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ABSTRACT

Ella Mahlamäki: Hyperspectral imaging to estimate intrinsic viscosity of cellulose-based fabrics
Master of Science Thesis
Tampere University
Science and engineering
January 2022

Production of cellulose and cotton fabrics from virgin materials requires large amounts of natu-
ral resources. Recycling and reusing waste textiles make the textile production more sustainable.
Efficient recycling requires methods for waste textile sorting. Previously it has been shown that
natural and synthetic fibers, and different cellulose fibers can be classified using near-infrared hy-
perspectral imaging and chemometrics. The object of this thesis was to classify cellulose-based
textile samples based on intrinsic viscosity. The intrinsic viscosity value was known for each sam-
ple. The methods used in this thesis were kept simple and the results easily interpretable. Basic
theory behind light and material interactions and molecule absorption process are presented to
provide deeper understanding of the information acquired from hyperspectral images. In addition,
principles of hyperspectral imaging and some exploratory and multivariate analysis methods are
reviewed. Different methods and their effect on the classification results are discussed.

Hyperspectral camera used in this thesis operated in line-mode in near-infrared wavelength
region. In the near-infrared region (1000-2500 nm) cellulose-based fabrics have characteristic
interactions with light. Each material has unique chemical composition, and they can be identified
from their unique absorption spectra. Absorption bands seen in the spectra are generated by
energy level transitions in the molecules. In the infrared region absorption bands seen in the
spectra are mainly caused by overtones and combination bands. Absorption in the infrared region
happens if the molecular vibration changes the dipole moment of the molecule.

Differences between the sample average absorbance spectra were found with preprocess-
ing and chemometric methods. Standard normal variate transformation with mean centering were
shown to find the differences between intrinsic viscosities of the samples. The classification model
was determined using average absorbance spectrum of all sample pixels of each sample. Treat-
ing each pixel separately created too much noise for accurate classification. Linear discriminant
analysis with canonical variables were shown to produce promising classification results. Classifi-
cation model created for this thesis correctly classified 100 % of the training samples (n=74) and
94.7 % of the test samples (n=38). Wavelength dimensions were reduced using principal com-
ponent analysis to be able to conduct linear discriminant analysis. The number of used principal
components were shown to have an important effect on the classification results.

The textile samples consisted of two different sets of textiles. These sets had different chemical
compositions and despite the chemical differences they could be classified based on the intrinsic
viscosities. Being able to sort cellulose textiles based on intrinsic viscosity helps to control the
viscoelastic properties of dissolved fibers during chemical recycling.

Keywords: Hyperspectral imaging, Near-infrared, Textiles, Cellulose, Intrinsic viscosity, Classifica-
tion

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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TIIVISTELMÄ

Ella Mahlamäki: Hyperspektrikuvantamisen soveltaminen selluloosapohjaisten kankaiden sisäi-
sen viskositeetin määritykseen
Diplomityö
Tampereen yliopisto
Teknis-luonnontieteellinen
Tammikuu 2022

Selluloosa- ja puuvillapohjaisten kankaiden valmistaminen alkuperäisistä raaka-aineista vaatii
paljon luonnonvaroja. Tekstiilien tuotannon ympäristövaikutuksia saadaan pienennettyä kierrättä-
mällä ja valmistamalla uusiomateriaaleja tekstiilijätteestä. Tekstiilien tehokas kierrättäminen vaa-
tii tehokkaita lajittelumenetelmiä. Optisten kuvantamismenetelmien hyödyntäminen on osoittanut
lupaavia tuloksia tekstiilien tunnistamisessa. Aikaisemmin on osoitettu, että luonnonkuidut pysty-
tään erottamaan synteettisistä kuiduista ja eri selluloosapohjaiset kuidut toisistaan hyperspektriku-
vantamisen ja kemometristen menetelmien avulla. Tämän työn tavoitteena oli luokitella selluloo-
sapohjaiset tekstiilinäytteet niiden sisäisten viskositeettiarvojen perusteella. Työssä hyödynnetyt
menetelmät olivat yksinkertaisia, jolloin tulokset pysyivät helpommin tulkittavissa. Teoriaosiossa
käsiteltiin valon ja materiaalien välisten vuorovaikutusten ja absorption taustalla olevaa teoriaa
sekä hyperspektrikuvantamisen ja työssä hyödynnettyjen data-analyysimenetelmien periaatteita.
Työssä käsiteltiin myös eri menetelmien vaikutuksia luokittelutuloksiin.

Valon ja materiaalien väliset vuorovaikutukset ovat monimutkaisia ja kullekin materiaalille omi-
naisia. Materiaalit voidaan tunnistaa niiden absorptiospektrien avulla. Tässä työssä tekstiilinäyttei-
tä kuvattiin hyperspektrikameralla lähi-infrapuna-alueella (1000–2500 nm). Selluloosa-pohjaisilla
kuiduilla on tällä aallonpituusalueella tunnistettavia absorptio-ominaisuuksia, jotka johtuvat pää-
osin vibraation overtone ja combination -transitioista.

Näytteiden keskiarvospektrien välillä havaittiin eroja esikäsittely- ja kemometristen menetel-
mien avulla. Esikäsittelymenetelmät löysivät eroja keskiarvospektrien sisäisten viskositeettiarvo-
jen väliltä. Työssä kehitetty luokittelumenetelmä luokitteli näytteet kolmeen eri sisäisen viskositee-
tin luokkaan hyödyntäen lineaarista diskriminanttianalyysiä ja kanonisia muuttujia. Luokittelume-
netelmä luokitteli harjoitusnäytteistä oikein 100 % (n=74) ja testinäytteistä 94,7 % (n=38). Jokaisel-
le näytteelle laskettiin keskiarvospektri hyödyntäen jokaista näytteen pikseliä. Spektrien luokittelu
pikselitasolla ei osoittautunut mahdolliseksi liiallisen kohinan takia. Aallonpituuksien dimensioiden
lukumäärää vähennettiin pääkomponenttianalyysin avulla, jotta lineaarinen diskriminanttianalyysi
voitiin toteuttaa. Käytettyjen pääkomponenttien lukumäärällä osoitettiin olevan huomattava vaiku-
tus luokittelutuloksiin.

Tekstiilinäytteet sisälsivät kaksi näytejoukkoa, jotka erosivat toisistaan kemiallisesti. Siitä huo-
limatta näytteet pystyttiin luokittelemaan niiden sisäisen viskositeetin perusteella. Tekstiilikuitu-
jen käyttäytymistä kemiallisen kierrätyksen aikana voidaan paremmin kontrolloida, kun tekstiilijäte
pystytään lajittelemaan sisäisen viskositeetin perusteella.

Avainsanat: Hyperspektrikuvantaminen, Lähi-infrapuna, Tekstiilit, Selluloosa, Sisäinen viskositeet-
ti, Luokittelu

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1. INTRODUCTION

The demand for new textiles is constantly growing and sustainable textile fiber production

is currently not able to meet the needs. The production of all textile fibers has doubled

to 111 million tons within ten years in 2000-2019. [1] 60 % of global textile consumption

is due to clothing and only 12 % of those textiles is recycled. Rest of the waste textiles

are currently incinerated or landfilled. [2] In 2019 polyester, cotton and cellulose were

globally the most produced textile fibers. In total 57.7, 25.7 and 7.1 million tons, respec-

tively. [1] Production of cotton and cellulose -based textiles has large ecological footprint.

Recycling and reusing textiles could reduce the environmental impact. [3] The European

Commission has set a directive, which states that all EU Member States are obligated to

arrange collection of textile waste from the beginning of 2025. This directive will increase

the number of textiles to be recycled. [4]

Efficient textile waste recycling process and production of reused textiles requires meth-

ods for textile identification. Optical methods have shown promising results that different

textile fibers can be identified based on the differences in their chemical structures. Iden-

tified cellulose-based materials can be chemically recycled and re-spun into new fibers

[5]. The recycling process would be easier to control if the textiles are sorted according

to their specific properties.

1.1 Cellulose fibers

Cellulose is the most abundant organic polymeric material in the world and most of it is

produced in plants. Other origins for cellulose are, for example, marine animals, fungi and

bacteria. The advantages of cellulose as a clothing material has been discovered already

thousands of years ago. [6]
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Cellulose consists of several hundreds to thousands of β-D-glucopyranose units linked

to each other with 1,4-glycosidic linkages. Cellulose polymer chain is linear, and each

glucan ring is folded to arm-chair configuration. Each hydroxyl group (O-H) is in equatorial

position and methine groups (C-H) in axial positions. Each adjacent glucopyranose unit

rotation to each other is 180°. The repeating unit in cellulose polymer chain is called

cellobiose. Structure of the repeating cellobiose unit is shown in Figure 1.1.

Figure 1.1. Chemical structure of cellulose and repeating cellobiose units. [7]

The degree of polymerization of cellulose polymer depends on how many repeating cel-

lobiose units there are in each fiber. Regenerated cellulose fibers are produced from

cellulose solution. The degree of polymerization and the molecular weight influence the

viscoelastic properties of the cellulose fiber solution and the viscosity of the solution af-

fects the spinning behavior in the regeneration process. Chemical recyclers are inter-

ested in sorting the intrinsic viscosity region of 350-550 ml/g out of other textile samples.

Controlling the spinning behavior of the cellulose solution enables also the control of the

strength-properties of the regenerated cellulose fiber. [8]

Cellulose is an organic material containing only C, O and H atoms. When light interacts

with cellulose, these atoms provide most characteristic information in near-infrared (NIR)

wavelength region. [9] Near-infrared range covers the wavelength region 1000-2500 nm.

1.2 Textile imaging applications

Many applications have been developed for textile material identification in near-infrared

region. Applications on different wavelength regions provide different information of the

sample composition. In the NIR region the molecular absorptivity is lower and not all

the light is absorbed at the very surface molecules of the materials. Organic materials

have characteristic interactions with light in the NIR region. That is why most of the

textile identification applications use the wavelength region of around 1000-2500 nm. Also



3

visible near infrared region 450-950 nm shows promising results in pure and blend textile

identification. [10]

Previous studies have shown promising results in fiber identification [2] [10], especially

in discriminating natural and synthetic fibers, and in textile surface finishing property de-

termination [11]. Many of the studies aimed to identify different textile blends. [2] [12]

[13] It has been shown that synthetic and natural textile fibers can be identified with many

different methods. Going into smaller textile properties, Mäkelä et. al classified differ-

ent cellulose fibers using hyperspectral imaging. The results seemed promising and for

example cotton, viscose, lyocell and modal were classified correctly. [14] Hyperspec-

tral imaging in NIR wavelength region and usage of chemometric methods have shown

potential in textile discrimination. [15]

Near-infrared spectroscopy is not the only method to analyse the composition of textiles.

NIR methods are limited to measure the surface material properties of the samples. Like

NIR spectroscopy, nuclear magnetic resonance (NMR) spectroscopy does not have to

deal with differences in textile colors, changing particle sizes or sample surface structures.

Predicting material compositions, for example, of multilayer textiles, NMR provides more

accurate results. [12]

The interactions between light and materials are complex and hard to interpret. The

desired information needs to be extracted from the spectroscopic data to estimate the

chemical properties of the samples. Chemometric methods are widely used in analysing

multivariate spectroscopic data. Principal component analysis and partial least squares

regression are the most used methods in textile identification found in literature. Prepro-

cessing methods vary in different studies and applications, but standard normal variate

transformation and mean centering are found in almost all. [2] [11] [13]

The objective of this thesis was to present the process of taking hyperspectral images,

analysing and processing the images to create simple classification model from theory to

practice. The theory of light and material interactions are also discussed. The aim was

to determine the potential of classifying cellulose-based textiles based on the measured

intrinsic viscosities.
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2. HYPERSPECTRAL IMAGING

Human eye can see electromagnetic radiation only in the visible light wavelength region.

When electromagnetic radiation interacts with materials, many interactions happen in

wavelength regions outside of human vision. Studying the interactions between elec-

tromagnetic radiation and matter, materials can be identified, different objects detected

or even some processes recognized. This field of science is called spectroscopy. Spec-

troscopy measures and studies the spectrum of materials. Spectrum includes the infor-

mation of how much radiation the material has emitted, reflected or transmitted based on

the principle known as Beer-Lambert law [16]. Spectroscopy has many applications from

macro to atomic scale structure and compositional analysis. [17] More of the physical

background of spectroscopic interactions is reviewed in Chapter 3.

Many different methods and devices can be used to gather the spectroscopic informa-

tion. Wide range of applications provides also wide range of spectroscopic devices. Hy-

perspectral imaging is a useful method to measure spectroscopic information and hy-

perspectral cameras can operate in different wavelength regions. Hyperspectral image

consists of spatial and spectral information as spectrum is imaged for each pixel. This

provides large amount of information and creates a wide range of analysis possibilities.

Handling hyperspectral images in the molecular level makes it possible to recognize mi-

nor changes in the sample composition. [18] Hyperspectral imaging can also be called

chemical imaging as the aim is to gain information of the chemical composition of the

samples. [17]

Hyperspectral imaging methods can be in-line, on-line, at-line or off-line. These methods

vary in where the camera is placed and where the images are taken during the process.

In in-line methods the camera is part of the process flow, and the samples are imaged

so that the flow is not disturbed. On-line methods also have the camera as a part of the

process flow, but the samples are guided one at a time through the imaging device. With
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at-line methods, the samples are removed from the process flow and images are taken

near the other process devices. Off-line methods remove the samples from the flow and

takes the samples to other environment where the images are taken. [17]

2.1 Basic principles

Traditional digital camera gathers data of three wavelength channels, red, green and blue,

and combines them to form digital color images. In hyperspectral image, every pixel has

information of the continuous spectrum in the imaged wavelength region. The spectra of

each pixel are stacked to form hyperspectral data cube. Each hyperspectral data cube

contains spatial coordinates and spectrum of each pixel. In other words, hyperspectral

imaging combines digital imaging and spectroscopy. [9] Formation of the data cube is

visualized in the Figure 2.1. The spatial dimensions of the image pixels are in x and y

axes and the spectral dimension in the λ axis.

Figure 2.1. Hyperspectral data cube. Spatial information located in x and y axes, and
spectral information in λ axis.

The measured spectrum can be used to identify materials based on the spectral finger-

prints. This means that each material interacts differently with electromagnetic radiation

and each material has unique spectrum. Measured spectra can be used to identify differ-

ent areas or, for example, to identify material compounds in the sample. Hyperspectral

imaging methods are increasingly used in various areas such as remote sensing, agricul-

ture, medical diagnostics and textiles. [15]

Near-infrared hyperspectral imaging is a useful tool to analyse chemical compositions of

organic materials. In NIR region light and organic compounds interacts characteristically.

Imaging in NIR region is costly, because imaging higher NIR wavelengths (1100-2500
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nm) sets some requirements for the detectors. Silicon-based detectors are suitable option

for applications measuring wavelengths of 1100 nm or lower. More costly options such

as indium gallium arsenide (InGaAas) or mercury cadmium telluride (HgCdTe) based

detectors are required when the wavelength range rises above 1100 nm. [9]

2.2 Hyperspectral image acquisition

There are different ways to measure hyperspectral images. Most used methods are push-

broom, whiskbroom and staring imaging. Whiskbroom imager measures each pixel sep-

arately, pushbroom imager one line of pixels simultaneously and staring imager all the

pixels at one wavelength at a time. Figure 2.2 illustrates the principles of these imaging

techniques.

Figure 2.2. Hyperspectral imaging techniques whiskbroom, pushbroom and staring.

Device using whiskbroom imager scans the sample point-by-point with usually one single

detector. One pixel at a time is imaged in x-y-plane. Main benefits for whiskbroom tech-

nology are high spectral resolution and high discriminating power between similar objects

in samples. [17] The variation between sample sizes and spectral ranges that can be

imaged with whiskbroom imagers is wide. However, because of the point-by-point scan-

ning, such technology is time-consuming, and the images have low spatial resolution [9].

Usually, this technology is found from off-line applications. [17]

With pushbroom imaging systems all the spectral information of each line is acquired at

the same time. Pushbroom systems scan the whole line of pixels at a time while usually

the sample moves below the detectors. [9] This technique is also called line-scanning.

[18] Taking images this way takes only few seconds and the compromise between the

spectral and spatial resolutions is optimal. [9] Line-scan technology is the most used
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hyperspectral imaging technique, because the structure of line-scan system allows imag-

ing wide range of wavelength ranges and sample sizes. The applications for line-scan

technology are on-line and in-line. [17] Samples moving below the detector in an in-line

system makes real-time analysis possible. [9]

Staring imager takes the whole image of one wavelength at a time. [9] To get all the

spectral data, wavelength selection is required. The most used method to do the selection

is to use a rotating wheel in front of the detector with bandpass filters. [17] Filter wheel

in the optical path determines the number of imaged wavelengths. The wavelengths

chosen to the wheel must be determined with prior knowledge of the spectral behavior

of the sample. [18] This provides high spatial resolution, but low spectral resolution. [9]

This technique is also called tunable filter scanning, wavelength scanning or focal plane

scanning. [18] The number of applications for staring imagers is narrow, because the

sample needs to be stationary during the imaging. [17] That is why there are only at-line

or off-line applications.

Hyperspectral camera commonly consists of an objective, a spectrograph and a grayscale

camera. These components need to be optimized for each technique and used wave-

length range. In line-scan cameras, spectrograph consists of slit, collimating and disper-

sive optics, and focusing lens. [19] The structure of a line-scan hyperspectral camera is

illustrated in Figure 2.3.

Figure 2.3. Structure of line-scan hyperspectral camera. Modified from [20]
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The slit collects the incoming information one line at a time, and the width of the entrance

slit determines the accuracy of the spectra. Narrower slit provides more accurate spectra.

After the slit, light goes through collimating optics, which directs the light to the dispersive

optics where light is dispersed into spectra. Dispersed spectral information is directed

to lens, which focuses the image to grayscale camera. Grayscale camera measures the

intensities of each wavelength in the coming spectra and gathers the information of each

spectrum in each pixel in the line. Each line is imaged similarly as sample moves below

the camera. [19]

Hyperspectral imaging set ups also includes a source of illumination. Correct illumina-

tion sources and angles of detection have crucial influence on the image quality. Some

photons detected in the spectrum are specularly reflected from the sample surface and,

depending on the application, do not carry relevant chemical information. Specularly re-

flected light may overlap and cover the spectral information of the chemical compounds

of interest. Photon diffusion might cause spatial artefacts and shift the spatial information

to another spatial region. Diffuse illumination, detection and correct image preprocessing

methods can be used to avoid these spectral and optical artefacts. Also, the angles of

the illumination source and detector needs to be set optimally to reduce these effects

and to obtain reliable imaging results. [17] Hyperspectral imaging has great potential in

textile imaging applications. The development of cost-effective and faster hyperspectral

cameras has made the technology already available for industrial use. [10]
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3. PHYSICAL BACKGROUND

When light hits material it interacts with it either via absorption, reflection, scattering or

transmission. The electromagnetic spectrum of light consists of different frequencies,

wavelengths and photon energies of electromagnetic radiation. Interactions with material

changes these properties in the spectrum and the changes can be analysed. By studying

the behavior of material interactions with light, we can get information of the chemical and

physical composition of the material. Vibrational spectroscopy explains the reasons for

the changes in the absorption spectrum at infrared wavelengths. Infrared (IR) and Ra-

man are linear vibrational spectroscopic methods widely used for analysing for example

cellulose and other organic materials. [21]

3.1 Electromagnetic spectrum

Light, visible and non-visible, is electromagnetic radiation. Important unit, when studying

light, is photon. Photon is the quantum of light and one of the elementary particles.

Photon has energy that depends on the wavelength of the light according to equation

E = hf = h
c

λ
, (3.1)

where h is Planck’s constant (h = 6.6 ∗ 10−34Js), f is the frequency, c is the speed of

light and λ is the wavelength of light. [22]

Molecule can absorb a photon and move to higher energy level, if the photon energy

matches the energy level difference in the molecule. The absorbed photons and energy

level changes can be seen in the absorption spectrum. [21] Process where energy level

is changed can also go to other direction where photon is emitted, and molecule moves

to lower energy level. [23]
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The absorption of photons also depends on the chemical composition of the absorbing

molecule. Each molecule has unique structure and consequently unique absorption spec-

trum. The intensity or the "strength" of the absorption seen in the spectrum depends on

the concentration of the absorbing component in the sample through the Beer-Lambert

law. The equation for Beer-Lambert law is

A = ϵlc = log10(
I0
I
), (3.2)

where A is the absorbance, ϵ the absorptivity, l optical path length in cm, c the concentra-

tion of the absorbing component, I0 is the incident intensity of light and I the transmitted

intensity. [21] If optical path length and absorptivity are held constant, absorbance is

directly related to the concentration of the absorbing component.

Estimating sample concentrations using Beer-Lambert law is easier if different compo-

nents show their own characteristic bands in the spectrum without interferences of other

components. In real life different components behave similarly and they are hard to iden-

tify from the spectrum. [21] Spectroscopic applications usually measures the transmit-

tance or reflectance spectrum to get the information of the absorption properties of the

samples.

3.2 Material surface reflectance

When light interacts with material, the reflected light can be approximated to be the inci-

dent light subtracted with the absorbed and transmitted light. Term reflectance refers to

the fraction of the incident light that is reflected. Imaging applications for object recogni-

tion usually consists of light source, object that reflects the incident light and camera that

measures the reflected light. Light source is directed to the object in desired angle and

the reflected light, and the reflection angle are measured.

There are different possibilities for light to reflect from a material surface. In perfectly

diffuse reflection the reflected radiance is constant in all directions. If the incident light

is only reflected to direction with same incident and reflection angle, it is called perfectly

specular reflectance or mirror reflectance. In real life specular reflectors reflects the light

also in other directions. This is called glossy reflectance. [24] The different reflectance
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models are illustrated in Figure 3.1A. The angle and the intensity of the reflected light

depends on the composition of the illuminated material, and the wavelength and the angle

of the incident light. [25] Reflected light is usually detected in predefined angles to get

desired information of the material. [24]

Figure 3.1. A) Mirror, diffuse and glossy reflectance models and B) geometry of bidirec-
tional reflectance distribution function coordinates. B modified from [24].

Bidirectional reflectance distribution function (BRDF) can be used to describe how light is

reflected from material surface. [26] The incident angle of the light coming from the light

source towards the illuminated material is denoted as (θi, ϕi) and the reflection angle

(θr, ϕr). [24] Spectral BRDF can be calculated using equation

f(θi, ϕi; θr, ϕr) =
dLr(θr, ϕr)

dEi(θi, ϕi)
, (3.3)

where dLr(θr, ϕr) is the reflected radiance and dEi(θi, ϕi) the incident irradiance. [27]

The directions and angles of the reflected radiance and incident irradiance in BDRF is

illustrated in Figure 3.1B. In the figure, dA is the illuminated area of the material. The

reflectance spectra are affected by the material composition and absorption properties.

Absorption of the light causes the molecule to move to higher energy level, which excites

the vibrational motion in the molecule.

3.3 Vibrational motion in molecules

Molecules in matter are in constant motion and the motion is due to the characteristic

vibrations of molecules. [22] The amplitude of the movement correlates with temperature,
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but does not reach absolute zero, even at absolute zero temperature. The motion is

not possible to observe in real time and if it was it would seem random. [23] There are

possible places to "find" the atoms at a time though and these places can be described

as "normal modes of vibration". [22]

Molecules can be described as systems, and they have a specific number of directions

where they can vibrate or move freely. These are called the degrees of freedom. Degrees

of freedom of the molecule depends on the number of atoms N and the linearity of the

molecule. Molecules with N atoms have 3N degrees of freedom of motion to x, y and

z directions. In addition to motional freedom there are vibrational degrees of freedom

that change the distance and angles between the atoms. For non-linear molecules the

degrees of freedom are 3N - 6 and for linear 3N - 5. [22] For linear molecule 3N-5 is

because of two moments of inertia. Rotation along longitudinal axis is considered as

zero moment of inertia. [23] Molecular vibration directions are shown in Figure 3.2 for

non-linear H2O molecule and linear CO2 molecule. These characteristic vibrations are

responsible for the characteristic bands in the absorption spectra. [22]

Figure 3.2. Directions of molecular vibrations for A) non-linear H2O molecule and B)
linear CO2 molecule.

3.4 Quantum mechanical harmonic and anharmonic oscillator

To understand these molecular vibrations better, let’s consider classical mechanics model

of harmonic oscillator. Atoms in molecules can be described as masses connected with
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a spring that follows Hook’s law

F = −kx, (3.4)

where F is the restoring force of the spring, k is the spring constant, or the bond stiffness

and x is the length of the spring. [21] [23] Diatomic system with two masses m1 and m2

is illustrated in Figure 3.3. Vectors x1 and x2 are the harmonic oscillation displacements

from the equilibrium state.

Figure 3.3. Vibrational motion of diatomic molecule. Modified from [22]

The mass of diatomic system can also be expressed as reduced mass

m =
m1m2

m1 +m2

. (3.5)

When this system vibrates the atoms are displaced from equilibrium state with x1 and x2.

The two atoms have same frequency, and they pass their equilibrium states at the same

time. For diatomic molecule the classical vibrational frequency can be calculated from

equation [22]

ν =
1

2π

√︃
k(

1

m1

+
1

m2

) =
1

2π

√︃
k

m
. (3.6)

This is the frequency where the IR absorption peak can be observed. [21] As seen from

the Equation 3.6, the vibrational frequency of diatomic harmonic oscillator depends on

the force constant k and the masses of the atoms in the molecule. The force constant is

affected by the bond energy between the two atoms. [22] For larger molecules the vibra-

tions become more complex, and these calculations are no longer valid. Each molecule

has unique structure and vibrations, so the absorption of photons is different in each

molecule. [23]
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Classical mechanics explains the normal modes of molecular vibrations and their fre-

quency, but it does not explain the transitions between the states that are the observations

in IR and Raman spectroscopy. [23] Quantum mechanical approach is used to explain

the transitions. Quantum mechanics states that molecules have only quantized energy

states, which leads to the conclusion that vibrational energy has discrete values. [22]

Spectroscopy studies the transitions between energy states and the harmonic transitions

can happen only under certain conditions (∆v = ±1, where v is the quantum number).

The quantum mechanical harmonic oscillator energy levels have potential energies

Ei = (vi +
1

2
)hν vi = 0, 1, 2..., (3.7)

where ν is the vibrational frequency of the oscillator and v is the quantum number. [22]

According to classical mechanics and Equation 3.7, the position and the momentum of

particle in motion can be observed simultaneously. [23] Quantum mechanical Heisen-

berg’s uncertainty principle states that we cannot be certain to say where the particle is

at a time, so we need to use probabilities of finding a particle. [22]

Electrical and mechanical behavior is not harmonic in real atoms. In real life molecules

behave more like anharmonic oscillators. Anharmonic oscillation happens when some-

thing disturbs the harmonicity. Harmonic oscillator allows transitions only between fun-

damental levels where (∆v = ±1) and for the anharmonic oscillator also overtones and

combination bands (∆v = ±2,±3, ...) are possible. The potential energy function needs

anharmonic correction

Ev = hνe(vi +
1

2
)− hχeνe(vi +

1

2
)2, (3.8)

where the term hχe defines the amount of anharmonicity in the oscillator. [22]

Electrical anharmonicity happens when the change in the dipole moment and polariz-

ability are not linearly proportional to the nuclear displacement coordinate. Mechanical

behavior of real molecules follows Hooke’s law only when internuclear distance r is not

very different from the equilibrium state re. The molecule dissociates when r is large and

the atoms in the molecule do not influence each other anymore. That is why potential en-
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ergy curve goes to zero at dissociation energy De. The repulsion of the two nuclei makes

the potential curve slope steeper at small r compared to harmonic oscillator curve. [28]

Both types of anharmonicity usually have an effect on vibrational overtone intensities.

Figure 3.4 shows the potential energy curve for diatomic molecule that behaves as an an-

harmonic oscillator. Anharmonicity makes the energy level differences smaller. Dashed

line in the figure shows the difference to harmonic oscillator.

Figure 3.4. Potential energy curve and energy levels for diatomic anharmonic and har-
monic oscillator. Modified from [22]

Overtone band occurs when the transition happens from the ground state to the second

or to a higher excited state. The transition from v = 0 to v = 2 is called the first over-

tone and v = 0 to v = 3 the second overtone, and so on. Combination band occurs if

more than one fundamental vibration is excited at the same time. The intensities of over-

tones and combination bands are weaker than of fundamental vibrations. [23] In addition

to overtones and combination bands, one phenomenon that can happen for vibrational

levels is called Fermi resonance. Fermi resonance happens when a fundamental band

interacts with overtone or combination band and produces two quite strong bands. [22]

Differences between the IR and the NIR region are that in IR region the vibrational transi-

tions are mainly due to fundamental vibrations and in NIR due overtones and combination

modes. [29]
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3.5 Infrared activity and absorption

In the infrared region absorption of IR photon happens only if the molecular vibration

changes the dipole moment of the molecule. [22] Therefore molecules that have changing

dipole moments due to chemical bond vibrations are IR active. [30] Dipole moment is

caused by the charge differences in the molecule. [21] NIR absorption process also needs

the photon energy to match the frequency of the overtones and combination modes.

Homonuclear diatomic molecules such as H2 and O2 do not have electronegativity differ-

ences and dipole moments, which leads to the fact that they are not IR active. Heteronu-

clear diatomic molecules such as HCl and CO have atoms with different electronegativ-

ities and therefore also have dipole moment and are IR active. [22]

Absorption of photon by IR active molecule leads to vibrational energy level change. [22]

Absorption intensity (the "strength" of the IR activity) depends on the change in the dipole

moment during the absorption. [31] The intensity of the IR absorption also depends on the

concentration of the absorbing component in the sample according to the Beer-Lambert

law (Equation 3.2). [21] Collected information in the form of IR spectrum consists of IR

band intensities, which are proportional to the square of the change in the dipole moment.

[22] The wavelength where the absorption band can be detected depends on the masses

of the atoms in the chemical bond that produces the overtones and combination modes.

The wavelength of the absorption band increases with the increase in the masses of the

atoms and decreases when the chemical bond gets stronger. Absorption is much weaker

in NIR region, compared to, for example, to mid-IR region, because of the transitions

in the combination and overtone modes (in mid IR the fundamental transitions produce

stronger absorption intensities). [31] The absorption band intensities in the mid-IR and

NIR regions are shown in Table 3.1 to illustrate how the strength of the bands gets weaker

in the overtones.

Most modes that are active in NIR region consists of vibrational modes of molecular

functional groups of XH, where X = C, O, N or S. [31] Materials containing hydrogen bonds

have a lot of information of their chemical composition in their NIR spectra. This makes

the analysis of organic materials in the NIR region useful. [9] Also stronger chemical

bonds like C=O can be observed with NIR spectroscopy methods. [31] In the NIR region
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Table 3.1. Absorption band intensities in mid-IR and NIR regions. [32]

Band Wavelength range
Average intensity
(cm2mol−1)

Fundamental Mid-IR 10 000

1st overtone Mid-IR or NIR 100

2nd overtone NIR 10

3rd overtone NIR 1

4th overtone NIR 0,05

with wavelengths 800-1200 nm bands created by electronic transitions, overtones and

combination modes can be observed. When the wavelength range rises to 1200-1800 nm

the main band source is from the first overtones of stretching vibrations or combination

modes of XH, where X = C, O, N. The bands in the wavelength range 1800-2500 nm

are from combination modes. [29] Absorption bands seen in the spectrum needs to be

assigned to make conclusions of the chemical composition of samples. [32] Some typical

absorption band assignments of cellulose and water are listed in Table 3.2.

Table 3.2. Examples of absorption band assignments of cellulose and water. [32] [9]

Band location (nm) Component Bond vibration

1440-1470 Water 1st overtone O-H stretch

1471-1592 Cellulose 1st overtone O-H stretch

1920-1940 Water O-H asymmetric stretch

2110 Cellulose O-H deformation vibration + O-H stretch

2335
Cellulose and
hemicellulose

C-H stretch + C-H deformation vibration

In the NIR region the absorption bands are difficult to interpret. The analysis of the NIR

spectra have been made easier due to the bright radiation sources and sensitive detectors

that are available nowadays. [31] Overlapping peaks and broad absorption bands makes

recognizing the important chemical components and relevant information from the spectra

complicated. [9] With the right data processing methods the information can be extracted

from the spectral data.
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4. MULTIVARIATE IMAGE ANALYSIS

Hyperspectral images contain a lot of information, relevant and irrelevant. The important

and relevant information needs to be extracted from the images to make accurate analysis

of the target samples. Multivariate data analysis methods are a useful tool to do this for

hyperspectral applications. The image analysis workflow consists of image acquisition,

calibration, preprocessing, data selection and model construction and validation.

4.1 Calibration and correction

The untreated raw hyperspectral images include both spectral and spatial errors. The

errors can be noise, drift or errors due to wavelength dependencies, nonuniform lighting

or changes in, for example, the temperature of the measurement environment. Calibra-

tion and correction steps need to be performed before applying analysis methods to the

image. [33]

The imaged raw signal data is first acquired as detector signal intensity counts. Those

need to be transformed into reflectance values to get the data into more useful units.

This can be done using maximum reflectance and dark current measurements. Maximum

reflectance spectra are measured with standard reference materials for which the amount

of reflectance is known. Dark current is obtained by measuring the spectra after blocking

the camera lens so that light does not enter the detector. [33] Common way to measure

the maximum reflectance is to use Spectralon white reference standard materials. [15]

Spectralon is a material that has the highest reflectance value of known materials in

ultraviolet and infrared regions. Transformation of the detector signal intensity counts to

reflectance values can be calculated using equation

R =
H −D

W −D
, (4.1)
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where H is the sample spectra, D the dark current and W the maximum reflectance ref-

erence value. This is called a two-point linear calibration model. Also, more complex

calibration models can be used. [33] Measuring spectra of more than one standard ref-

erence material improves the accuracy of the calibration but makes the calculation more

complicated and time-consuming. The aim of adding the calibration models is to stan-

dardize the spectra to get accurate spectral values for further analysis. [34]

There are two ways to correct the spatial differences in sample illumination and camera

sensor response sensitivities. These two wavelength-dependent calibration models are

global and pixelwise calibration. Global calibration model does not consider the spatial

dependencies in the hypercube. This approach uses wavelength dependencies and takes

into account each wavelength channel and assumes that sensitivities in the channels

are distributed uniformly in the spatial locations. Median spectrum of each calibration

standard is used to build the calibration model at each wavelength. Pixelwise calibration

models are built to calculate transforms separately for each pixel in the sample. The

calibration models are calculated for every pixel in the sample and for the corresponding

reference standard sample pixel. This corrects the spatial changes in illumination and

detector sensitivities across the sample. [33]

After conducting desired calibrations, reflectance values can be changed into absorbance

units using equation

A = − log10(R), (4.2)

where R contains the unitless reflectance values. [15] Absorbance transformed spectra

shows the absorbance band locations, which can be assigned to different substances

found in literature.

The images contain data of the sample and usually also of the background. To get accu-

rate information only of the sample for further analysis, the sample pixels can be sepa-

rated from the background. Conducting reflectance transforms and background separa-

tions mentioned above removes the imaging device and measurement related errors and

prepares the images for further preprocessing.
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4.2 Chemometrics

Hyperspectral images contain large amounts of information. The spectra need to be

simplified and the interesting information needs to be extracted to understand it better.

Chemometrics is a field of science trying to create data-driven models to estimate the

desired chemical properties of the samples [35]. In other words, chemometrics focuses

on using mathematical and statistical methods to analyse the structure and properties of

a chemical system. [30] Chemometric methods are widely used in spectroscopic applica-

tions and in interpretation of other multivariate data. [36]

The early development of chemometrics started in the late 1960s in several analytical

chemistry research groups. When scientific computing and computer-aided methods be-

came widely accessible, it made more complex analysis possible. [37] Also the intro-

duction of multivariate analysis instruments enabled the development of chemometrics.

[36]

Most of chemometric methods deals with two-dimensional data matrixes and extracts

the useful information from them. [36] There are many ways to analyse the data ma-

trix, such as component or factor analysis, regression analysis and classification. [38]

Principal Component Analysis (PCA) and Partial Least Squares (PLS) are examples of

basic chemometric methods. [35] PCA will be reviewed in Section 4.4.1. Chemometric

methods produce better results if some preprocessing methods are used on the data set

before applying them.

4.3 Preprocessing

Spectral preprocessing methods are commonly used in spectroscopic image analysis.

[15] Multivariate analysis provides better results if the preprosessing methods have been

used to transform the spectra, highlight the underlying features, remove errors and noise,

and to emphasize the relevant information from the image spectra. Some unwanted ef-

fects in the spectra can be scattering, detector artefacts or differences in the sample

surfaces. [18] There are various spectral preprocessing methods and the ones to use

need to be chosen for each application case-by-case. [39]
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4.3.1 Standard normal variate transformation and mean centering

Scattering, different particle sizes and multicollinearity are some effects that make ab-

sorbance spectra complex and hard to interpret. Standard Normal Variate (SNV) trans-

formation is a mathematical row-wise centering and scaling method used to remove un-

wanted effects from spectra. [15] SNV removes the effects of scatter and changing parti-

cle sizes. SNV can be calculated with equation

SNV = (x− x)/

√︄∑︁
(x− x)2

n− 1
, (4.3)

where x is the absorbance spectra, x is the mean of the absorbance spectra and n is

the size of the number of samples. [40] SNV transformed spectrum has mean value 0

and standard deviation 1. The shape of SNV transformed spectra is the same as in the

absorbance spectra before applying the transformation, only the unwanted effects has

been removed.

Figure 4.1. Directions of standard normal variate transformation and mean centering for
data matrix X .

SNV handles the row-wise processing of the spectra and mean centering is used to do

the column-wise centering. Mean centering is conducted by subtracting the mean values

of the column variables from the spectra. Figure 4.1 illustrates the directions of SNV and

mean centering methods for data matrix X .



22

4.3.2 Derivative methods

Spectral derivative methods improve the resolution of IR spectra. The aim for derivative

methods is to remove the overlapping spectral signals. [18] One of the most used deriva-

tion and smoothing method in chemometrics is Savitsky-Golay method. Savitsky-Golay

smoothing removes the high frequency noise and derivation removes the low frequency

signals. [41] Savitsky-Golay smoothing is a row-wise method which is based on moving-

window polynomial fitting. Window with a chosen range of points is used to fit the poly-

nomial of given order and to estimate new value for given wavelength. [18] Polynomial

fitting smooths the spectra, and the derivative is calculated from the fitted values. [32]

Savitsky-Golay method can be used for smoothing, derivation and noise reduction. [18]

Figure 4.2. The effect of adding 1st and 2nd order derivation on sinusoidal signal.

Adding derivative methods on spectra makes the interpretation more difficult. [40] The

locations of the peaks are moved as illustrated in Figure 4.2 for sinusoidal signal. The

second order derivation leads to absorption peaks pointing to the opposite directions.

Also possible band shifts need to be considered when analysing the second derivative of

the spectrum. For example, the shape of the NIR spectrum and the sizes of the sample

particles affects the band shifts. [32] As can be seen in Figure 4.2, derivation creates

aberrations around the edges of the signal. Aberrations can be eliminated by, for example,

selecting the wavelengths of interest after applying the derivative methods.
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4.4 Exploratory data analysis and classification

After calibrating and preprocessing the hyperspectral images, exploratory data analysis

methods can be applied to find correlations and patterns in the sample set. Studying

the image spectra with exploratory analysis methods helps to determine the classification

methods which produce accurate results.

4.4.1 Principal Component Analysis

Feature extraction methods can be used to reduce the dimensions of the data and to find

the important information from it. Principal component analysis is a multivariate method

that is commonly used to do this. [35] PCA is used to find correlations between variables

and to reduce the dimensions of the data set into variables that contain the relevant

information. These variables are linear combinations of the original variables, and they

explain most of the variation in the data set. The variables are called principal components

(PC). [42] [43]

The principal components are calculated so that the first PC explains most of the variation

in the data and the second PC the second most and so on. [43] PCA model consists of

the data, the scores, the loadings and the residuals as shown in Figure 4.3. Vectors T and

P are called score and loading vectors. Matrix E contains the residual information that is

not included in T and P. [44] All of the information in the original set of data is saved in

the vectors T, P and E. Scores can be explained as the projections of the observations to

the principal components and loadings as the weights required to transform the original

variables, or geometrically as the rotation of the original axes in the sample space. [42]

Figure 4.3. PCA model for a IxJ data matrix X.
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Calculation of the principal components starts with mean centering the data. First prin-

cipal component is calculated by finding the direction of the largest variance in the data

set. The first principal component therefore explains most of the variation in the data.

The second principal component is orthogonal to the first one. [42] This is illustrated in

Figure 4.4 for a two-dimensional set of random points from a multivariate normal distri-

bution. Other principal components are calculated similarly. Score values can be plotted

and visualized for example in score plots. Score plots show the possible groupings and

helps to detect patterns in the data set. [43] Part D in Figure 4.4 shows an example of a

score plot.

Figure 4.4. Principal component analysis visualization. A) Random set of multivariate
normal distributed points. Pink square indicating to the mean center of the points. B)
Mean centered set of points, C) directions of the first two principal components, and D)
score plot of the first two principal components.

Common method to implement PCA and to calculate these principal components is to

use singular value decomposition (SVD). To implement SVD, hyperspectral data cube

needs to be unfolded to 2D data matrix, where rows contain the samples and columns
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the wavelength variables of the sample spectra. SVD can be calculated using equation

X = UΣV T , (4.4)

where X is the preprocessed and mean centered data matrix, U and V are orthogonal

matrixes containing eigenvectors and Σ diagonal matrix containing eigenvalues. Calcu-

lating this for hyperspectral data can be time-consuming. To reduce the computation time,

SVD can be also calculated for matrix X using its cross-product XTX with equation

XTX = V ΣV T , (4.5)

where V is the matrix with same eigenvectors as in Equation 4.4. [44] Vectors in matrix

V are also called loading vectors and they can be used to calculate the score vectors:

T = XV. (4.6)

The first components of T and V contain the information of the first PC, the second

component the information of the second PC and so on. The quality on how well the

combination of T and P summarizes the data in matrix X can be evaluated with calcu-

lating the percentage of explained variation. The number of used principal components

needs to be chosen first to calculate the E. When the percentage of explained variation

is good, the combination of T and P creates good summary of the original data. [43] This

can be calculated using equation

R2 =
||X||2 − ||E||2

||X||2
100%, (4.7)

where statistic R2 can take values between 0% and 100%. Values closer to 100% means

better summarization.
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4.4.2 Linear Discriminant Analysis

Principal components acquired from PCA might not explain the desired variations. [45]

There are alternative methods to discriminate the samples in the data set. Discriminant

analysis is widely used supervised classification method. [18] While PCA tries to find the

directions of the largest variance in the data set, discriminant analysis methods try to find

the maximum variance between predefined classes and the minimum variance between

the samples within a class.

Most used discriminant analysis methods are Quadratic Discriminant Analysis (QDA) and

Linear Discriminant Analysis (LDA). QDA does the classification using quadratic bound-

aries separating the classes. LDA classifies the samples into classes using linear projec-

tions as boundaries. [18]

Linear Discriminant Analysis can be conducted using Canonical Variate Analysis (CVA).

Canonical variables (CV) are calculated finding the minimum variance within a class and

maximum variance between classes. Within-class scatter matrix is the average of co-

variance matrices of each class weighted by the class sizes. It can be calculated using

equation

Sw =
1

n− c

c∑︂
i=1

ni∑︂
j=1

(xij − xi)(xij − xi)
T , (4.8)

where n is the number of samples, ni the number of samples in the ith class, c is the

number of classes, xij the jth sample in ith group and xi the mean vector of the ith

class. Between class scatter matrix is the variance matrix of the class means weighted

by the weight of the class according to equation

Sb =
1

c− 1

c∑︂
i=1

ni(xi − x)(xi − x)T , (4.9)

where x is the overall mean vector and other variables same as in Equation 4.8. Canoni-

cal Variates Analysis tries to find the direction w which maximizes the equation

J(w) =
w′Sbw

w′Sww
, (4.10)
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where J() is the criterion function. [46] CVA cannot be applied on a data set where the

number of variables exceeds the number of samples. To reduce the number of variables,

PCA can be used first and then CVA calculated using principal component scores. [45]

CVA works well if the variance between the classes is large compared to the variance

within the classes. [47]

Calculated scores on the canonical variables can be used to calculate the linear class

boundaries using linear discriminant analysis. An unknown sample is considered to be-

long to a specific class based on which side of the boundary it falls. This is illustrated in

Figure 4.5. Unknown sample X is classified to class 2.

Figure 4.5. Classification of an unknown sample based on a linear class boundary.

The classification accuracies can be calculated as correctly classified rates (CCR) or

in correctly classified percentages (%CC). %CC can be calculated dividing amount of

correctly classified samples with all the samples and multiplying with 100. %CC can also

be calculated for each class separately. These values are used to evaluate the quality of

the classification method and how well the samples can be classified. [48]

Table 4.1. Confusion matrix example.

Actual

Positive Negative

Predicted Positive TP FP

Negative FN TN

Results can also be shown in confusion matrixes where the number of correctly and incor-

rectly classified samples can be seen clearly. Table 4.1 shows an example of confusion

matrix. Content of confusion matrix can be explained, for example, by assuming two
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classes, positive and negative as shown in the table. Classification result of samples can

be divided into four categories: true positives (TP) are samples that are known to belong

to positive class and predicted to belong there, true negatives (TN) are samples that are

correctly predicted to belong to negative class, false positives (FP) are samples that are

incorrectly predicted to belong to positive class and false negatives (FN) samples that are

incorrectly predicted to belong to negative class. [49] The CCR of the positive class is

also called sensitivity and for the negative class selectivity. [48]

4.4.3 Wavelength selection and cross-validation

One way to improve the accuracy of the classification results is to choose and use only

wavelengths that contain most of the wanted information. Wavelength selection before a

classification model improves classification accuracy if a subset of wavelengths can be

found that better separates the sample classes. [31] Other wavelength regions that do

not contain useful information may decrease the model accuracy.

There are many ways to conduct wavelength selection. The main idea is to find sets of

wavelengths that improve the classification accuracy. Wavelength selection should be

made for each application case-by-case depending on the chemical composition of the

samples. Samples imaged in NIR region have mostly information of hydrogen functional

groups. It would seem useful to choose the wavelengths where the absorption bands of

these groups are seen. [31]

One way to perform wavelength selection is by dividing the wavelengths into intervals

and calculating the classification accuracy for all possible interval combinations. The

wavelength combination that provides the best classification results can be chosen for

further analysis. Classification accuracies for different wavelength interval combinations

can be calculated using cross-validation, which is a model validation method. The sample

set is divided into folds which are divided to training and test sets. N-fold cross-validation

is visualized in Figure 4.6.

The classification model is calculated using the training set, and the test set is used to

calculate the accuracy of the model. This is done so that each fold of samples is used as

a test set once. The classification accuracy is calculated each round and as a result the

overall accuracy for the classification model is obtained.
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Figure 4.6. N-fold cross-validation visualization.
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5. EXPERIMENTAL METHODS

The objective of this thesis was to find simple hyperspectral image processing and clas-

sification methods to classify cellulose-based textile samples based on their intrinsic vis-

cosity values. In this chapter the samples and used methods are presented.

5.1 Textile samples

The textile samples were provided by Aalto University, and they consisted of two different

sets of samples. The first set had 18 different textiles and three to four samples of each,

in total 55 textile samples. The second set had samples of 19 different textiles and in total

57 samples. The samples were approximately squares with 10 cm side length.

The intrinsic viscosity values for each sample were measured at Aalto University using

the SCAN-CM 15:88 standard. Intrinsic viscosity of a sample was measured by dissolv-

ing pulp of the sample to cupri-ethylenediamine (CED) solution. A specified amount of

sample solution and solvent were put through two capillary viscometers. The viscosities

were calculated using the efflux times. [50] Intrinsic viscosity values of the samples were

around 300-1660 ml/g. Table 5.1 shows the number of samples in each sample set and

the measured intrinsic viscosity region.

Table 5.1. Sample sets used in the analysis and their intrinsic viscosity regions.

Sample set Number of samples Intrinsic viscosities (ml/g)

1 55 300-1270

2 57 590-1660

The optimal intrinsic viscosity region for the classification, defined by the chemical recy-

clers at Aalto University, was 350-550 ml/g. In this region there were 12 samples and all

of them were from sample set 1.
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5.2 Image acquisition

Hyperspectral images were measured using Specim SWIR 3 (Specim, Spectral Imaging,

Ltd.) hyperspectral camera. [51] The camera is shown in Figure 5.1. The operating

principle of the camera was similar as reviewed in Section 2.2. The images were scanned

in line-mode with 384 spatial pixels in one line and 288 spectral wavelength bands for

each pixel. Spectral bands covered the wavelength region 967-2560 nm with a spectral

sampling width of 5.6 nm and spectral resolution of 12 nm. Samples were illuminated with

polychromatic light produced by quartz halogen lamps. Figure 5.1 shows the imaging set

up. Each sample was imaged separately and reference standard material with 99 %

reflectance was imaged with each sample.

Figure 5.1. Specim SWIR 3 hyperspectral camera (left), sample imaging set up (center)
and samples imaged to set the moving table speed and the field of view (right).

The field of view was set to cover the textile samples, approximately to 12 cm. It was

determined by imaging a sample with lines. During imaging the samples moved below

the camera, approximately 27 cm distance away from the objective. The speed of the

moving table was set so that round objects appeared approximately round. This was

examined by imaging sample with round objects. This and the sample imaged to set

the field of view are shown in Figure 5.1. The integration time was adjusted so that the

maximum reflectance signal was approximately 90 % of the maximum signal output. Both

sets of samples were imaged with the same camera settings in a dark room to eliminate

the effect of room lighting. Imaging all the samples produced 112 large hyperspectral

data cubes.
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5.3 Image processing

Hyperspectral images were loaded to Matlab® using an in-house Matlab function devel-

oped at VTT. Images were processed in Matlab and most of the code was written specifi-

cally for this thesis. Commercial Matlab functions svd [52], canoncorr [53], classify [54]

and PLS − toolbox software [55] were incorporated inside the written code. Figure 5.2

shows the image processing work flow.

Figure 5.2. Hyperspectral image processing workflow.

Raw hyperspectral images were measured as detector signal intensity counts. Reference

material and dark current measurements were used to transform the raw signal values

into reflectance using a simple two-point linear reflectance transform shown in Equation

4.1.

The reflectance transformed images were still large hyperspectral data cubes containing

also information of the background. The sample pixels were separated from the back-

ground pixels using principal component analysis. The images were reshaped to two

dimensional matrixes and PCA was conducted after mean centering the data using sin-

gular value decomposition. SVD was calculated using the Matlab function svd, which

returned the eigenvectors of the matrix. These eigenvectors were used to calculate the

principal components. PCA found the direction of the maximum variance between the

sample and the background pixels, which was seen in the first principal component. Limit

was set to score values to separate these pixels from each other. Only the sample pixels

were chosen for further analysis.

All the sample pixels were used to calculate the average spectrum for each sample. The

average reflectance spectra were converted into absorbance units using Equation 4.2. An

example of separating sample pixels from the background and the calculated respective

average absorbance spectrum is illustrated in Figure 5.3.
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Figure 5.3. Sample pixel separation from the background and the calculated respective
average absorbance spectrum.

Images were calibrated and corrected and ready for further processing and analysis.

From 112 hyperspectral image cubes, the information of each sample was now in one

average absorbance spectrum.

5.4 Differences between sample spectra

The whole sample set consisted of two sets of textile samples. The sample sets were

compared to each other using unsupervised exploratory analysis to find possible differ-

ences. PCA was used to find the possible variance between the samples, and principal

components were calculated using Matlab function svd. Principal component scores were

visualized in score plots and different sets of textiles and intrinsic viscosity values were

compared. The confidence ellipses for score plots were calculated using PLS-toolbox.

Loading plots of the first two principal components were used to explain the differences

between the two sample sets.

5.5 Sample classification

The two sample sets combined together were allocated to three classification classes ac-

cording to their intrinsic viscosity values. Intrinsic viscosity values were known for each

sample and the optimal intrinsic viscosity region was 350-550 ml/g. The intrinsic viscosi-

ties of the classes are shown in Table 5.2. Colors for the classes are the same class

colors used for the classification results in Chapter 6. The samples were then divided into

training sample set and test set for classification. The training set was used to develop



34

the classification model and the test set to validate the final model. From all the samples

every third sample was chosen to the test set. The training set consisted of 74 (66 %)

samples and the test set of the remaining 38 (34 %) samples. Both training and test set

included samples of each classification class. Division of the samples to training and test

set, and the workflow of developing and validating the classification model is shown in

Figure 5.4.

Table 5.2. Intrinsic viscosities of the classification classes.

Class Intrinsic viscosity (ml/g)

Below optimal viscosity < 350

Optimal viscosity 350-550

Above optimal viscosity > 550

Training set samples were used to train and adjust the model. Different preprocessing

methods were tested to evaluate their effect on the classification performance. The av-

erage absorbance sample spectra were preprocessed using SNV and mean centering.

SNV was used to remove the effects of scatter row-wise, and mean centering column-

wise to make the differences in the spectra more visible. SNV transformation was done

using Equation 4.3 and mean centering by subtracting the mean values from the wave-

length variables. These calculations were conducted using Matlab code written for this

thesis. Wavelengths outside the range of 1000-2500 nm were excluded to analyse only

the wavelength region of interest.

Figure 5.4. Classification model creation and validation workflow.

The classification model was trained using the samples in the training set. Linear discrim-

inant analysis using canonical variables was used as classification method. Covariance

matrices for calculating the canonical variables cannot be calculated if the number of
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wavelength variables exceeds the number of samples. So PCA was performed first to

reduce the dimensions of the wavelength variables. The mean of the spectra was cal-

culated for mean centering and the principal components were calculated using the svd

function. The optimal number of used principal components were calculated using 3-fold

cross-validation illustrated in Figure 4.6. Cross-validation was calculated for all possible

numbers of principal components. The correctly classified rate was determined for each

cross-validation round, and the lowest number of principal components that produced 100

% correctly classified rate was chosen.

Canonical variate analysis was used to find the directions which maximized the variance

between classes and minimized the variance within a class. Canonical variate analysis

used the allocated classification classes of the samples to calculate the canonical vari-

ables. Canonical variables were calculated using the principal component scores and

Matlab function canoncorr. The function returned the canonical coefficients and the

scores.

Test set sample spectra were preprocessed with the same methods as the samples in the

training set. Spectra were then mean centered with the mean of the training samples. The

dimensions of the wavelength variables in the spectra were reduced using the principal

component loadings calculated for the training samples. Then the test sample spectra

were projected into the canonical variable space determined for training set using the

canonical coefficients.

Matlab function classify was used to train the discriminant analysis classifier and to cal-

culate linear class boundaries for the three classes. Classify-function takes the test sam-

ples, training samples and classes for the training samples. The linear class boundaries

are then calculated based on the training samples and their classes. Function assigns

each test sample into one of the classification classes based on which side of the class

boundaries the sample fall as illustrated in Figure 4.5.

The classification results were calculated as correctly classified percentages. %CC was

calculated by dividing the number of correctly classified samples with the number of all

samples. %CC was calculated for each class, training set and test set separately. These

values were used to evaluate the accuracy of the classification method and how well the

samples could be classified.
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6. RESULTS

The results of hyperspectral image processing and textile sample classification using

methods described in Chapter 5 are presented in this chapter.

6.1 Image calibration and preprocessing

The textile sample sets were imaged and treated as reviewed in Chapter 5. Imaging all the

samples produced 112 hyperspectral images. In Figure 6.1A is illustrated hyperspectral

image of one textile sample. Each image consisted of 384 pixels per imaged line, 425

lines and 288 wavelength bands. The sample pixels were separated from the background

using PCA, which is illustrated in Figure 6.1B.

Figure 6.1. A) Hyperspectral image of one textile sample and B) illustration of separating
sample pixels from the background.

Raw sample images, white reference material and dark current were imaged as detector

signal intensity counts. Figure 6.2 shows raw average signals for one imaged sample.

White reference signal W refers to imaged white reference standard with 99 % reflectance

and dark reference signal D to dark current. Signal H is the average spectrum of the

sample.
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Figure 6.2. Raw average signals for one imaged sample. W referring to white reference
signal, D to dark reference signal and H to the sample spectrum.

Simple two-point linear reflectance transform was used to convert the raw image values

into reflectance units. Then images were converted into absorbance units for easier in-

terpretation of the spectra. All the sample pixels separated from the background were

used to calculate the average spectra for each sample. Figure 6.3 shows reflectance

transformed average spectra and the -log10 transformed average absorbance spectra of

the samples in the first sample set. Average reflectance spectra do not show the dif-

ferences between the samples that can be observed in the -log10 transformed average

absorbance spectra.

Figure 6.3. Reflectance transformed average sample spectra and -log10 transformed
average absorbance spectra of the samples in the first sample set.

Standard normal variate transformation was used to remove the effect of scatter and de-

crease the effects of uneven lighting. Figure 6.4 shows the effects of SNV transformation

and mean centering on the average absorbance spectra of the first sample set. Spectra

are colored according to the measured intrinsic viscosity values. Lower viscosity values

are colored in blue and higher in red.
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Figure 6.4. SNV transformed and mean centered average absorbance spectra of the first
sample set. Spectra colored according to measured intrinsic viscosity values.

After SNV transformation, absorbance spectra showed less variation between the sam-

ples as can be seen from the Figures 6.3 and 6.4. Mean centering the SNV transformed

spectra started to show differences between the intrinsic viscosities of the samples. This

can be visually seen from the mean centered spectra in the Figure 6.4. SNV transformed

and mean centered absorption spectra shows the largest variations between absorption

bands at wavelengths around 1440 nm and 1930 nm. These bands can be assigned to

water according to Table 3.2. Another large absorption band variation can be observed

at 2108 nm, which is close to cellulose band assignment reported in Table 3.2.

6.2 Differences between sample sets

The textile samples consisted of two different sample sets. Examining the two sets with

PCA showed that the two sets of samples could be separated from each other. This is

shown in score plot of the first two principal components in Figure 6.5, where the samples

are colored based on the sample sets. The first two principal components account for 79

% of the variance between the sample spectra. In the figure the scores are also colored

based on the measured intrinsic viscosity values. Differences and discrimination also

between different intrinsic viscosity values can be seen. Principal component loadings

show which wavelength regions explain most of the variation in the spectra. Loading plots

of the first two principal components calculated for the two sample sets are illustrated

in Figure 6.6. The highest peaks in the first principal component loading plot can be

assigned to water and the loading peaks in the second principal component to cellulose
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according to Table 3.2. The differences between the two sample sets are due to different

chemical compositions.

Figure 6.5. Score plots of first two principal components showing the differences of
the two sample sets. Colored based on the sample sets (left) and measured intrinsic
viscosities (right).

Figure 6.6. Principal component loading plots of the first two principal components cal-
culated for the two sample sets.

6.3 Sample classification performance

All the samples were divided into training and test sets for classification. Training set

consisted of 74 samples and the test set of 38 samples. The classification model was

trained and adjusted using on the training set samples. Methods used for determining

the classification model were PCA to reduce the number of wavelength variables, CVA

to find the separation between the classes and LDA to calculate the class boundaries.

Classification model was trained to classify the samples into three classes according to

their intrinsic viscosity values, which is shown in Table 5.2. Table 6.1 shows how the
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samples were divided into classification classes in training and test sets. As seen from

the table, the available textile samples were not distributed evenly to each class.

Table 6.1. Number of samples in each class in training set, test set and overall.

Class Training set Test set Overall

< 350 8 5 13

350-550 8 4 12

> 550 58 29 87

The optimal number of used principal components were estimated using cross-validation

on the training set. Cross-validation was conducted using 3 folds, which ensured that

there were samples of each class in each fold. The smallest number of principal compo-

nents that produced 100 % correctly classified rate for cross-validation was 34. First 34

principal components were chosen to be used in the classification.

LDA classification model was created using methods reviewed in Section 5.5. The results

of the training set classification are shown in Figure 6.7. The class regions are visualized

in the figure with colors. Class with viscosity values <350 ml/g is colored in pink, 350-550

ml/g in green and >550 ml/g in blue. The samples, dots in the figure, are colored based

on the real class they belong to. A sample is counted as misclassified if it is not located

in the region of its own color in the figure. Samples in each class forms clusters and

can be separated from each other. Figure 6.7 shows that there were no misclassified

samples during the model training. Table 6.2 shows the confusion matrix of the training

set classification results.

Figure 6.7. Classification results of the training sample set.
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Table 6.2. Confusion matrix of the training set classification results. Correctly classified
rate 100 %.

Measured

< 350 350-550 > 550

Predicted < 350 8

350-550 8

> 550 58

The test set was used to validate the determined classification model. Test set samples

were treated with the same preprocessing methods which were used to train the clas-

sification model. Test samples were classified as reviewed in Section 5.5. The test set

classification results are shown in Figure 6.8. The class regions are colored similarly as

in Figure 6.7.

Figure 6.8. Classification results of the test sample set.

As can be seen from the Figure 6.8, two samples were misclassified. These misclassified

samples belong to the class with viscosity values >550 ml/g and they were misclassified

to the optimal viscosity class 350-550 ml/g. The two misclassified samples were close to

the class boundaries as seen from the figure. Table 6.3 shows the confusion matrix for

test sample set classification results. The correctly classified rate for the test sample set

was 94.7 %.

Table 6.4 shows the correctly classified percentages for training and test sets in each

classification class. Overall, there were only two misclassified samples. Classification

results showed the possibility of classifying textile samples according to their intrinsic vis-

cosity values. Image processing and classification methods used in this thesis produced
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promising classification results.

Table 6.3. Confusion matrix of the test sample set classification results. Correctly clas-
sified rate 94.7 %.

Measured

< 350 350-550 > 550

Predicted < 350 5

350-550 4 2

> 550 27

Table 6.4. Classification results for each class, training and test sets as correctly classified
percentage %CC.

Class Training set Test set

< 350 100 100

350-550 100 100

> 550 100 93.1

Overall 100 94.7
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7. DISCUSSION

Analysing hyperspectral images showed promising results that cellulose-based fabrics

could be classified based on intrinsic viscosity. The samples were classified to predefined

classes with an overall test set accuracy of 94.7 %. The methods used in the analysis

were chosen to be as simple as possible. Using simple methods makes the interpretation

of the results easier. This chapter discusses the classification results, the effects of using

different image processing methods and other observations made during the research

process.

7.1 Textile samples

The textile samples consisted of two sets of different textiles. Comparing the two sample

sets using PCA showed that the two sets could be separated from each other. This was

seen in Figure 6.5. Principal component loadings showed that the separation in PCA

could be explained by differences in the chemical composition of the sample sets. The

highest peaks in the first loading vector could be assigned to water and the peaks in the

second loading vector to cellulose. This was seen in loading plots of the first two principal

components in Figure 6.6. Even though the sample sets differ chemically from each other,

it was shown that they can be classified based on the intrinsic viscosities.

The intrinsic viscosities of the samples were measured three times by hand based on the

SCAN-CM 15:88 standard [50]. The average value of the three measurements was calcu-

lated for each sample. These intrinsic viscosity measurements create standard deviation

for the viscosity values. Multivariate classification methods used in this thesis takes the

given viscosity values and does not consider the deviation. The results need to be anal-

ysed with that in mind that the measured viscosity values used to train the model might

not be as accurate as what the hyperspectral camera measures. The viscosities were
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measured with same method and standard for both sample sets.

The classification model was trained and tested using predefined classes based on mea-

sured intrinsic viscosity values. Linear discriminant analysis and canonical variables were

shown to provide promising classification results for our samples. Correctly classified per-

centages of 100 % for training set and 94.7 % for test set showed that chemically slightly

different textile samples could be classified in object level according to their intrinsic vis-

cosity values. Two samples in the test set were misclassified. The measured intrinsic

viscosities of these samples were 634 ml/g and 592 ml/g, and the standard deviations

±18 ml/g and ±6.2 ml/g respectively. The standard deviations do not explain the reason

for misclassification, but the measured sample viscosities are quite close to the optimal

viscosity class. All the samples in the optimal intrinsic viscosity region (350-550 ml/g)

were classified correctly.

The number of available samples also affected the classification results. There was imbal-

ance in the number of samples in the classification classes as could be seen from Table

6.1. 78 % of the samples belonged to the class with viscosities >550 ml/g. Rest of the

samples were distributed to the optimal 350-550 ml/g and <350 ml/g viscosity classes.

Dividing the samples to training and test sets made the number of samples in the train-

ing set even smaller. The classification model was trained with only eight samples in the

350-550 ml/g and <350 ml/g viscosity classes.

The method for classification model quality evaluation was accuracy, which was calcu-

lated as correctly classified percentages. The class imbalance can make the accuracy

misleading, because it may vary between classes. Using this metric also when training

the classification model may give too much weight for the classes with more samples

and inadequate weight for others. Classification model may not find the characteristics

of the samples in classes with less samples, and these samples are more likely to be

misclassified. [56] This effect was not seen in our classification results as the only mis-

classified samples belonged to viscosity class >550 ml/g. Classes could be rebalanced

by collecting more samples to viscosity classes 350-550 ml/g and <350 ml/g. Other ways

for rebalancing could be removing samples from class >550 ml/g to make the class sizes

equal or oversampling the classes 350-550 ml/g and <350 ml/g to increase the number

of samples in them.



45

7.2 Preprocessing methods

Different preprocessing methods were applied on the training set sample spectra to find

the differences between intrinsic viscosity values. Standard normal variate transformation

and mean centering were found to be the simplest methods to provide accurate classifica-

tion results. The absorption bands seen in SNV transformed and mean centered average

spectra in Figure 6.4 show band locations which can be assigned to water and cellulose.

These substances are found in cellulose-based fabrics.

Savitsky-Golay derivation was studied as one of the preprocessing methods. Derivative

methods change the positions of the absorption peaks, which makes the interpretation of

the spectra harder. This effect was illustrated in Figure 4.2. The effect of adding Savitsky-

Golay 1st and 2nd order derivation with frame length of 13 on the average absorbance

spectra of the first sample set is shown in Figure 7.1. Derivation was applied before SNV

and mean centering. The differences between intrinsic viscosities can be seen, but the

locations of the absorption peaks are moved, and absorption bands cannot be so clearly

assigned after adding the derivative method.

Figure 7.1. Effect of applying B) 1st and C) 2nd order Savitsky-Golay derivation on the
A) SNV transformed and mean centered average absorbance spectra of the first set of
samples. Sample spectra colored based on the measured intrinsic viscosity values (ml/g).

Table 7.1 shows the training set and training set 3-fold cross-validation classification re-

sults with different preprocessing methods. Results are calculated using all sample pixels

and the number of used principal components is calculated individually for each used

method combination. Mean centering was used as the last preprocessing method in all

the combinations. Using Savitsky-Golay derivation did not clearly improve the classifica-
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tion results.

Table 7.1. Effect of different preprocessing methods on the classification results of the
training sample set. Mean centering used as last method in all combinations. Results
shown as correctly classified percentage %CC.

Preprocessing methods Training set Cross validation

SNV 100 86.5

1st order derivation 98.7 85.2

2nd order derivation 98.7 87.8

1st order derivation, SNV 97.3 82.4

2nd order derivation, SNV 98.7 87.8

7.3 Pixels vs object

Taking images with hyperspectral camera provides spatial and spectral information of

each separate pixel. It would seem useful to classify each pixel separately. Using average

spectra of the samples loses the spatial information and treats the samples in object level.

Figure 6.4 showed that preprocessing the sample average absorbance spectra with SNV

and mean centering finds differences between intrinsic viscosities. Choosing to use all

the sample pixels and calculating the average spectra provided the highest classification

accuracy.

Figure 7.2. Calculation of average absorbance spectrum of chosen sample ROI.

Instead of using all the sample pixels to calculate the average spectra, some region of

interest (ROI) can be chosen. Figure 7.2 shows an example of a sample and the 200x200

pixel ROI that is used to calculate the average absorbance spectrum. Using same sized

ROI of all samples instead of all the sample pixels to calculate the average spectra makes
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the further analysis of all the samples more comparable. Classifying each pixel separately

was shown to create too much noise to be able to classify the samples. The effect of

decreasing the ROI size on the average spectra of the first sample set is shown in Figure

7.3.

Figure 7.3. Effect of changing the ROI size on the sample average spectra of the first
sample set.

Quite small ROI sizes still creates discrimination between different viscosities. Classifi-

cation results for training set and training set 3-fold cross-validation are shown in Table

7.2. Results in the table are calculated with one average spectrum per each sample,

and spectra are preprocessed using SNV and mean centering. 200x200 ROI shows the

highest cross-validation accuracy, but lower training set accuracy compared to results us-

ing all pixels. Choosing multiple small ROIs from one sample could make it possible to

classify small areas in the samples.

The intrinsic viscosities of the samples are correlated to the cellulose polymer fiber lengths,

which are molecular scale properties. Pixel level calculations are possible when study-

ing larger scale properties than intrinsic viscosity of similar textile samples. Mäkelä et. al

showed that polyester content of waste textiles can be predicted in pixel level with promis-
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ing accuracy [2]. Different textile fibers have different chemical compositions, which can

be more clearly detected from hyperspectral image pixel spectra.

Table 7.2. Effect of changing the ROI size on the training sample set and training set
3-fold cross-validation classification results. Results shown as correctly classified per-
centage CC%.

ROI size Training set Cross-validation

All pixels 100 86.5

200x200 98.7 90.6

20x20 98.7 86.5

2x2 97.3 82.4

7.4 The number of used principal components

To be able to conduct LDA, dimension of the average sample spectra wavelength vari-

ables was reduced using PCA and the optimal number of used principal components was

determined using cross-validation. It was shown that increasing the number of used prin-

cipal components started to form denser clusters of the training samples in each class.

At the same time after certain point the accuracy of test sample classification decreased.

Choosing too few or too many principal components caused under- and overfitting of the

classification model.

Figure 7.4 shows the classification results of training and test sets with 5, 40 and 70 used

principal components. The class regions and samples are colored similarly as in Figures

6.7 and 6.8. Figure 7.4 shows the formation of denser clusters of the training samples

when increasing the number of principal components and the simultaneous decrease in

the test set classification accuracy. Using too few principal components did not find the

underlying features in the average sample spectra for efficient classification.

Table 7.3 shows the classification results of training and test sets with different num-

ber of used principal components as correctly classified percentages %CC. Promising

classification results were achieved with the lowest number of principal components that

provided 100 % correctly classified rate for the training set cross-validation, which was

34.
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Figure 7.4. Effect of changing the number of used principal components on the classifi-
cation results. Top row images show the training set classification results and bottom row
the test set results.

Table 7.3. Effect of changing the number of used principal components in the classifica-
tion model. Classification results shown as correctly classified percentage CC%.

Number of used
PC’s

Training set
%CC

Test set
%CC

5 78.4 73.7

34 100 94.7

40 100 94.7

70 100 79.0

7.5 Wavelength selection

The interactions between light and materials depend on the wavelength of the light and

the composition of the materials. Choosing the wavelengths to the analysis that are the

most relevant for the specific sample analysis can improve the results. Wavelength selec-

tion was studied in this thesis.

Wavelength region was divided into 10 intervals, each including 27 wavelength bands.

Classification accuracies were calculated for every possible wavelength interval combina-

tion to find the intervals that contribute most on the classification results. The number of
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used wavelength intervals was changed in each iteration. 20 % of the wavelength combi-

nations that produced the best correctly classified rate in each iteration were chosen and

the relative occurrence of each interval was calculated. Wavelength selection showed

that there were intervals which contributed more on the results than others. Results of

the wavelength selection are shown in Figure 7.5. The figure is colored based on the

relative occurrence of each interval in each iteration. The figure also shows the division

of the wavelength region to the intervals.

Figure 7.5. Wavelength selection results. Figure colored based on the relative occur-
rence of intervals that produced the best classification accuracies during the wavelength
selection iterations.

Choosing wavelength intervals to train the classification model did not clearly improve the

classification results. The classification results of the training set and training set 3-fold

cross-validation with some combinations of used wavelength intervals are shown in Table

7.4. Wavelength combinations used in the table are chosen based on the wavelength

selection results seen in Figure 7.5.

The cross-validation results were slightly improved when choosing for example wave-

length intervals 7 and 8 instead of using the whole wavelength region. Training set clas-

sification accuracies were decreased. Wavelength selection was also studied on spectra

with derivative preprocessing methods. The classification results were not improved using

derivative method and wavelength selection.
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Table 7.4. Effect of wavelength selection on the classification results of the training sam-
ple set. Results are shown as correctly classified percentage %CC.

Used wavelength
intervals

Training set Cross-validation

7 8 97.3 90.6

3 4 7 8 97.3 90.5

3 4 6 7 8 97.3 91.9

2 3 4 6 7 8 97.3 87.8
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8. CONCLUSION

In this thesis cellulose-based textile samples were classified based on their intrinsic vis-

cosity values using hyperspectral imaging and chemometric methods. Aim was to find

simple methods to produce accurate classification results. Using simple methods made

the interpretation of the results easier. It was shown that the samples could be classified

with promising accuracy. Hyperspectral camera used in this thesis operated in the near

infrared wavelength region. The interactions between light and samples in NIR region

are complex and hard to interpret. This makes the evaluation and the analysis of the

absorbance spectra difficult. Chemical recyclers are interested in distinguishing textile

samples with intrinsic viscosities between 350 ml/g and 550 ml/g out of other samples.

Intrinsic viscosities of the textile samples were measured using SCAN-CM 15:88 stan-

dard. Being able to sort cellulose-based textiles based on the intrinsic viscosities helps to

control the viscoelastic properties of dissolved fibers during the chemical recycling pro-

cess.

The samples consisted of two different sets of cellulose-based textiles. PCA showed

differences between the two sample sets. According to principal component loadings the

largest variance in the spectra could be assigned to water and cellulose. Despite the

differences in the chemical composition of the two sample sets, they could be classified

based on their intrinsic viscosity values.

Raw hyperspectral images consisted of a lot of information and the relevant information

needed to be extracted. After reflectance and absorbance transformations and back-

ground separation, standard normal variate transformation with mean centering were

shown to generate differences between intrinsic viscosities of the sample average spectra

and to produce promising classification accuracies. Also, Savitsky-Golay derivative meth-

ods were applied but they did not clearly improve the classification accuracy and made

the interpretation of the spectra more difficult.
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Classification model created for this thesis was determined using linear discriminant anal-

ysis, which could not be conducted when the number of wavelength variables exceeded

the number of samples. Dimensions of the wavelength variables were reduced using prin-

cipal component analysis. The number of used principal components was shown to have

an important effect on the classification accuracy. Using too many principal components

caused overfitting of the model and using too few caused underfitting. Increasing the

number of used principal components made the training samples of each class to form

denser clusters. At the same time the accuracy of the test set classification decreased.

The number of used principal components was calculated using 3-fold cross-validation for

the training sample set and the smallest number of principal components that produced

100 % correctly classified rate was chosen.

Linear class boundaries were calculated using linear discriminant analysis and canonical

variables. Samples were classified to three viscosity classes. The samples were not

distributed evenly to each classification class. Class with intrinsic viscosities >550 ml/g

included 78 % of the samples, and rest of the samples divided to 350-550 ml/g and <350

ml/g viscosity classes. Canonical variables found the maximum variance between classes

and minimum variance within a class. The final classification model correctly classified

100 % of the training samples and 94.7 % of the test samples.

The samples were classified using average absorbance spectrum of all image pixels of

each sample. The classification accuracy decreased with the decrease in ROI size. It

was shown that pixels alone were too noisy to be classified correctly. Small ROI sizes

still produced promising classification results, which showed that small areas from textile

samples could be possible to classify. Previously it has been shown that different cellulose

fibers could be classified on a pixel level with promising accuracy [14]. Bigger differences

in the chemical structure makes also the differences in the absorbance spectra bigger,

which enables the pixel level classification.

As far as we know, this was the first time it was shown that textiles could be classified

based on their intrinsic viscosity values. Combining the classification model classify-

ing textiles based on their intrinsic viscosity values with classification models classifying

samples based on other properties would make the waste textile sorting more efficient.

In practice, textile sorting in-line applications could consist of object detection and classi-
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fication models. Textiles could be detected as objects, classified by fiber types and then

different detected textiles classified further, for example, based on the intrinsic viscosity.

Classification model determined for this thesis should be trained and validated with bigger

sample set to see the effects on the classification results and to rebalance the class sizes.

Being able to sort cellulose-based textiles based on the intrinsic viscosities helps to con-

trol the chemical recycling process of waste cellulose textiles. Increasing the reuse of

waste textiles makes the production of new textiles more sustainable and saves natural

resources. Recycling waste textiles is a sustainable way to meet the growing demand of

new textiles.
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