A)‖ � 1

1− |φ(λ)|
as λ→ λ0 in the region {λ ∈ ρ(A0) : |φ(λ)| < 1}.

We continue this section with the following impor-
tant observation. The proof is the same as that of [1,
Lemma 2.6] and is therefore omitted.

Lemma 2.4. Let m ∈ N and 1 ≤ p ≤ ∞, and assume that
σ(A0) ⊆ C− and that the set Ω+

φ defined in (6) is such

that 0 ∈ Ω+
φ ⊆ C− ∪ {0}. Then iR \ {0} ⊆ ρ(A) and there

exists an even integer n ≥ 2 such that 1− |φ(is)| � |s|n as
|s| → 0.

We call the integer n ≥ 2 appearing in Lemma 2.4 the
resolvent growth parameter associated with our system. In
the remainder of the paper we shall frequently assume that
the characteristic function is completely monotonic. Re-
call that a smooth function f : (0,∞) → R is said to be
completely monotonic if (−1)nf (n)(s) ≥ 0 for all s > 0 and
all integers n ≥ 0. Note that the class of all completely
monotonic functions is closed under taking sums, prod-
ucts and under multiplication by non-negative scalars. By

Bernstein’s theorem [14] a function is completely mono-
tonic if and only if it is the Laplace transform of a non-
negative finite Borel measure. We shall say that the char-
acteristic function φ of our system is completely mono-
tonic if (0,∞) ⊆ ρ(A0) and the restriction of φ to (0,∞)
is real-valued and completely monotonic. Note that when-
ever σ(A0) ⊆ C− then, by decomposing into partial frac-
tions, we see that the rational function φ may be written
as the Laplace transform of a non-zero smooth function
g : (0,∞)→ C which is a linear combination of terms hav-
ing the form t 7→ tneξt, t ≥ 0, for some n ∈ Z+ and some
ξ ∈ C−, and in particular the functions t 7→ tng(t) are
integrable over (0,∞) and φ(n)(0) = (−1)n

∫∞
0
tng(t) dt.

If φ in addition is completely monotonic, the function g is
non-negative and we have φ(n)(0) 6= 0 for all n ∈ N. The
following result complements Lemma 2.4. The statement
concerning completely monotonic characteristic functions
will be useful throughout the remainder of the paper.

Lemma 2.5. Suppose that σ(A0) ⊆ C−, that 0 ∈ Ω+
φ ⊆

C−∪{0} and that the restriction of the characteristic func-
tion φ to (0,∞) is real-valued. Then the resolvent growth
parameter nφ satisfies nφ = 2 if and only if φ′′(0) 6= φ′(0)2.
In particular, nφ = 2 whenever φ is completely monotonic.

Proof. The real-valuedness assumption ensures that
φ(n)(0) is real for all n ≥ 0, and by continuity of φ we
obtain φ(0) = 1. A Taylor expansion about s = 0 shows
that

|φ(is)| − 1 =
1

2
(φ′(0)2 − φ′′(0))s2 +O(|s|3), |s| → 0,

which gives the first claim. If φ is completely monotonic,
let g : (0,∞) → R be the non-negative function whose
Laplace transform is φ. By the first part, if nφ 6= 2 then∫ ∞

0

tg(t) dt =

(∫ ∞
0

t2g(t) dt

)1/2

.

Now φ(0) =
∫∞

0
g(t) dt = 1, so we have equality in

the Cauchy-Schwarz inequality applied in L2(0,∞) to the
functions t 7→ g(t)1/2 and t 7→ tg(t)1/2. Since the two
functions are non-collinear we obtain the required contra-
diction, and hence nφ = 2.

Remark 2.6. By considering Taylor expansions of higher
order one could similarly derive conditions on φ which en-
sure that nφ = 4, nφ = 6, etc. We focus here only on
the case nφ = 2 since in what follows we will primarily be
interested in characteristic functions which are completely
monotonic.

2.2. Boundedness of the semigroup.

In this section we provide a drastically simpler sufficient
condition than in [1] for the C0-semigroup (T (t))t≥0 gen-
erated by the system operator defined (5) to be bounded,
which is to say that supt≥0 ‖T (t)‖ < ∞. Our sufficient
condition relies crucially on the notion of complete mono-
tonicity introduced in the previous section.
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Theorem 2.7. Let m ∈ N and 1 ≤ p ≤ ∞, and suppose
that σ(A0) ⊆ C− and Ω+

φ ⊆ C−. Suppose further that the
characteristic function φ is completely monotonic. Then
the semigroup (T (t))t≥0 generated by A is bounded.

Proof. The proof of [1, Theorem 3.1], with only trivial
modifications to pass from the two-sided to the one-sided
case, shows that the semigroup (T (t))t≥0 is bounded pro-
vided that

sup
0<λ≤1

λ

1− |φ(λ)|
<∞. (9)

and

sup
n∈N

sup
λ>0

λn+1

n!

∞∑
`=1

∣∣∣∣ dn

dλn
φ(λ)`

∣∣∣∣ <∞. (10)

Note that in the condition given in [1] the sum in (10) be-
gins at ` = 0, which makes no difference, however, as this
additional constant term disappears after differentiating.
Since φ is assumed to be completely monotonic, the dis-
cussion preceding Lemma 2.5 shows that φ′(0) 6= 0. From
this (9) follows using a simple Taylor expansion argument.
We focus now on establishing (10). Since φ is assumed
to be completely monotonic, so is the restriction of φ(·)`
to (0,∞) for every ` ≥ 1. In particular, the sign of the
derivatives in (10) depends only on n, which allows us to
take the modulus outside the sum. What we need to show
is that

sup
n∈N

sup
λ>0

λn+1

n!

∣∣∣∣ dn

dλn
φ(λ)

1− φ(λ)

∣∣∣∣ <∞. (11)

Now the rational function λ 7→ φ(λ)(1 − φ(λ))−1 has no
poles in C+, and its only possible pole on the imaginary
axis is at λ = 0, which by (9) has order at most one. Thus
we may find a constant c ∈ C such that

φ(λ)

1− φ(λ)
=
c

λ
+ φ0(λ),

where φ0 is a linear combination of functions of the form
λ 7→ (λ− ξ)−k for ξ ∈ C−, k ∈ N. On the open right half-
plane the latter function agrees with the Laplace transform
of the bounded function t 7→ 1

(k−1)! t
k−1eξt, t ≥ 0. It fol-

lows for instance from Widder’s Theorem [15] that

sup
n∈N

sup
λ>0

λn+1

n!

∣∣∣∣ dn

dλn
φ(λ)

1− φ(λ)

∣∣∣∣
≤ |c|+ sup

n∈N
sup
λ>0

λn+1

n!

∣∣∣∣dnφ0(λ)

dλn

∣∣∣∣ <∞.
Hence (10) holds and the proof is complete.

Remark 2.8. As pointed out by a referee, in the last
part of the proof of Theorem 2.7 property (11) can al-
ternatively be verified using a minimal realisation for the
rational transfer function λ 7→ φ(λ)(1− φ(λ))−1.

Example 2.9. (a) If φ(λ) = ζ(λ + ζ)−1 for some ζ > 0
then φ is completely monotonic. Since products of

completely monotonic functions are completely mono-
tonic also functions of the form

φ(λ) =
ζ1 · · · ζm

(λ+ ζ1) · · · (λ+ ζm)
(12)

for some ζ1, . . . , ζm > 0 are completely monotonic.

(b) Consider the function

φ(λ) =
(a2 + b2)c

(λ+ c)(λ2 + 2aλ+ a2 + b2)
, (13)

where a, b, c > 0. Then φ has poles at λ = −c and
λ = −a± ib. Moreover, φ is the Laplace transform of
the function g defined by

g(t) =
(a2 + b2)c

(a− c)2 + b2

[
e−ct+(

c− a
b

sin(bt)− cos(bt)

)
e−at

]
,

and a simple argument shows that g(t) ≥ 0 for all t ≥ 0
if and only if a ≥ c. Hence, by Bernstein’s theorem, φ
is completely monotonic if and only if a ≥ c.

(c) By combining the examples given in (a) and (b) we
obtain complete monotonicity for many other rational
functions whose sets of poles consist of negative real
numbers and complex conjugate pairs with negative
real parts.

2.3. Asymptotic behaviour

We now study the asymptotic behaviour as t → ∞ of
the solutions x(t) = T (t)x0, t ≥ 0, of the abstract Cauchy
problem (4). The key ingredient needed in the proof of
Theorem 2.11 is the following asymptotic result, which
combines special cases of [16, Theorem 8.4] and [17, Propo-
sition 3.1]; see also [18].

Theorem 2.10. Let X be a complex Banach space and let
(T (t))t≥0 be a bounded C0-semigroup on X whose genera-
tor A is bounded and satisfies σ(A) ∩ iR = {0}. Suppose
moreover that

‖R(is, A)‖ = O(|s|−α), |s| → 0, (14)

for some α ≥ 1. Then

‖AT (t)‖ = O

(
log(t)1/α

t1/α

)
, t→∞, (15)

and if X is a Hilbert space then

‖AT (t)‖ = O(t−1/α), t→∞.

Returning now to our particular case, define

Y =
{
x0 ∈ X : lim

t→∞
x(t) exists

}
.

Furthermore, let S ∈ B(X) denote the right-shift operator
on X, defined by Sx = (0, x1, x2, . . . ), and let M ∈ B(X)
be defined by Mx = (A1A

−1
0 xk) for all x = (xk)k≥1 ∈ X.
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Theorem 2.11. Let m ∈ N and 1 ≤ p ≤ ∞. Suppose
that σ(A0) ⊆ C−, that 0 ∈ Ω+

φ ⊆ C− ∪ {0} and that φ is
completely monotonic. Then

Y =

{
x0 ∈ X :

∥∥∥∥ 1

n

n∑
k=1

φ(0)kSkMx0

∥∥∥∥→ 0 as n→∞

}
,

(16)
and Y = X if and only if 1 < p <∞. Moreover, ‖x(t)‖ →
0 as t→∞ whenever x0 ∈ Y . If x0 ∈ Y is such that∥∥∥∥ 1

n

n∑
k=1

φ(0)kSkMx0

∥∥∥∥ = O(n−1) as n→∞, (17)

then

‖x(t)‖ = O

(
log(t)|1/2−1/p|

t1/2

)
, t→∞. (18)

Finally, for 1 ≤ p ≤ ∞ and all x0 ∈ X we have

‖ẋ(t)‖ = O

(
log(t)|1/2−1/p|

t1/2

)
, t→∞. (19)

Proof. We merely outline the main steps of the proof since
it follows the same argument as given in [1, Section 4], with
the slight simplification that now KerA = {0} for 1 ≤ p ≤
∞. Note first that boundedness of the semigroup (T (t))t≥0

follows from Theorem 2.7. The key idea of the proof is to
establish first that Y coincides with the closure of RanA,
which can then be characterised as in (16) using results
from classical ergodic theory. The next step is to show that
the condition in (17) characterises elements which lie not
just in the closure of RanA but in RanA itself. We then
combine Proposition 2.3, Lemma 2.5 and Theorem 2.10 to
obtain rates of convergence for ‖AT (t)‖ as t → ∞. The
rates in (18) and (19) then follow by applying the Riesz-
Thorin interpolation theorem to improve the exponent of
the logarithm when p 6= 2.

Remark 2.12. The decay rate obtained for ‖AT (t)‖ as
t→∞ in the above proof, and hence the rates in (18) and
(19), are sharp except perhaps for the logarithmic factor.
Indeed, since ‖R(is, A)‖ � |s|−2 as |s| → 0 it follows from
[16, Corollary 6.11] that ‖AT (t)‖ ≥ ct−1/2, t ≥ 1, for some
c > 0; see also [1, Remark 4.11].

2.4. Improved rates for totally monotonic functions

It is known that the rates in (18) and (19) are sharp if
p = 2, and it was conjectured in [1, Remark 4.14(b)] that
the logarithmic factors in these estimates can in fact be
dropped for all values of p. We now show that this con-
jecture to be correct provided we replace the monotonicity
assumption on φ by a slightly stronger assumption. To this
end we introduce the concept of total monotonicity. We
say that a rational function φ is totally monotonic if there
exist ε > 0 and a non-negative sequence (an)n≥0 ∈ `1(Z+)

such that the function ψε defined by ψε(λ) = φ(ε−1(λ−1))
satisfies

ψε(λ) =

∞∑
n=0

an
λn+1

, |λ| ≥ 1.

In particular, any pole λ of φ satisfies |ελ + 1| < 1. The
function ψε may be viewed as a unilateral Z-transform of
the sequence (an)n≥0, which is a discrete analogue of the
Laplace transform. Suppose that φ is a rational function
which decays to zero at infinity, has poles ξ1, . . . , ξN ∈ C−
and admits the partial fraction decomposition

φ(λ) =

N∑
j=1

nj∑
k=1

Aj,k
(λ− ξj)k

, λ ∈ ρ(A0),

for some n1, . . . , nN ∈ N and Aj,k ∈ C. Then for ε > 0
sufficiently small to ensure that |εξj+1| < 1 for 1 ≤ j ≤ N
we have

ψε(λ) =

N∑
j=1

nj∑
k=1

( ε
λ

)k Aj,k
(1− λ−1(εξj + 1))k

=

∞∑
n=0

aε,n
λn+1

for |λ| ≥ 1, where

aε,n =

N∑
j=1

nj∑
k=1

Aj,k

(
n

k − 1

)
εk(εξj + 1)n−k+1, n ≥ 0.

The sequence (aε,n)n≥0 is summable, and hence the func-
tion φ is totally monotonic if and only if there exists a
sufficiently small ε > 0 such that aε,n ≥ 0 for all n ≥ 0.

For a given number ε > 0 let us say that a function
φ is ε-totally monotonic if it is totally monotonic and we
can choose the given value of ε in the definition of total
monotonicity. Observe that if a function φ is ε-totally
monotonic for some ε > 0, then φ is also ε0-totally mono-
tonic for all ε0 ∈ (0, ε). Indeed, suppose that φ is ε-totally
monotonic and let (an)n≥0 be as in the definition. Given
ε0 ∈ (0, ε) let β = ε0/ε. Then for |λ| ≥ 1 we have
|β−1(λ− 1 + β)| ≥ 1 and hence

ψε0(λ) = ψε

(
λ− 1 + β

β

)
=

∞∑
n=0

anβ
n+1

(λ− 1 + β)n+1

=

∞∑
n=0

bn
λn+1

, |λ| ≥ 1,

where

bn =

n∑
k=0

ak

(
n

k

)
βk+1(1− β)n−k, n ≥ 0.

In particular, the sequence (bn)n≥0 is non-negative and
summable with

∑∞
n=0 bn =

∑∞
n=0 an, so φ is ε0-totally

monotonic. Furthermore, the class of totally monotonic
functions is closed under taking sums, products and un-
der multiplication by non-negative scalars. Any totally
monotonic function is completely monotonic. Indeed,
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if φ is totally monotonic we may consider the function
g : (0,∞)→ C defined by

g(t) =
1

ε
e−t/ε

∞∑
n=0

an
n!

(
t

ε

)n
, t > 0,

where ε > 0 and (an)n≥0 are as in the definition of total
monotonicity. Then g is non-negative and integrable with∫∞

0
g(t) dt =

∑∞
n=0 an, and moreover

φ(λ) =

∫ ∞
0

e−λtg(t) dt, λ ≥ 0,

so by Bernstein’s theorem φ is completely monotonic. Al-
ternatively, one may simply differentiate term-by-term the
expression for φ(λ) = ψε(1 + ελ) when λ > 0 to verify di-
rectly that φ is completely monotonic.

Example 2.13. (a) If ζ > 0 then the function φ defined
by φ(λ) = ζ(λ+ζ)−1 is totally monotonic. Indeed, for
ε ∈ (0, ζ−1) we have

ψε(λ) =
εζ

λ− 1 + εζ
=

∞∑
n=0

εζ(1− εζ)n

λn+1
, |λ| ≥ 1,

so we may set an = εζ(1 − εζ)n, n ≥ 0. It follows
that functions φ of the form considered in (12) are
also totally monotonic.

(b) The function φ considered in (13) is totally monotonic
if and only if a > c. In particular, for a = c the func-
tion is completely monotonic but not totally mono-
tonic.

(c) As in Example 2.9(c) we may combine the examples
in (a) and (b) to obtain total monotonicity for a larger
class of rational functions φ.

We now sharpen Theorem 2.11 by showing that the log-
arithmic factors in (18) and (19) are not needed when
the characteristic function is totally monotonic. We more-
over assume that the characteristic function is of the form
φ(λ) = p0(0)/p0(λ), where p0 is the characteristic polyno-
mial of the matrix A0. In view of the fact that φ is of this
form in all of the examples we have considered, and in-
deed many examples which arise naturally in applications,
there is no serious loss of generality here. The improved
rate is achieved by appealing to a result of Dungey [19,
Theorem 1.2], which has previously been used in [2] for a
similar purpose.

Theorem 2.14. Let m ∈ N and 1 ≤ p ≤ ∞. Suppose that
σ(A0) ⊆ C− and that 0 ∈ Ω+

φ ⊆ C−∪{0}. Assume further
that φ is totally monotonic and that φ(λ) = p0(0)/p0(λ)
for all λ ∈ ρ(A0), where p0 is the characteristic polynomial
of A0. If x0 ∈ X is such that (17) holds then ‖x(t)‖ =
O(t−1/2) as t → ∞. Moreover, for 1 ≤ p ≤ ∞ and all
x0 ∈ X we have ‖ẋ(t)‖ = O(t−1/2) as t → ∞. Both of
these rates are sharp.

Proof. By Theorem 2.11 and the preceding discussion it
suffices to prove that ‖AT (t)‖ = O(t−1/2) as t→∞, not-
ing that optimality follows from Remark 2.12. Let ε > 0
and (an)n≥0 be as in the definition of total monotonic-
ity, and let ε0 ∈ (0, ε). We may assume that ε is suffi-
ciently small to ensure that |ελ+ 1| < 1 for all λ ∈ σ(A0).
We shall show that the operator B = εA + I is power-
bounded. It then follows from the implication (ii) =⇒ (v)
of [19, Theorem 1.2] (with n = 1) that the semigroup
(T0(t))t≥0 generated by ε0A satisfies ‖AT0(t)‖ = O(t−1/2)
as t → ∞, from which the result follows immediately.
Note that Bx = (B0x1, B0x2 + B1x1, B0x3 + B1x2, . . . )
for x = (xk)k≥1 ∈ X, where B0 = εA0 + I and B1 = εA1.
For |ελ+ 1| > 1 we have

|φ(λ)| = |ψε(ελ+ 1)| =
∣∣∣∣ ∞∑
n=0

an
(ελ+ 1)n+1

∣∣∣∣
<

∞∑
n=0

an = φ(0) = 1.

Since |ελ + 1| < 1 for all λ ∈ σ(A0), it follows from
Proposition 2.1 and the spectral mapping theorem that
σ(B) = εσ(A) + 1 ⊆ {λ ∈ C : |λ| ≤ 1}. A straightforward
calculation shows that B1R(λ,B0)B1 = ψε(λ)B1 for all
λ ∈ ρ(B0). Let us write Rλ for R(λ,B0) when λ ∈ ρ(B0).
Then from (7) we have

R(λ,B)x =

(
Rλxk +RλB1Rλ

k−2∑
`=0

ψε(λ)`xk−`−1

)
k≥1

for all x ∈ X and |λ| > 1. Let Γ be a circle centred on the
origin of radius greater than 1, oriented counterclockwise.
Then for x ∈ X and n ≥ 1 we have

Bnx =
1

2πi

∮
Γ

λnR(λ,B)x dλ

by the Dunford-Schwartz functional calculus for bounded
linear operators, and hence

Bnx = (Bn0 xk)k≥1 (20)

+

(
1

2πi

k−2∑
`=0

∮
Γ

λnψε(λ)`RλB1Rλxk−`−1 dλ

)
k≥1

.

By our assumption that φ(λ) = p0(0)/p0(λ) for λ ∈ ρ(A0),
where p0(λ) = det(λ − A0), we may find m ×m matrices
C0, . . . , C2m−2 such that

RλB1Rλ =
1

p0(ε−1(λ− 1))2

2m−2∑
j=0

Cjλ
j , λ ∈ ρ(B0).

It follows using (20) that

‖Bn‖ ≤ ‖Bn0 ‖+
1

2π

2m−2∑
j=0

‖Cj‖
|p0(0)|2

∞∑
`=0

∣∣∣∣∮
Γ

λn+jψε(λ)`+2 dλ

∣∣∣∣
(21)
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for n ≥ 1. For each ` ≥ 0 we may find a non-negative

summable sequence (a
(`)
n )n≥0 such that

ψε(λ)` =

∞∑
n=0

a
(`)
n

λn+`
, |λ| ≥ 1.

Note that a
(`+1)
n =

∑n
k=0 aka

(`)
n−k for all n, ` ≥ 0 and that∑∞

n=0 a
(`)
n = ψε(1)` = φ(0)` = 1 for all ` ≥ 0. It follows

from Cauchy’s residue theorem that

1

2π

∞∑
`=0

∣∣∣∣∮
Γ

λnψε(λ)`+2 dλ

∣∣∣∣ =

n−1∑
`=0

a
(`+2)
n−1−`, n ≥ 1. (22)

We now prove by induction that

n−1∑
`=0

a
(`+2)
n−1−` ≤

n−1∑
`=0

a
(2)
n−1−` ≤ 1, n ≥ 1. (23)

Note that the second inequality is straightforward, so we
focus on the first. The claim holds trivially for n = 1.
Suppose it holds for positive integers less than or equal to
some n. Then

n∑
`=0

a
(`+2)
n−` = a(2)

n +

n−1∑
`=0

a
(`+3)
n−1−`

= a(2)
n +

n−1∑
`=0

n−1−`∑
k=0

aka
(`+2)
n−1−`−k

= a(2)
n +

n−1∑
k=0

ak

n−1−k∑
`=0

a
(`+2)
n−1−`−k

≤ a(2)
n +

n−1∑
k=0

ak

n−1−k∑
`=0

a
(2)
n−1−`−k

≤ a(2)
n +

n−1∑
k=0

ak

n−1∑
`=0

a
(2)
n−1−`

≤ a(2)
n +

n−1∑
`=0

a
(2)
n−1−` =

n∑
`=0

a
(2)
n−`,

where the first inequality follows from the inductive hy-
pothesis, the second from the fact that the sequence
(a

(2)
n )n≥0 is non-negative and the third from the fact that∑∞
n=0 an = 1. Thus (23) holds. Using this in (22) shows

that the second term on the right-hand side of (21) is uni-
formly bounded for n ≥ 1. Since supn≥1 ‖Bn0 ‖ < ∞ as
a consequence of the spectral radius formula, we deduce
that B is power-bounded, so the proof is complete.

2.5. The two-sided case

In this section we consider the two-sided case (1), pre-
senting the corresponding versions of the results obtained
in the previous sections. We begin by rewriting the system
in the form of an abstract Cauchy problem as in (4), where
now X = `p(Z,Cm) for m ∈ N and 1 ≤ p ≤ ∞, and

Ax = (A0xk +A1xk−1)k∈Z, x = (xk)k∈Z ∈ X. (24)

As noted in Section 2.1, the results concerning the spec-
trum and the resolvent of the operator A in the one-sided
case are direct analogues of the results proved in [1, Sec-
tion 2] for the two-sided case, and we refer the reader to [1]
for these results. The main difference is that the role of Ω+

φ

is now played by the set Ωφ = {λ ∈ ρ(A0) : |φ(λ)| = 1}.
On the other hand, the use of monotonicity conditions

is new even in the two-sided case, so we summarise the
main statements in the following theorem.

Theorem 2.15. Let m ∈ N and 1 ≤ p ≤ ∞. Suppose
that σ(A0) ⊆ C−, that 0 ∈ Ωφ ⊆ C− ∪ {0} and that φ
is completely monotonic. Then the semigroup (T (t))t≥0

generated by A is bounded, and moreover

‖AT (t)‖ = O

(
log(t)|1/2−1/p|

t1/2

)
, t→∞.

Furthermore, if φ is totally monotonic and satisfies φ(λ) =
p0(0)/p0(λ) for all λ ∈ ρ(A0), where p0 is the characteris-
tic polynomial of A0, then ‖AT (t)‖ = O(t−1/2) as t→∞.
The latter rate is optimal.

The proof of this result uses exactly the same ideas as
were used in Theorems 2.7, 2.11 and 2.14 above, so we
omit it. Moreover, as in Theorems 2.11 and 2.14 above it
is possible to deduce from Theorem 2.15 statements about
rates of convergence to equilibrium of suitable orbits and
about rates of decay of the derivatives of orbits. The cor-
responding statements in the two-sided case are slightly
more involved because when p = ∞ orbits may converge
to non-zero steady states. We do not make these state-
ments precise here, instead referring the reader to [1, The-
orem 4.3], and to Remark 3.4 and Section 4 below.

3. Uniform behaviour of finite systems

In this section we use our results for infinite systems to
derive uniform estimates for large but finite systems. We
wish to obtain uniform asymptotic estimates for the semi-
groups (TN (t))t≥0 generated by the operators AN , N ≥ 2,
which are obtained as truncations of the operator A in
one of our infinite models of the form (1) and (2). These
uniform estimates can be used to study the asymptotic
properties of solutions x(t) = TN (t)x0, t ≥ 0, of the ab-
stract Cauchy problem{

ẋ(t) = ANx(t), t ≥ 0,

x(0) = x0 ∈ XN ,

as the size N grows large.
Consider first the one-sided model (2). For 1 ≤ p ≤ ∞

and m ∈ N, the natural truncations to consider involve the
operators AN , N ≥ 2, acting on the spaces XN = `pN (Cm)
of Cm-valued sequences of length N endowed with the p-
norm by

ANx = (A0x1, A0x2 +A1x1, . . . , A0xN +A1xN−1)
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for x ∈ XN . This case is rather simple and may be dealt
with at once. Indeed, for N ≥ 2 let us write JN : XN → X
for the embedding operator defined by JNx = y, x ∈ X,
where yn = xn for 1 ≤ n ≤ N and yn = 0 for n > N , and
let PN : X → XN denote the operator which truncates an
infinite sequence after its N -th entry. Then PNJN is the
identity operator on XN , and we have ‖JN‖ = ‖PN‖ = 1.
Observing that AN = PNAJN and TN (t) = PNT (t)JN ,
where (TN (t))t≥0 is the C0-semigroup generated by AN ,
we deduce that ‖ANTN (t)‖ ≤ ‖AT (t)‖, t ≥ 0, for all N ≥
2. In particular, if the characteristic function φ determined
by A0 and A1 is completely monotonic, if σ(A0) ⊆ C− and
if 0 ∈ Ω+

φ ⊂ C−∪{0}, then by (the proof of) Theorem 2.11

sup
N≥2
‖ANTN (t)‖ = O

(
log(t)|1/2−1/p|

t1/2

)
, t→∞.

The two-sided model (1) is much more delicate. Given
any integer N ≥ 2 the most natural truncations of the
infinite model are the circulant truncations, in which the
operator A defined in (24) is replaced by the operator AN
acting on XN = `pN (Cm) by

ANx = (A0x1 +A1xN , A0x2 +A1x1, . . . , A0xN +A1xN−1)

for x ∈ XN . We begin with an abstract result in the spirit
of [20].

Proposition 3.1. Let S be a non-empty countable set and
let XN , N ∈ S, be complex Banach spaces. For each
N ∈ S let (TN (t))t≥0 be a C0-semigroup on XN whose
generator AN satisfies σ(AN ) ∩ iR ⊆ {0}. Suppose more-
over that supN∈S ‖AN‖ <∞, that

sup
N∈S

sup
t≥0
‖TN (t)‖ <∞ (25)

and that

sup
N∈S
‖R(is, AN )‖ ≤

{
C|s|−α, 0 < |s| ≤ 1,

C, |s| ≥ 1,
(26)

for some C > 0 and α ≥ 1. Then

sup
N∈S
‖ANTN (t)‖ = O

(
log(t)1/α

t1/α

)
, t→∞, (27)

and if each of the spaces XN , N ∈ S, is a Hilbert space
then

sup
N∈S
‖ANTN (t)‖ = O

(
t−1/α

)
, t→∞.

Proof. Let X denote the `2-direct sum
⊕

N∈S XN . Then
X is a Banach space, and X is a Hilbert space if each of the
spaces XN , N ∈ S, is a Hilbert space. If BN ∈ B(XN ),
N ∈ S, and supN∈S ‖BN‖ < ∞, then B =

⊕
N∈S BN

is a bounded linear operator on X with norm ‖B‖ =
supN∈S ‖BN‖. For t ≥ 0 let T (t) =

⊕
N∈S TN (t). Then

(T (t))t≥0 is a C0-semigroup on X with generator A =⊕
N∈S AN , and by (25) the semigroup is bounded. It fol-

lows from (26) that σ(A) ∩ iR ⊆ {0} and that (14) holds.
Hence Theorem 2.10 implies (15), and that the logarithm
may be omitted if each XN is a Hilbert space.

Remark 3.2. Proposition 3.1 can be extended and gen-
eralised in a number of ways. In particular, by using more
general versions of Theorem 2.10 one may obtain variants
in which the operator A =

⊕
N∈S AN appearing in the

above proof is allowed to be unbounded; see also [20].

Our next theorem provides asymptotic estimates for the
semigroups generated by the circulant truncations AN ,
N ≥ 2, which are uniform in N . Here we again let
Ωφ = {λ ∈ ρ(A0) : |φ(λ)| = 1}.

Theorem 3.3. Let m ∈ N and 1 ≤ p ≤ ∞. Suppose
that σ(A0) ⊆ C−, that 0 ∈ Ωφ ⊆ C− ∪ {0} and that φ is
completely monotonic. For N ≥ 2 let AN be the circulant
truncation defined as above on XN = `pN (Cm), and let
(TN (t))t≥0 be the C0-semigroup generated by AN . Then

sup
N≥2
‖ANTN (t)‖ = O

(
log(t)|1/2−1/p|

t1/2

)
, t→∞. (28)

Furthermore, if φ is totally monotonic and φ(λ) =
p0(0)/p0(λ) for all λ ∈ ρ(A0), where p0 is the charac-
teristic polynomial of A0, then

sup
N≥2
‖ANTN (t)‖ = O

(
t−1/2

)
, t→∞. (29)

Proof. Let N ≥ 2 and suppose that x, y ∈ XN and λ ∈ C
are such that (λ − AN )x = y. Then (λ − A0)xk = yk +
A1xk−1, 1 ≤ k ≤ N . If λ ∈ ρ(A0), we therefore obtain

xk = Rλyk +RλA1xk−1, 1 ≤ k ≤ N, (30)

where Rλ = R(λ,A0) for brevity. Applying A1 to both
sides and using (3) we find after a straightforward induc-
tive argument that

A1xk =
1

1− φ(λ)N

N−1∑
`=0

φ(λ)`A1Rλyk−`

for 1 ≤ k ≤ N and λ ∈ C\Ωφ. It follows that σ(AN ) ⊆ Ωφ,
and from (30) we obtain the expression

R(λ,AN )x (31)

=

(
Rλxk +

1

1− φ(λ)N

N−1∑
`=0

φ(λ)`RλA1Rλxk−`

)
1≤k≤N

for all λ ∈ C \ Ωφ and x ∈ XN . The argument used in
[1, Theorem 3.1] with only very small modifications shows
that the semigroup (TN (t))t≥0 is bounded provided that
(9) holds and

sup
n∈N

sup
λ>0

λn+1

n!

N−1∑
`=0

∣∣∣∣ dn

dλn
φ(λ)`

1− φ(λ)N

∣∣∣∣ <∞. (32)

Moreover, if there is an upper bound in (32) which is in-
dependent of N , then we will in fact have shown that

sup
N≥2

sup
t≥0
‖TN (t)‖ <∞. (33)
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As shown in the proof of Theorem 2.7 above, condition (9)
holds by our assumption that φ is completely monotonic.
Since φ(λ) ∈ (0, 1) for all λ > 0, the same assumption
also implies that the restriction to (0,∞) of the function
λ 7→ φ(λ)`(1−φ(λ)N )−1 is completely monotonic for every
` ≥ 0 and N ≥ 2. Arguing once again as in the proof of
Theorem 2.7 we find that (32) reduces to (11), which is not
only independent of N but also satisfied, as was shown in
the same proof. Thus (33) holds. It moreover follows from
(31) that

‖R(is, AN )‖ ≤ ‖Ris‖+
‖RisA1Ris‖
1− |φ(is)|

, s ∈ R \ {0},

and hence by [1, Lemma 2.6], which is the two-sided ver-
sion of Lemma 2.4 above, and by Lemma 2.5 we see that
(26) holds for α = 2 and some C > 0. It now follows
from Proposition 3.1 and the Riesz-Thorin interpolation
theorem applied to the product semigroup appearing in
the proof of Proposition 3.1 that (28) holds. The final
statement follows from the argument used in the proof of
Theorem 2.14 applied to the product semigroup.

Remark 3.4. Recall from [1] that by differentiating (3)
and setting λ = 0 we obtain −A1A

−2
0 A1 = φ′(0)A1. Hence

if φ′(0) 6= 0 then A1A
−1
0 maps Ran(A−1

0 A1) bijectively
onto RanA1. We denote the inverse of this isomorphism
by L. Note that φ′(0) 6= 0 when φ is completely mono-
tonic, in which case we moreover have φ(0) = 1. It is then
straightforward to show that in the setting of Theorem 3.3
we have KerAN = {(y, . . . , y) ∈ XN : y ∈ Ran(A−1

0 A1)}
and that the projection PN : XN → XN onto KerAN along
RanAN is given by PNx = (LQx, . . . , LQx), x ∈ XN ,
where Q : XN → Cm is given by

Qx =
1

N

N∑
k=1

A1A
−1
0 xk, x ∈ XN .

For any N ≥ 2 and x ∈ XN we have

TN (t)x− PNx = TN (t)(x− PNx) = ANTN (t)y, t ≥ 0,

for some y ∈ XN , so Theorem 3.3 implies that ‖TN (t)x−
PNx‖ → 0 as t→∞ for all x ∈ XN , but it moreover pro-
vides a rate of convergence which is uniform in N subject
to the condition that the norms of the preimages y ∈ XN

are uniformly bounded.

We conclude this section with a simple example showing
that the uniform rates of convergence obtained in (3.3) are
in general best possible.

Example 3.5. Suppose that m = 1 and 1 ≤ p ≤ ∞, and
let A0 = −1 and A1 = 1. In this case, which arises in the
so-called robot-rendezvous model [8], all the assumptions of
Theorem 3.3 are satisfied, and the characteristic function
φ is given by φ(λ) = (λ+1)−1, λ ∈ C\{−1}. In particular,
φ is totally monotonic and of the form φ(λ) = p0(0)/p0(λ),
λ ∈ C \ {−1}, where p0 is the characteristic polynomial of

the ‘matrix’ A0, so by Theorem 3.3 we obtain the uniform
estimate (29). Now for each N ≥ 2 the matrix AN is a
circulant matrix whose spectrum satisfies σ(AN ) = {λ ∈
C : (λ+1)N = 1}, and hence the spectral mapping theorem
implies that

‖ANTN (t)‖ ≥ max
1≤k<N

∣∣e2πik/N−1
∣∣ exp

(
t (cos(2πk/N)− 1)

)
for t ≥ 0. Considering only the eigenvalue corresponding
to k = 1 and choosing tN = N2, it follows from a simple
estimate that

‖ANTN (tN )‖ ≥ ct−1/2
N , N ≥ 2,

for some constant c > 0, so (29) is sharp in this case even
though for each individual N ≥ 2 the truncated model
converges to its equilibrium at an exponential rate. In
fact, by Remark 3.4 the agents in the truncated models
always converge to the centroid of their initial positions.

In the corresponding one-sided model, a simple calcula-
tion shows that for p ∈ {1,∞} we have

‖ANTN (t)‖ ≥ tN−1

(N − 1)!
e−t, N ≥ 2, t ≥ 0,

and setting tN = N it follows from Stirling’s formula that

‖ANTN (tN )‖ ≥ ct−1/2
N , N ≥ 2,

for some constant c > 0. The proof of Theorem 2.14, or
alternatively a simple direct calculation, shows that the
infinite system satisfies ‖AT (t)‖ = O(t−1/2) as t→∞. It
follows that the method described at the beginning of the
section, of obtaining a uniform decay rate for the truncated
systems by comparing them to the corresponding infinite
system, is optimal in this case, at least for p ∈ {1,∞}.

4. Asymptotic behaviour in the platoon model

In this final section we apply the results of the previous
sections to the important example of the two-sided platoon
model, which has previously been studied for instance in
[5, 6, 7], and by the authors in [1, 2]. In the platoon model
we consider countably many agents, which we think of as
vehicles and which are indexed by k ∈ Z. The state vector
of agent k takes to form

xk(t) =

 yk(t)
vk(t)− v
ak(t)

 , k ∈ Z, t ≥ 0,

where yk(t) = dk − dk(t) denotes the discrepancy between
the target separation dk between agents k and k − 1 and
their actual distance dk(t) at time t, vk(t) is the velocity
of agent k at time t, v the target velocity of the entire
platoon, and ak(t) is the acceleration of agent k at time
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t. We take the system to evolve according to (1), where
m = 3 and the matrices A0, A1 are given by

A0 =

 0 1 0
0 0 1
−α0 −α1 −α2

 , A1 =

 0 −1 0
0 0 0
0 0 0

 .

Here the constants α0, α1, α2 ∈ C are thought of as con-
trol parameters. They capture how the agents adjust
their acceleration in response to their current state vec-
tor; see [1, Section 5] for further details. Since A1 has
rank one, condition (3) is satisfied and a simple calcu-
lation shows that the characteristic function of the sys-
tem is given by φ(λ) = α0/p0(λ), λ ∈ ρ(A0), where
p0(λ) = λ3 + α2λ

2 + α1λ + α0 is the characteristic poly-
nomial of A0. For the matrix A0 to satisfy σ(A0) ⊆ C−
we need the coefficients α0, α1, α2 to satisfy certain condi-
tions, and in particular we need α0 6= 0. As remarked in [1,
Remark 5.2(b)], it is possible for the semigroup (T (t))t≥0

generated by the system operator A to be bounded but
non-contractive, even when p = 2. Since φ′(0) = −α1/α0,
for the condition φ′(0) 6= 0 appearing in Remark 3.4 to
hold, and hence for there to be any hope of φ being com-
pletely monotonic, we moreover need α1 6= 0.

We obtain the following generalisation of [1, Theo-
rem 5.1] and [2, Corollary 5.1]. The key improvement here
is that we obtain boundedness of the underlying semigroup
and (almost) sharp rates of decay for much larger classes of
characteristic functions than could previously be handled.
We define

Y =
{
x0 ∈ X : lim

t→∞
x(t) exists

}
and we let S denote the right-shift operator on `1(Z) and
on `∞(Z). Statements (b) through (d) of the result are
consequences of Theorem 2.15, while part (a) follows from
the same arguments as in the proof of [1, Theorem 5.1].

Theorem 4.1. Let 1 ≤ p ≤ ∞ and consider the platoon
model. Suppose that α1, α2, α3 ∈ C are such that the char-
acteristic function φ is completely monotonic.

(a) We have Y = X if and only if 1 < p < ∞. More
specifically:

(i) If 1 < p < ∞ then Y = X and x(t) → 0 for all
x0 ∈ X.

(ii) If p = 1 and x0 ∈ X then x0 ∈ Y if and only
if the vector y0 = (yk(0))k∈Z ∈ `1(Z) of initial
deviations is such that∥∥∥∥ 1

n

n∑
k=1

Sky0

∥∥∥∥
`1(Z)

→ 0, n→∞, (34)

and if this holds then x(t)→ 0 as t→∞.
(iii) If p = ∞ and x0 ∈ X then x0 ∈ Y if and

only if there exists c ∈ C such that for y =
(. . . , c, c, c, . . . ) we have∥∥∥∥ 1

n

n∑
k=1

Sky0 − y
∥∥∥∥
`∞(Z)

→ 0, n→∞, (35)

and if this holds then x(t)→ z as t→∞, where

z =

. . . ,
 c
−α0c/α1

0

 ,

 c
−α0c/α1

0

 , . . .

 .

(36)

(b) (i) If 1 ≤ p <∞ and the decay in (34) is like O(n−1)
as n→∞ then

‖x(t)‖ = O

(
log(t)|1/2−1/p|

t1/2

)
, t→∞. (37)

(i) If p =∞ and the decay in (35) is like O(n−1) as
n→∞ then

‖x(t)− z‖ = O

(
log(t)1/2

t1/2

)
, t→∞. (38)

(c) For 1 ≤ p ≤ ∞ and all x0 ∈ X we have

‖ẋ(t)‖ = O

(
log(t)|1/2−1/p|

t1/2

)
, t→∞. (39)

(d) If the characteristic is totally monotonic, then we may
omit the logarithmic factors in (37), (38) and (39)
even when p 6= 2, and the resulting rates are optimal.

We may also use the platoon model to illustrate our
results on uniform rates of decay for large but finite cyclic
systems, as considered in Section 3. Note that in this case
the projection PN onto KerAN along RanAN for N ≥ 2
considered in Remark 3.4 is given by

PNx =

 cx
−α0cx/α1

0

 , . . . ,

 cx
−α0cx/α1

0


for x ∈ XN , where cx ∈ C denotes the centroid of the first
components of x ∈ XN .

Example 4.2. Let ζ1, ζ2, ζ3 > 0 and let α0 = −ζ1ζ2ζ3,
α1 = ζ1ζ2 + ζ2ζ3 + ζ3ζ1, α2 = ζ1 + ζ2 + ζ3. Then
σ(A0) = {−ζ1,−ζ2,−ζ3} and by Example 2.13(a) the
characteristic function φ is totally monotonic in this case.
By Theorem 2.15 we have ‖AT (t)‖ = O(t−1/2) as t→∞,
and by Theorem 3.3 the circulant truncations satisfy the
uniform estimate (29). Using Remark 3.4 we may deduce
a uniform rates of convergence to the steady states of the
growing circulant truncations, which are obtained by ap-
plying the operators PN , N ≥ 2, to the initial data.

Example 4.3. Let a, b, c > 0 and let α0 = (a2+b2)c, α1 =
a2+b2+2ac, α2 = 2a+c. Then σ(A0) = {−c,−a±ib} and
by Examples 2.9(a) and 2.13(a) the characteristic function
φ is completely monotonic if and only if a ≥ c and it is
totally monotonic if and only if a > c. In either case the
resolvent growth parameter is nφ = 2. By Theorem 2.15
we have

‖AT (t)‖ = O

(
log(t)|1/2−1/p|

t1/2

)
, t→∞, (40)
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for a = c and ‖AT (t)‖ = O(t−1/2) as t → ∞ when a >
c. We expect that the logarithmic term in (40) can be
omitted even when a = c and p 6= 2. Once again we may
study the uniform asymptotic behaviour of large circulant
truncations using Theorem 3.3 and Remark 3.4.
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