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Abstract The growing abundance of digitally available spatial, geological and
climatological data opens up new opportunities for agricultural data based
input-output modeling. In our study, we took a Convolutional Neural Net-
work model previously developed on Unmanned Aerial Vehicle (UAV) image
data only and set out to see whether additional inputs from multiple sources
would improve the performance of the model. Using the model developed in
a preceding study, we fed field-specific data from the following sources: near-
infrared data from UAV overflights, Sentinel-2 multispectral data, weather
data from locally installed Vantage Pro weather stations, topographical maps
from National Land Survey of Finland, soil samplings and soil conductivity
data gathered with a Veris MSP3 soil conducitivity probe. Either directly
added or encoded as additional layers to the input data, we concluded that
additional data helps the spatial point-in-time model learn better features,
producing better fit models in the task of yield prediction. With data of four
fields, the most significant performance improvements came from using all in-
put data sources. We point out, however, that combining data of various spatial
or temporal resolution (i.e., weather data, soil data and weekly acquired im-
ages, for example) might cause data leakage between the training and testing
data sets when training the CNNs and, therefore, the improvement rate of
adding additional data layers should be interpreted with caution.
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1 Introduction

The application of novel and performant deep learning techniques has seen
an increasing trend in the last few years in the domain of Smart Farming
and Precision Agriculture [6]. Multiple factors are at play: the abundance of
open access satellite system spatial data, availability of commercial unmanned
aerial vehicles (UAVs) mountable with external sensors, developments in the
soil sensor and camera sensor technologies and the constant need to optimize
the production of farms.

Convolutional Neural Networks (CNN), being a subset of deep learning,
have been utilized in recent studies on crop yield prediction [6]. The spatial
model architecture has been used in predicting cotton yield from RGB data
taken at close proximity [15], cereal crop yield prediction from mid-altitude
UAV RGB data [11], rice grain yield estimation [18] and crop yield prediction
using multisource inputs on patch-scale [4]. In [11] we compared intra-field
crop yield estimation performance with NDVI and RGB data from the earlier
and later part of the growing season with a variety of CNN configurations.
The focus of that study was to assess the generalization capability of a yield
prediction model with UAV RGB data.

1.1 Objectives

In this study, we examine the effect of additional field-related spatial or spatial-
like data on the intra-field crop yield prediction capabilities using data gath-
ered from the earlier half of the growing season of 2018 (weeks 21 to 26).
The objective of this study is to assess crop yield prediction capabilities with
the best CNN model composition from [11] by varying the input data con-
figuration. The focus of this study is to see whether additional data, such as
weather data, soil and ground information and open-access Sentinel-S2 data
would improve the point-in-time prediction performance compared to just us-
ing UAV-based RGB data. To limit the scope of the study, architectural and
hyperparameter tuning of the CNN model is not addressed here to better
isolate performance changes to data and the tuned out architectural and op-
timizer related hyperparameters were thus taken from [11].

2 Material and Methods

2.1 Data Acquisition

For this study, four crop fields were selected for data acquisition in the vicinity
of Pori, Finland (61◦29’6.5”N, 21◦47’50.7”E) for the growing season of 2018.
The field information is provided in Table 1. Following the conclusions of [11],
only data from the earlier half of the growing season was considered for UAV
and Sentinel-S2 data.
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Table 1 The fields selected for the study in the proximity of Pori, Finland. The thermal
time is calculated as the cumulative sum of temperature between the sowing and harvest
dates. Mean yield has been calculated from processed yield sensor data for each field.

Field
#

Size
(ha)

Mean yield
(kg/ha)

Crop
(Variety)

Thermal
time (◦C)

Sowing
date

1 7.59 5157.6
Wheat

(Mistral)
1316.8 14 May

2 11.77 5534.3
Barley
(Zebra)

1179.9 12 May

3 7.88 4166.9
Barley

(RGT Planet)
1127.6 16 May

4 7.24 6166.0
Oats

(Ringsaker)
1216.4 18 May

Table 2 General information of data sources and their original formats.

Source Type Resolution/Step Multitemporal

UAV Raster 0.3125 m/px Yes
Sentinel-S2 Raster [10,20,60] m/px Yes
Soil samples Vector 50 m No
Veris MSP3 Vector 20 m No
Topography Vector 2 m No
Weather Tabular - Yes
Yield Vector Varying No

The multisource input data for the fields consists of UAV-based RGB im-
ages, location data, multispectral Sentinel-2 [1] satellite data, sparsely collected
and analyzed soil samplings, machine-collected soil information, topography
information and local weather station data. General information about the
original data sources are given in Table 2. Some of the data were collected
during the growing season of 2018 either manually or automatically, while
other data were acquired within one year time difference from the aforemen-
tioned season. A total of 39 layers constitute the input data sets, while a single
layer, the crop yield, is used as the ground truth. These data are described
next and the data layers are numbered for further reference.

2.1.1 UAV

It has already been demonstrated that UAV-based RGB data from the first
half of the growing season works better than the data from the second half
of the growing season and better than NIR only in crop yield prediction [11].
The UAV data of this study has also been used in [10]. The images were
taken at average height of 150 meters with a minimum of three ground control
points for geometric calibration. Color correction was performed pre-flight and
illumination sensors were used for radiometric calibration. We selected UAV-
based RGB data acquired for the first weeks after sowing (weeks 21 to 26
of 2018). Thus, every imaged field has five distinct UAV RGB rasters in the
collected data set. The data were acquired with overfligths using a SEQUIOA
(Parrot Drone SAS, Paris, France) multispectral camera mounted on a Airinov
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Solo 3DR (Parrot Drone SAS, Paris, France) UAV. Field-wise orthomosaics
were constructed with Pix4D (Pix4D S.A., Prilly, Switzerland) software. UAV
data contains the following layers:

1. Red
2. Green
3. Blue

2.1.2 Sentinel-S2

The Sentinel-S2 satellite data for the fields was acquired from the Copernicus
Open Access Hub (European Space Agency, Paris, France). The data were
date-matched to UAV images during acquisition, prioritizing images where the
algorithmically determined cloud probability was lowest. Thus, five Sentinel-
S2 rasters with temporal spacing similar to the UAV data were selected for
the data set. With the abbreviated names of product layers in brackets, the
Level-2A Sentinel-S2 consists of the following layers:

4. Wavelength 0.443 µm (B01)
5. Wavelength 0.490 µm (B02)
6. Wavelength 0.560 µm (B03)
7. Wavelength 0.665 µm (B04)
8. Wavelength 0.705 µm (B05)
9. Wavelength 0.740 µm (B06)

10. Wavelength 0.783 µm (B07)
11. Wavelength 0.842 µm (B08)
12. Wavelength 0.865 µm (B8A)
13. Wavelength 0.945 µm (B09)
14. Wavelength 1.610 µm (B11)
15. Wavelength 2.190 µm (B12)
16. Aerosol optical thickness at 550 nm (AOT)
17. Scene classification layer (SCL)
18. Water vapour map (WVP)
19. Cloud probability (CLDPRB)
20. True color, red (TCIR)
21. True color, green (TCIG)
22. True color, blue (TCIB)

2.1.3 Soil samples

Soil samples were manually collected from the fields by ProAgria, an agro-
nomic counseling instution, and sent to a Eurofins (Eurofins Viljavuuspalvelu,
Mikkeli, Finland) laboratory for further analysis. Soil samples were collected
with 50 m steps so that a single sample represented an area of 50 × 50 m.
The samples were collected manually once during November 2018. Being point
vectors, the data were rasterized with the gdal warp program of the GDAL
utility [17]. Soil sample data contains the following layers:
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23. Calcium
24. Copper
25. Potassium
26. Magensium
27. Manganese
28. Phosphorus
29. Sulfur
30. Zink

2.1.4 Veris MSP3

To get a finer map of soil chracteristics, a MSP3 soil scanner (Veris Technolo-
gies, Salina, Kansas, USA) was used to map the fields at depths of 0-30 cm
and 30-90 cm. The measurements were performed during April and May of
2019. The MSP3 measures the soil’s electrical conductivity (EC), which is an
indicator of soil compactness, wetness and soil type proportions. Additionally,
the instrument measures the pH of the soil. Being irregularly spaced point
data initially, data had to be rasterized from point vectors. The rasterization
was done with the gdal warp program of the GDAL utility [17]. Each field
was measured once. Veris MSP3 data contains the following layers:

31. Shallow EC
32. Deeper EC
33. Ratio, (EC SH / EC DP)
34. Infra-red reflectance
35. Red reflectance
36. Soil pH

2.1.5 Topography

The National Land Survey of Finland conducts light detection and ranging
(LiDAR) based elevation mappings on a regular basis in Finland. This data
is openly available for anyone to download [2] and contains laser scanned
point-cloud data with approximately one point per 2 m2 [9]. The LiDAR data
set was acquired for each of the four fields. The LiDAR data were converted
from point-cloud data to spatial rasters using the ArcGIS (Esri, Redlands,
California, USA) software. During the conversion, the data were interpolated
to match UAV data data in terms of resolution. The topography data contains
only the following layer:

37. Elevation information

2.1.6 Weather data

Weather data were collected with two separately located Vantage Pro2 (Davis
Instruments, Hayward, California, USA) weather stations. As the fields con-
stitute two distinct clusters, a weather station was placed in the immediate
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vicinity of each field cluster. While the stations log multiple variables with a
time resolution of just minutes, we utilized accumulated daily statistics and
matched data to UAV acquisition dates. Thus, five weather data maps were
constructed for each field spacing matching the dates of the UAV data. The
weather data contains the following layers:

38. Cumulative temperature sum
39. Cumulative rain sum

2.1.7 Yield data

As the task of regression is that of supervised prediction, the training of the
CNN model requires information about the ground truth, the target values.
These were acquired during the harvest of 2018 via yield mapping sensor
devices attached to the harvesters, either with a CFX 750 (Trimble Navi-
gation, Sunnyvale, California, USA) or Greenstar 1 (John Deere, Molinde,
Illinois, USA). CFX 750 utilizes optical sensors to measure yield throughput
and moisture. Greenstar 1 utilizes a kinetic mass flow sensor to measure yield
throughput and a separate moisture sensor. The yield maps generated by the
mapping equipment were initially in the form of vector point-clouds. The ir-
regularly spaced points were filtered prior rasterization to contain only points
where the yield was between 1500 and 15000 kg/ha and the harvester speed
between 2 and 7 km/h, following the yield pre-processing methodology of [11].
Rasterization was then done by interpolating the yield data to form a raster
image.

2.2 Data Preprocessing

2.2.1 Interpolation

The first step after the acquisition of data was to harmonize the spatial resolu-
tion across multiple different sources. The UAV data were initially downsam-
pled to 0.3125 m/px, or 32 pixels per 10 meters. This is to match the method
of data processing in [11]. Main reasons are to limit the inputs to reasonable
size and to have the input dimensions conform to a power of 2 for GPU-based
computations. The coarser data, namely Sentinel-S2, soil samples, Veris MSP3,
elevation and yield data, required upsampling via interpolation to match this
resolution. The interpolation was done using the GDAL utility’s gdal grid

program with invdist:power=3:smoothing=20 interpolation algorithm. As
with the input data, also the target crop yield data were interpolated to UAV
matching resolution. Example results of interpolation are depicted in Figure 1.

2.2.2 Input Feature normalization

After interpolation, the next step was to normalize the data. While absolute
values could also be directly used, scaling the input values close to the magni-
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Fig. 1 Examples of input data interpolations on field-scale. (a) is the interpolated phosporus
map, (b) the interpolated calcium content in the field and (c) the pH map as measured by
the Veris MSP3 soil mapper.

tude of the model’s parameters (i.e. weights) helps the model converge faster.
Input layers were normalized using a function

dNORM = (d− µd)/(max(d)−min(d)), d ∈ D (1)

where d is a layer in the set of all layers D in the data set and dNORM is the
normalized layer. However, the target crop yield values were not scaled, akin
to [11].

2.2.3 Frame separation

The CNNs require input data to have fixed dimensions. Low number of fields
and the irregularities of field shapes led us to extract smaller, fixed dimension
frames from the field data. Following [11], we extracted overlapping 40 ×
40 m (128 × 128 px) frames with 10 m horizontal and vertical steps. Prior
extraction, all input and target data from various input sources were aligned in
terms of geolocation and resolution to ensure frame extraction from mathching
areas. Frames containing half or more valid pixels were included in data, while
those having less than half were discarded. This resulted in a total of 16375
input-target frames.

2.2.4 Data sets

Extracted samples were then divided into training, validation and test sets.
Training and validation sets were utilized during the training, while the test
set was set aside as the out-of-sample performance evaluation data set. As the
number of unique fields was low, we wanted to maximize the sample variability
the model sees during training. We first attempted to train the models with
data separated on a per-field basis with two fields for training, one for valida-
tion and one for testing. This led to the model overfitting to the training data
and poor generalization performance due to low training data set variabil-
ity. Similarly low performance was achieved with splitting fields to separate
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Table 3 Compositions of training, validation and test sets used to train and evaluate the
models.

Data set Weeks Frames Proportion

Training 21,23,25 7561 46.2%
Validation 24 2938 17.9%
Test 22, 26 5876 35.9%

training, validation and test sections. We thus decided then to divide the data
temporally to distinct training, validation and test sets according to the UAV
image acquisition week. The samples were then shuffled to eliminate spatial
autocorrelation in subsequent samples due to overlapping frame extraction.
Used weeks, sample counts and sample count proportions for separated sets
are given in Table 3.

2.3 Model Architecture

Convolutional neural networks, CNNs, are a subset of spatial model architec-
tures within the broader context of deep learning. CNNs excel in tasks, where
the inputs fed to the model are either images or image-like data, i.e. spa-
tial data [14,7]. While the inner workings of the CNNs has already been well
documented [11], we quickly review the operating principles of a CNN. The
architecture operates with layers, like many of the deep learning architectures.
Each layer is a combination of a convolution operation, which is often followed
by a pooling operation. At the heart of the model are the trainable filters of
the convolution operation, i.e. the kernels, which produce feature maps for
further use.

In our study, we implement and use the best performing CNN architecture
of [11]. The model consists of six convolutional layers, followed by two fully
connected (FC) layers. Convolutional layers consist of 2D convolutions, batch
normalization and non-linear activation with a rectified linear unit (ReLU).
First and last convolutional layers also employ max pooling with 2 × 2 kernel
to extract more robust features and reduce intermediate output data dimen-
sions. First five convolutional layers operate with 64 5 × 5 kernels and the
last convolutional layer with 128 5 × 5 kernels. The outputs of the last con-
volutional layer are then flattened to a single vector, which is then fed to two
1024 neuron FC layers, both having ReLU activation. Last FC layer outputs
the final prediction result. The model was implemented with PyTorch [12] and
trained with Skorch [16].

2.4 Training

To gauge the effects of multisource data on the crop yield prediction task
with spatial inputs, we performed trainings with four different input data
configurations. The data configurations and the input data sources included in
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Table 4 The different data configurations used for training distinct models. RGB Only
uses UAV RGB data only. No S2 uses UAV, soil, Veris MSP3, topography and weather
data. S2 Raw adds Sentinel-S2 raw wavelength band data to No S2. S2 Full adds calculated
Sentinel-S2 Level-2A product layers to S2 Raw. An X indicates the inclusion of an input
data source to a data configuration, while a dash indicates the exclusion.

Source Channels RGB Only No S2 S2 Raw S2 Full

UAV 1-3 X X X X
Soil 23-30 - X X X
Veris 31-36 - X X X
Topo 37 - X X X
Weather 38-39 - X X X
S2 bands 4-15 - - X X
S2 other 16-22 - - - X

Band count 3 20 32 39

them are further given in Table 4. To elaborate, the derived data configurations
were as follows:

– RGB only. As [11] was conducted with RGB data from UAVs only, we
wanted to make baseline performance evaluation with UAV RGB data
only. No other sources were included in this setting.

– No S2. Next we wanted to see the effects of soil and weather data on the
predictive performance. We thus included all other sources of data (UAV,
soil, Veris MSP3, topography and weather) but excluded the satellite data.

– S2 Raw. As Sentinel-S2 Level-2A products contain additional algorithmi-
cally generated layers, we wanted to see the effect of including just the raw
wavelength bands with other input data sources.

– S2 Full. The last setting was to use all data acquired for this study.

Because data were distinct from data used in [11], we initialized and trained
all models anew for each data configuration. To account for the effects of ran-
domized network parameter initialization, we trained 10 models per data con-
figuration, 40 trainings in total. We used Adadelta [19] as the optimizer, 0.58
for the learning rate, 0.001 for the weight decay and 0.9 for the Adadelta’s ρ co-
efficient as those were the best performing hyperparameters in [11]. Similarly,
we used early stopping with a patience of 50 stagnant epochs and continued
the training once. The models were trained with Nvidia Tesla V100 Volta and
Pascal architecture server GPUs in a distributed computation environment.

3 Results

The CNN models with distinct input data configurations were trained with
data of four unique fields. The model architectures, hyperparameters and the
training procedures were identical to [11]. As the aim of our study was to eval-
uate the effects of introducing multisource inputs to crop yield prediction, we
trained spatial yield prediction models with four distinct data configurations.
The data configurations are discussed in Section 2.4. As the training time loss
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Table 5 The test set performance of the same CNN architecture and hyperparameter con-
figuration with various data configurations. RGB Only is the baseline model. Out of the
configurations, the model performed best with all input data layers (S2 Full).

Data
Configuration

Test RMSE
(kg/ha)

Test MAE
(kg/ha)

Test MAPE
(%)

Test R2

-

RGB Only 1055.7 838.8 18.2 0.343
No S2 892.4 694.9 14.8 0.531
S2 Raw 461.0 340.9 6.94 0.875
S2 Full 364.1 274.3 5.18 0.922

function we used the mean squared error (MSE). Other loss metrics were also
calculated, including the square root of the MSE (RMSE), mean absolute er-
ror (MAE), mean absolute percentage error (MAPE) and the coefficient of
determination (R2). These metrics were not, however, monitored and neither
did they not influence model selection during training.

The baseline model using UAV RGB data only attained 1055.7 kg/ha test
RMSE, 18.2% test MAPE and 0.343 test R2. Out of all data configurations,
the best performance of 364.1 kg/ha test RMSE, 5.18% test MAPE and 0.922
test R2 was achieved using all input data presented in our study (S2 Full).
The performance results for all data configurations with the held out test data
set are given in Table 5.

To gain a better view into how the models train with distinct data pre-
dicted, we also examined the unseen test sample distributions of predicted
values against ground truth values, the true crop yields. With the data, the
baseline RGB Only model’s predictions resemble a Gaussian distribution cen-
tered around the mean 5140 kg/ha of true yield values. As more inputs are
introduced, the predicted distributions’ shapes align with the true values more
closely, expressing multi-modal peaks where the true values have them. The
test set distributions are depicted in Figure 2.

Fig. 2 Distributions of predictions against true yields with the holdout test set.
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Table 6 The relative performance of the models trained with distinct multisource input
data configurations to the baseline RGB Only model. The input data configurations are
defined in Section 2.4.

Data
Setting

Relative change from RGB Only
Test RMSE Test MAE Test MAPE Test R2

No S2 -15.5% -17.2% -18.7% +0.188
S2 Raw -56.3% -59.4% -61.9% +0.532
S2 Full -65.6% -67.3% -71.5% +0.579

4 Discussion and Conclusions

In this study, we evaluated the effects of using input data from multiple sources
on the task of spatial crop yield prediction. Using a CNN model architec-
ture developed for UAV RGB inputs from [11], we introduced additional data
from sources like soil samplings, Veris MSP3 soil scanner, topographical maps,
weather stations and Sentinel-S2 satellites to the model. We trained ten mod-
els for each distinct input data configuration: (1) a RGB Only baseline model,
(2) a No S2 multisource model with satellite data excluded, (3) a S2 Raw
multisource model with raw satellite band data included and (4) a S2 Full
multisource model with all input data. Out of each set of ten trained models,
we selected the models performing best. The model architecture and hyperpa-
rameters for the training were taken from [11] and left unchanged to constrain
the variability in performance to data only. Only thing varying between model
trainings, in addition to four distint input data source configurations, were the
initialized model weights.

The performance with larger number of fields using UAV RGB data has
already been extensively studied in our previous studies [11] and [10]. Thus,
training a model with only UAV RGB data provides a studied baseline to
which models trained with additional data can be compared against. The
best performing data configuration was S2 Full with 364.1 kg/ha test RMSE,
5.18% test MAPE and 0.922 test R2 using all 39 layers of input data for
each extracted frame. Compared to the baseline RGB Only model, the S2
Full attained 65.6% lower RMSE, 67.3% lower MAE, 71.5% better MAPE
and 0.579 higher R2 with the test set. Generally every model with multisource
inputs performed better than the baseline model. This is shown in Table 6.

Crop yield prediction with spatial data and spatial deep learning models
has seen an increase in the past few years [6]. Having been studied with a
variety of different architectures, from feed-forward networks to hybrid spatio-
temporal models, studies have also been conducted with CNN as the main
architecture. In [11], a single CNN model was developed to predict crop yields
from fields with varying crop types (wheat, barley and oat) from UAV images
collected of Finnish crop yields during 2017. Using smaller frames extracted
from ortho-images, the best performance was 484.3 kg/ha MAE and 8.8%
MAPE. Using soil nutrient data, seed rate, elevation maps, soil’s electrocon-
ductivity and satellite data in USA, [4] trained a CNN to predict crop yields
for nine fields. They report an average scaled MSE of 0.70 which translates to
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1145 kg/ha. [18] utilized RGB and multispectral data acquired with a UAV
from rice fields in China to predict rice yields with a composite CNN model on
field block scale. Feeding the multisource data to distinct, parallelized CNNs,
they report a rice yield prediction performance of 0.50 R2 and 26.6% MAPE.

As we had sufficient data overlap across multiple input sources and the
data were acquired from only four unique fields, objective multisource crop
yield prediction performance evaluation requires more care in interpreting the
results. Relative increase in performance from best performing UAV data uti-
lizing RGB only model to the best No S2 model with additional soil and
weather data was notably small. Largest improvements were gained with the
introduction of Sentinel-S2 data. Adding raw Sentinel-S2 bands to the RGB,
soil and weather data increased the performance by 40.8% RMSE, 42.2% MAE,
43.2% MAPE and 0.344 R2 from No S2. Thus, the increase in performance
with Sentinel-S2 is considerably higher than what was achieved with adding
soil, topography and weather data to UAV RGB data.

Data acquisition for remote sensing and multisource input data for smart
farming is generally laborous and resource intensive. While satellite data is
generated automatically, UAVs require semi-autonomous operation at best
and the collection of soil data requires extensive on-site manual labour. With
more data from a variety of sources a more extensive and representative study
can be conducted.

Another limitation stems from differences in spatial and temporal disper-
sion of different input data sources. UAV, Sentinel-S2 and weather data vary
temporally in the data we have used, whereas soil samplings, Veris MSP3 and
topographical maps do not. As our data was split temporally to training, vali-
dation and test sets, the latter are present in all of these data sets. On the other
hand, weather data varies only temporally and constitutes spatial rasters with
constant values corresponding to the time of UAV imaging. This means that
whether the data is split temporally or spatially, some layer or part of data
is always present in training, validation and test sets. As [13] point out, deep
learning models are able to implicitly learn linear and non-linear couplings
from data with correlations. This means that the deep learning models learn
sets of representative features from complex combinations of the inputs and
not from single input values on solitude. Furthermore, the performance gains
with UAV RGB data combined with temporally invariant soil and ground data
is trumped by the performance gains of data configurations using Sentinel-S2
data as additional inputs. This would suggest that the combination of the
inputs matters more than presence of distinct, invariant data in training, val-
idation and test sets. However, the concrete effects of simultaneous layer-level
data existence in training, validation and test data sets are presently unknown
to us and, thus, a subject of future research.

Regarding multisource data in the context of smart farming and crop yield
estimation, data itself is an evolving research topic. The use of multisource
inputs in remote sensing, while focusing on multispectral data acquired from
satellite systems orbiting the globe, has been extensively reviewed in [5]. The
use of multispectral data from UAVs and the prediction architectures thereof
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is also a developing topic [8]. Another topic related to spatial data is that of
autocorrelation [3]. To address autocorrelation of spatial frames in a future
study, the inclusion of pixel-wise location information, as suggested in [3],
should be sufficient to inform the deep learning model whether data similarity
is due to proximity or some other factor or combination of them.

In conclusion, our study indicates that increasing the number of input
data sources increases the performance of intra-field crop yield prediction. To
draw definite conclusions on the most optimal configuration of input data
sources more data is required. With more representative data, generalizable
conclusions are more warranted. As the data in this study focuses on a single
rowing season, a future plan is to study the generalization of a multisource
crop yield prediction model with multiple years of data. Yet in this study
the relative increase from baseline of using UAV RGB only as the input data
were notable. Consolidating UAV RGB data with soil and ground topology
data already somewhat improves the prediction performance, while largest
performance gains were gained from using Sentinel-S2 in addition to UAV
RGB, soil sampling, Veris MSP3 soil scanner, weather and topography data.
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