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ABSTRACT 
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Respiration monitoring provides health care professionals essential information about pa-
tients’ condition and can help diagnosing pulmonary diseases. The most reliable methods for 
assessment are obtrusive and include masks and can require performing manoeuvres that 
limit the usability with uncooperative patients like children or unconscious. In contrast, in hos-
pital wards respiration rate and effort are intermittently assessed only visually during rounds 
at patient rooms leading to poor frequency of recording. Hence, early signs of deterioration in 
condition are often missed. 

Bioimpedance have been studied as a continuous and unobtrusive method for respiration 
monitoring. The technique is based on differences in electrical properties of tissues. A small 
current is fed through the body and voltage across is measured. Respiration and cardiac func-
tions affect current flow and thus change the total impedance. Frequency of the applied current 
and geometry of the thorax cause also variation in the signal. When using bioimpedance to 
assess respiratory functions the method is called impedance pneumography. Despite of being 
an established and widely used method, there is ongoing research to improve its performance. 
One major challenge is its susceptibility to movement. However, signal processing algorithms 
advance all the time making development of wearable applications also possible.  

In this study, respiration is measured with bioimpedance and compared to signal from 
pneumotachometer. Two different electrode configurations were used to evaluate their perfor-
mance in different positions, in supine, sitting and walking stationary. The study protocol in-
cluded alternation between thoracic and diaphragmatic breathing at different depths. Respira-
tion rates were determined with peak detection, advanced counting and Fast Fourier Trans-
form (FFT) algorithms and their performances were compared.  

The results show that respiration rates were most accurately measured during supine po-
sition with Mason-Likar arm electrodes. No significant differences between thoracic and dia-
phragmatic breathing were seen whereas shallow breathing was occasionally hard to detect. 
The peak detection algorithm performed best having mean absolute error (MAE) of 0.47, 1.12 
and 1.23 breaths per minute (bpm) for lying, sitting and walking, respectively. However, MAE 
values of FFT method were not comparable to other methods in most of the cases.  

Comparison between electrode configurations is not straightforward, as the measurements 
were not made simultaneously. Also, the study involved only relatively young and healthy sub-
jects which are not the most abundant age group needing monitoring at hospitals. When con-
sidering patient monitoring applications, future studies should involve subjects with wider 
range of characteristics to obtain more definitive results about the performance of the imped-
ance pneumography. 
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Hengitystä monitoroimalla saadaan tärkeää informaatiota potilaan terveydentilasta sekä 
apua keuhkosairauksien diagnosointiin. Tällä hetkellä luotettavimmat menetelmät häiritsevät 
luonnollista hengitystä ja saattavat vaatia erityisiä hengityskuvioita, jotka eivät onnistu yhteis-
työkyvyttömiltä potilailta kuten lapsilta tai vakavasti sairailta. Toisaalta sairaaloiden osastoilla 
hengitystaajuutta ja hengityksen vaikeutta saatetaan ajoittain arvioida ainoastaan visuaalisesti 
tarkastuskierrosten aikana, jolloin tuloksien väli saattaa venyä pitkäksi eikä muutoksia huo-
mata ajoissa. 

Bioimpedanssimenetelmä tarjoaa keinon jatkuvaan hengityksen monitorointiin häiritse-
mättä sitä. Tekniikka perustuu kudosten erilaiseen kykyyn vastustaa sähkövirran kulkua, ja 
sen avulla voidaan saada monesta kehontoiminnosta tietoa. Hengityksen analysoinnissa me-
netelmästä käytetään nimitystä impedanssipneumografia. Käytännössä kehoon syötetään 
pieniamplitudista virtaa ja mitataan jännitettä mittapisteiden välillä. Hengityksen aiheuttamat 
muutokset vaikuttavat sähkövirran kulkuun ja näin ollen muuttavat impedanssisignaalia. Myös 
syötetyn virran taajuus sekä rintakehän muoto vaikuttavat havaittuun impedanssiin. Vaikka 
menetelmä on jo vakiintunut ja laajalti käytössä, tutkijat pyrkivät jatkuvasti parantamaan bioim-
pedanssin mittaustekniikkaa. Yksi menetelmän heikkouksista on sen alttius liikkeestä aiheu-
tuville häiriöille. Signaalinkäsittelymenetelmät kehittyvät kuitenkin jatkuvasti mahdollistaen 
myös tutkimuksen bioimpedanssin käytöstä puettavissa laitteissa.  

Tässä tutkimuksessa mitattiin hengitystä bioimpedanssin avulla ja verrattiin saatua signaa-
lia pneumotakometrillä kerättyyn referenssiin. Mittauksissa käytettiin kahta eri elektrodien si-
joittelua ja arvioitiin niiden toimivuutta eri asennoissa: selinmakuulta, istualtaan sekä paikal-
laan kävellessä. Mittausten aikana tutkittavat hengittivät eri syvyyksillä ja vaihtelivat pallea- ja 
rintahengityksen välillä. Saadusta datasta arvioitiin hengitystaajuutta peak detection, advan-
ced counting ja Fast Fourier Transform -algoritmeilla ja vertailtiin niiden toimivuutta. 

Tutkimuksessa havaittiin, että luotettavin arvio hengitystaajuudesta saatiin makuuasen-
nossa Mason-Likar käsielektrodeilta mitattaessa.  Pallea- ja rintahengityksen välillä ei havaittu 
merkittäviä eroja, kun taas pinnallista hengitystä oli ajoittain vaikea havaita impedanssisignaa-
lista. Peak detection -algoritmin suoriutui parhaiten käytetyistä metodeista. Tällä menetelmällä 
keskimääräinen absoluuttinen virhe oli 0.47 hengitystä minuutissa (bpm) makuulta, 1.12 bpm 
istualtaan ja 1.23 bpm kävellessä. FFT-algoritmilla ei saatu vertailukelpoisia arvoja hengitysti-
heydestä johtuen todennäköisesti liian suuresta ikkunan pituudesta. 

Elektrodipaikkojen vaikutusta on hankala arvioida suoraviivaisesti, sillä mittauksia ei tehty 
samanaikaisesti. Tutkimuksessa oli mukana ainoastaan suhteellisen nuoria ja hyväkuntoisia 
henkilöitä. Tällaisilta tutkittavilta mahdollisesti saadaan parempia tuloksia kuin ikääntyneiltä tai 
ylipainoisilta. Potilasmonitorisovelluksia ajatellen seuraaviin tutkimuksiin kannattaisi ottaa mu-
kaan ominaisuuksiltaan laajempi joukko tutkittavia, jotta saataisiin kattavampi näyttö impe-
danssipneumografian suorituskyvystä.  

 
 
Avainsanat: Impedanssipneumografia, Hengityksen monitorointi, Hengitystiheys, 
Elektrodikonfiguraatio 
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1. INTRODUCTION 

Respiration is one of the basic vital signs. It is essential part of a system maintaining the 

homeostasis within the body while providing oxygen for the tissues and excreting carbon 

dioxide. Nonetheless, respiration monitoring is frequently overlooked in hospitals even 

though a shift in patients’ condition cause more significant changes in respiration rate 

(RR) than in heart rate or blood pressure. For example, high respiratory rate has been 

found to precede severe illnesses such as cardiac arrest or other symptoms needing 

intensive care. (Cretikos et al. 2008) This implicates that constant monitoring of RR could 

provide critical information about how patients’ condition is proceeding. In best case sce-

nario, the worsening of the condition could be avoided when medical reviews can be 

performed earlier, thus lives and resources would be saved. 

 

There are various methods for respiration rate detection. These methods are based on 

for example pressure, temperature change, air flow or chest and abdominal movement 

or RR can be derived from other signals like electrocardiogram (ECG). Yet these meth-

ods have their drawbacks and often employ nasal cannulas or masks limiting the use in 

long-term monitoring. (AL-Khalidi et al. 2011) When measuring flow and respiration pat-

tern related parameters spirometry is deemed as the golden standard. However, this 

method partially blocks the airway thus affects the respiration pattern. To get valid results 

with spirometry, the patient needs to perform specific breathing manoeuvres. This re-

stricts the usability with uncooperative patients like children and unconscious or seriously 

ill patients. (Jeyhani, Vuorinen, Noponen et al. 2016) Thus, alternative methods have 

been studied.  

 

One promising option is impedance pneumography (IP), where lung functions are as-

sessed by measuring impedance changes due respiration. This non-invasive method 

does not require altering the normal breathing but is used during tidal breathing. IP has 

low costs and permit portable monitoring (Khalil et al. 2014). Hence, long-term measure-

ments can be done which enable more extensive assessment of lung functions to help 

diagnosing. However, bioimpedance measurement is not faultless either. IP is especially 
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prone to motion artefacts which bring also challenges to continuous monitoring. Respi-

ration with slow frequency or low amplitude can be readily left undetected with IP which 

is problematic especially in applications directed to hospital use as anaesthesia and opi-

oid based pain medication depress the ventilation. (Seppä 2014) When considering flow 

and volume measurements, IP requires individual calibration before use if absolute val-

ues are to be obtained. (Berkebile et al. 2021) Nonetheless, IP appears promising 

method for respiration monitoring and solutions to its weaknesses are researched. 

 

The objective of this study was to evaluate the effect of a subject posture and electrode 

placement to impedance signal and compare the performance of few processing algo-

rithms on RR detection. RR was measured in supine and sitting positions and during 

walking. Two different electrode configurations were used, and respiration was meas-

ured during diaphragmatic and thoracic breathing. The data acquisition was done with 

Biopac device (EBI100C), and a pneumotachometer is used to gather a reference signal. 

Consistency of the IP signal with reference is examined, and validity of the RR detection 

algorithm is assessed. 

 

First, in Chapter 2 the theory and relevance of bioimpedance measurements are pre-

sented. In addition, prior studies with different setups are described. The 3rd chapter de-

scribes the experimental setup and methods used in this study. In Chapter 4, the ob-

tained results are presented and observations about them are made. Chapter 5 con-

cludes the thesis work. 
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2. THEORETICAL BACKGROUND 

2.1 Fundamentals of bioimpedance 

Impedance is a basic electrical variable which describes the ability of a circuit to resist 

current flows. According to Ohm’s law  

𝑍 =
𝑈

𝐼
  , (1) 

where Z is impedance, U is voltage and I current, impedance is directly proportional to 

voltage. This same law applies in human body; if a current is fed through the body and 

the voltage across it is measured, a value for impedance is calculated as their ratio. 

(Seppä 2014, p. 9)  

 

The impedance seen in Equation 1 consists of two parts: resistance and reactance. As 

resistance tells how currents are opposed, reactance describes reactivity to current 

changes. Hence, impedance is defined as followed 

𝑍 = 𝑅 + 𝑖𝑋, (2) 

where R is resistance and X reactance of a component. Furthermore, reactance is de-

termined as 

𝑋 = 𝑋𝐶 − 𝑋𝐿 =
1

𝜔𝐶
− 𝜔𝐿, (3) 

where 𝑋𝐶 is reactance of a capacitor, 𝑋𝐿 reactance of an inductor, 𝜔 angular frequency, 

C is capacitance and L inductance. (Mansfield 2011, Chapter 17) From Equation 2 can 

be seen that impedance is an imaginary quantity. Total magnitude of the impedance is 

defined as an absolute value of Z as in Equation 4 and the phase angle can be calculated 

from basic trigonometric functions according to Equation 5. 

|𝑍| = √𝑅2 + 𝑋2 (4) 

𝜙 = arctan (
𝑋

𝑅
) (5) 

Also, what is notable is that the impedance of a resistor is constant but with capacitor 

and inductor frequency dependent. (Mansfield 2011, Ch. 17) 
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Tissues are generally electrically modelled as a parallel connection of a resistor and a 

complex of resistor and a capacitor connected in series (Brown et al. 1994). The equiv-

alent circuit for the model is illustrated in Figure 1. 

 

Figure 1. Equivalent circuit modelling electrical properties of tissue. Reproduced from 
Brown et al. 1994. 

 

In Figure 1 the resistor R represents the resistance of extracellular matrix, S the re-

sistance of intracellular path and C the capacitive properties of cell membranes (Brown 

et al. 1994). As earlier illustrated in Equation 3, the capacitor in the model causes the 

impedance of the body to be frequency dependent. 

 

The frequency of the alternating current sent to the body determines the behaviour of 

the current within the tissues. Impedance of a capacitor approaches infinity when the 

frequency decreases. This means that a low-frequency current will not pass the cell 

membranes but flows between the cells in the extracellular matrix. As the frequency in-

creases capacitive properties of the cell membrane lets current flow into the cells. These 

different paths for current flow are illustrated in Figure 2. (Grimnes & Martinsen 2015, 

Chapter 4) 
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Figure 2. Current paths in the tissues. Reproduced from Grimnes & Martinsen, 2015. 

 

Impedance is also affected by the geometry and resistivity of the specimen. Resistance 

of a conductive material can be calculated from following equation 

𝑅 = 𝜌
𝑙

𝐴
, (6)  

where ρ is resistivity of the material, l length and A the cross-sectional area. As human 

body is not a homogenous conductor but consists of different tissues, the resistivity is 

not constant between the measuring points. (Grimnes & Martinsen 2015, Chapter 4) Yet 

a linear relationship between lung volume and resistivity can be approximated (Nopp et 

al. 1997) enabling the use of bioimpedance measurements with respiration monitoring. 

The effect of cross-sectional area must be considered when deciding an electrode con-

figuration as the geometry of the chest brings intersubjective variation to the signal. 

(Grimnes & Martinsen 2015, Chapter 4). Also, differences in thorax geometry between 

genders cause inconsistencies with IP signal (Mlynczak & Cybulski 2017).  

 

Biological matters can have highly organized structures which can be seen for example 

in muscles, nerves and blood vessels. This kind of orientation influence the electric prop-

erties of the tissue such as the conductivity. Consequently, the IP signal can vary 

whether the current pass through the tissue parallel or perpendicular to the orientation, 

which can be changed with different electrode placements. However, this effect fades 

when the current frequency rises and thus is allowed to pass through the capacitive 

membranes. (Grimnes & Martinsen, 2015) 

 

Bioimpedance consists of two major bodily functions when measured transthoracic, car-

diogenic and respiratory part. (Seppä et al. 2011) These signals can give vital information 
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about both systems. However, when the respiratory system is being evaluated, the car-

diogenic signal is considered as interference. It is notable, that the signal does not orig-

inate solely from the cardiac and respiratory functions but consists of the effect of multiple 

tissues in the measurement area. Therefore, the effect of muscle activity on impedance 

during inspiration has also been studied. (Blanco-Almazán et al. 2019) Consequently to 

the contribution of chest wall movement, respiratory movement is seen in the impedance 

signal even if the airway is blocked and the subject only attempts to breathe (Ayad et al. 

2019). 

 

Cardiac functions affect the impedance signal through changes in the blood volume in 

the thorax (Seppä et al. 2011). Blood volume changes according to cardiac cycle, in 

other words, heartbeat. Due to blood’s high water and electrolyte content, blood has a 

low impedance (Grimnes & Martinsen 2015). As blood volume increases, total imped-

ance decreases (Brown et al. 1994).  

 

The respiratory signal in impedance measurements is originated from the increase in 

lung volume (Brown et al. 1994). During inspiration, the transthoracic impedance rises 

and correspondingly it decreases in expiration. The rise in resistance, and thus in imped-

ance, originate from the reduced proportion of electrically conductive matter per volume 

unit caused by lung dilation in inspiration. (Nopp et al. 1997) In addition, during inspiration 

and expiration the blood volume is distributed differently in the pulmonary bed (Weng et 

al. 1979). As the chest cavity expands and deflates the length of the signal path varies 

also in pace with ventilation (Jeyhani 2017). These variations are seen in the impedance 

signal, thus enabling the breathing to be analysed with IP.  

2.2 Importance of respiration monitoring 

Respiratory rate is one of the basic vital signs and is defined as breaths per minute (bpm). 

In general, 12–20 bpm is considered normal RR (Rolfe, 2019), and is regulated by central 

nervous system, more precisely the brainstem. The RR is adjusted accordingly to signals 

from specific mechano- and chemoreceptors monitoring force displacement in lung and 

chest walls and 𝑂2 and 𝐶𝑂2 levels and pH in the blood. Respiration is induced by muscle 

contraction of inspiratory muscles, primarily of the diaphragm, creating a negative pres-

sure to the thorax and thus air flow to the lungs. Depth of the breath is determined by 

muscle contraction as the diaphragm moves substantially more in deep breaths. 

Whereas the intercostal muscles cause the ribs to flare increasing the volume of the 

thorax. There are also accessory breathing muscles, like scalene muscles, that are not 
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active during normal breathing but enhance it if there is a need as during exercise or due 

to airway obstruction. Expiration, however, is passive in normal breathing, but the ab-

dominal and internal intercostal muscles activate when more efficient breathing is 

needed. (Koeppen & Stanton 2018) 

 

The gold standard for pulmonary function testing is spirometry. But it has some draw-

backs that limit its usability and accuracy. For example, the measuring system partly 

blocks the airway thus affecting respiration. In addition, the method isn’t suitable for am-

bulatory situations even though it could provide crucial information about patients’ con-

dition (Jeyhani, Vuorinen, Noponen et al. 2016) Thus other methods are needed.  

 

All the changes in respiration signal are not linked to respirational problems. As respira-

tion is an important physiological process maintaining the homeostasis, a shift in respir-

atory rate can be a sign of an imbalance of oxygen or carbon monoxide levels or acid-

base balance. When homeostasis is compromised and thus respiration changes, it can 

be used to predict worsening of the condition. (Rolfe, 2019) Hence more intensive care 

can be applied earlier and perhaps the most life-threatening conditions can be prevented. 

Cretikos et al. (2008) list many other severe conditions which have proven to be pre-

ceded by a rise in respiration rate. For example, respiration rate significantly rises before 

cardiac arrest and RR higher than 27 breaths per minute was discovered to be a leading 

sign before the heart stopped. High respiratory rate is also associated with high mortality 

rate. (Cretikos et al. 2008) 

 

Other clinically relevant parameters than respiration rate can also be determined from 

the bioimpedance signals. These parameters are usually defined from the flow curve and 

the shape of the waveform and tell more about the condition of the lungs. IP measure-

ment is insufficient to measure tidal flow in absolute values as millilitres per second with-

out subject-specific and posture-specific calibration because impedance change ΔZ com-

pared to volume change Δ𝑉 is individual and dependent on the position. (Berkebile et al. 

2021; Seppä et al. 2013) However, relative parameters do not require absolute values 

when only the ratio is inspected. The ratio, on the other hand, can be defined from flow 

or volume waveform shapes which are reproducible from IP measurements. These kinds 

of parameters include two extensively studied tidal breathing parameters; the ratio of 

volume at the peak expiratory flow to total expired volume (𝑉𝑃𝑇𝐸𝐹/𝑉𝐸) and ratio of the 
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time to reach the tidal peak expiratory flow to total inspiration time (𝑡𝑃𝑇𝐸𝐹/𝑡𝐸) (Seppä et 

al. 2010).  

 

Although, with the right placement of the electrodes a linear relationship between Δ𝑍 and 

Δ𝑉 can be obtained, thus enabling flow curve measurements with IP. Seppä et al. (2020) 

expressed a relationship between decreased expiratory variability index (EVI) and airway 

obstruction in children. Children’s tidal breathing is measured with IP during sleep and 

the correlation between flow-volume curves is studied. (Seppä et al. 2020) This finding 

is the basis of a clinical application of Ventica® used for diagnostics of asthma in infants. 

(Ventica, n.d.) Ventica® proves that IP measurements have clinical value when as-

sessing lung function. A loss of complexity in airflow has also been associated with 

COPD in adults (Dames et al. 2013). However, regular asthma medication like inhaled 

corticosteroids can alter the lung function, thus it changes the flow signal and should be 

noted in the analysis (Seppä et al. 2016).  

 

One challenge with respiration measurements is that the subject’s breathing can occur 

at different depths. The depth of breathing is affected by numerous factors, such as anat-

omy, obesity, posture and of course due pathological factors. (Seppä et al. 2013)  In tidal 

breathing, the volume of the lungs after the expiration is referred as the functional resid-

ual capacity (FRC). If the lung volume falls under FRC, the IP signal is discovered to 

distort and diminish. (Seppä 2014, p. 58 - 59) Moreover, it is found in studies that patients 

with higher body mass index (BMI) are more likely to breathe at low lung volumes. Hence, 

IP might be an insufficient method for measuring respiration changes. (Jones & Nzekwu 

2006; Seppä 2014, p. 58–59) However, Młyńczak et al. (2015) found the posture and 

subject variability to cause more significant variance to the signal than between normal 

and deep breathing could be seen. 

 

FRC levels are also affected by general anaesthesia making it harder to detect the res-

piratory functions with IP. Furthermore, the supine position also has a lowering impact 

on FRC. (Pino & Albrecht 2016, p. 69) In patient monitoring applications, the lack of 

ability to detect respiratory events during or after anaesthesia is a challenge. Postoper-

ative respiration monitoring is extremely important as opioid-induced ventilatory depres-

sion is a significant cause of morbidity and mortality after an operation (Ermer et al. 

2019). In a study by Ermer et al. (2019), volunteers were sedated, and low respiratory 
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rates were measured with different methods. IP did not perform optimally in those con-

ditions, thus more research about using the IP at low RR should be done. 

 

Administered drugs may influence the respiratory functions and therefore must be taken 

into account when analysing the respiratory signal. Substances like opioids are widely 

used pain medication and cause respiratory depression as an adverse effect in addition 

to the analgesic effects by activating special opioid receptors (Hill et al. 2018). Up to 46% 

of general care floor patients receiving opioids suffered an opioid-induced respiratory 

depression episode during a 24-hour median monitoring period in a study by Khanna et 

al. (2020). Patients with ≥1 respiratory depression episodes had approximately 3 days 

longer hospital stay thus producing more expenses. With continuous respiration moni-

toring, the incidents could be better predicted and thus the consequences could be di-

minished. (Khanna et al. 2020)  

2.3 Electrodes and their configurations 

Electrode locations depend on what is needed from the signal. The magnitude of the 

impedance caused by the respiratory functions depends highly on the electrode config-

uration (Jeyhani 2017). Configurations generally aim to optimize one prospect at the ex-

pense of other properties. In wearable applications also electrode area can limit the con-

figuration choices. However, a small distance between the electrodes diminishes the 

respiration-induced impedance changes and thus creates errors (Järvelä et al. 2022).  

 

Bioimpedance is usually measured using either bipolar or tetrapolar electrode configu-

ration. In two-wire measurement, the voltage over the measurement points is sensed 

through the same wires that are used to feed the current. Consequently, the resistances 

of the wires and contacts cause voltage drop too, thus the voltage difference between 

the leads is smaller than it would be across the test resistance alone. This limitation is 

emphasized if the test resistance is relatively small compared to the resistances of the 

wires. (Regtien et al. 2004, p.172-173)  

 

In a four-wire system, wire resistances will not cause as significant error as the current 

is fed through one set of leads, and another set is used for the voltage measurement. In 

a voltmeter the input impedance is ideally infinite, thus no current flows through voltage 

sensing leads and therefore no voltage drop occurs in the wires or contacts. In real life, 

the input impedance is large, but not infinite, hence a small current passes through the 
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sensing leads causing error in the measurement. (Regtien et al. 2004 p. 172-173) How-

ever, the error is substantially smaller than with two electrodes and can usually be ne-

glected. Though four-electrode IP is readily disturbed by motion and can exhibit higher 

noise levels, it is often the preferred method for IP measurements due to its accuracy 

(Tuohimäki et al. 2017; Seppä, Pelkonen et al. 2013). 

 

One of the advantages of IP is that the signal can also be gathered with the same elec-

trodes that are used to measure ECG (Jeyhani, 2017). Either standard 12-lead or EASI-

configuration can be used for IP. The standard 12-lead ECG consists of six chest elec-

trodes and three limb electrodes on both arms and left leg. The advantage of the EASI 

system is that it uses fewer electrodes, but the provided signal can be converted into 

standard 12-lead information. (Jeyhani, Vuorinen, Mäntysalo et al. 2016) Electrode 

placements for EASI and standard 12-lead configuration are shown in Figure 3. 

 

 

Figure 3. Electrode locations for A) EASI system and B) Mason-Likar standard 12-lead 
system. (Welinder et al. 2004) 

 

In some applications, a small distance between electrodes is needed. Especially in wear-

able devices this significantly enhances usability. (Jeyhani, Vuorinen, Noponen et al. 

2016) One possible placement requiring only a small area is the EAS configuration, a 

subset of the aforementioned EASI-configuration. The locations of electrodes E, A and 

S are the lower part of the sternum, V5 of standard ECG and manubrium, respectively. 

In Jeyhani, Vuorinen, Noponen et al. (2016) study, results show that the most accurate 

RR and least artefact affected electrode pair for impedance measurements is the S-A 

lead. In addition, the aforementioned lead also produced the highest amplitudes. Also, 

measuring the EIP with an electrode patch has been studied. Berkebile et al. (2021) used 
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a 5.1 cm x 5.1 cm patch located at the sternum to measure not only the respiration rate 

but also tidal volume with good results. Järvelä et al. (2022) presented a wearable mon-

itoring system using three electrodes. A “dual-vector” method was used to compute the 

impedance changes as the signal was measured between the chest electrodes and be-

tween one chest and the abdominal electrode. The method could detect RR accurately 

in reference to capnography and tachypnoea recognition was precise. (Järvelä et al. 

2022) 

 

Many applications require a high signal-to-motion artifact (SAR) ratio. The optimal elec-

trode configuration with respect to SAR varies with the activity. Lahtinen et al. (2009) 

presented that placing the electrodes on the flanks resulted in the highest SAR in the 

sitting position. The same configuration provided also high SAR results when the meas-

urement was done while the patient was running (Lahtinen et al. 2009). High SAR elec-

trode placement could enable the use of IP during sports and everyday life despite its 

sensitivity to motion artifacts. 

 

High linearity between impedance changes and lung volume changes is also one sought 

property of IP measurements. Especially when a pulmonary flow curve is to be estab-

lished, linearity is a desired property. A highly linear relationship is achieved by a four-

electrode system, placing the current feeding electrodes on the sides of the thorax 

whereas the voltage sensing electrodes are on the arms opposing the other electrodes. 

(Seppä et al. 2013) 

 

Even though placing the electrode around the thorax seems reasonable for respiration 

monitoring, it is not a necessity. Tavanti et al. (2021) presented a novel configuration of 

electrodes by placing them around the head. The purpose was to detect the volume 

changes in the pharynx to obtain the RR. The method was sufficient to establish reliable 

results also during physical activity. In addition, the electrode placement is suitable for 

wearable applications and long-term measurements. However, the experiment was per-

formed only on three people, thus more extensive research is required. (Tavanti et al. 

2021) 

 

In IP measurements, normal disposable Ag/AgCl electrodes are usually used. While they 

perform steadily and provide accurate results, these disposable electrodes irritate the 
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skin and thus are not optimal for long-term applications (Tuohimäki et al. 2017). There-

fore, interest towards textile-integrated electrodes has risen. Textile electrodes also im-

prove usability. In the study by Tuohimäki et al. (2017), textile and printed electrodes 

were compared with regular disposable electrodes in IP and ECG measurements. Espe-

cially the textile electrodes performed well regarding noise levels and were able to detect 

RR adequately. The electrodes were made of medical-grade nylon knit fabric and coated 

with silver. However, the study was executed only on one person thus wider generaliza-

tion of the performance of the electrodes with a more extensive group cannot be made 

based on that study. Nonetheless, the textile electrodes show a promising alternative in 

long-term applications. (Tuohimäki et al. 2017) 

2.4 Processing the respiratory impedance signal 

2.4.1 Signal pre-processing 

Different types of signal processing methods are needed to get the useful respiratory 

information from the raw data. However, some basic building blocks are similar in most 

of the studies. As the signal also contains the cardiogenic oscillation there are options 

for how to handle it while preserving the respiratory signal.  

 

Distinguishing the cardiogenic and respiratory parts of the signal is based on the fact that 

within their frequency spectrum most power is at the frequencies of heart rate (HR) and 

RR, respectively. As the HR is significantly higher than RR, usually at least two times 

higher, a simple low-pass filter can be used to attenuate the cardiogenic signal. One of 

this method’s drawbacks is that even though a major part of the respiratory signal is in 

fact at the lower frequencies, it contains also harmonic frequencies that extend to the HR 

frequencies. Thus, the two signals overlap. While this might not be a big problem when 

measuring only RR or tidal volume (TV), it is an important factor when measuring more 

complex parameters. These include for example long-term lung function assessments 

where valuable variation at higher frequencies could be lost if using a linear low-pass 

filter. (Seppä et al. 2011) Depending on the chosen RR detection method, the signal 

might need decimating in which case low-pass filtering is required to prevent aliasing 

(Fleming & Tarassenko 2007). 

 

Methods to attenuate the cardiogenic oscillations without altering the respiratory signal 

at higher frequencies have been studied. Consequently, more advanced respiratory pa-

rameters can be derived also from IP signal. One way to do this is to process the signal 
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with Savitzky-Golay (S-G) smoothing filter. While the S-G smoothing filter attenuates the 

cardiogenic signal, it is able to preserve the high-frequency information at the peaks of 

the respiration cycle. The performance of the filter is adjusted by finding the optimal 

frame size. (Seppä et al. 2010) Another method is introduced by Seppä et al. (2011) 

where a simultaneously measured ECG signal was used to recognize the cardiogenic 

part of the signal. 

 

Since the IP signal also contains the cardiogenic signal, algorithms for separating the 

respiratory and cardiac signals have been developed. These can be useful in ambulatory 

applications where the number of channels for measurements is limited. Thus, it is prac-

tical to gather as much physiological information as possible from one signal. (Lu et al. 

2019) 

2.4.2 Time domain respiration rate algorithms 

 

Respiratory rate detection can be divided into two categories: time domain and frequency 

domain estimators. (Jeyhani, Vuorinen, Mäntysalo et al. 2016) In the time domain, the 

signal is analysed in reference to time. Whereas in the frequency domain, the analysis 

is done in reference to frequency. Moreover, the time domain graph displays how the 

signal changes over time, but frequency domain graphs present how much of the signal 

is at a certain frequency range.  

 

Probably the most straightforward method is simple peak detection which is a time do-

main estimator. In this technique, local maxima are detected and their average distance 

in seconds was calculated. This value is multiplied by 60/𝑓𝑠, where 𝑓𝑠 is the sampling 

frequency. In peak detection, a minimum distance between the maxima must be deter-

mined. (Jeyhani, Vuorinen, Mäntysalo et al. 2016) The value sets the maximum RR that 

can be detected and might vary a little from one research to another which creates devi-

ation in the results. But this limit is usually significantly larger than the frequency of nor-

mal breathing. (Jeyhani, Vuorinen, Mäntysalo et al., 2016) Yet there are human-made 

decisions about the validity of the respiratory functions thus automated detection meth-

ods can produce more precise results (Schäfer & Kratky, 2008). The peak detection 

method performs best if the respiration signal is clear and no distortion is present 

(Jeyhani, Vuorinen, Mäntysalo et al. 2016). 
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To eliminate the human decisions about the minimum distance between observations 

and remove false peak values automated processes based on statistics have been de-

veloped. These counting methods define a threshold for defining a valid peak. In the 

original counting method, first all peaks are detected, and the third quartile of the obser-

vations is referred as 𝑄3 and the threshold is defined as 0.2 x 𝑄3. A part is considered 

as a respiration cycle if it fulfils the two following requirements: exactly one minimum 

below zero without any other extreme values in the region and the cycle starts and ends 

at maxima above the defined threshold. These strict requirements of the original counting 

method cause its drawbacks. They lead to ignoring cycles easily thus leaving substantial 

gaps in the signal. Also, valid respiration cycles are dismissed. (Jeyhani, Vuorinen, 

Mäntysalo et al. 2016; Schäfer & Kratky 2008) 

 

Schäfer & Kratky (2008) developed the advanced counting method to fix the weaknesses 

of the original counting method. In advanced counting, the threshold is defined with a 

similar method to the minimum distance between the maxima. The third quartile of the 

absolute values of the vertical distances of the minima and maxima multiplied by 0.1 

determines the threshold. Next, the pair of maximum and adjacent minimum with the 

smallest vertical difference is located. If the value is less than the threshold the pair is 

ignored. Furthermore, this process is iteratively continued until all consecutive maxima 

and minima are separated by at least the threshold value. With this method, a continuous 

signal without any gaps is obtained. From both methods, the reciprocal mean of the de-

tected cycle lengths is returned as the RR. (Schäfer & Kratky, 2008) 

 

Another time domain estimator is autocorrelation which is widely used in statistical anal-

ysis. To study the periodicity of a signal, the autocorrelation method compares the signal 

with itself. The autocorrelation function is defined as following 

𝑟(𝜏) = ∑ 𝑥(𝑛)𝑥(𝑛 + 𝜏)

𝑁−1−𝜏

𝑛=0

, (7)  

where 𝑥(𝑛) is the signal, N the number of samples and 𝜏 the lag. Autocorrelation is com-

monly utilized in medical applications when detecting repeated signal patterns. As the 

autocorrelation function possesses the same periodic features as the measured signal, 

the periodic functions of the signal can be examined with the help of the autocorrelation 

function (Jeyhani, Vuorinen, Mäntysalo et al. 2016). In addition, this method is effective 

also for eliminating random noise. The RR is obtained from the autocorrelation function, 
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where the lag of the first peak from the y-axis estimates the cycle length. The lag is then 

multiplied by 60/𝑓𝑠 which results the RR value. 

2.4.3 Frequency domain respiration rate algorithms 

 

Moving on to the frequency domain, Fast Fourier Transform (FFT) is widely used in lit-

erature to obtain which frequencies the signal contains. When using FFT, the signal is 

usually decimated to a lower sampling frequency. This step improves the resolution of 

the spectrum got as a result from the transform to the frequency domain. The RR is 

obtained from the spectrum as the highest peak in the determined range. (Jeyhani, Vuo-

rinen, Mäntysalo et al. 2016; Tavanti et al. 2021) 

 

Different kinds of autoregressive (AR) models are also used in literature to define RR 

from the impedance signal. All-pole AR models are statistical prediction models, where 

a sum of linearly weighted prior observations models the current value. In the frequency 

domain, poles of the AR model’s transfer function determine the spectral peaks. The 

higher the magnitude of the pole, the higher the magnitude peak in the spectrum is. The 

phase angle 𝜃 of a pole specifies the corresponding frequency f of the spectrum peak 

with the following relationship 

𝜃 = 2𝜋𝑓Δ𝑡, (8) 

where Δ𝑡 is the sampling interval. To enhance the spectral resolution at low frequencies 

the signal is decimated to a lower sampling frequency. (Fleming & Tarassenko 2007)  

 

There are different approaches to how a respiration pole can be chosen. Before analys-

ing the respiratory part, poles out of the expected respiration range are excluded (Flem-

ing & Tarassenko 2007). One possibility is to choose the respiration pole with the mini-

mum-angle-pole technique. Before selection, poles with a smaller magnitude than the 

95th percentile are discarded. Afterwards, the pole with the smallest angle represents the 

respiration pole and RR is calculated with Equation 8. (Jeyhani, Vuorinen, Mäntysalo et 

al. 2016) 

 

An alternative is to determine the RR with the maximum-magnitude-pole method 

(Jeyhani, Vuorinen, Mäntysalo et al. 2016). Since changes due to respiratory functions 

are a major component in the signal and other parts are attenuated by filtering, poles 
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representing the respiratory functions should have high magnitudes (Fleming & Tar-

assenko 2007). Hence, with this method the pole with the greatest magnitude is chosen 

to represent the respiration, and frequency is obtained from its phase angle.  

 

AR methods have their assets over FFT. AR models have a continuous spectrum with 

higher resolution and the signal is more stable for short periods. However, AR is only an 

estimate whereas FFT is the signal in the frequency domain. Though increasing the 

model order improves the accuracy of the AR estimate. (Gupta & Mittal 2016) On the 

other hand, AR models were found to perform poorly if the signal contains higher fre-

quency content either from respiration harmonics or movement artifacts. (Jeyhani, Vuo-

rinen, Mäntysalo et al. 2016) 

 

Even though there are various statistical parameters describing the quality of the pro-

cessing, the results are not comparable if they use different data sets. In addition, the 

best-performing algorithm may vary between different electrode configurations and 

measurement positions. However, in a study that compared all the aforementioned algo-

rithms on IP signal, the advanced counting method performed best compared to others 

in standing position and during walking. (Jeyhani, Vuorinen, Mäntysalo et al. 2016) Yet 

many of the studies measuring respiration with IP include a quite small group of subjects 

(under 20), thus results might vary from one research to another.  

 

Since IP measurements are susceptible to motion artefacts, it would be beneficial to 

recognize sections with large artifacts or otherwise poor-quality signal from the high-

quality regions. These kinds of signal quality indices (SQI) have been studied. SQI pro-

posed by Charlton et al. (2021) assessed the high-quality sections based on the duration 

of the valid breaths. In the high-quality region, the normalized standard deviation of 

breath duration should be < 0.25, 85% of the breath durations should be >0.5 or < 1.5 

times the median duration and over 60% of the segment should have valid breaths. In 

addition, individual breaths were compared to the average breath template of the as-

sessed segment. If the mean correlation coefficient was over 0.75 the segment was eval-

uated as a high-quality segment. However, SQI is not applicable to situations where a 

RR estimate is needed continuously. (Charlton et al. 2021) 
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3. RESEARCH METHODOLOGY AND MATERI-

ALS 

The research involved five subjects of which 2 males and 3 females. All subjects were 

informed about the study and written consents were obtained prior to the measurements. 

The subjects’ characteristics are presented in Table 1. All subjects had good general 

health. The impedance signal was recorded for 2 minutes in the supine position, 2 min 

in the sitting position and 2 minutes when walking in place. First, the subjects were told 

to breathe thoracically for 1 min so that in the first half, deep breaths were taken and in 

the latter part, the breathing was shallower. Then breathing was changed to diaphrag-

matic and the same variation in depth of the breathing was applied. The same breathing 

protocol was repeated in all positions with two different electrode placements. 

 
Table 1. Subjects’ characteristics 

 Mean ± standard deviation Range 

Age (years) 26.6 ± 9.0 21–42 

Height (cm) 168.6 ± 7.2 162–79  

Weight (kg) 70.0 ± 12.9 58–90  

Body mass index 24.5 ± 3.4 22.0–30.1 

 

The electrodes were first positioned on Mason-Likar (M-L) arm electrode locations and 

secondly at the V5 location of the standard 12-lead system and the corresponding place-

ment on the right side. The electrodes used in the measurement were Ambu® BlueSen-

sor L (L-00-S/25) electrodes, disposable standard Ag/AgCl electrodes with electrolyte 

gel to minimize the skin-electrode resistance.  
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Figure 4. Electrode locations, upper ones referred as M-L electrodes and the lower 
ones V5 electrodes 

 

The respiration was measured with two devices simultaneously. The IP data acquisition 

was done with Biopac EBI100C device. A test current of 400 μA with a frequency of 50 

kHz was used. The build-in filters of the Biopac device were used with a passband from 

0.05 Hz to 100 Hz. For the acquisition of signal, the sampling frequency was 500 samples 

per second. Secondly, a pneumotachograph (PNT) was used to collect a reference sig-

nal for the evaluation of the IP data.  

 

All signal processing was done in the MATLAB2022A program. Before running the res-

piration rate algorithms, the raw IP data was processed with a direct-form FIR lowpass 

filter with 0.6167 Hz stop-band frequency. Both IP and PNT volume data were filtered 

with 3rd order Butterworth high-pass filter with 0.06 Hz cut-off frequency to remove base-

line wandering. The IP volume signal was multiplied with a calibration factor which was 

calculated from a ratio of median breath volume in PNT and in IP. The respiration rates 

were detected with peak detection, advanced counting and FFT method. With peak de-

tection, the criterion was to have a minimum horizontal distance of 1.5 s, corresponding 

to 40 bpm. Before performing the FFT, the signal was filtered with 3rd order Butterworth 

filter with a cut-off frequency of 2 Hz to avoid aliasing as the signal was decimated to 4 

samples per second. For further analysis of the algorithms, the mean absolute error 

(MAE) and mean absolute percentage error (MAPE) were calculated from the signal. 

The MAE is defined as  
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𝑀𝐴𝐸 =
1

𝑁
∑|�̂�[𝑛] − 𝑦[𝑛]|

𝑁

𝑛=1

 (9) 

and MAPE  

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

�̂�[𝑛] − 𝑦[𝑛]

𝑦[𝑛]
|

𝑁

𝑛=1

∙ 100 %, (10) 

 

where �̂�[𝑛] is the RR estimate from the IP signal and 𝑦[𝑛] the RR from the reference. 

The final results were rounded up to prevent underestimation of the error. 
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4. RESULTS AND ANALYSIS 

The signal quality in different postures is assessed from the figures of the measured 

respiration signal over time. Figures that illustrate the conclusions are presented in the 

text and the figures of complete measurement of each subject can be found in Appendix 

A. For further analysis of the effect of posture and performance of RR detection algo-

rithms, the average RR in each posture is obtained with 3 algorithms and MAE and 

MAPE of the estimates are calculated. The MAE and MAPE results with M-L arm elec-

trodes are presented in Table 2 and Table 3, respectively and corresponding values with 

V5 electrodes in Table 4 and Table 5. 

 
Table 2. MAE results with M-L arm electrodes 

  Supine 
(bpm) 

Sitting 
(bpm) 

Walking 
(bpm) 

Total (bpm) 

Peak detection 0,32 1,23 1,49 1,01 

Advanced counting 0,44 2,28 3,28 2,00 

FFT 0,05 2,63 0,19 0,96 

 

Table 3. MAPE results with M-L arm electrodes 
 

Supine (%) Sitting (%) Walking 
(%) 

Total (%) 

Peak detection 2,83 7,23 6,92 5,65 
Advanced counting 2,96 12,83 15,71 10,50 
FFT 0,47 20,14 1,50 7,37 

 

Table 4. MAE results with V5 electrodes 
 

Supine 
(bpm) 

Sitting 
(bpm) 

Walking 
(bpm) 

Total (bpm) 

Peak detection 0,63 1,03 0,97 0,88 

Advanced counting 1,47 2,08 2,52 2,42 

FFT 0,38 1,93 0,15 0,82 

 

Table 5. MAPE results with V5 electrodes 
 

Supine (%) Sitting (%) Walking 
(%) 

Total (%) 

Peak detection 3,78 8,07 5,36 5,74 

Advanced counting 7,42 9,40 11,58 9,47 

FFT 3,73 12,93 1,27 5,98 
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4.1 Time-domain analysis of signal quality  

The quality of the signal varied notably between subjects and measurement phases. The 

subject's posture was changed after phase 2 and phase 4. The amount and magnitude 

of motion artefacts ranged from hardly noticeable (Figure 5) to vastly distorting (Figure 

6). Subject 4 tried also to improve position during phase 4 in Figure 6, which can be seen 

as large motion artefacts.  During the walking phase, the filtering removed quite success-

fully the motion artefacts as the frequency of walking is mostly out of the frequency range 

of respiration. Thus, the respiration signal was readable especially when deeper breaths 

were taken. Parts with shallower breathing were more sensitive to distortions which can 

be seen in Figure 6. 

 

The presented figures are divided into six phases corresponding to the following perfor-

mance 

1. Supine position, thoracic breathing 

2. Supine position, diaphragmatic breathing 

3. Sitting, thoracic breathing 

4. Sitting, diaphragmatic breathing 

5. Walking stationary, thoracic breathing 

6. Walking stationary, diaphragmatic breathing.  

Within each phase, the first half represents deep breaths and the latter half shallow 

breaths.  
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Figure 5. Breathing volume signal (blue) and corresponding amplitude scaled IP 
signal (red) of subject 5 measured with V5 electrodes 

 

Figure 6. Breathing volume signal (blue) and corresponding amplitude scaled IP 
signal (red) of subject 4 with M-L arm electrodes 
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No recurring or clear changes between thoracic and diaphragmatic breathing patterns 

were seen. This may be also affected by the difficulty of maintaining thoracic or diaphrag-

matic breathing throughout the whole measurement period. Neither the breathing depth 

was controlled which might explain why all measurements did not show as clear variation 

in the amplitude of the PNT-derived volume signal. However, with some subjects the 

amplitudes of the breath volume signal from IP were especially low in the region of the 

diaphragmatic breathing phase in the sitting position making the breaths harder to detect. 

This is illustrated in Figure 7, where phase 4 represents diaphragmatic breathing in the 

sitting position. In general, the periods of shallow breathing were noisier, and detection 

of individual breaths was harder, which can be seen for example in Figure 8.  

 

Figure 7. Breathing volume signal (blue) and corresponding amplitude scaled IP 
signal (red) of subject 1 with M-L arm electrodes 
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Figure 8. Breathing volume signal (blue) and corresponding amplitude scaled IP 

signal (red) of subject 4 with V5 electrodes 

 

Figures 5–7 illustrate how the performance of the calibration factor varied. In Figure 7, 

the volume of the IP signal agrees reasonably well with the reference volume at some 

parts of the measurement. Whereas in Figure 6, the IP signal fails to produce reliable 

estimates of the breath volumes. For time-domain analysis, the calibration factor was 

calculated from the whole data. If the ratio of PNT and IP amplitudes would remain con-

stant throughout the measurement, the calibration factor should have functioned better 

converting IP signal to volume. Hence, it can be stated that IP amplitude is not linearly 

dependent on the lung volume with either electrode configuration. However, the elec-

trode configurations used in this study did not aim for linearity but reliable RR detection 

and incomplete calibration did not preclude the RR detection.  

 

With subject 4, a substantial phase shift was obtained in the IP signal compared to the 

reference. However, as the measurement proceeds, the phase shift seems to normalize 

and the volume changes in IP and reference are simultaneous. The situation is presented 

in Figure 9. The cause of the phase shift is unclear and a similar phenomenon does not 

occur in other measurements. Further studies could include determining the prevalence 

and origin of the phase shift. 
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Figure 9. Breath volume signal (blue) and corresponding amplitude scaled IP signal 
(red) of subject 4 in supine position with M-L arm electrodes 

 

The study did not include periods of natural breathing. In any case, completely natural 

breathing is hard to maintain as concentrating on one's breathing can cause an alteration 

in breathing pattern. In addition, PNT as a reference method is problematic. Using a 

mask partially obstructs the airway, hence the breathing can be disturbed. Some airflow 

can pass also through the nose. However, reference is essential to reliably assess the 

performance of the technique and RR detection algorithms. 

4.2 Performance of algorithms  

 

For respiration rate detection, the data was divided into three parts according to subject 

postures. Thus, the parts with motion artefacts from changing the posture were excluded 

from the calculations. Manual exclusion of motion artefacts affects positively MAE and 

MAPE results but diminishes their applicability to continuous measurements. In continu-

ous measurements, the motion artefacts would cause unreliableness to the results which 

would have to be considered in practical solutions. However, the removal of low-signal 

quality sections is somewhat comparable to the operation of SQI (Charlton et al. 2021). 
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There is no gold standard algorithm for respiration detections, thus establishing the real 

RR is a challenge. Therefore, the RR estimate from the IP signal is compared to the 

reference processed with the same algorithm. This procedure might lead to inaccurate 

MAE and MAPE results if the algorithm is unable to successfully detect the RR from the 

reference, which was the case with the FFT. 

  

With the FFT algorithm, the RR estimates agreed well with those from the reference 

signal. Even though the MAE values were smallest with FFT method, the estimates dif-

fered considerably from manually estimated respiration rates. Thus, the method is ex-

cluded from further comparison with other algorithms. Significant errors were probably 

caused by unsuitable window length for this specific method. The data was divided into 

roughly 2-minute sections and the spectrum is calculated for the whole section, where 

the highest maximum was reported as respiration frequency. In reality, the RR does not 

stay constant but varies during the measurement period consequently the power from 

the respiration signal is divided to a wider range of frequencies. Thus, only one estimate 

from the 2-minute period does not reliably illustrate the real situation. In practical appli-

cations, a moving window with a smaller window length is used to get results from a 

wider range of frequencies. Small MAE results indicate that the algorithm could perform 

relatively well at least with a clean signal if smaller moving window would be used. How-

ever, this requires further research.  

 

When considering the other two algorithms, peak detection performed better than ad-

vanced counting with both electrode configurations in this study. These results are con-

trary to the findings of Jeyhani, Vuorinen, Mäntysalo et al. (2016), though they did not 

include breathing at different depths. Considering advanced counting, variation in depth 

of the breaths possibly set the threshold for vertical distances too high, hence small 

breaths in poor signal quality sections were readily missed. However, if the signal was 

clean with minimal distortions MAE scores similar to peak detection were observed also 

with advanced counting. The performance of the advanced counting method could be 

improved in the future by developing an adaptive threshold that would recognize the 

variation of depth but would still be able to filter out random fluctuations.  

 

For example, in Figure 10, a long period without detected breaths is seen. Since the RR 

is calculated as an average of breathing cycle lengths, large blind areas can have a 
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major effect on the results especially when the measurement period is relatively short. 

The corresponding signal part processed with the peak detection algorithm is shown in 

Figure 11. On the contrary, the peak detection method does recognize breaths from the 

region where advanced counting failed, but there are also wrongly detected peaks. It is 

hard to distinguish if any of the variations between 80 and 120 seconds is respiration 

related, hence the peak detection algorithm performs almost as poorly as advanced 

counting in this region. 

 

Figure 10. Breath volume signal (blue) and corresponding amplitude scaled IP sig-
nal (red) of subject 1 in sitting posture with M-L electrodes processed with advanced 

counting 
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Figure 11. Breath volume signal (blue) and corresponding amplitude scaled IP sig-
nal (red) of subject 1 in sitting posture with M-L electrodes processed with peak detec-

tion 

 

Tables 2-5 show that both algorithms were able to detect the RR most accurately when 

the subject was in the supine position. It is notable from tables 2 and 3, that the MAPE 

of the walking phase is smaller than that of the sitting phase whereas the MAE is greater 

with the walking phase. However, some of this effect is explained by the decrease in the 

ratio of error and reference when the RR rose during the walking phase with some sub-

jects.  

4.3 Effect of electrode configuration 

 

From tables 2–5 can be seen, that with M-L electrodes, the MAE seems to rise when 

subjects rose whereas with V5 electrodes the position does not seem to have as signifi-

cant effect. These results indicate that M-L electrodes would be more optimal choice for 

IP measurement on stationary people, like patients in bed care, whereas electrodes in 

V5 locations would perform better in portable applications measuring more active sub-

jects. However, this study had a quite small sample size and noisy signals were obtained 

quite equally from both configurations. With more extensive study, the effect of random 
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fluctuations might be smaller and clearer differences between electrode configurations 

could be seen.  

 

Separate measurements with different electrode configurations complicate the compari-

son of results. Conclusions about the performance of the configuration cannot be reliably 

made from a noisy signal from either configuration as a reference signal from the other 

location was not obtained simultaneously. However, concurrent measurements are chal-

lenging with active techniques like IP as current fed from the other electrode pair could 

affect the signal measured from the other electrodes.  

 

It can also be questioned if the electrodes stayed stationary throughout the measurement 

period while long wires to connect the electrodes and measurement device moved. The 

slightest movement in electrode positions would cause significant noise. At least with 

subject 4, the other adhesive surface of the V5 electrodes was slightly loosened and the 

signal was quite noisy, especially during shallow breathing. Also, the Biopac EBI100C 

device has default connections for 4-wire measurements. Hence, some modifications to 

the electrode wiring had to be done. It is possible that the assembly was loose, and the 

connections were occasionally able to move generating noise to the signal. 

 

The influence of sex or BMI was not considered in this study as the sample size was 

relatively small. Subject-specific characteristics can affect the performance of the IP and 

future studies could examine if certain electrode configuration functions better with spe-

cific characteristics. However, a general electrode configuration would be better consid-

ering the functionality, especially in the patient monitoring applications.  
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5. CONCLUSIONS 

The objective of this study was to assess the effects of position and electrode configura-

tion on the respiration signal measured with the bioimpedance technique. Also, the influ-

ence of thoracic and diaphragmatic breathing at different depths was considered. Aver-

age respiration rates were calculated in different positions with three algorithms and their 

performance was evaluated. The results were compared with the reference signal ob-

tained from a pneumotachometer. The sample size was quite small, hence broad gen-

eralizations of the effects cannot be reliably made but the study provides indicative re-

sults for the objects. 

 

Bioimpedance signals are easily disturbed by motion and the results comply with that as 

the signal was clearest in the supine position. The performance of the algorithms varied, 

but simple peak detection produced the most reliable results in this research setting. The 

window length was too long to obtain reasonable RR estimates. The advanced counting 

method provided relatively good results on clear data but the detection of shallow breaths 

from noisy signal was a challenge. Thoracic and diaphragmatic breathing did not cause 

significant differences in the signal. 

 

Conclusions about the effect of electrode configuration are challenging to make as the 

measurements were not performed simultaneously. Neither configuration appeared 

clearly superior to another, but noisy and clean signal was obtained equally with both 

electrode configurations. The most accurate RR estimates were obtained in the supine 

position with M-L arm electrodes.  However, the results imply that the position does not 

have as significant effect on signal measured with V5 configuration.  

 

In many studies, the presented study included, the subjects have been relatively young 

and had good general health. If patient monitor application is considered, these charac-

teristics do not necessarily represent the most abundant user base. Therefore, the per-

formance of the method might be exaggerated. Thus, future research should include 

subjects with a wider range of characteristics. There is clear evidence that respiration 

rate is an important predictor of deterioration of the patient’s condition. Impedance pneu-

mography offers an unobtrusive and simple way to improve the monitoring of currently 

poorly utilized vital sign.  
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APPENDIX A: COMPLETE COLLECTION OF 
BREATH VOLUME GRAPHS 

 

 
Figure 12. Breath volume signal (blue) and corresponding amplitude scaled IP sig-

nal (red) of subject 1 with Mason-Likar arm electrodes 
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Figure 13. Breath volume signal (blue) and corresponding amplitude scaled IP sig-

nal (red) of subject 2 with Mason-Likar arm electrodes 

 
Figure 14. Breath volume signal (blue) and corresponding amplitude scaled IP sig-

nal (red) of subject 3 with Mason-Likar arm electrodes 
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Figure 15. Breath volume signal (blue) and corresponding amplitude scaled IP sig-

nal (red) of subject 4 with Mason-Likar arm electrodes 

 
Figure 16. Breath volume signal (blue) and corresponding amplitude scaled IP sig-

nal (red) of subject 5 with Mason-Likar arm electrodes 
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Figure 17. Breath volume signal (blue) and corresponding amplitude scaled IP sig-
nal (red) of subject 1 with V5 electrodes 

 
Figure 18. Breath volume signal (blue) and corresponding amplitude scaled IP sig-

nal (red) of subject 2 with V5 electrodes 
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Figure 19. Breath volume signal (blue) and corresponding amplitude scaled IP sig-

nal (red) of subject 3 with V5 electrodes 

 
Figure 20. Breath volume signal (blue) and corresponding amplitude scaled IP sig-

nal (red) of subject 4 with V5 electrodes 
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Figure 21. Breath volume signal (blue) and corresponding amplitude scaled IP sig-

nal (red) of subject 5 with V5 electrodes 


