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the small strain shear modulus when higher ratios of fines content are present. In this 

case the degree of saturation cannot be neglected. In addition [23] mentions shear mod-

ulus should be the same, both in drained and undrained tests. This is due to the given 

that water cannot carry shear.  

2.1.1.5 Grain shape and grain size distribution 

According to [14] the grain shape has a small effect on the very small strain stiffness. 

In contradiction with this [22] mentions it has an effect which can reduce the deviation 

between predicted results. Notice will be taken on the research of [22] in section 2.1.4. 

In addition the grain size distribution has a considerable effect on the small strain 

stiffness. Further notice will be given on the effect of the grain size distribution curve on 

the small strain shear modulus in section 2.1.3 and 2.1.4, where formulas will be pro-

posed to predict Gmax. [22], [5] 

2.1.2 Sample disturbance 

Disturbance of the soil sample during removal from the ground, is affected by different 

factors. [23] explains different factors which affects the determination of the small strain 

stiffness on clay samples. A clear view of this is given in Figure 3 [23].  

 

 
Figure 3. Affecting processes from excavation to triaxial test [23] 

 
First of all, the effective stress is changed, which causes the soil to react different. In 

addition an effect exists of the speed with which a soil sample is removed. If strains of 

the centerline are minimized during removal and the sample is reconsolidated afterwards 

to conditions in field, behavior of the field can be approximately captured.  

Next to the effective stress change, a secondary disturbance often occurs, due to 

penetration, cutting and pressing, and extraction of the sample. These factors can cause 

damage to the particle structure, and thus reduce the small strain stiffness. In addition 

[23] mentions water redistribution, gas dissolution and chemical and biological processes 

during storage might affect the stiffness. Besides, Figure 4 [23] shows clearly that during 

transport of a sample, enormous accelerations, up to more than 20 m/s², occur. These 

are enormous accelerations and thus can have a big effect on the sample. Although 

effective stress change is the largest factor, these cumulated factors can be as big as 













13 
 

Two ways exist to determine the sphericity and roundness according to [30]. It is pos-

sible to do this manually, by means of a characterization chart like given in Figure 5 [22], 

or with the use of an automated scanning electron micrograph. This last method is more 

precise.  

As can be seen, the small strain shear modulus Gmax is described by the coefficient 

of uniformity, the regularity, the void ratio and the mean effective confining pressure. 

Figure 6 shows the effect of the proposed formulation (9) and the proposed formulations 

(2) to (5) on blue sand. As can be seen, this new formulation is much more accurate. A 

reason for this might be that in this study the effect of sand particle shape is taken into 

account, which was not done in previous studies. A similar effect can be seen by Sydney 

sand and bricky sand, respectively Figure 7 and Figure 8. Because of this, the earlier 

mentioned expressions (2), (3), (4) and (5) are only valid for a specific range of particle 

shapes of sands, while the new formulated expression (9) is more general. 

 

 
Figure 6. Effect of the proposed formulation (9) compared to (2), (3), (4) and (5) on 

blue sand [22] 
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Figure 7. Effect of the proposed formulation (9) compared to (2), (3), (4) and (5) on 

Sydney sand [22] 

 
Figure 8. Effect of the proposed formulation (9) compared to (2), (3), (4) and (5) on 

bricky sand [22] 
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Figure 10. Gmax by equal void ratio e=0.55, as function of Cu, mean effective 

confining pressure and d50 [17] 

 

In addition it can be seen Gmax increases with increasing mean effective confining 

pressure and decreases with an increasing void ratio e as shown in Figure 11 and Figure 

12. An explanation might be that the granulates get more support and a more compact 

packing when the void ratio decreases and the mean effective confining pressure in-

creases. This will cause the specimen to deform lesser, and thus to have a higher Gmax. 

This conclusion can also be linked to the relative density, which increases with decreas-

ing void ratio and thus has a higher small strain stiffness. 

 

Figure 11. Gmax(e) for different Cu and d50 [17] 
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Figure 12. Gmax(e) for different uniformity coefficients Cu at different pressures [17]  

 

[26] mentions higher uniformity coefficients mean very small strain shear stiffness is 

lower and a more pronounced degradation of Gmax for clean quartz sands. Both of these 

2 statements can be seen in Figure 14 by effective confining pressures of 100 kPa and 




























































































































































































































































































































