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ABSTRACT 

Eetu Auvinen: Embedded Dynamic Memory Allocator Optimisation 
Master of Science Thesis 
Tampere University 
Embedded systems 
May 2022 
 

The objective of this thesis was to improve upon the dynamic memory allocator used in U-Blox 
GNSS receivers. After initial analysis, the main weakness of the currently used Buddy allocator 
was determined to be high fragmentation, so lowering this was the focus. 

To understand the problem better and find possible alternatives to Buddy, a literature survey 
was conducted. The survey examined the fundamental building blocks of dynamic memory 
allocation and how they could be combined for desired results. Using knowledge gained from the 
survey, a number of allocators were chosen for further examination. Among them, the most 
promising were two real-time allocators TLSF and a Half Fit variant called O1Heap due to their 
focus on integrity and more constrained heaps. 

After preliminary testing, two more allocators were considered as a response to the observed 
shortcomings of previously mentioned allocators. First was Half Fit CSTM, which makes slight 
modifications to the Half Fit algorithm trading constant execution time for lower fragmentation. 
The second allocator is Half Tree, which is a new allocator created in the scope of this research. 
It aims to address the weaknesses of the other considered allocators and achieve good results in 
all required aspects. 

A testing framework was designed and implemented to assist in evaluating each allocator’s 
suitability as an alternative for the Buddy allocator. Performance tests measured each allocator’s 
average and worst execution times while fragmentation tests measured the required heap size 
and other metrics for fragmentation. The tests were run on a real device to provide more accurate 
results. Testing focused on real allocation sequences (memory traces) gathered from a 
production device, but synthetic traces were also included. All allocators went through the same 
tests, and their results were compared to those of the Buddy allocator. 

Out of the 4 allocators considered, TLSF and Half Tree were determined to be the most 
suitable. Half Tree was deemed superior to TLSF because of much better performance while still 
having low fragmentation. Finally, Half Tree reduces fragmentation to approximately 15% to that 
of Buddy while only being 0–15% slower in real trace test scenarios. It requires 25% less heap 
for the same memory traces. 

Overall, the thesis objectives have been met. Half Tree allocator provides a significant 
improvement in memory efficiency over Buddy while maintaining comparable performance. 
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TIIVISTELMÄ 

Eetu Auvinen: Sulautetun dynaamisen muistiallokaattorin optimionti 
Diplomityö 
Tampereen yliopisto 
Sulautetut järjestelmät 
Toukokuu 2022 
 

Työn tavoitteena oli parantaa U-Bloxin GNSS laitteissa käytettyä muistiallokaattoria. 
Alustavan analyysin perusteella, nykyisen Buddy-allokaattorin heikkoutena oli korkea 
fragmentaatio, joten tutkimuksen pääpainona oli tämän  alentaminen. 

Ongelman ja sen taustojen ymmärtämiseksi, sekä parempien allokaattorien löytämiseksi, 
tehtiin työn alussa kirjallisuusselvitys. Selvityksen avulla määriteltiin dynaamisen muistinhallinan 
perusteet ja kuinka niiden avulla voidaan rakentaa halutunlaisia allokaattoreita. Selvityksen osana 
tarkasteltiin useita erilaisia allokaattoreita ja päädyttiin lopulta valitsemaan 2 allokaattoria 
tarkempaa tutkimusta varten. Nämä olivat reaaliaika käyttöön suunnitellut ja laajalti tunnetut TLSF 
ja Half Fit variantti O1Heap. 

Alustavien kokeiden perusteella, toteutettiin kaksi uutta allokaattoria vastaamaan kokeissa 
havaittuihin TLSF:n ja O1Heapin heikkouksiin. Ensimmäisenä Half Fit CSTM, joka tekee pieniä 
muutoksia Half Fittiin vaihtaen vakioaikaisen suorituksen matalampaan fragmentaatioon. Half 
Tree puolestaan on uusi allokaattori suunniteltu tätä tutkimusta varten. Sen tavoitteena oli vastata 
muiden allokaattereiden heikkouksiin ja suoriutua hyvin kaikilla osa-alueilla. 

Allokaattoreiden soveltuvuutta Buddyn korvaajaksi arvioitiin kokeellisesti. Kokeiden avulla 
mitattiin allokaatoreidenn keskimääräistä suorituaikaa, huonointa suoritusaikaa sekä 
fragmentaatiota ja muistintarvetta. Koejärjestelyt suunniteltiin ja toteutettiin kohdelaitteella 
tulosten todenmukaisuutta ajatellen. Kokeet keskittyivät laitteelta kerättyihin oikeisiin muistijälkiin, 
mutta myös synteettisiä muistijälkiä hyödynnettiin. Kaikille 4 allokaattorille suoritettiin samat 
kokeet ja niiden tuloksia verratiin Buddy -allokaattoriin ja toisiinsa. 

Valituista allokaattoreista TLSF ja Half Tree osoittautuivat parhaiten soveltuviksi. TLSF on 
kuitenkin erittäin hidas verrattuna Buddy -allokaattoriin. Half Tree puolestaan on selvästi parempi, 
tarjoten edelleen matalan fragmentation, mutta ilman merkittävää kompromissia suorituskyvyssä. 
Half Treen fragmentaatio on noin 15% Buddy-allokaattorin fragmentaatiosta ja suorituskyky 
heikkenee vain 0–15% muistijäljestä riippuen. Vaaditun muistin määrässä alempi fragmentaatio 
tarkoittaa noin 25% parannusta. 

Työ täytti sille asetetut tavoitteet. Half Tree allokaattori tarjoaa merkittävän parannuksen 
muistitehokkuudessa Buddy-allokaattoriin verrattuna, tekemättä suuria uhrauksia 
suorituskyvyssä. 

 
 
Avainsanat: muistinhallinta, dynaaminen muisti, TLSF, Half Fit, muistiallokaattori 
 
 
Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla. 
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ABBREVIATIONS AND SYMBOLS 

DV Designated Victim, a memory block kept outside the main data 
structure to promote its reuse 

GNSS Global Navigation Satellite System 
FIFO First-in-first-out, a queue where the oldest item is removed first 
ffs Find first set, finds the most significant bit set to 1 
LIFO Last-in-first-out, a stack where the newest item is removed first 
MMU   Memory management unit, a device which transforms virtual 

addresses to physical addresses 
SBBM Smallest-Biggest Block Metric, a fragmentation measurement 

method 
TLSF Two-Level Segregated Fit, a general-purpose allocator for use in 

real-time systems
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1. INTRODUCTION 

This chapter gives a brief introduction to the subject of dynamic memory allocation and 

its role in embedded systems. Additionally, it defines the objectives of this thesis and 

provides an overview of the contents. 

1.1 Dynamic memory allocation in embedded systems 

Dynamic memory is used to hold objects with unknown size at compile time. Such 

situations can arise for example from varying amounts of tracked satellites or different 

lengths of messages placed in buffers. It allows the program to allocate only the 

necessary amount of memory at any given time from the dynamic memory pool, which 

is called heap. The basic usage of dynamic memory consists of allocating the desired 

amount of memory with alloc() call and once the memory is no longer required, 

deallocating it with corresponding free() function call. This can be further expanded by 

more specialised memory services like realloc() to adjust the size of the allocated block. 

[1] 

The research on dynamic memory usage in computer systems goes back as far as the 

1960s. This earlier research up to 1995 was compiled by P.R Wilson and colleagues in 

their survey which acts as the fundamental basis for most dynamic memory research to 

this day. [2] While it focuses on the concepts and problems facing dynamic memory in 

general-purpose computers, those same problems and concepts are relevant in more 

restricted embedded systems as well. 

Traditionally the use of dynamic memory in embedded systems has been avoided due 

to its perceived inability to match the timing requirements and resource constraints of 

embedded applications [3][4]. This is partly due to the allocators from before not being 

as concerned about real-time constraints nor necessarily about being as memory 

efficient as possible [2][3]. On the other hand, dynamic memory is fundamentally slower 

and less efficient than static memory [1]. However, as the complexity and unpredictability 

of embedded applications have increased, so too has the need for efficient dynamic 

memory management in embedded systems over the last couple of decades [5]. This 

emerging demand for more efficient and reliable dynamic memory management has 

resulted in more research on specialized allocators to work in this context with two 

examples being Half Fit and Two-Level Segregated Fit (TLSF) [3][4]. 
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For dynamic memory allocator to be viable in the real-time embedded context it generally 

needs to fulfil the following criteria. First, it needs to have a low bounded worst-case 

execution time. Second, it must be fast enough on average. Finally, it has to use the 

available memory efficiently, often meaning low fragmentation and implementation 

overhead. [4] The priority between these criteria will change from application to 

application. As such, no perfect allocator for every situation exists and the choice of 

allocator should be done on a case-by-case basis. 

Due to the nature of positioning software, the use of dynamic memory is essential. The 

allocator currently used in U-Blox GNSS receivers is fast on average and has a low 

bounded worst-case execution. However, it wastes a large amount of memory, averaging 

around 50% of the requested size being lost to fragmentation. 

1.2 Objectives of the thesis 

This thesis was written at U-Blox Espoo Oy. U-Blox is a Swiss company specialising in 

GNSS devices. The main objective of this thesis was to find a way to reduce the amount 

of wasted memory while maintaining similar or better execution times. 

The target devices are U-Blox GNSS receivers, with all the work being done and tested 

on an M9 standard precision GNSS module. The chip uses an ARM processor without a 

memory management unit (MMU), which makes dealing with heap fragmentation more 

critical. A side objective of this thesis was to provide a testing framework for dynamic 

memory allocation on the target device. 

1.3 Thesis structure 

This thesis can be broken down into 3 components. These are roughly background 

theory, test implementation and finally results and analysis. Should the reader be familiar 

with theory of dynamic memory allocation theory, Chapter 2 and sections of Chapter 3 

discussing allocators the reader is already experienced with may be skipped. 

Chapter 2 presents the fundamental dynamic memory allocation theory necessary for 

this thesis. Notably, it introduces the parameters to evaluate an allocator’s quality as well 

as the building blocks used to create memory allocators. 

Next, Chapter 3 introduces the allocators considered in this work. It goes over the 

mechanisms and data structures of 3 pre-established allocators and introduces a new 

allocator, Half Tree, created in the scope of this research. 
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Building upon the theory provided in earlier chapters, Chapter 4 discusses the details 

related to testing. It gives an overview of the test environment and what is being 

measured as well as how these measurements are conducted. Additionally, the finer 

details of allocator implementations during testing are specified here. 

The results of the testing are presented in Chapter 5. It also provides an analysis of the 

results and their significance in achieving the objective of this thesis. Lastly, Chapter 5 

also provides an overall look into the suitability of considered allocators to replace the 

currently used one. 

Chapter 6 discusses the conclusions and future work for this thesis. After conclusions, a 

list of references is provided. Lastly, 2 appendixes are provided for pseudocode of Half 

Tree allocator and additional test results not discussed in Chapter 5. 
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2. DYNAMIC MEMORY ALLOCATORS 

Dynamic memory allocator is a program responsible for managing the heap and 

servicing allocation and deallocation requests. It is worth noting that usually the allocator 

can not manage allocated memory blocks since they are being handled by those who 

requested them. The allocator also can not influence the sequence of allocations and 

deallocations and has no other option but to service them as they come. The choices an 

allocation algorithm makes are therefore limited to how it handles the available free 

memory. As discussed in the previous chapter the goal of an allocator is to serve 

requests quickly while wasting as little memory as possible. [2] This chapter will define 

these 2 aspects and discuss design techniques and allocation mechanisms used to help 

dynamic memory allocators reach that goal. 

2.1 Parameters of dynamic memory allocators 

The 2 main aspects to determine the quality of a dynamic memory allocator are 

performance and memory efficiency. In this subchapter, we introduce these fundamental 

characteristics and how they relate to embedded applications. 

2.1.1 Performance 

Performance of a dynamic memory allocator in the context of this work refers to the time 

it takes to allocate or deallocate a memory block. Typical parameters for this are 

instructions per operation or processor cycles per operation. Of these, the latter is 

preferred when comparing different allocators [6]. In comparison to static allocation, 

dynamic memory will always carry a penalty in performance. This is exemplified in 

embedded systems with real-time requirements, where the most important aspects of 

performance are more closely related to the memory meeting timing requirements 

instead of being as fast as it can be. For dynamic memory allocation to be viable in a 

real-time environment it must both have a bounded worst-case execution time and be 

fast enough [4]. 

A way to estimate allocation algorithms’ worst-case performance is to analyse its time 

complexity. The O-notation describes how an algorithm’s worst-case execution time 

increases as the heap grows. For example, if an allocator has a time complexity of O(n), 

its worst-case execution time scales linearly as the heap size increases. [8] Generally, 
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O(log(n)) is considered good enough in most applications, but the ideal real-time 

allocator would have a constant O(1) response time [7]. 

While being a valuable metric to estimate how the execution time might increase with 

other parameters, the O-notation omits the constant multiplier, for example execution 

scaling 4n or 10n are both linear and therefore O(n). This means that an algorithm with 

constant time complexity O(1) could take too long to execute even if it is bounded. [4] It 

is also worth remembering that in resource constrained devices the amount of memory 

an allocator can manage is often bound to a relatively low limit, effectively acting as a 

boundary for the execution time. 

For soft real-time systems, like the target device, the worst-case execution time is not as 

critical. Compared to hard real-time systems, soft real-time systems can handle a small 

number of requests missing their deadlines. Instead, the focus can be shifted more 

towards a fast average execution time. This does not mean the worst case can be 

completely ignored and should be kept within reasonable limits, but in practice most 

allocators will only be at their worst in very specific conditions. Additionally, in Puaut’s 

research [8] it was shown that analytical worst-case execution time is often far worse 

than the experienced one, leading to the conclusion that a worst-case measured from 

the target application can be sufficient for soft real-time applications. [8] 

2.1.2 Memory efficiency and fragmentation 

Being able to use limited memory more efficiently is one of the main motivators in using 

dynamic memory. However, it does have its own issues regarding efficient memory use. 

The main source of wasted memory is fragmentation. Fragmentation relates to inefficient 

use of memory in the heap. [5] It was defined by Wilson and others as “inability to reuse 

memory that is free”, which has stuck as the standard high-level definition [2]. 

Embedded systems typically do not have a memory management unit (MMU), making 

fragmented memory blocks harder to utilise. MMU could enable the use of fragmented 

memory blocks as if they were continuous, alleviating the issues arising from a 

fragmented heap. Additionally, assuming the heap size cannot grow during run time 

means the allocator has no way of servicing an allocation request if the heap is too 

fragmented and the allocation fails instead. Repeated failures to serve allocation 

requests will lead to degradation in the quality of the service provided by the system over 

time. [9] 

Fragmentation can be divided into 2 distinct types, internal and external fragmentation. 

Internal fragmentation occurs when the allocator gives the user a larger block of memory 
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than what was requested. This additional memory cannot be allocated to serve another 

request and is therefore wasted until the block is deallocated. External fragmentation on 

the other hand occurs when the allocator does not have a large enough continuous 

memory block to service a request even though there are enough scattered smaller 

blocks free to add up to the requested size. [5] This is caused by differences in 

deallocation times of blocks next to each other and changes in block sizes allocated [2]. 

Figure 1 shows an example of both internal and external fragmentation in a simple 

memory structure. 

 

Figure 1 Example of memory fragmentation in a simple memory. 

The memory in Figure 1 is organised in such a way that it always gives the first available 

memory block that is large enough, only splits larger memory blocks in multiples of 1000 

bytes and has a total size of 6000 bytes. This leads to some memory being wasted due 

to internal fragmentation for allocations A and B, which is illustrated by a yellow colour. 

Additionally, allocation E fails even though there is in total 2000 bytes free, but half of 

that is before C and the other half after it. This is an example of external fragmentation. 

The second major source of wasted memory is the implementation overhead of the 

allocator itself [5][6]. Depending on the design choices this can be in managing the free 

lists or header and footer fields of allocated blocks. Johnstone and Wilson [10] even 

argue that this can be considered the most important part of wasted memory. Allocators 

with low fragmentation but high implementation overhead, possibly due to poor 

implementation, exist. While having some implementation overhead is unavoidable, it 

can be optimised. Therefore, another angle to tackle the memory efficiency problem in 

addition to decreasing fragmentation is making more memory efficient implementations. 

[10] 

Ensuring minimal amount of memory is wasted is essential for embedded systems. Due 

to the fragmentation problem having more pronounced benefits from optimisation, over 



7 
 

performance simply being good enough, it will take a more prominent role in the analysis 

of design choices and eventually test results. Additionally, the focus of this work will be 

on the total memory footprint of the allocator which includes both forms of fragmentation 

and the implementation overhead [5]. While understanding the different sources of 

memory waste helps us reduce their effects, they are best examined together since often 

reductions in one aspect may be done at the cost of another [2]. 

2.2 Policies and design techniques 

Wilson and colleagues separate allocator policy from its implementation mechanism. 

Allocation policy refers to choices regarding the placement and allocation of free blocks 

and is independent of the mechanism used to implement it. In addition, Wilson and others 

also define allocation strategy, which can be thought of as picking the suitable policies 

for the program’s allocation pattern. [2] The main policy choices relate to block 

placement, splitting and coalescing. 

There are many policies for choosing which free block to allocate. Knuth introduces 2 

frequently used policies for making this decision, first fit and best fit. With first fit policy 

the allocator will always allocate the first block of memory it finds that is big enough to 

satisfy the request. In contrast, the best fit policy will go through the available blocks and 

use the smallest possible block that is big enough to fulfil the request. [11] The principle 

of best fit is good and often leads to better memory efficiency than the simpler first fit. 

However, depending on the implementation of each, best fit might be noticeably slower 

without offering substantial enough benefits to fragmentation. [2][10][11] Another 

interesting placement policy is good fit, which works similarly to best fit but instead of 

finding the most suitable block, it finds the first good enough block based on some metric. 

This policy has been used for example in TLSF and an older version of Doug Lea’s 

allocator, due to its combination of performance and spatial efficiency. [4][12] 

Another policy choice regarding the placement of allocations is the ordering of free 

blocks. There are 3 main ways of handling this which are address ordered, FIFO (first-

in-first-out) and LIFO (last-in-first-out). Address ordering effectively does not consider the 

reuse of blocks and instead goes strictly by their location in memory. This will typically 

still favour the start of the heap and reuse blocks freed in that region frequently. LIFO 

policy will add freed blocks to the front of the free list and reuse them before allocating 

new blocks. FIFO on the other hand adds freed blocks to the back of the free list and will 

use new blocks before reusing freed ones. [10] Historically, address ordered has been 

considered as the best policy in terms of fragmentation, but slower than FIFO or LIFO. 

[2] 
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The requested allocation sizes can vary wildly depending on the application and the 

allocator will not always have the exact size block in its free list. In such situations, the 

allocator can choose to split a larger chunk of memory to create a block of the desired 

size. [2] The split does not have to produce a block of the exact requested size but can 

instead use some other metric to do the splitting, for example the binary buddy system 

where each split always halves the larger block [13]. Splitting decreases internal 

fragmentation but can increase external fragmentation if the leftover free memory is not 

possible to utilise. To avoid cluttering the memory with unusable small chunks, the 

allocator can have a splitting threshold policy in place. With a splitting threshold, the 

allocator will only split the block if the leftover will be large enough for it to use. Splitting 

a block will also always be slower than not splitting it, so a splitting threshold can be used 

to avoid the loss in performance if the hit in memory efficiency is deemed worth taking. 

[2] 

The inverse operation to splitting is called coalescing. Coalescing means merging 

neighbouring free blocks back into one larger free block. This stops the heap from 

becoming filled with small blocks unable to serve a large allocation request. However, 

as with splitting, coalescing also comes with a performance cost and is always slower 

than not coalescing. This can be balanced with a coalescing policy called deferred 

coalescing. When using deferred coalescing the blocks are not coalesced as soon as 

they are freed but instead the coalescing is triggered by some pre-determined event. The 

idea behind this is that the program is likely to reuse the same size blocks often and it is 

therefore an unnecessary hit in performance to constantly split and coalesce blocks only 

to repeat the cycle on every allocation. The coalescing can then be done when the 

program changes its allocation pattern to better service the new sequence. [2] Deferred 

coalescing is commonly used to improve performance in general-use computer 

environments, for example in Doug Lea’s allocator coalescing is only done when memory 

runs out [12]. However, it has been shown to increase fragmentation and introduce 

unpredictability since the request that eventually triggers the coalescing process will take 

significantly longer than usual to complete [2][9]. 

By making the right policy choices, the best possible allocator for a given system can be 

designed. Each choice comes with its tradeoffs which must be carefully considered with 

the target system in mind. To maximize performance, Unnecessary work done by the 

allocator is left at a minimum, often at the cost of wasted memory. On the other hand, to 

make the allocator as memory efficient as possible it should use a best fit or good fit 

policy with frequent reuse of freed blocks and also do precise splitting and immediately 

coalesce blocks when possible [6][10]. 
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2.3 Low-level mechanisms 

To turn a set of allocation policies into a functional dynamic memory allocator they need 

to be realised with an allocation mechanism. Different mechanisms in turn use a lot of 

similar low-level mechanisms in their foundation. This section will introduce and give a 

brief description of the most used ones. For the sake of brevity, this subchapter will refer 

to low-level mechanisms as simply mechanisms. 

First such mechanism is using header fields on allocated blocks. These headers are 

hidden from the user by the allocator adding the required space for a header field to the 

requested amount then using the first few bytes for its own needs before handing over 

the requested amount of memory starting after the header. The header will typically 

contain the size of the block, information about the neighbouring block or status flags. 

Header information can be used to make some operations faster, but it adds a potentially 

significant implementation overhead depending on the size of it and the allocated blocks. 

[2] 

An extension of using a header field called boundary tags was conceived by Knuth in 

1973 [11]. For this mechanism, an additional footer field is added to the end of each 

memory block. Both the header and the footer contain information about the size of the 

block and whether it is free or not. The purpose of duplicating information in this manner 

is to make coalescing easier since a freed block can easily check the footer of the 

previous block and the header of the next block to determine if coalescing can be done. 

This adds an even larger implementation overhead than just using headers but makes 

managing blocks easier. [11] However, this can be optimised since the allocator is not 

interested in the size of an allocated block because it can not be coalesced. Now, by 

borrowing a status bit from the next memory block’s header to signal whether the block 

is free or not, we can only use the full footer field in free blocks and the area reserved for 

it can be used to fulfil allocation requests [2] 

A common way for allocators to keep track of free blocks is using linked lists. This 

mechanism can be made very memory efficient by using the memory in the free blocks 

themselves to store the required pointers. This memory is effectively free and adds very 

little overhead for free block tracking. [11] Since this memory is almost free it is common 

to use doubly linked lists to make it easy to remove blocks from it as they are coalesced. 

Using the memory in the free blocks imposes a minimum size to blocks in the system to 

ensure the needed information can always be stored in the free blocks. [2] Figure 2 

shows how a linked list might be implemented. 
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Figure 2 Block headers for a linked list in TLSF [9]. 

As can be seen in Figure 2, the memory needed to upkeep the linked list is not needed 

once the block is allocated and the space is instead used to satisfy the allocation size. 

In addition to being an example about linked list implementation, figure 2 also shows the 

contents of a typical header field discussed earlier. [9] 

Another mechanism used to track free blocks and make allocations faster is to use 

lookup tables. In practice, this means lumping memory blocks of similar size together in 

their separate lists. [2] Using a lookup table is especially helpful when implementing 

either a best fit or a good fit policy, since only blocks of roughly the right size are 

considered [12]. However, if the range of sizes in any of the lists is too large, it can lead 

to significant internal fragmentation [2]. 

The last mechanism regarding free block management is giving special treatment to the 

end of the heap, sometimes referred to as wilderness preservation [12]. In less restricted 

systems, where the heap can grow from one end, giving special attention to preserving 

a large block near that end can help reduce unnecessary extensions of the region. [2] 

There are many ways to achieve this but for example Doug Lea’s allocator considers the 

last block much larger than its actual physical size since it can be made so by requesting 

more memory. Combined with a best fit approach, the last block of the heap will only be 

used if no other block can satisfy the request. [12] Our target device and most other 

embedded systems have a fixed heap size making this heuristic less useful. It can still 

be helpful to strive to preserve one end of the heap for larger allocations, especially since 

instead of being able to request more memory if a large enough contiguous block is not 

found, the allocation will fail. 
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The last low-level mechanism considers giving special treatment to small allocation 

requests. There is a lot of motivation to do this since programs typically allocate many 

more small objects than large ones and often the same allocation mechanism is not the 

best for both types. This often means using a fast but less memory efficient mechanism 

for small allocations and some other, less wasteful, mechanism for large allocations. [2] 

Depending on heap size this may not always be beneficial since different allocation 

mechanisms may lead to more overhead. However, giving special treatment to specific 

allocation sizes can help reduce for example header overhead. 

2.4 Mechanisms 

This section will introduce the most important basic allocation mechanisms and how they 

can implement different policies as well as combine various lower-level mechanisms in 

the implementations. The outline will largely follow the one used in the survey by Wilson 

et al. [2] but focus more on the advantages and weaknesses of each one in a more 

restrictive embedded systems context. 

2.4.1 Sequential fits 

Sequential Fits are perhaps the simplest allocation mechanism. They are based on 

having a single list of all blocks in the memory and searching through it to find a block to 

allocate. This list can be kept in either LIFO, FIFO or address order. Commonly the list 

is doubly linked and uses boundary tags to help in coalescing. The two most common 

sequential fit allocators are First Fit and Best Fit. [2][11] Sequential fit mechanisms are 

not limited to these two allocators, but other variants are not particularly relevant other 

than for curiosity. Sequential fits generally have poor real-time performance due to 

unpredictability and both First Fit and Best Fit having a time complexity of O(n) with 

increasing heap size [7]. 

Traditionally the most used sequential fit variant is Best Fit. In this variant the allocator 

will go through the free list and allocate the smallest block that is big enough to fill the 

request. As such, the ordering policy of the free list matters little for Best Fit. This also 

means that the average execution time grows rapidly as the number of free blocks 

increases making performance rather poor for larger memories. This is further made 

worse by Best Fit tending to increase the number of very small blocks and extending the 

length of the free list it must go through each time. [2][11] As an upside, Best Fit has 

been shown to lead to low fragmentation with both real and synthetic memory traces 

[7][10]. 
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Out of the simplest class of allocators, First Fit is arguably the simplest. As opposed to 

finding the best block to satisfy the request, First Fit will instead allocate the first one it 

finds. For this reason, it is often used as a baseline allocator in many tests comparing 

various allocators [7]. Even though it is very simple in its function and has very bad worst-

case execution time and fragmentation, First Fit can be made to be almost as good as 

Best Fit. Both Knuth and Wilson et al. state that address ordered First Fit can result in 

similar fragmentation as Best Fit [2][11]. This may be due to it adhering to wilderness 

preservation by naturally filling up one end of the heap first and tending to roughly order 

the heap by block size with smaller blocks near the beginning. In tests FIFO ordered first 

fit has been shown to be almost as good as address ordered. On the same tests, LIFO 

ordered first fit has been suspect to large fragmentation when faced with unfavourable 

allocation sequences. [2][10] The average execution time of First Fit is usually much 

better than Best Fit’s, but it has a similar worst-case and can therefore be highly 

unpredictable [7]. 

While sequential fit allocators tend to have too poor performance or fragmentation 

characteristics to be considered viable in an embedded environment, they are still 

worthwhile to examine for their simplicity. A lot of the more complicated allocators use 

the same ideas found in sequential fit allocators in their foundation, or even include a 

similar list structure as a part of the mechanism like in segregated fits. 

2.4.2 Segregated fits 

Another simple allocation mechanism is the segregated fit, or more generally segregated 

free list. It uses a lookup table with free lists segregated by size and typically performs a 

sequential fit-style search on the appropriate list. This is commonly done with best fit or 

first fit policy. Due to the nature of having segregated free lists based on size the first fit 

policy becomes especially interesting, since it only considers approximately right sized 

blocks, it often naturally becomes a type of good fit policy. The ordering of blocks within 

the free lists can be LIFO, FIFO or especially with best fit policy, ordered by size. [2] 

Segregated fits are usually considered a performance optimisation over sequential fits 

since it is much faster to find a block from the free list with large enough blocks than by 

going through a single list. If that list is empty, the allocator checks the next one up until 

it finds a non-empty list. It then takes a block from this list and splits it to desired size and 

places the leftover chunk in its free list. Conversely, when a block is freed, it may be 

coalesced with its neighbours taking them out of their respective free lists. Depending on 

the size ranges of different free lists the allocation is usually a logarithmic operation or 

O(log(n)) with deallocation being faster and typically constant time O(1). [2] Segregated 
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fit performance can be further optimised to be constant time in both allocation and 

deallocation, which has made it a popular inclusion in real-time allocators [3][9]. 

Segregated fits can be divided based on the sizes in their free lists. Firstly, the free lists 

may be of exact sizes, leading to a potentially huge number of free lists [2][14]. This is 

often not viable as a solution for the whole memory but can be used effectively for small 

block sizes to eliminate internal fragmentation and possibly even some overhead as is 

done for example in Doug Lea’s alloc. Figure 3 shows the structure of segregated free 

lists in dlmalloc. 

 

Figure 3 Doug Lea’s allocator segregated free lists. Adapted from original in [12]. 

In Figure 3 the first bins up to 512-byte blocks are done with exact sizes. From there 

another type of free list is introduced, one with a range of sizes. The first one of these 

lists contains all block sizes between 512–575 bytes and in dlmalloc’s case is sorted by 

size to make it closer to best fit. [12] The third and final type of free list is similar to exact 

size but uses rounded up sizes instead. This can for example mean that each block size 

is a power of two and requests are rounded up to the closest one. The main benefit of 

this variant is cutting down the amount of free lists and list searches needed, but at the 

cost of potentially severe internal fragmentation. [2] 

Segregated fits are interesting for embedded and real-time systems because they can 

be made both memory efficient and sufficiently fast in performance. They may however 

have high implementation overhead if the list structures are not considered carefully. 
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2.4.3 Buddy system 

Buddy systems are a special subcategory of segregated fits originally proposed by 

Knowlton [13]. What makes buddy systems different from other segregated fits is their 

limited splitting and coalescing. The memory starts as one large chunk, which is always 

split in two parts, which are called buddies, until the desired allocation size is reached. A 

buddy system does not allow general coalescing, but instead a block may only be 

coalesced with its buddy. These limitations mean all possible block sizes are known and 

can be held in their separate free lists. [2] Figure 4 illustrates splitting and coalescing in 

a buddy system. 

 

Figure 4 Buddy system splitting and coalescing. 

In the above example, the larger block is always split in half to create the buddies. A and 

B can be coalesced since they are both free and are buddies. AB and C can not be 

coalesced since AB is still considered in use until its parts are coalesced. C and D is a 

case unique to buddy systems. They are neighbours in physical memory, and both are 

free, yet they are not buddies and therefore can not be coalesced. 

The main benefit of using a buddy system is its performance. As discussed in the 

previous chapter, segregated fits have been of interest in real-time and embedded 

context, and historically buddy systems have been considered most suitable for these 

use cases [7]. Both splitting and coalescing operations are quite fast on average and 

with a limited number of levels the worst case is not catastrophically slow. This is in part 

due to each block knowing the size of its buddy and being able to find its header fast and 

partly due to the roughness of the fit resulting in internal fragmentation. The main 

weakness of buddy systems tends to be this higher than usual internal fragmentation. [2] 

As an upside, they suffer from relatively little external fragmentation, barring niche rare 
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cases such as the one present in Figure 4 with blocks C and D being unable to be used 

for a larger request [11]. 

The simplest and most popular buddy system is the binary buddy, where each block size 

is a power of two and they are always split in half [2][7]. Binary buddy suffers greatly from 

internal fragmentation with larger block sizes where for example a request of 4100 bytes 

would have to be allocated 8192 bytes, wasting almost 50% of the allocation to internal 

fragmentation [2]. To combat binary buddy’s internal fragmentation issues other variants 

of buddy systems have been explored.  

One well-known variant is the Fibonacci buddy which splits blocks in Fibonacci series 

instead of half, for example splitting 13 to blocks of 5 and 8. [2] Fibonacci buddy should 

have less internal fragmentation than binary buddy, but it has been shown to be slightly 

slower [8]. Weighted buddy is more complex version that allows splitting a block in two 

different ways. These ways are power of two and 3 times power of two. This allows for 

more size classes than regular binary buddy. Lastly, there is the double buddy, which 

means using two buddy systems at the same time. This can be achieved for example by 

using a regular binary buddy to control one block and a binary buddy with some offset 

controlling another block. [2] All of these buddy system variations can have their 

advantages over binary buddy in terms of internal fragmentation but are not as 

universally applicable and require careful planning to work in their target environment. 

With synthetic trace testing binary buddy had the highest internal fragmentation, and with 

external fragmentation taken into account it still had higher fragmentation than Fibonacci 

and double buddy on average. [15] 

Buddy systems are a viable mechanism for an embedded dynamic memory allocator. In 

fact, the allocator currently in use on the target device is a version of binary buddy that 

will be explored in more detail in the next chapter. They offer good enough performance 

for soft real-time use with an acceptable worst-case performance but suffer greatly from 

fragmentation. 

2.4.4 Indexed Fit 

Indexed fits are another variation of sequential fits. Where sequential fits used a linear 

linked list, indexed fits use a more complex indexing structure such as a binary tree. 

Typically, these specialized structures are used in an attempt to provide a better fit than 

sequential First Fit and a faster fit than sequential Best Fit. Indexed fits are the least 

defined of the mechanics introduced here but being aware of other indexing structures 

may prove valuable. [2] 
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One popular example of an indexed fit allocator is Stephenson’s Fast Fits which uses a 

Cartesian tree sorted by size and address. From the tree, Stephenson proposes two 

different options for finding a block to allocate, which are Leftmost Fit and Better Fit. 

Leftmost fit functions similarly as first fit since it takes the first one by address on the left 

side. Better fit on the other hand goes through the tree choosing the best suitable block 

until both descendants are too small to satisfy the allocation. Both methods offer on 

average logarithmic worst-case execution but are truly O(n), should the tree get terribly 

unbalanced. [2][16] In Stephenson’s testing, Fast Fits were not beneficial for small heaps 

managing small amounts of allocated blocks at once. But if the number of allocations 

was raised, Fast Fits were able to outperform sequential fit algorithms by a large margin 

while requiring similar implementation overhead. However, Leftmost Fit is naturally 

susceptible to becoming unbalanced since it favours one side of the tree, and Better Fit 

is not immune to it either. Should this happen the performance of Fast Fits would become 

even worse than sequential fits. [16] 

Indexed fits are a broad category of different allocation algorithms that often work well 

on some allocation sequences and poorly on others. They are of interest to explore and 

try out but can have some notable pitfalls in worst-case performance, which means the 

indexing structure must be chosen carefully with worst-case in mind. Additionally, they 

can prove useful as a part of a multimechanic allocator, where a small tree size can be 

more easily ensured. 

2.4.5 Bitmapped fit 

The last basic mechanism discussed here is the bitmapped fit. In their simplest form they 

have a bitmap with one bit flag for each fixed size area in the heap that signifies whether 

it is free or allocated. The allocator will then perform bitmap searches to find a long 

enough streak of free areas and allocate that section to satisfy a request. In this basic 

format the bitmapped allocator performs slowly, but it can be made faster by using larger 

lookup tables to scan through the data. [2] 

One advantage of using bitmaps is the low overhead per block of memory since only 1 

bit of storage is required for each area in memory. For small block sizes, which are the 

majority of allocations in most programs, this can be a major reduction in wasted 

memory. They are however quite slow unless the searching algorithm can be heavily 

optimised and therefore not ideal for embedded systems. [2] But as with some of the 

previous mechanics, bitmaps can prove to be a useful tool in conjunction with other basic 

mechanics and for example, the real-time allocators Half-Fit and TLSF both use bitmaps 

to make indexing faster through the use of first free set (ffs) bit-scan operation [3][4].  
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3. GENERAL-PURPOSE ALLOCATORS 

To find the dynamic memory allocator best suited for the application, a number of 

general-purpose allocators were considered. This chapter will go over the functionality 

of the most viable candidates. For the purposes of this thesis an allocator’s functionality 

includes how it implements allocation and deallocation of memory blocks as well as the 

data structures it uses to manage free blocks. Finally, a new allocator called Half Tree is 

introduced. 

In addition to the allocators examined in this chapter, many others were looked into but 

dismissed before a more thorough examination. These include, but are not limited to, 

tcmalloc [17], mimalloc [18], umm_malloc [19], jemalloc [20], Fast Fits (AVL) [16], CAMA 

[21] and eheap [22] and tertiary buddy [23]. Dlmalloc was also determined to not be 

suitable as is, but it was used for inspiration in the Half Tree allocator. 

3.1 Currently used allocator 

At the time of writing the target device uses a form of binary buddy allocator to manage 

dynamic memory. The key difference from regular binary buddy, where each block size 

is a power of two, is that each block is instead a power of two multiplied by 12. This size 

scheme is used to align it with the free block header size. The smallest block size is set 

at 22 * 12 = 48 bytes and there are a total of 9 size levels in use, meaning that the largest 

block size is 12288 bytes. The allocator manages blocks of different levels in their 

separate free lists to make finding appropriately sized free blocks faster. Entering blocks 

to the free lists is done with LIFO policy. 

The allocation sequence in a binary buddy allocator is described with a flowchart in 

Figure 5. 
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Figure 5 Allocation sequence in binary buddy. 

The allocation in Figure 5 is quite simple and fast. First, the requested size is rounded 

up and transformed to the nearest level that is large enough for it. Second, If the free list 

holding blocks of this size is not empty, the first block in the list is removed and returned 

to the user. Alternatively, if the free list is empty, the next non-empty free list is found and 

the first block from there is removed. This block is then split in half until it matches the 

requested size. The first half is given to the user and the second halves are added to the 

front of the free lists of their respective sizes.  

Since the number of levels is relatively low, the allocation is quite fast even in the worst 

case. The worst-case performance for allocation happens when there are only free 

blocks of the largest size and request needs the smallest block, resulting in maximum 

number of split operations. As an additional benefit to performance, if the next request is 

of the same size, the ‘buddy’ of the previous allocation will be ready to service the request 

in the free list. 

The deallocation sequence is described with a flowchart in Figure 6. 
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Figure 6 Deallocation in binary buddy. 

The deallocation sequence is similar to the allocation sequence. It starts with finding the 

corresponding size level of the block to be freed. A block of maximum size can no longer 

have a buddy, so it is added to the free list as is. However, if the block has a free buddy, 

it is coalesced with it. This cycle is repeated until the block is either maximum size or the 

buddy is allocated and therefore cannot be coalesced. 

The free operation is also quite fast on average. The block and its buddy are of the same 

size, so finding the header of the buddy is trivial. The worst-case for deallocation 

happens when a block of minimum size is freed, and all its buddies are also free. In this 

situation, the deallocation sequence consists of the maximum number of coalescing 

operations which is bound by the number of levels used in the allocator. 

The implementation overhead for this type of buddy system is low. Each block header 

only needs to be 4 bytes to store all necessary information. Using boundary tags is also 

not required as the buddy system doesn’t support general coalescing. The free lists 

require one 4-byte pointer each in the heap’s management structure, but the rest of the 

list can be stored within free blocks themselves as described in chapter 3. The current 

allocator supports using multiple independent heaps which will multiply this heap header 

overhead for each new instance. 

3.2 TLSF 

Two-Level Segregated Fit (TLSF) is a general-purpose allocator designed for real-time 

systems devised by Masmano and colleagues [9]. Both allocation and deallocation are 

O(1) time operations. This is achieved with a combination of segregated fit using size 

ranges and bitmaps for searching. Additionally, TLSF aims to minimise fragmentation by 
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implementing immediate general coalescing and a good fit policy. [4][9] It has been 

shown to produce low fragmentation while being competitive in performance in tests from 

multiple sources [7][24][25]. 

As the name implies, this allocator uses a two-level array to store many free lists of 

various sizes. The first level has block sizes arranged in powers of two. This level uses 

an offset to handle all blocks below a certain size outside of the main TLSF structure. In 

practice this can mean that blocks of size below 27 are considered small blocks and 

placed in a separate segregated list, then the first level of TLSF will have a free list for 

sizes 27 – 28, 28 – 29 ... 230 – 231. The location on this level is referred to as the block’s 

first-level index (FLI). Each of these size ranges contains a second level of TLSF, which 

splits the sizes within each range further. The second level granularity is user 

configurable with recommendations being 16 or 32 size groups with corresponding 

second-level indexes (SLI). The second level does size range splitting evenly. [9][26][27] 

Figure 7 shows the TLSF data structure. 

 

Figure 7 TLSF data structure [27]. 

In Figure 7 the TLSF data structure is shown with the first level vertically and the second 

level horizontally. The structure in Figure 7 only uses 8 second level indexes for 

demonstration purposes. [28] This does however illustrate a requirement for a minimum 

block size that can be managed in the TLSF structure. If there were 16 SLI in use instead, 

then FLI 5 would try to split the size ranges with only 2 bytes in between. On a 4-byte 

aligned system this would render half of the free lists useless. [1][28]  



21 
 

Figure 7 also exposes one major weakness of TLSF which is implementation overhead. 

Each of the free lists require a 4-byte pointer in heap management, which with FLI = 30, 

SLI = 16 and minimum size offset being 6 results in a total of 1536 bytes to manage the 

free lists. Additionally, TLSF requires one bitmap for the first level and a bitmap for each 

second level, further increasing the overhead. [28] The per block overhead is not as bad, 

with the original implementation needing 8-byte headers per used block as shown earlier 

in Figure 2 [9][26]. However, later implementations of TLSF principles, for example 

Matthew Conte’s TLSF, are done with a 4-byte header to reduce overhead [29]. 

Allocation in TLSF starts by calculating the corresponding FLI and SLI for the requested 

size. This is done efficiently with processor instruction ffs to find FLI and bits following 

that determine the SLI. With these, the first non-empty list that holds only blocks larger 

than request is found, and its first block is removed. If the block is large enough to be 

split, the second half FLI and SLI are calculated, and it is placed in the appropriate free 

list. [28] 

Deallocation starts by attempting to coalesce the block with its neighbours. Previous 

neighbour is found using boundary tags and the next neighbour can be found using the 

size of the freed block. Once coalescing is done, indexes for the new block are 

calculated, it is added to the right free list and the bitmaps are updated. [28] 

From these descriptions, it is easy to find the worst-case performance for TLSF. 

Allocation does no list searches but instead finds the right free list with a bit scan 

operation and does one splitting operation. The worst-case for deallocation sees the 

block coalesce with both of its neighbours and adds it to a free list. None of these 

operations depend on the number of free blocks being managed, making TLSF fast in 

its worst-case. However, it also means TLSF will often perform at a level close to its 

worst-case if there is enough memory to split and memory gets freed frequently leading 

to coalescing operations. 

3.3 Half Fit 

Half Fit is a real-time dynamic memory allocator proposed by Ogasawara in 1995 to 

provide an alternative to buddy systems [3]. It has not gained much popularity as a viable 

allocator since it suffers from similar problems as binary buddy and is often considered 

strictly inferior to TLSF [21][25]. However, there are also words of encouragement from 

Masmano et al. “Half-fit is superior in all respects to Binary-buddy. Half-fit is faster than 

Binary-buddy and handles memory more efficiently” [6]. Since the aim of this thesis is to 

improve upon a variant of binary buddy, Half Fit is worth at least looking into. 
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Half Fit works on the same fundamentals as TLSF. It uses segregated free lists with size 

ranges divided in powers of two much like the first level of TLSF. The allocator then 

upkeeps a bitmap corresponding to each size range to quickly tell if it is empty or not. [3] 

Due to its simplicity, Half Fit is faster than TLSF and loses much less memory to 

implementation overhead [7]. 

Half Fit suffers from wasted memory that cannot be attributed to traditional external or 

internal fragmentation called incomplete memory use by Ogasawara. This problem 

arises from the way free lists are managed in combination with the allocation algorithm. 

The allocation algorithm only checks for free lists where each block is large enough to 

satisfy the request. In the worst case, this can lead to a situation where there are several 

blocks large enough to satisfy the request, but since their size is effectively rounded 

down to closest power of two in the free list, the allocation algorithm cannot find them. 

Due to this issue, Half Fit has unbounded memory use in the worst-case. [3] Incomplete 

memory use can also lead to an increase in fragmentation when the allocator is unable 

to reuse blocks as effectively. This has led to Half Fit performing poorly in most 

fragmentation tests [6][7]. 

One way to resolve the issue of incomplete memory use is to replace it with internal 

fragmentation. This is achieved by rounding up each request to a power of two. Now the 

allocator will not split blocks into sizes between powers of two which was causing suitably 

large blocks to not be found. The added internal fragmentation leads to a poor average 

fragmentation but avoids the potentially catastrophic unbounded worst-case. [21] This 

solution makes Half Fit more suitable for high integrity and hard real-time applications 

and has been successfully used for example in Kirienko’s O1Heap allocator [30]. While 

good in terms of predictability, rounding up the requests to powers of two means this 

allocator suffers from similar fragmentation profile as binary buddy. 

Another way to avoid incomplete memory use is to add a mechanism to the allocation 

algorithm to check the free list that can have blocks of the right size. At its simplest form 

this can mean going through the whole free list, or stopping early if a block is found, 

before taking a block from the free list of larger blocks. Such a solution would sacrifice 

constant execution time during allocations for much better memory efficiency. This could 

be made to execute in bounded time by only allowing the algorithm to check a specific 

number of blocks in the free list before giving up and taking the larger one. Another 

possibility would be having the free lists be sorted or indexed in a manner which allows 

faster searching. This type of solution has been considered for TLSF and shown to 

provide slightly better performance and memory efficiency [31]. 
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Half Fit as originally proposed by Ogasawara is not suitable for our needs. It suffers from 

unbounded memory use making it too unreliable. The suggested trading of incomplete 

memory use for more internal fragmentation is also not promising. The rounding up of 

requests leads to it having comparable fragmentation to binary buddy. However, the 

lastly discussed improvements using some mechanism to search through the smaller 

block free list has some merit to it. The heap sizes managed by our allocator will be 

small, so even bounding the search to a low number of blocks is likely to be able to go 

through most of the free list. 

3.4 Half Tree 

Half Tree is a new dynamic memory allocator designed in the scope of this research. It 

is built upon the foundations of Half Fit and aims to solve the problems with incomplete 

memory use while preserving good enough performance and offering a low-bounded 

worst-case execution time. In addition to Half Fit, the allocator draws inspiration from 

dlmalloc. Dlmalloc was not considered as a suitable allocator by itself, due to it being 

aimed more at general-purpose computers with larger, expandable heaps. However, due 

to its popularity and influence it was examined thoroughly. Half Tree implements a similar 

binary tree structure for free lists and a slightly varied designated victim (DV) system 

being used in dlmalloc. 

Half Tree implements a binary tree structure for free lists in order to make searching 

them for a large enough block faster. More specifically the tree structure is a bitwise trie 

where each level looks at the next bit in a memory block’s size to decide whether it should 

be placed in the left or right branch. Figure 8 has an example of how a bitwise trie works 

in Half Tree. The real allocator uses sizes aligned to 4 bytes but for illustration purposes 

smaller sizes are used in Figure 8. 
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Figure 8 Inserting a block in bitwise trie in Half Tree. 

In Figure 8 a block of size 0b1110 is being inserted into the trie. The bin where a memory 

block is to be placed is determined in the same way as in Half Fit using a rounded down 

base-2-logarithm. This is done efficiently with ffs instruction finding the most significant 

bit set to 1. The next level examines only the bit following the first set bit to determine if 

the block goes to the left or right. The level after this examines the bit after that and so 

forth. One additional feature of the data structure is seen in Figure 8 with blocks of size 

0b1010. If the tree already contains a block of the same size as the one being added, it 

is not placed in the main trie but instead added to a linked list of same sized blocks. [32] 

A common problem with various tree structures is that reordering the tree will take a 

considerable amount of time, or the tree will have an effectively sequential worst case if 

the balance is not upkept [16]. The structure of bitwise trie means the tree in any bin has 

at most as many levels as there are bits in the size of the memory, leading to a low-

bounded worst-case. The bitwise trie used in Half Tree does not need to be balanced to 

ensure the tree does not grow uncontrollably due to this inherent maximum number of 

levels. Additionally, the total amount of memory required to fill the levels grows 

exponentially as the number of potential levels increases. 

Removing a block and restoring the tree is a simple and relatively fast operation in Half 

Tree. There are 3 basic states the block being removed can be in, each leading to slightly 

different remove and restore procedures. First, the block can have others of the same 

size linked to it as is the case in Figure 8 0b1010. To remove and replace the block in 
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the tree simply make sure one of them retains the tree state and the other can be 

removed without affecting the structure. Second, the block can be a leaf node in which 

case it can simply be removed without further action, example 0b1000. The last 

possibility is the block being one of the internal nodes, example 0b1001. A node can be 

replaced with any of the blocks under it without breaking trie ordering. [32] In Half Tree 

the leftmost leaf in the block’s subtree is used to replace the block to promote a better fit 

for next allocation.  

The last part of the data structure is the designated victim. In dlmalloc, DV is the leftover 

part of a split operation which is not yet placed into the main data structure but instead 

held on to in case it can be used again soon after [32]. Half Tree extends this functionality 

to also be able to hold a recently freed block. Both allocators implement a system to 

replace small DVs, determined by comparing to a small DV threshold value, to increase 

the likelihood of reuse [32]. Dlmalloc implements a more fundamental wilderness 

preservation system which also prevents the last chunk of memory from becoming a 

designated victim after a split [32]. This functionality is mimicked in Half Tree by not 

allowing unnecessarily large blocks to become the DV. This limit can be tuned to suit the 

target application’s allocation sizes. 

Allocation in Half Tree works in 3 steps. First, use the DV if it is large enough. If this fails, 

find the bin index where a block of the requested size would be in. This bin is then 

searched through, with priority always being on the right branch, until a large enough 

block is found, or a leaf is reached without finding one. Should this search also fail, use 

ffs to find the next suitable bin with the help of a bitmap similarly to Half Fit and take the 

first block from that bin, with priority on the left branch. In each of the possible cases, a 

large enough block is split, and the remainder is placed in a tree or becomes the new 

DV if it meets the criteria. 

Half Tree supports general coalescing by using boundary tags. When a block is 

deallocated, it is first coalesced with its free neighbours. Special care is given to the 

situation where the DV is one of these neighbours, but it will be coalesced nonetheless. 

If  the DV was coalesced, or there was no DV to begin with, the freed block becomes the 

new DV. Alternatively, the freed block may be used to replace a small DV or be placed 

directly into the main data structure. 

Major weakness of Half Tree is its large minimum block size. Including all the required 

pointers to create the tree structure, along with size information and the footer, the 

smallest block Half Tree can manage is 24 bytes. The header of a used block can be as 

small as 4 bytes but if allocation requests are small enough, the minimum size can lead 
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to large amounts of internal fragmentation. This however does not lead to issues on the 

target device, since it does not allocate many blocks smaller than 24 bytes. Furthermore, 

the minimum block size is still vastly improved from binary buddy’s 48 bytes. 

Half Tree is a new memory allocator with a design goal of being more memory efficient 

than Half Fit and faster than TLSF. It implements a good fit policy, albeit much further 

from best fit than for example TLSF. The free lists are organized with a loose FIFO policy 

since older blocks are more likely to be found first. Pseudocode for Half Tree can be 

found in Appendix A. 
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4. TESTING TECHNIQUES AND 
METHODOLOGIES 

To evaluate the allocators’ capabilities in the target application, we put them through 

various tests. This chapter will go over everything related to the testing setup starting 

with the platform used to run them. Following this, we define the parameters for 

quantifying performance and fragmentation. Next, the memory traces are introduced, 

and test implementation and measurement methods are discussed. Lastly, allocator 

implementation specifics used in the tests are defined. 

4.1 The testing platform 

All tests were done on a U-Blox M9 standard precision GNSS chip. To avoid regular 

operation of the chip interfering with results, a special build was used to excludes most 

of the firmware and operate as close as possible to hardware only. This is a more 

constrained environment than using a general-purpose PC, but still allows for extensive 

enough tests to be ran. 

This decision was made for two main reasons. Firstly, by performing the testing on the 

target device the results will be more representative of the real use case. It will use the 

same hardware, same instruction set architecture and the same libraries and software 

framework. Secondly, a side objective of this work was to provide a dynamic memory 

benchmark to use in the future for the same chip. By implementing the testing framework 

within the confines of the firmware, it makes achieving this goal easy. 

4.2 Define measurement parameters 

Measuring performance is straightforward. As discussed earlier in chapter 2, the most 

interesting aspects are average allocation and deallocation time as well as the worst 

execution times for each. For these tests we do not directly use processor cycles or 

instructions per operation but instead use a separate hardware timer counter on the chip. 

It acts much akin to clock cycles and allows for easy comparisons between allocators. 

When the text refers to cycles, it is these counter cycles it is referring to. 

Quantifying fragmentation is a much more complicated issue. The most widely used 

method was introduced by Johnstone et al. as being the ratio between the maximum 

amount of memory used by allocator and the maximum amount requested by the user, 

or live memory [10]. This can be expressed with formula 
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𝑢𝑠𝑒𝑑 𝑚𝑒𝑚𝑜𝑟𝑦 − 𝑙𝑖𝑣𝑒 𝑚𝑒𝑚𝑜𝑟𝑦

𝑙𝑖𝑣𝑒 𝑚𝑒𝑚𝑜𝑟𝑦
 ∗ 100% (1) 

Figure 9 shows a live memory trace compared to memory used by the allocator. 

 

Figure 9 Measurements of fragmentation. The lower line plots live memory while the 
upper line represents used memory [10]. 

From Figure 9 points 2 and 3 mark the maximum live memory and maximum used 

memory. While this has established itself as the most used method of measuring 

fragmentation, Johnstone and colleagues also proposed 3 other methods. From Figure 

9 those would be ratios between points 1 and 2, points 3 and 4 or taking the average 

ratio over run time. [10] Each of these have their merits and pitfalls, but for this work we 

will be focusing on the one discussed first. It appears to be the most balanced and given 

its popularity, will align the results better with research in this field. The main weakness 

of this method as stated by Johnstone et al. is, that it can give a deceptively low result if 

the point of maximum used memory has low live memory [10]. However, it should still 

give a fair enough result to compare allocators between each other and can be combined 

with other parameters to account for its weaknesses. 

One interesting measure of fragmentation we use is Cost Metric introduced by Rosso. 

Cost Metric is measured in bytes and means the smallest possible heap size that can 

service all incoming requests. This is specifically designed for constrained devices and 

provides a good number for comparison, since it includes all aspects of memory waste 

from implementation overhead to different types of fragmentation. [33] As well as finding 
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the Cost Metric itself, it will be used to run other fragmentation tests on the minimum 

heap size.  

Finally, another parameter used in testing is the Smallest-Biggest Block Metric (SBBM) 

introduced by Rosso. This metric tracks the biggest block available for the allocator at 

any given time and the result is the smallest of these over the duration of the test run. 

SBBM can give more insight into how efficiently the memory was utilised and how much 

more memory could have been requested without failure at any point in the allocation 

sequence. This is especially interesting when combined with a small heap from Cost 

Metric. [33] 

4.3 Memory traces 

Memory trace refers to a specific sequence of allocation and deallocation requests. 

Throughout research on dynamic memory allocation a variety of different types of traces 

have been used in testing. Earlier work focused heavily on synthetic, mostly randomised, 

traces which were not great at replicating real program behaviour. In the survey by 

Wilson et al. they strongly advised against the use of randomized synthetic traces and 

encouraged a shift towards more accurate synthetic traces or better yet, real traces from 

real programs. [2] This has resulted in more recent work largely favouring the use of 

traces from real programs, typically things like compilers, scripting language interpreters 

or simulation and optimisation tools [10][31]. 

The tests in this thesis use a combination of synthetic and real traces. The synthetic 

traces are mostly naive, rather simplistic, traces designed for a specific purpose. Their 

inclusion is motivated by the forementioned benchmark for future use as well as to 

potentially find what type of requests the allocators might be struggling with. The main 

comparisons should be made with the number of real traces, gathered from device run 

time. These traces provide a result closer to the real use case, or at least a snippet of it. 

The inspiration for types of synthetic traces to use was from Masmano et al. [7]. For 

these tests, synthetic traces are generated using pseudorandom numbers from rand_r(). 

The sequence from rand_r() is reset with a known seed before each test it is used in to 

make the tests fair for each allocator and each individual test run. Table 1 shows the 

traces and their characteristics.  Time to live is given in number of allocation operations 

before the current one will be deallocated. 
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Table 1 Synthetic traces. 

Trace Size range (bytes) Time to live (in allocs) 

Small 8 – 376 0 – 35 

Large 2000 – 12000 0 – 3 

Random 8 – 6136 0 – 10 

Typical 48 – 2000 0 – 15 

Worst varies varies 

 

The first two traces in Table 1 are mostly self-explanatory. They use only relatively small 

or large blocks. Similarly, the random trace uses a wide range of allocation sizes and a 

longer time to live than the large trace. For random and large traces, the time to live is 

limited by the heap size, since we do not want them to fail allocations even with the worst 

allocator. The typical trace resembles the allocation sequence from device run time with 

a bias towards smaller allocation sizes. Lastly, the worst trace is different from allocator 

to allocator and attempts to create a sequence leading to worst performance for that 

allocator. This trace is not used for fragmentation testing. 

From small, large and random traces it can be seen that the upper limit for block sizes 

aligns with the sizes used in Buddy allocator. For large trace this is a hard limit since the 

implementation of Buddy cannot handle larger blocks. For the others, these limits were 

chosen to avoid Buddy performing worse than average. When looking for an 

improvement, we want Buddy to perform at least as well as on average but if it performs 

better, that is not harmful. 

The real traces were compiled by adding instrumentation code to the firmware and 

instigating desired states. The first trace was taken during stable run time and tracks 

approximately a minute of allocations and deallocations (3453 allocations). This is called 

the stable trace. Next trace, the boot trace, includes the first 400 allocations from the 

device being rebooted. The last two traces were taken from the device while putting 

strain on dynamic memory. First one is short stress trace (463 allocations) and focuses 

more closely on the largest allocations happening on target device. Second trace, named 

simply stress trace (2000 allocations), is a longer trace with more features enabled. 
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4.4 Test infrastructure and implementation 

The constrained testing platform requires some compromises and workarounds from the 

implementation. One of these is the heap size used for the tests. Performance tests and 

main fragmentation tests use a single heap of 86064 bytes. This size was chosen to 

result in Buddy allocator having only blocks of maximum size initially and to be large 

enough for meaningful testing. Fragmentation tests are also run with the minimum heap 

size found from Cost Metric to see how extremely constrained heap size might affect the 

fragmentation. Before each test, the allocator is returned to its initial state with an empty 

heap. 

Performance testing is done simply by checking the value of the timer counter before 

and after an operation, adding the difference to a running total, and finally calculating the 

average. Additionally, the slowest allocation and deallocation are kept track of. Number 

of allocations and deallocations for synthetic trace performance tests was set at 2500. 

This was determined to be large enough to include enough variations in sequences due 

to their simplicity. 

To measure fragmentation, we need to know how much memory the allocator uses for 

the test run as well as how much memory is requested. The test keeps track of the 

highest amount of live memory it has requested as well as keeping track of the biggest 

block available after each allocation, for SBBM. For each block allocated it checks the 

start and end addresses. It is worth noting that the block might be larger than requested 

and the real size needs to be checked from the allocator before calculating end address. 

This check includes header and footer overhead in the block size, meaning they will 

contribute to the total measured fragmentation. By calculating the difference between the 

highest and lowest addresses touched by the allocator, we can determine the total 

memory used. Finally, formula (1) is used to calculate the total fragmentation. 

This implementation of fragmentation measurement works well in most cases, since the 

allocators under test attempt to keep the used memory compacted to one end. However, 

there are some cases where this can prove problematic for the limited block size Buddy 

implementation. Since it uses a LIFO policy, it uses memory in the heap starting from 

the last block added. In a case where just barely more than one maximum size block of 

memory is needed to service all requests this leads to a high measured fragmentation. 

Figure 10 shows one such scenario. 
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Figure 10 Example of disproportional fragmentation in Buddy allocator. Red blocks 
are in use, green ones are free and yellow is the block that will be allocated. 

In Figure 10 there is no more memory left in the previously used full block on the right, 

so the next request for a level 3 block is taken from the next maximum size block on the 

left. Now, the allocator will split the new block down to size and allocate the furthest away 

block from the last full block. This unveils a weakness in fragmentation measurement 

where the real fragmentation could be very low, assuming there is no internal 

fragmentation, but the result would still be very high. This high result for fragmentation is 

not proportional to the harmfulness, or its likelihood of manifesting as failed allocations, 

of it since the memory within each maximum sized block is mostly independent of each 

other. 

There are also other possible scenarios where the Buddy allocator will show higher 

fragmentation than it is affected by. One example experienced during testing, for the 

curious it can be most clearly seen in synthetic typical trace in Appendix B, would be 

switching over to using the second half of a block. Depending on the sequence, it is 

possible that Buddy starts allocation from the left side, but once it fills up, switches over 

to the right side and ends up using that for the rest of the run while the left side is freed 

up. This leads to the measurement considering the start address to be on the left side, 

while the end address is at the end of right side. At most the allocator used barely over 

half of the memory in the block, but due to the side switch, used memory is measured 

as a full block being in use. This is again not overly harmful since the memory is still as 

compact as before, but the resulting fragmentation measurement will be much higher. 

Luckily, the problems with Buddy and fragmentation measurements are alleviated by the 

second half of the fragmentation tests. The problems stem from having a larger than 

necessary heap size and are conveniently solved by finding the Cost Metric and 

rerunning the test with a minimum size heap. Looking at the situation in Figure 10, with 

minimum sized heap it would be one maximum size block, to the right, and one block of 

level 3, to the left. Figure 11 shows the same allocation as Figure 10, but with minimum 

heap size instead. 
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Figure 11 Same situation as in Figure 10 but with minimum heap size. 

Now in the situation shown in Figure 11 the smaller block would be immediately next to 

the full block resulting in fragmentation measurement working as intended. This means 

the fragmentation results from Buddy with a large heap should be taken with a grain of 

salt, especially if they differ greatly from results with Cost Metric. 

As stated above, all fragmentation tests are run with both large and minimum size heaps. 

Originally, as described by Rosso, Cost Metric is found by shrinking the heap size until 

an allocation fails [33]. In the interest of speeding up the tests and ensuring the heap 

size is truly the smallest possible the direction is reversed in our testing. The allocator 

will start with a heap that is too small for the sequence and increment it by 8 bytes until 

no failures occur. Due to the nature of dynamic memory allocation, it is possible that 

there are heap sizes which fail between Cost Metrics found from different directions. All 

other fragmentation tests are then repeated on this small heap.  

4.5 Allocator implementations 

The Binary Buddy allocator was used mostly as it is in the firmware. However, some 

features had to be removed to make it work on a more barebones build, but the core 

functionality remains the same. Additionally, any unnecessary state tracking code was 

removed since it would not be included in the other allocators either. As stated above, 

multiple heaps were not used in the testing, but support for them was left in and is also 

included in all other allocators built upon the same framework as Buddy. This introduces 

a slight performance penalty over not having it but is fair between the allocators that do 

have it. 

To provide a point of reference and act as a baseline, two simple sequential allocators 

were implemented. These two are First Fit and Best Fit. Neither of them can be 
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considered as viable allocators for our use-case due to their unbound worst-case 

performance. The motivation for First Fit’s inclusion is to be the most simple and basic 

allocator possible. Best Fit on the other hand is considered very good in terms of 

fragmentation [7][10]. This makes it a valuable baseline for good fragmentation. Both 

allocators use LIFO policy and are implemented in the same framework as Buddy 

allocator with all the same features. 

There are two interesting open source implementations of TLSF and due to the ease of 

porting them, both are included in the tests. The first one is the original implementation 

of TLSF 2.0 by its creators [26]. The second implementation is a popular, more recent 

version made by Conte [29]. One big difference immediately noticeable is Conte’s TLSF 

has a 4-byte header whereas the original uses 8 bytes. Another notable difference is that 

Conte’s version includes support for using multiple heaps while the original does not. 

Both versions use asserts for error checking, which were disabled in the test runs. 

Each version of TLSF received some minor changes both to make them compatible with 

the test interface and better suited for the target application. A set of interfacing functions 

which call various TLSF functions were added to both implementations, possibly making 

them very slightly slower. Additionally, first level indexes of both were brought down to 

18 since the heap size will not be large enough to require using the full 32 indexes. 

Second level indexes were also reduced to 8 for Conte’s and 16 for the original. The 

original had some issues when attempting to run it with just 8 SLI so the larger number 

was used. This reduction in bins greatly reduces implementation overhead while not 

having significant impact on fragmentation when working with relatively small blocks. It 

is worth noting that since TLSF is not using the same framework as binary Buddy, it 

might be slightly faster or slower when made to work with that frame. 

Half Fit as it was originally proposed by Ogasawara was not implemented due to issues 

with incomplete memory use leading to it not being reliable enough [3]. Kirienko’s 

O1Heap allocator has recently been successfully implemented in a project and is open 

source [30][34]. It is a Half Fit variant that rounds all requests up to powers of 2 to provide 

high predictability and both bounded worst-case performance and fragmentation. It has 

been designed as a “predictably bad allocator” which makes it unlikely to be the best 

candidate for systems that don’t value predictability over everything. [30] For our testing 

it acts as a substitute for the base Half Fit implementation to be used for comparison with 

other variants based on the same fundamentals. The open source implementation was 

modified to interface with our tests and to not upkeep diagnostics. Additionally, all asserts 

were disabled for the testing. 
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Next Half Fit variant, referred to as Half Fit CSTM from now on, implements a simple 

sequential search of the free list which might have a block of a large enough size. It does 

not include a threshold where it gives up the search and takes the large block found by 

base Half Fit operation, but this is trivial to implement if desired. It was mostly built from 

scratch to work in the same framework as the current allocator but uses some helper 

functions and takes guidelines from O1Heap. Additionally, the header size was shrunk 

down to 8 bytes from O1Heap’s 16 bytes by implementing boundary tags.  It also limits 

the number of bins to 16, with an offset of 4, making the maximum block size it can 

handle ~1 MB. 

Finally, Half Tree allocator was built from the ground up, barring a handful of Half Fit 

helper functions from O1Heap, according to the design described in Section 3.4. It also 

works with the same framework as the Buddy allocator and its structure is based on the 

pseudocode from appendix A. The number of bins and the same offset as with Half Fit 

CSTM were used in testing. For the test, small designated victim threshold was set to 

150 bytes and large DV boundary was set to 2800 bytes. 
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5. TEST RESULTS AND ANALYSIS 

This chapter will go over the results of our testing. First, performance and fragmentation 

results are introduced and analysed separately. Second, the allocators are evaluated 

based on the results as a whole. The analysis will focus on real trace results, but a brief 

overview of synthetic trace results is provided. For the inclined, full results from synthetic 

traces can be found in Appendix B. 

5.1 Performance results 

Table 2 through Table 5 show performance in terms of execution time from real traces 

in order boot, stable, stress -short and stress trace. The column average operation takes 

the average from allocation and deallocation to provide a single number for comparison. 

This is further elaborated by comparing the change in average operation with the binary 

Buddy allocator. 

Table 2 Performance results in boot trace. Units are in timer cycles. 

 Average Worst Average operation 

Alloc Free Alloc Free Operation Change 

Buddy 84 130 275 369 107 0,00% 

First Fit 75 129 97 180 102 -4,67% 

Best Fit 96 127 150 180 111,5 4,21% 

TLSF (Cont.) 259 193 262 292 226 111,21% 

TLSF (Masm.) 173 167 188 245 170 58,88% 

O1Heap 78 71 80 101 74,5 -30,37% 

Half Fit CSTM 108 136 117 176 122 14,02% 

Half Tree 90 162 157 253 126 17,76% 

 

Table 3 Performance results in stable trace. Units are in timer cycles. 

 Average Worst Average operation 

Alloc Free Alloc Free Operation Change 

Buddy 90 145 346 382 122 0,00% 

First Fit 73 121 96 172 97 -20,49% 

Best Fit 87 127 122 182 107 -12,30% 

TLSF (Cont.) 259 199 262 292 229 87,70% 

TLSF (Masm.) 175 170 188 245 172,5 41,39% 

O1Heap 78 72 80 101 75 -38,52% 

Half Fit CSTM 108 136 117 176 122 0,00% 

Half Tree 106 135 151 243 120,5 -1,23% 
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Table 4 Performance results in stress trace -short. Units are in timer cycles. 

 Average Worst Average operation 

Alloc Free Alloc Free Operation Change 

Buddy 85 131 276 379 108 0,00% 

First Fit 72 120 95 167 96 -11,11% 

Best Fit 97 128 150 189 112,5 4,17% 

TLSF (Cont.) 256 197 262 292 226,5 109,72% 

TLSF (Masm.) 170 165 188 245 167,5 55,09% 

O1Heap 77 71 80 101 74 -31,48% 

Half Fit CSTM 107 134 121 176 120,5 11,57% 

Half Tree 105 140 157 240 122,5 13,43% 

 

Table 5 Performance results in stress trace. Units are in timer cycles. 

 Average Worst Average operation 

Alloc Free Alloc Free Operation Change 

Buddy 84 131 311 379 107,5 0,00% 

First Fit 79 131 111 199 105 -2,33% 

Best Fit 107 128 165 203 117,5 9,30% 

TLSF (Cont.) 251 193 262 292 222 106,51% 

TLSF (Masm.) 166 160 188 245 163 51,63% 

O1Heap 75 67 80 101 71 -33,95% 

Half Fit CSTM 107 132 125 176 119,5 11,16% 

Half Tree 90 151 167 254 120,5 12,09% 

 

The average operation times in real traces are compiled in Figure 12. 
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Figure 12 Allocator performance in real traces. 

For the sake of brevity, only the average operation times from synthetic traces are listed 

in Table 6. 

Table 6 Average operation times in synthetic traces. Units are in timer cycles. 

 Small Large Random Typical 

Buddy 92,5 86,5 102 101,5 

First Fit 113 102,5 111 110,5 

Best Fit 141,5 110,5 126 125 

TLSF (Cont.) 212,5 230 229 226,5 

TLSF (Masm.) 151 178,5 175,5 170,5 

O1Heap 64 73 72 69,5 

Half Fit CSTM 117 122 122,5 120,5 

Half Tree 129 126,5 130,5 116 

 

The results from Table 6 are compiled in Figure 13. 
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Figure 13 Allocator performance in synthetic traces. 

Finally, Table 7 shows the worst-case performance of each allocator. The constant time 

allocators (TLSFs and O1Heap) did not have a designated worst-case trace but instead 

worst performance across the other traces was assumed to be the worst-case in general. 
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Table 7 Worst-case performance of allocators. 

 Worst-case allocation Worst-case free 

Buddy 347 382 

First Fit 6336 147 

Best Fit 6336 147 

TLSF (Cont.) 262 292 

TLSF (Masm.) 188 245 

O1Heap 81 101 

Half Fit CSTM 4138 176 

Half Tree 196 288 

 

Additionally, Half Fit CSTM worst-case was tested with a threshold on when to give up 

search of smaller block size free list. With a threshold of 10 the worst allocation takes 

157 cycles, with a threshold of 50 it takes 357 cycles, and with a threshold of 100 it takes 

607 cycles. 

5.2 Performance analysis 

From the results in section 6.1, it is immediately clear that the Buddy allocator has great 

average performance for real traces, as seen in Figure 12. This is further improved in 

the synthetic trace results of Figure 13, but as mentioned in chapter 5.5, they have been 

designed in a way where Buddy is at least as good as its average. Out of the allocators 

examined, only O1Heap and First Fit have consistently better performance than Buddy 

in real traces.  

Buddy allocator has the widest margin between its average and worst performance for 

any given trace. Unlike its great average performance, for all traces, excluding the worst 

trace, Buddy has the slowest worst execution times for both allocation and deallocation. 

With Puaut’s declaration of worst observed performance being enough for soft real-time, 

all the tested allocators would improve upon Buddy [8]. However, having the theoretical 

worst-case be as catastrophic as First Fit, Best Fit and Half Fit CSTM in Table 7 is not 

acceptable. Luckily, Half Fit CSTM can have a threshold implemented to limit the severity 

of its worst-case, while not debilitating its regular operation. 

Both versions of TLSF show much worse performance than the Buddy allocator. The 

version by Masmano is better in this regard than Conte’s, at least partially caused by not 

supporting multiple heaps and having a larger header. The extra 4 bytes in the header 

contain a pointer to previous block, which is much faster than the boundary tags used by 

Conte. However, even Masmano’s faster TLSF is still worse than Buddy in terms of 

performance with around 50% slower execution time across real traces. 
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O1Heap has excellent performance in all traces. It is consistently the fastest and even 

its worst execution times are competitive with the average of the second-best allocator. 

In addition, O1Heap has constant time complexity. With all these properties, O1Heap is 

the strongest allocator in terms of performance. 

Half Fit CSTM and Half Tree have similar performance to one another with Half Fit CSTM 

being slightly faster on most real traces, with stable trace being the exception. The stable 

trace, results shown in Table 3, features memory block reuse more prominently leading 

to better utilization of Half Tree’s designated victim mechanic, making it more effective 

there compared to other traces. This can be further seen in the typical trace in Table 6, 

which most closely resembles real program behaviour in stable run time out of the 

synthetic traces, having Half Tree perform noticeably better. For the real traces, both 

allocators mostly have 10–20% worse performance than Buddy, with Half Tree even 

outperforming it on the stable trace. 

Based on performance alone, the most promising allocators would be O1Heap, Half Fit 

CSTM and Half Tree. O1Heap would be an improvement in performance while Half Fit 

CSTM and Half Tree have acceptable slowdowns depending on their fragmentation 

results. TLSF has its benefits in having constant time complexity but tends to perform at 

a level close to its worst-case too often. This leads to TLSF having poor average 

performance. It is not prohibitively slow, but slow enough to not be an enticing option. 

5.3 Fragmentation results 

Table 8 through Table 11 show fragmentation results from the real traces. The first 

column names the allocators used. Next three columns show the results, which are used 

memory, fragmentation percent calculated by Formula (1) and SBMM, for a large heap. 

The last 4 columns Include Cost Metric as well as the other fragmentation results 

measured with the smallest possible heap for that allocator and trace combination. This 

means the heap size for each allocator on the Cost Metric side can be different. The 

peak live memory for the trace remains constant and is given in the top left corner. 
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Table 8 Fragmentation results in boot trace. Peak live memory for this trace is 
14400 bytes. Units are in bytes. 

Live memory 
14400 

Large heap Cost Metric sized heap 

Memory Frag. % SBMM Cost Metric Memory Frag. % SBMM 

Buddy 24576 70,67% 12288 21600 21552 49,67% 0 

First Fit 17005 18,09% 69043 15552 15536 7,89% 20 

Best Fit 15536 7,89% 70508 15560 15540 7,92% 834 

TLSF (Cont.) 14952 3,83% 70581 15488 14960 3,90% 13 

TLSF (Masm.) 15688 8,94% 69584 16472 15688 8,94% 16 

O1Heap 22144 53,78% 63744 22304 22144 53,78% 0 

Half Fit CSTM 15732 9,25% 70252 15816 15736 9,28% 0 

Half Tree 15732 9,25% 70184 15880 15732 9,25% 0 

 

Table 9 Fragmentation results in stable trace. Peak live memory for this trace is   
9382 bytes. Units are in bytes. 

Live memory 
9382 

Large heap Cost Metric sized heap 

Memory Frag. % SBMM Cost Metric Memory Frag. % SBMM 

Buddy 24576 161,95% 12288 14112 14064 49,90% 0 

First Fit 9910 5,63% 76138 9904 9888 5,39% 178 

Best Fit 9654 2,90% 76390 9680 9660 2,96% 0 

TLSF (Cont.) 9536 1,64% 75997 10088 9560 1,90% 37 

TLSF (Masm.) 9776 4,20% 75496 10560 9776 4,20% 8 

O1Heap 12736 35,75% 73152 13024 12864 37,11% 128 

Half Fit CSTM 9696 3,35% 76288 9976 9696 3,35% 0 

Half Tree 9792 4,37% 76124 10032 9884 5,35% 132 

 

Table 10 Fragmentation results in stress -short trace. Peak live memory for this 
trace is 11848 bytes. Units are in bytes. 

Live memory 
11848 

Large heap Cost Metric sized heap 

Memory Frag. % SBMM Cost Metric Memory Frag. % SBMM 

Buddy 24576 107,43% 12288 16752 16704 40,99% 768 

First Fit 15920 34,37% 70128 14296 14280 20,53% 1182 

Best Fit 13850 16,90% 72194 13872 13852 16,91% 1124 

TLSF (Cont.) 13728 15,87% 71805 14344 13874 16,34% 1097 

TLSF (Masm.) 14184 19,72% 71088 14968 14184 19,72% 136 

O1Heap 20640 74,20% 65248 20800 20640 74,21% 1344 

Half Fit CSTM 13928 17,56% 72060 14008 13928 17,56% 1132 

Half Tree 13924 17,52% 71992 14152 14004 18,20% 1072 
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Table 11 Fragmentation results in stress trace. Peak live memory for this trace is 
16037 bytes. Units are in bytes. 

Live memory 
16037 

Large heap Cost Metric sized heap 

Memory Frag. % SBMM Cost Metric Memory Frag. % SBMM 

Buddy 24576 53,25% 12288 24096 24048 49,95% 0 

First Fit 27841 73,60% 58207 17536 17520 9,25% 339 

Best Fit 17092 6,58% 68952 17120 17100 6,63% 20 

TLSF (Cont.) 17052 6,33% 68481 17256 16700 4,13% 377 

TLSF (Masm.) 17176 7,10% 68096 17960 17176 7,10% 16 

O1Heap 25856 61,23% 60032 26144 25984 62,03% 704 

Half Fit CSTM 17340 8,12% 68644 17424 17344 8,15% 0 

Half Tree 17340 8,12% 68576 17488 17340 8,12% 0 

 

Fragmentation results for large heaps are compiled in Figure 14. 

 

Figure 14 Allocator fragmentation in real traces with large heap. 

Similarly, the fragmentation results for minimum size heaps are compiled in Figure 15. It 

is worth noting that due to Buddy allocator showing such high fragmentation with a large 

heap, the two figures have different scales. 
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Figure 15 Allocator fragmentation in real traces with minimum sized heaps. 

Cost metrics for real traces are shown in Figure 16. 

 

Figure 16 Cost metric in real traces. 

To further illustrate the change in minimum heap required, Figure 17 compares the Cost 

Metrics of different allocators to the Buddy allocator’s Cost Metric. 
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Figure 17 Cost Metrics as a % of the corresponding Buddy allocator’s Cost Metric. 

For the sake of brevity, only fragmentation percentages are listed in Table 12. Live 

memory differs for all traces but is omitted in this compilation. The full fragmentation test 

results for synthetic traces are available in Appendix B. 

Table 12 Fragmentation results from synthetic traces. 

 Large Heap Cost Metric Heap 

Small Large Random Typical Small Large Random Typical 

Buddy 46,24% 8,67% 65,78% 147,14% 28,79% 8,67% 49,20% 54,47% 

First Fit 64,34% 22,04% 43,19% 84,57% 28,23% 22,06% 20,95% 42,56% 

Best Fit 19,99% 22,04% 16,95% 25,30% 13,48% 22,05% 7,01% 6,92% 

TLSF(Cont.) 18,82% 21,97% 26,79% 19,63% 11,62% 23,95% 26,22% 8,29% 

TLSF(Masm.) 18,82% 25,37% 19,80% 28,56% 15,77% 24,64% 7,43% 9,57% 

O1Heap 74,49% 141,49% 131,75% 87,93% 67.28% 81,12% 65,78% 87,93% 

Half Fit CSTM 21,59% 22,08% 9,97% 19,55% 14,66% 22,09% 12,68% 10,06% 

Half Tree 19,85% 22,08% 21,55% 26,23% 19,44% 22,08% 12,69% 10,94% 

 

The results can also be seen in Figure 18 and Figure 19 for large heap and minimum 

heap respectively. 
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Figure 18 Fragmentation results in synthetic traces with a large heap. 

 

Figure 19 Fragmentation results in synthetic traces with a minimum heap. 

Finally, the Cost Metrics are listed in Table 13 and the Cost Metric change related to 

Buddy’s is shown in Figure 20. 
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Table 13 Cost Metrics in synthetic traces. Units are in bytes. 

 Small Large Random Typical 

Buddy 7488 36912 55344 7728 

First Fit 7424 41424 44840 7104 

Best Fit 6576 41424 39680 5336 

TLSF (Cont.) 6976 42720 47328 5912 

TLSF (Masm.) 7472 43064 40600 6232 

O1Heap 9824 61600 61600 9504 

Half Fit CSTM 6704 41496 41840 5552 

Half Tree 7048 41560 41912 5664 

 

 

Figure 20 Synthetic trace Cost Metrics as a % of the corresponding Buddy 
allocator’s Cost Metric. 

5.4 Fragmentation analysis 
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15. The results with a large heap show some unrealistically high fragmentation as 
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50% fragmentation on all traces. As for the synthetic traces, the large trace seems to be 
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Buddy allocator has Cost Metric side SBMM of 0 in 3 of the 4 real traces. Since the 

allocator does not have any free blocks left but has high fragmentation, it can be 

determined that fragmentation is mostly internal. Other allocators tend to have more of 

a mix of internal and external fragmentation. In addition to Buddy, Half Fit CSTM and 

Half Tree have 0 SBMM in some traces but they also show low fragmentation. This is a 

combination of minimum block size preventing splits causing minor internal 

fragmentation and per block header and footer causing most of the wasted memory. 

Stress trace -short is distinct in fragmentation from the other traces visible in Figure 15. 

For Buddy allocator this trace shows its best fragmentation results in real traces with 

Cost Metric heap. However, for all other allocators and heap sizes, excluding First Fit 

with large heap, this trace proves to be the most problematic real trace. This result is a 

likely indication that stress trace -short is relatively favourable for Buddy while also being 

unfavourable for the other allocators. Even still, most of them show far better 

fragmentation than Buddy in this trace. Another indication of the trace being unfavourable 

is the large SBBM values across the board in Table 10. Each allocator could have served 

a lot more requests without increasing Cost Metric, therefore reducing fragmentation, if 

the trace was more favourable for them. 

From the baseline results of First Fit and Best Fit, we can see that they perform about 

as expected. First Fit is generally fine in terms of fragmentation but can vary wildly 

depending on heap size and allocation sequence, for example large heap stress trace 

fragmentation is high. As for Best Fit, it performed as well as hoped and is consistently 

among the allocators with the lowest fragmentation. Further, in most cases Best Fit has 

the lowest Cost Metric, meaning with implementation overhead included it is the most 

memory efficient allocator in these tests. These results serve as an indication that Best 

Fit is suitable for use as a reference point for good fragmentation results. 

Both versions of TLSF show low fragmentation across the traces. Conte’s is generally 

slightly more efficient than Masmano’s even with the latter using a higher number of 

second-level bins. However, both are close to the level of Best Fit, with Conte’s having 

even lower fragmentation on the real traces. On synthetic traces, Masmano’s version 

does much better with random trace, likely due to using a higher number of SLI helping 

with more spread-out allocation sizes. 

On the other hand, this low fragmentation of TLSF does not come without a trade-off. 

The high implementation overhead results in them having a relatively high Cost Metric, 

often higher than other allocators’ that have significantly more fragmentation. From Cost 

Metric side of the results, the per region overhead can be calculated by comparing used 
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memory to the Cost Metric. Conte’s version has 528 bytes of overhead while Masmano’s 

has 784 bytes per region. 

O1Heap has high fragmentation on all traces. Surprisingly, this fragmentation is not 

much worse than Buddy’s, especially on the real traces.  Only the boot trace shows 

significantly increased fragmentation while the others are slightly worse or better. 

Synthetic traces on the other hand heavily penalise O1Heap’s aggressive rounding of 

sizes up and down to powers of two. It also has a relatively large SBBM on the stress 

trace in Table 11 which is a potential sign of it missing large enough blocks due to the 

rounding. In terms of average fragmentation, O1Heap falls short. 

Half Fit CSTM and Half Tree show similar fragmentation on almost all traces, with Half 

Fit CSTM having slightly better fragmentation overall. The one significant outlier is large 

heap random trace, where Half Tree is noticeably worse. Half Tree works best with more 

real program -like reuse of blocks and the completely random blocks prove to be the 

most problematic for fragmentation as well. Even then, the fragmentation is still on 

acceptable levels and far outperforms Buddy allocator. 

In terms of Cost Metric both Half Fit CSTM and Half Tree are better than Buddy on all 

but the synthetic large trace. They are also very close to the versions of TLSF when it 

comes to Cost Metric, being better in some traces and worse in others. However, the 

amount of per memory region Implementation overhead, 80 bytes for Half Fit CSTM and 

148 bytes for Half Tree, is significantly lower. 

From fragmentation test results it can be seen that most of the allocators offer a vast 

improvement over Buddy. Best Fit along with both versions of TLSF are the best 

allocators in terms of fragmentation. However, TLSF suffers from higher implementation 

overhead, especially if using multiple heaps. Half Fit CSTM and Half Tree are a bit worse 

than the previous 3 but not far off. First fit is often good but shows its weaknesses with 

wild variance even with this limited sample size. O1Heap tends to have worse 

fragmentation than the Buddy allocator. 

5.5 Evaluation of allocator suitability 

For an allocator to be a suitable replacement for the Buddy allocator it must meet the 

following criteria in order of importance. Firstly, the allocator needs to have a low bound 

worst-case performance. Secondly, the allocator must have lower fragmentation than the 

Buddy allocator. Lastly, the average performance of the allocator should not be 

drastically worse than that of the Buddy allocator. 
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As expected, the sequential allocators First Fit and Best Fit are not suitable replacements 

for Buddy. They fail on the first criterion with very poor worst-case performance. Best Fit 

does technically succeed in filling the other 2 criteria with its excellent fragmentation 

results and decent average performance. However, out of these 2 allocators, Best Fit is 

also more likely to drift towards its worst-case performance. 

Both versions of TLSF excel on the first criterion with their constant time complexity. 

They are also outstanding in fragmentation. Unfortunately, their performance is severely 

lacking in comparison to Buddy allocator. With performance being the limiting factor 

when considering TLSF for our application, Masmano’s version is the favoured. Conte’s 

TLSF has lower fragmentation, but this is not worth the cost in performance. Another 

thing to consider is the large implementation overhead required by TLSF. When working 

with multiple heaps the total cost of overheads can prove too drastic. Therefore, 

Masmano’s TLSF is not the ideal candidate, but can be considered as a suitable allocator 

to replace the Buddy allocator if the performance trade-off is deemed worth it and the 

number of heaps remains low. 

O1Heap has really good performance and constant time complexity with a low bound. 

However, it has generally worse fragmentation than Buddy allocator. This makes it not 

suitable for our needs. 

Half Fit CSTM has a lot of interesting properties. Without a threshold on when to give up 

a search of smaller blocks it has the same worst-case as the sequential fits. With such 

threshold set to 50 Half Fit CSTM has similar worst-case allocation to the Buddy 

allocator. However, stopping the search at a threshold opens the possibility for 

incomplete memory use, should a free list ever contain more than that number of blocks. 

While the free lists are unlikely to grow to 50 blocks, it is still a risk worth considering. 

In the other 2 criteria Half Fit CSTM shows really good results. In terms of fragmentation, 

it offers a reduction in fragmentation of approximately 57–93% resulting in Cost Metric 

reduction of ~27%. Performance results are not necessarily ideal with Half Fit CSTM 

being 0–15% slower on real traces. However, this is a small price, especially compared 

to TLSF’s 50% slowdown, for the significantly improved memory efficiency. Half Fit 

CSTM has potential as a suitable allocator, but it has issues with reliability making it less 

promising. 

Half Tree improves upon the weakness of Half Fit CSTM while making as little sacrifices 

as possible in other areas. It has O(log(n)) time complexity that scales up slowly with 

heap size, resulting in a low bound worst-case execution time for a constrained heap. It 

also removes the possibility of incomplete memory use becoming an issue. As for the 
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other criteria, Half Tree is marginally slower than Half Fit CSTM in most traces but only 

about 0 to 4 cycles per operation. Fragmentation shows similar results with Half Tree 

being very slightly worse with up to 2% more fragmentation. 

All things considered, Half Tree is the most suitable allocator to replace the Buddy 

allocator. The main trade-off it has is lower performance, which is up to 18% on real 

traces. However, the 18% decrease is from the short boot trace. When comparing Buddy 

and Half Tree on long running stable trace, Half Tree even outperforms Buddy. In 

addition, it offers both faster worst-case allocation and worst-case deallocation. In terms 

of fragmentation, it offers sizeable improvements leading to approximately 27% smaller 

heaps being sufficient for the same allocation sequences. The per region overhead is 

larger, about 100 bytes more, but the improvements in fragmentation more than make 

up for this with reasonably sized heaps. 
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6. CONCLUSIONS 

The aim of this thesis was to improve upon the dynamic memory allocator used in U-

Blox GNSS chips. The focus area for optimisation was fragmentation, since the currently 

used Buddy allocator had major shortcomings in this area. Other key aspects to evaluate 

were performance and worst-case execution times, which we hoped would remain 

similar to those of Buddy’s. 

To get a more thorough understanding of dynamic memory allocation, a brief overview 

was provided in the beginning of the thesis. The fundamental building blocks were 

introduced as well as policies and techniques to improve fragmentation or performance.  

To find viable alternatives to Buddy allocator, many different allocators were considered. 

The vast majority of the allocators designed for general-use computers are not suitable 

for a constrained embedded device. This may be due to unnecessary complexity, high 

overhead, reliance on the operating system to provide more memory as needed or a 

number of other factors. In the end, 2 allocators designed for real-time applications were 

chosen for further investigation, TLSF and Half Fit. After further investigation, the most 

interesting version of TLSF was Masmano’s original. Respectively, the most viable 

variant of Half Fit was determined to be O1Heap. 

In addition to the allocators found from other sources, 2 customised allocators were 

made for this thesis. First, Half Fit CSTM which operates similarly to Half Fit while 

attempting to fix its largest problems with fragmentation and incomplete memory use, or 

at least make them less likely to occur. Second, a new allocator called Half Tree, which 

combines design ideas from both Half Fit and DLmalloc. The design goal of Half Tree 

was to be faster than TLSF, more memory efficient than O1Heap and more reliable than 

Half Fit CSTM. 

In order to compare the allocators to one another, a test framework was implemented on 

the target device. The allocators were evaluated on their performance, worst-case 

execution times, fragmentation and required heap size. From the tests each allocator’s 

suitability was evaluated. Table 14 compiles the key takeaways from the analysis. 
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Table 14 Summary of allocator suitability analysis. 

Allocator Advantages Drawbacks 

TLSF Very low fragmentation 
Lots of research 
O(1) time complexity 

Slow 
Large overhead 

O1Heap Very fast 
O(1) time complexity 

High fragmentation 

Half Fit CSTM Decent performance 
Low fragmentation 

Potentially unreliable 
Slightly slower than Buddy 

Half Tree Decent performance 
Low fragmentation 
Low bound worst-case performance 

Considerable overhead 
Slower than Half Fit CSTM 

 

From the allocators in Table 14 most suitable were determined to be TLSF and Half Tree. 

TLSF had some major upsides, but also significant trade-offs. Half Fit CSTM has some 

issues with unbound worst-cases leading to it being less reliable than other candidates. 

On the other hand, Half Tree achieved all its design goals. It provided a middle ground 

of still achieving lowered fragmentation while mitigating the downsides of the other 

allocators. It still has considerable implementation overhead, but much less so than 

TLSF. This led to the Half Tree allocator being proposed as the replacement for the 

Buddy allocator. 

Ultimately, the objectives of this research were met. The proposed Half Tree allocator 

has much lower fragmentation than Buddy allocator while not making drastic 

compromises in performance. Future work in the scope of U-Blox involves porting Half 

Tree allocator to the product firmware and testing it further there. Outside the scope of 

U-Blox, Half Tree allocator suitability for other embedded device’s memory allocation is 

worth considering. It is not necessarily viable for less constrained general-use computer 

applications and is likely to be a worse version of DLmalloc in such environments. 
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APPENDIX A: HALF TREE PSEUDOCODE 

/* Pseudocode for Half Tree allocator */ 
/* When the code updates fields, this is in reference to the fields required 
by the tree structure. These can be fields in the block at hand, its parent, 
left or right child, next block in its free list of same size or any block 
that is going to be one of those things */  
 
Rebin(block) 
 Find bin index 
 Set direction to first bit after first set bit 
 Update non-empty bin bitmask 
 If direction == 0 
  If bin->left == NULL 
   Place node as left child of bin and update fields 
   Return 
  Else 
   Set node to bin->left 
 Else 
  If bin->right == NULL 
   Place node as right child of bin and update fields 
   Return 
  Else 
   Set node to bin->right 
 Move direction by 1 bit 
 While direction has more bits to examine 
  If node->size == block->size 
   Place block in the list in node->next and update fields 
   Return 
  If direction == 0 
   If node->left == NULL 
    Place node as left child of bin and update fields 
    Return 
   Else 
    Set node to node->left 
  Else 
   If bin->right == NULL 
    Place node as right child of bin and update fields 
    Return 
   Else 
    Set node to node->right 
  Move direction by 1 bit 
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Unbin(block) 
 Find bin index 
 Set direction to first bit after first set bit 
 If direction == 0 

  Set node to bin->left 
 Else 
  Set node to bin->right 
 Move direction by 1 bit 
 While direction has more bits to examine 
  If node->size == block->size 
   While node is not block 
    If node->next == block 
     Update fields to remove block 
     Return 
    Set node to node->next 
   Break 
  If direction == 0 
   Set node to node->left 
  Else 
   Set node to node->right 
 If node->next is not NULL 
  Replace the node with node->next and update fields 
 Else if node->left == NULL and node-> NULL // node is a leaf 
  Remove the node from tree and update fields 
 Else // The node is an internal node and only one of its size 
  While leaf not found 
   Move to left node if not NULL, if it is move to right 
  Remove leaf from tree and update fields 
  Replace node with leaf and update fields 
 If bin is empty 
  Update the non-empty bin bitmask 
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Alloc(size) 
 Add overhead to size and round it up to minimum block size if needed 
 Block = NULL 
 If designated victim is not NULL 
  If designated victim->size >= size 
   Block = designated victim 
   Designated victim = NULL 
 Else 
  Find the optimal bin for the size 
  If optimal bin not empty 
   Set direction to first bit after first set bit 
   If bin->right is not NULL 
    Block = bin->right 
   Else if direction == 0 and bin->left is not NULL 
    Block = bin->left 
   Move direction by 1 bit 
   If Block is not NULL 
    While Block->size < size 
     // Prefer right here for performance 
     If Block->right is not NULL 
      Block = Block->right 
     Else if direction == 1 
      Block = NULL 
      Break 
     Else 
      If Block->left is not NULL 
       Block = Block->left 
      Else 
       Block = NULL 
       Break 
     Move direction by 1 bit 
    If Block is not NULL 
     Unbin(Block) 
  If Block == NULL 
   Find next non-empty bin with larger blocks 
   If found a bin 
    // Prefer left here since its always smaller 
    If bin->left is not NULL 
     Block = bin->left 
    Else 
     Block = bin->right 
    Unbin(Block) 
 
 
 If Block is not NULL 
  If Block->size – size > Minimum block size 
   Split the block 
   If leftover < designated victim max size 
    If designated victim == NULL 
     Designated victim = leftover 
    Else if designated victim->size < threshold 
     Rebin(designated victim) 
     Designated victim = leftover 
    Else 
     Rebin(leftover) 
 Return Block 
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Free(Block) 
 // Coalesce the block with free neighbours 
 If previous is free 
  If previous is designated victim 
   Designated victim = NULL 
   Combine the blocks // Block now at previous block’s header 
  Else 
   Unbin(previous) 
   Combine the blocks 
 If next is free 
  If next is designated victim 
   Designated victim = NULL 
   Combine the blocks // Block now at Block’s header 
  Else 
   Unbin(next) 
   Combine the blocks 
 If designated victim = NULL 
  Designated victim = Block 
 Else if designated victim->size < threshold 
  Rebin(designated victim) 
  Designated victim = Block 
 Else 
  Rebin(Block) 
 Return 
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APPENDIX B: SYNTHETIC TRACE TEST 
RESULTS 

Performance results in small trace. Units are in timer cycles. 

 Average Worst Average operation 

Alloc Free Alloc Free Operation Change 

Buddy 69 116 275 328 92,5 0,00% 

First Fit 88 138 149 201 113 22,16% 

Best Fit 147 136 217 208 141,5 52,97% 

TLSF (Cont.) 239 186 261 292 212,5 129,73% 

TLSF (Masm.) 154 148 187 245 151 63,24% 

O1Heap 68 60 79 101 64 -30,81% 

Half Fit CSTM 105 129 133 176 117 26,49% 

Half Tree 88 170 194 288 129 39,46% 

 

Performance results in large trace. Units are in timer cycles. 

 Average Worst Average operation 

Alloc Free Alloc Free Operation Change 

Buddy 74 99 133 159 86,5 0,00% 

First Fit 77 128 103 189 102,5 18,50% 

Best Fit 88 133 124 196 110,5% 27,75% 

TLSF (Cont.) 260 200 261 292 230 165,90% 

TLSF (Masm.) 185 172 187 245 178,5 106,36% 

O1Heap 76 70 79 101 73 -15,61% 

Half Fit CSTM 107 137 113 176 122 41,04% 

Half Tree 102 151 165 260 126,5 46,24% 

 

Performance results in random trace. Units are in timer cycles. 

 Average Worst Average operation 

Alloc Free Alloc Free Operation Change 

Buddy 80 124 310 370 102 0,00% 

First Fit 86 136 120 200 111 8,82% 

Best Fit 111 141 160 207 126 23,53% 

TLSF (Cont.) 258 200 261 292 229 124,51% 

TLSF (Masm.) 181 170 187 245 175,5 72,06% 

O1Heap 75 69 79 101 72 -29,41% 

Half Fit CSTM 108 137 120 176 122,5 20,10% 

Half Tree 110 151 165 260 130,5 27,94% 
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Performance results in typical trace. Units are in timer cycles. 

 Average Worst Average operation 

Alloc Free Alloc Free Operation Change 

Buddy 78 125 239 290 101,5 0,00% 

First Fit 85 136 121 200 110,5 8,87% 

Best Fit 110 140 157 207 125 23,15% 

TLSF (Cont.) 256 197 261 292 226,5 123,15% 

TLSF (Masm.) 175 166 187 245 170,5 67,98% 

O1Heap 73 66 79 101 69,5 -31,53% 

Half Fit CSTM 107 135 120 176 120,5 18,72% 

Half Tree 82 150 162 256 116 14,29% 

 
 

Fragmentation results in small trace. Peak live memory for this trace is 5777 bytes. 
Units are in bytes. 

Live memory 
5777 

Large heap Cost Metric sized heap 

Memory Frag. % SBMM Cost Metric Memory Frag. % SBMM 

Buddy 8448 46,24% 12288 7488 7440 28,79% 48 

First Fit 9494 64,34% 76554 7424 7408 28,23% 300 

Best Fit 6932 19,99% 79112 6576 6556 13,48% 213 

TLSF (Cont.) 6864 18,82% 78669 6976 6448 11,62% 193 

TLSF (Masm.) 6864 18,82% 78408 7472 6688 15,77% 248 

O1Heap 10080 74,49% 75808 9824 9664 67,28% 256 

Half Fit CSTM 7024 21,59% 78960 6704 6624 14,66% 196 

Half Tree 6924 19,85% 78992 7048 6900 19,44% 220 

 

Fragmentation results in large trace. Peak live memory for this trace is 33923 bytes. 
Units are in bytes. 

Live memory 
33923 

Large heap Cost Metric sized heap 

Memory Frag. % SBMM Cost Metric Memory Frag. % SBMM 

Buddy 36864 8,67% 12288 36912 36864 8,67% 0 

First Fit 41401 22,04% 44647 41424 41408 22,06% 5007 

Best Fit 41401 22,04% 44643 41424 41404 22,05% 4964 

TLSF (Cont.) 41376 21,97% 44157 42720 42048 23,95% 5481 

TLSF (Masm.) 42528 25,37% 42744 43064 42280 24,64% 4608 

O1Heap 81920 141,49% 24448 61600 61440 81,12% 8192 

Half Fit CSTM 41412 22,08% 44572 41496 41416 22,09% 4968 

Half Tree 41412 22,08% 44504 41560 41412 22,08% 4964 
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Fragmentation results in random trace. Peak live memory for this trace is 37061 
bytes. Units are in bytes. 

Live memory 
37061 

Large heap Cost Metric sized heap 

Memory Frag. % SBMM Cost Metric Memory Frag. % SBMM 

Buddy 61440 65,78% 12288 55344 55296 49,20% 3072 

First Fit 53067 43,19% 32981 44840 44824 20,95% 4604 

Best Fit 43341 16,95% 42703 39680 39660 7,01% 1243 

TLSF (Cont.) 46988 26,79% 38545 47328 46780 26,22% 4821 

TLSF (Masm.) 44400 19,80% 40872 40600 39816 7,43% 616 

O1Heap 85888 131,75% 22400 61600 61440 65,78% 2048 

Half Fit CSTM 40756 9,97% 45228 41840 41760 12,68% 2424 

Half Tree 45048 21,55% 40868 41912 41764 12,69% 2380 

 

Fragmentation results in typical trace. Peak live memory for this trace is 4972 bytes. 
Units are in bytes. 

Live memory 
4972 

Large heap Cost Metric sized heap 

Memory Frag. % SBMM Cost Metric Memory Frag. % SBMM 

Buddy 12288 147.14% 12288 7728 7680 54,47% 192 

First Fit 9177 84,57% 76871 7104 7088 42,56% 1215 

Best Fit 6230 25,30% 79814 5336 5316 6,92% 115 

TLSF (Cont.) 5948 19,63% 79585 5912 5384 8,29% 197 

TLSF (Masm.) 6392 28,56% 78880 6232 5448 9,57% 128 

O1Heap 9344 87,93% 76544 9504 9344 87,93% 1152 

Half Fit CSTM 5944 19,55% 80040 5552 5472 10,06% 288 

Half Tree 6276 26,23% 79640 5663 5516 10,94% 180 

 


