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ABSTRACT

The new generation of wireless technology, termed as the fifth generation (5G), in-
troduces a large amount of novel features. An operation in the millimeter-wave
(mmWave) spectrum becomes one of those features unlocking a wide bandwidth.
The latter allows for a notable increase in the peak data rate by up to tens of gigabits
per second and decreases latency to as low as few milliseconds. These improvements
provide an opportunity to support high-rate and low-latency applications, such as
augmented and virtual reality, eHealth, and many others.

Though mmWave communications have great potential, they suffer from severe
attenuation caused by signal blockage. In addition to large-scale blockers (i.e., build-
ings), small-scale blockers such as human bodies bring new challenges to the oper-
ation over mmWave bands. Large attenuation losses, as well as the unpredictable
mobility of human body blockers, can significantly decrease a service quality when
communicating over a mmWave link. Thereby, there is a need to properly model
the blockage process, evaluate its impact on mmWave network performance, and
estimate performance gains brought by different blockage mitigation techniques.

The thesis proposes a mathematical methodology to characterize and evaluate
the effect of blockage dynamics in mmWave networks. With the help of stochastic
geometry and probability theory, it delivers mathematical models of static and dy-
namic small-scale blockage, as well as static large-scale blockage. It then introduces
system-level performance evaluation frameworks accounting for the main features
of mmWave communications, such as blockage and multipath propagation. The
mathematical frameworks can also evaluate the impact of several blockage mitiga-
tion techniques in realistic deployment scenarios.
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1 INTRODUCTION

1.1 General Background

International Telecommunication Union (ITU) continuously strives to provide var-
ious standards and requirements to harmonize mobile broadband systems through-
out the world. In almost every decade since the year 2000, ITU has approved new
International Mobile Telecommunications (IMT) standards such as IMT 2000 [48],
IMT advanced [47], and most recently – IMT 2020 [49]. These standards are then
employed by a different generation of mobile networks such as the third genera-
tion (3G), fourth generation (4G), and fifth generation (5G), respectively, where each
generation is supposed to fulfill more stringent service requirements than its prede-
cessor. Particularly, 5G networks, when compared to 4G, are required to deliver
up to 10-100 higher data rate, support 10-100 more connected devices, and reach a
millisecond-scale latency [46].

To satisfy these ambitious requirements, 5G incorporates various enabling tech-
nologies. For example, the main enablers such as massive multiple-input multiple-
output (MIMO), advanced beamforming, and a new wide bandwidth [3, 5, 53, 62]
can provide a tremendous increase in overall capacity, when comparing 5G to 4G [40,
44]. With the help of network function virtualization (NFV), 5G networks are ex-
pected to be more flexible and capable of supporting heterogeneous applications and
services [12, 26]. Another promising technology is integrated access and backhaul,
a wireless backhaul solution allowing densifying the network without a costly fiber
installation [8, 81, 90].

A larger available bandwidth is one of the key drivers for the increased capacity
at the air interface. Thus, millimeter-wave (mmWave) communications, operating
in a range of 30-300 GHz, have become one of the important novelties introduced
for 5G [38, 83]. With a wide bandwidth available at mmWave frequencies, these
networks can reach up to tens of gigabits per second of data rates and significantly
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reduce the latency when compared to lower frequency bands. The improved perfor-
mance, in its turn, allows to accommodate high-rate applications such as augmented
and virtual reality, autonomous driving, and many more [6, 63, 74].

Nowadays, the mmWave communications are included as a part of 5G New Ra-
dio (NR) – a radio access technology (RAT) developed within the 3rd Generation
Partnership Project (3GPP) and first introduced in Release 15 [2, 44]. There are
four mmWave bands in a frequency range of 24.2−52.6 GHz supported by NR Re-
lease 16 [7]. According to Release 16 TS 38.104, the maximum carrier bandwidth
of 400 MHz is supported for a subcarrier spacing (SCS) of 120 kHz and available in
each of the four mmWave bands [7]. Furthermore, there is an ongoing work item
in 3GPP Release 17 to extend NR operation up to 71 GHz. Thereby, for Release 17,
we can expect even wider bands to be supported of up to 2 GHz [9].

As soon as the first set of 5G specifications became available, commercial deploy-
ments of 5G networks started to launch throughout the world. Together with 5G
networks operating in the sub-6 GHz frequency range, there are operators (including
AT&T, T-Mobile, and Verizon in the USA) already providing mmWave connectivity
for hot spot areas [25]. In response to the 5G networks roll-out, user devices began
to appear on the global market. According to [105], by the end of April 2021, there
were approximately 468 commercially available 5G devices. Some of these devices
also support a mmWave connectivity, including the 5G-capable iPhone released by
Apple in October 2020.

Despite their great benefits and potential, mmWave communications are facing
several challenges. As compared to the lower frequencies, a theoretical communica-
tion range with mmWave isotropic antennas is significantly reduced [38]. The direc-
tional mmWave antennas on both transmitter (Tx) and receiver (Rx) sides become a
solution for coverage extension but at the cost of increased system complexity [11,
79, 86, 89]. In addition to the above, mmWave links are severely attenuated by var-
ious objects in the environment [83]. Together with the directional transmissions
and receptions needed for coverage, the former increases the link blockage problem,
making it an essential factor to consider in the design and evaluation of mmWave
communication systems.
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1.2 Thesis Motivation

A blockage of mmWave signal by various objects is one of the crucial challenges
in the design and analysis of mmWave networks. A line-of-sight (LoS) blockage by
buildings and other large objects, referred to as large-scale blockage, was identified
as an issue for the lower frequency bands in the previous generations of mobile net-
works including 4G and earlier [27]. For mmWave networks, this issue has become
more profound due to an increased attenuation from large-scale blockers causing up
to 40-80 dB of loss [83, 118]. Moreover, mmWave networks are also planned to sup-
port different applications and services that introduce new deployment scenarios
to be modeled [14, 96]. For instance, unmanned aerial vehicles (UAVs) operating
in urban areas require considering the variations of the heights of the buildings for
more accurate system modeling. All these changes create a need to elaborate conven-
tional LoS probability models to address a large-scale blockage in a broader range of
scenarios.

In addition to a large-scale blockage, much smaller objects like cars, lampposts,
and even human bodies in the environment act as obstacles for mmWave signals;
these are referred to as small-scale blockers [83, 108]. The field experiments have
demonstrated that a degradation of up to 40 dB can be caused by small-scale blockers,
motivating to consider them as part of an overall mmWave system analysis [41, 58,
100]. On top of that, an unpredicted mobility of different small-scale objects (e.g.,
human bodies) provides additional challenges for mmWave connectivity. In that
regard, understanding blockage process dynamics becomes of crucial importance.

A dense human crowd may lead to unpredictable and frequent link interrup-
tions [59]. In order to support reliable connectivity, mmWave systems have to adopt
appropriate blockage mitigation techniques [39, 88]. In its turn, these techniques in-
crease overall system complexity, where conventional performance evaluation mod-
els are not well suited. Therefore, to provide a comprehensive and accurate analy-
sis, more advanced models are needed. Moreover, to gain non-incremental gains by
adopting sophisticated blockage mitigation techniques, one should adjust and opti-
mize a solution to reach its best performance.

An increased number of different blockers, an unpredicted mobility of blockers,
and new blockage mitigation techniques impose a new set of challenges that need to
be addressed. These features call for creating new models and frameworks to evaluate
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mmWave systems as well as potential enhancements to mitigate blockage, forming
the motivation for this thesis.

1.3 Thesis Structure and Main Contributions

The main contribution of this thesis is a mathematical methodology that charac-
terizes and evaluates the effect of blockage dynamics in mmWave communication
systems. Particularly, the thesis develops mathematical models for small-scale and
large-scale blockage. Furthermore, this work provides a set of mathematical frame-
works to evaluate a performance of mmWave systems in different deployment sce-
narios with blockers and possible blockage mitigation techniques.

The introduction part of the thesis consists of five chapters and is followed by
eight publications. Chapter 1 provides a general background of the studied area,
the research motivation, the main contribution of the thesis, and the thesis struc-
ture. The following chapters feature dedicated brief reviews of the prior art in their
respective areas, which are offered at the beginning of each.

Chapter 2 describes modeling of LoS blockage in mmWave systems. The main
research question of this chapter is to understand the effects of environmental conditions
on the time-averaged and temporal characteristics of blockage process in mmWave com-
munications. For that purpose, it proposes a set of mathematical models with dif-
ferent Rx sizes for blockage caused by static human bodies. Then, blocked and non-
blocked time distributions to characterize the dynamic process of mobile human
body blockage are delivered. Next, a large-scale blockage associated with buildings is
investigated, and the LoS probability for an urban grid scenario is derived. Finally,
the numerical analysis demonstrates the blockage effect in various environmental
conditions.

Chapter 3 extends the results from Chapter 2 and considers a multipath prop-
agation of mmWave communications. Particularly, this chapter explores the possible
variations in the blockage process characteristics when considering multipath propaga-
tion and spatial consistency across the mmWave links states. For that reason, the ana-
lytical approximations of the main channel model parameters such as a zenith angle
of arrival (ZoA) and a power share are proposed. Extending the methodology from
Chapter 2, the multipath blockage probability is derived. Further, the algorithm
that distributes blocked/non-blocked states across various links and considers a spa-
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tial consistency among links states is delivered. The numerical results demonstrate
the difference between LoS-only and multipath blockage models, as well as the im-
pact of a spatial consistency across links states.

Chapter 4 considers the main observations from previous chapters and concen-
trates on the overall performance evaluation of mmWave communication systems
enhanced with different blockage mitigation techniques. Notably, this chapter aims to
study the performance gains enabled by various blockage mitigation techniques, includ-
ing multi-connectivity and UAV-based communications, and identify the configurations
where the introduced benefits are the most notable. Thereby, it proposes a framework
to account for multi-connectivity and support nodes in case of a sudden blockage.
The framework provides a first-order analysis of a required number of back-up con-
nections to maintain desired performance requirements. Further work in the di-
rection of mmWave communication improvements considers an UAV as a potential
carrier for a mmWave base station (BS). Particularly, a mathematical framework is
proposed to account for mmWave connectivity with UAVs as well as their mobil-
ity. The numerical results demonstrate the ability of multi-connectivity and UAVs
to efficiently mitigate blockage in mmWave networks, thus improving their perfor-
mance. At the same time, the analysis also shows the limitations of these solutions
when working in especially challenging configurations.

Finally, Chapter 5 concludes the summary and outlines the main future research
directions.
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2 LOS BLOCKAGE MODELING

2.1 Research Motivation

Due to its small wavelength and the use of directional antennas, mmWave commu-
nications is vulnerable to signal blockage caused by various objects [41, 85, 103].
These are not only large-scale objects such as buildings, but also small-scale blockers
like cars, lampposts, and even human bodies that can lead to significant signal degra-
dation [41, 111]. Therefore, to provide a comprehensive analysis of mmWave-based
systems, it is crucial to consider a new type of blockers as well [13].

There has been already some experimental and simulation work done to assess
the performance of the next generation network, namely 5G. In [59], the authors
took field measurements in a street environment, employing horn antennas on both
the Tx and Rx sides operating at 73 GHz carrier frequency. The experiment demon-
strated a signal degradation of up to 20-25 dB due to human body blockage alone. By
analyzing the statistical data gathered with the measurements, the authors proposed
the Markov chain model to describe the blockage attenuation caused by human bod-
ies. We note, that the transition probabilities from blocked to non-blocked state
were calculated from the collected data. Further, in [64], end-to-end simulations,
specifically tailored to capture the specifics of mmWave communications, have been
conducted. Among different aspects, the simulator can also account for human body
blockage employing the blockage model from [1].

The experimental and simulation frameworks mentioned above face certain lim-
itations related to various deployments modeling due to their high operational and
computational costs [76, 85]. Besides the said frameworks, there are analytical frame-
works that allow to comprehensively study effects of different parameters on overall
system performance. However, there are a lack of analytical models available that
capture mmWave communications features, and especially those involving small-
scale blockage, which limits in-depth analytical evaluations. In this chapter, we pro-
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pose a set of analytical models that consider for small and large-scale blockages with
sufficient details (e.g., various density of blockers, heights of nodes) yet under signif-
icantly decreased computational costs.

The rest of the chapter goes as follows. In Section 2.2, we describe the most com-
mon types of blockage affecting mmWave communications in an outdoor environ-
ment and the existing approaches to model them. Further, in Section 2.3 we propose
a LoS blockage model, where a blockage is caused by static small-scale blockers, par-
ticularly human body blockers. In Section 2.4, we consider the mobility of human
body blockers and provide the temporal characteristics (e.g., the time in blocked
or non-blocked state) of a dynamic blockage process. Finally, in Section 2.5, a LoS
blockage model, where the blockage is caused by large-scale blockers (buildings), is
derived. The models developed in this chapter help explore the effects of the envi-
ronmental conditions on the time-averaged and temporal characteristics of blockage
process in mmWave communications.

2.2 Overview of Blockage Types and Models

There are different objects that may potentially block a mmWave signal and cause
severe signal degradation in a typical outdoor scenario. We divide the most common
sources of a mmWave signal blockage into three main categories: (i) self-body block-
age, (ii) small-scale blockage, and (iii) large-scale blockage. Next, we describe these
categories and associated modeling approaches in more detail.

2.2.1 Self-body blockage

The self-body blockage is a new type of blockage that becomes profound in mmWave
communications [68]. This blockage mainly happens due to user equipment (UE)
orientation, causing a signal blockage by the body itself [42]. As shown in [82], this
scenario may cause 30-40 dB of loss for the carrier frequencies of 28 GHz and 40
GHz and thus should be considered in system modeling.

Different approaches allow to account for a self-body blockage available up to
date. The first approach has been described by the 3GPP and is termed as Model A.
The Model A [1] is a stochastic model with randomly distributed two-dimensional
(2D) screens of random orientation and angles. One of the screens is assumed to be
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a self-blocking region while other screens represent small-scale blockers. In the case
of self-blockage, the attenuation of each multipath cluster is assumed to be 30 dB,
otherwise it is 0 dB.

The second approach considers a random rotation of a user and, based on stochas-
tic geometry, calculates a link blockage probability [16, 77]. It is assumed that the
user is self-blocking any signal coming from a particular direction termed as a block-
ing cone. For every time slot, the user changes position by shifting a blocking cone.
The model also applies a constant attenuation to a signal blocked by the user.

2.2.2 Small-scale blockage

Next, we consider a small-scale blockage, which has become an issue for mmWave
band communications. There are a vast number of objects that can be termed as
small-scale blockers present in urban conditions. Those could be static objects, e.g.,
lampposts, trees, or dynamic objects, e.g., human bodies or cars. The experiments
on mmWave communications in outdoor and indoor scenarios conducted in [41,
58, 100] demonstrated that a signal degradation could be as high as 40 dB caused by
small-scale blockers.

Similarly to self-body blockage, there are two main approaches to modeling small-
scale blockage. The first one, introduced by 3GPP, consists of two models. Model
B [1], assumes the physical mapping of small-scale blockers modeled as screens over
an area of interest. The second model from 3GPP, termed as Model A [1], employs a
stochastic approach to capture the characteristics of screens (e.g., an orientation and
angles). Both models imply a particular algorithm to be executed and provide attenu-
ation caused by small-scale blockers employing the knife edge diffraction model. An-
other approach to modeling a small-scale blockage is based on stochastic geometry
and probability theory, as in [34, 75]. Following the second approach, the authors
in [75] provided a vehicle blockage model.

As human body blockage is one of the most common blockage types in many
different deployments, a suitable model to characterize it is essential. Besides the
models provided by 3GPP, mostly suitable for simulation-related studies, an ana-
lytical model characterizing human body blockage is needed. An analytical human
body blockage model can be further employed for comprehensive analytical studies
as well as integrated into simulators to decrease computational complexity.
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2.2.3 Large-scale blockage

Finally, we describe large-scale blockage, which is already widely considered in out-
door urban deployments. For the scope of this thesis, we refer to large-scale blockage,
such as blockage primarily caused by surrounding buildings.

To date, there are several different large-scale modeling approaches available. Be-
sides the physical modeling of buildings directly into a simulator, there is also a
widely-used approach to account for blockage using stochastic methods. For in-
stance, 3GPP proposed a LoS blockage probability for different deployment scenar-
ios [1]. Due to the fixed parameters used in these models, it is not possible to change
the deployment configurations (e.g., density of buildings). Further, in [17], the au-
thors delivered a model for large-scale blockage by utilizing random shape theory.
This method allowed model deployment with a random orientation of buildings,
which is well suited for deployments similar to a university campus with no clear
grid of buildings.

There is a broad range of applications that can be supported by the fifth gen-
eration of mobile networks. It is expected that these applications will be available
in different environments. Therefore, appropriate LoS models [98] are required to
account for various scenarios, e.g., urban grid scenario [109]. Moreover, heteroge-
neous types of devices beyond conventional users, e.g., UAVs, demand consideration
of building height, which was not part of previous LoS blockage models [54, 66]. All
these facilitate the work towards new LoS blockage models that cover a broader range
of environments and applications.

Summarizing, the existing gaps in the analytical LoS blockage modeling (occlu-
sion of mmWave links by various types of objects in different scenarios) call for
further development of such models. Therefore, in this thesis, we deliver analytical
models to account for the following blockage types:

• Small-scale blockage. We consider a human body blocker as a source of small-
scale blockage. First, we deliver the blockage model for the scenario with static
human body blockers. Next, we focus on the mobility of human body block-
ers and investigate temporal properties of the dynamic blockage process in-
cluding mean values and distributions of blocked and non-blocked intervals.
Finally, we provide the blockage model for the scenario with dynamic human
body blockers.
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• Large-scale blockage. We concentrate on an urban grid scenario with a fixed
orientation of buildings. We propose the LoS probability model that accounts
for different building heights and the associated distribution, density of build-
ings, heights of nodes, and other deployment-related parameters.

Next in Section 2.3, Section 2.4, and Section 2.5, we describe the proposed method-
ologies of these models and provide the main results.

2.3 Static Human Body Blockage Analysis

We proceed with our contribution towards the analytical formulation of the block-
age model, developed in Publication I [34], where the small-scale blockage is caused
by human bodies. First, to analytically model a human body blockage, we need to
approximate a blocker with a certain geometrical shape. The experimental studies of
a human body blockage in mmWave communications [50] demonstrate that a cylin-
der may be one of the possible shapes to approximate a human body. Thereby, we
assume a cylinder with a height of hB and a base diameter of dB to represent a human
body. The human body blockers are considered to be static with the center of each
blocker distributed according to the Poisson Point Process (PPP) with density λB on
the 2D plane, as depicted in Fig. 2.1.

Tx

Rx

(a) Scenario of interest with human body blockers

Tx

Rx

hT

hR

hB

r0

dB

Blockers

(b) Geometrical representation of scenario with hu-
man body blockers

Figure 2.1 Considered scenario for analytical modeling of static human body blockers.

We consider the Tx (i.e., a mmWave BS) located at a distance r0 from the Rx (i.e.,
a mmWave UE). The heights of Tx and Rx are equal to hT and hR, respectively. The
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primary metric of interest described in this section is termed as blockage probability,
pB – the probability that a link between Tx and Rx is occluded by a blocker. We
specifically assume an optical link blockage, meaning that a link is considered to be
blocked if the height of the blocker is higher than a visual LoS between the Tx and
the Rx at their point of intersection. Other model parameters, beyond those used
in this section, are summarized in Table I of Publication I [34].

Depending on the assumption regarding the size of the Rx, the blockage proba-
bility is calculated differently. Therefore, we consider two sizes of the Rx:

• Non-infinitesimal Rx. We assume the size of the Rx is non-negligible with
respect to other geometrical objects in the scenario and has a certain length. In
this case, the link blockage will happen if the height of a blocker is higher than
the line connecting the Tx and the Rx at the intersection point and a blocker
is shadowing the full Rx length.

• Infinitesimal Rx. We assume the size of the Rx is negligible with respect to
other geometrical objects in the scenario and consider it as a point. This is a
widely used assumption related to the Rx size [92]. Therefore, to block a link
between the Rx and the Tx, a blocker has to be higher than the line connecting
the Tx and the Rx at their point of intersection.

Next, we proceed with an explanation of the proposed methodologies and the
final blockage probabilities for different Rx sizes described above.

2.3.1 Blockage probability with non-infinitesimal Rx

We consider an Rx of a certain length of l . Following [71], we characterize hu-
man body blockers with a random height following Normal distribution as HB ∼
N (µH ,σH ) and random diameter with Uniform distribution as DB ∼U (dmin, dmax).

We further note that only blockers located between the Tx and the Rx with
heights higher than the LoS path at the intersection point can block the LoS. There-
fore, we thin out the PPP of blockers with initial density of λB to leave only those
that can block the LoS. The resultant density of the thinned out PPP of blockers,
λ(x), is calculated as

λ(x) = λBP r {HB > hm(x)}, (2.1)
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where hm(x) is the minimum height of a blocker that will start causing the blockage
at a certain distance x from the Tx given in Publication I [34].

Next, we assume the Rx is located on the circumference of a circle, and the Tx is
located at the center of the same circle. We project the bases of the blockers from the
thinned out PPP with the resultant density λ(x) on the circumference with the Rx.
From Fig. 2.2, we observe that one or more of the overlapped blockers projections
create a blocked interval, η, on the circumference. The gaps between those blocked
intervals are called non-blocked intervals, ω. The sum of the consecutive blocked
and non-blocked intervals, ξ =ω+ η, establishes an interval repeated at the end of
every ξ . We notice that the blocked interval alternates with the non-blocked interval
resulting in a process called an alternating renewal process [22].

Tx

ω
ω ωη η η

ξ ξ ξ

Blockers
projection

Figure 2.2 Alternating renewal process of blocked/non-blocked intervals for scenario with non-
infinitesimal Rx.

The blockage of the Tx-Rx link can occur when two events happen simultane-
ously: A – the left side point of the Rx with a length of l is dropped on a blocked
interval; and B – a distance from the left side point of the Rx to the end of a blocked
interval will be greater than l . Therefore, we need to find the probabilities of events
A and B to characterize the blockage probability for the non-infinitesimal Rx.

First, we need to obtain the characteristics of the blocked and non-blocked inter-
vals of the alternating renewal process. The distance between the centers of every
blocker’s projection is distributed according to the exponential distribution with a
parameter µ, where µ is the density of blockers on the circumference given in Pub-
lication I [34]. The left points of the blockers’ projections are statistically equally
shifted from their centers. Thus, the distance between them is also exponentially
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distributed with the parameter µ. Following the memoryless property of the ex-
ponential distribution [55], the interval between the left point and the end of the
previous projection is exponentially distributed. Therefore, the non-blocked inter-
val,ω, follows the exponential distribution, Fω, with the parameter µ.

We proceed with the derivation of the cumulative distribution function (CDF) of
blocked interval, Fη(x), using the property of the Laplace–Stieltjes transformation,
where F ∗

ξ
(s), F ∗

η (s), F ∗
ω(s) are the Laplace–Stieltjes transforms of ξ , η, ω, respec-

tively. With the help of this transformation we find the Laplace–Stieltjes transform
of the interval ξ as F ∗

ξ
(s) = F ∗

η (s)F
∗
ω(s) = µ

F ∗
η (s)
µ+s . We can now find the CDF of the

blocked interval, η, by transforming it back as

Fη(x) = Fξ (x)+
fξ (x)

µ
, (2.2)

where Fξ (x) and fξ (x) are a CDF and a probability density function (pdf) of the
interval ξ , that can be found from the renewal equation [22, 34].

We further aim to calculate the probability of the event A, which is the prob-
ability that the left side point of the Rx is dropped on a blocked interval η. This
probability corresponds to a ratio of a mean blocked interval, E[η], to a mean of
interval ξ , E[ξ ], as E[η]/E[ξ ], and is found as

P r {A}=
exp(µE[W ])− 1

exp(µE[W ])
, (2.3)

where E[W ] is a mean of the individual blocker’s shadow projection W on the cir-
cumference given in Publication I [34].

Next, we find the probability of the event B, which is the probability that the
distance from the left side point of the Rx to the end of the blocked interval will be
greater than l as

P r {B}= 1
E[η]

∫︂ ∞

l
[1− Fη(y)]d y =

=
µ

exp(µE[W ])− 1

∫︂ ∞

l

�

1− Fξ (y)−
1
µ

fξ (y)
�

d y. (2.4)

By multiplying two probabilities P r {A} and P r {B}, we derive the blockage prob-
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ability for the non-infinitesimal Rx with the length l as

pB =
µ

exp(µE[W ])

∫︂ ∞

l

�

1− Fξ (y)−
1
µ

fξ (y)
�

d y. (2.5)

2.3.2 Blockage probability with infinitesimal Rx

We continue with the proposed derivation of the blockage probability for the case of
the infinitesimal Rx. The LoS link between the Tx and the Rx is called blocked if at
least one blocker is higher than the LoS link at the point of their intersection. In this
subsection, we assume a constant blocker’s height hB as well as a constant diameter
of blocker dB. The derivations for the random height and diameter of a blocker are
given in [34].

Recall that the blockers form the homogeneous PPP with the density λB. Thus,
to find the blockage probability for the infinitesimal Rx, we utilize the properties
of PPP. According to the property of the process, a number of points (e.g., block-
ers centers) in a finite area follows the Poisson distribution [21, 23]. Therefore, we
first find the probability of blockers in the finite area equal to zero (void probabil-
ity), which refers to the non-blockage probability pnB. Further, we can derive the
blockage probability as pB = 1− pnB.

Tx

Rx hT

hR

hB

r
r0

dB
LoS blockage 

zone

Blockage of LoS link

Figure 2.3 LoS blockage zone.

We proceed with an introduction of a LoS blockage zone illustrated in Fig. 2.3.
This zone refers to the area, where a presence of at least one blocker’s center leads
to an occlusion of Tx-Rx LoS link. The width of this zone is equal to the diameter
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of blocker dB and the length of the zone is equal to r , where r is found as

r =
r0(hB − hR)

hT − hR
+ dB/2. (2.6)

Now, we can calculate the LoS blockage zone area and find the density of blockers
in this zone. We further derive the probability of zero blockers in the LoS blockage
zone, which refers to the non-blockage probability pnB. The final blockage proba-
bility is then found as

pB = 1− exp
�

−dBλB

�

r0(hB − hR)
hT − hR

+ dB/2
��

. (2.7)

2.3.3 Effect of human body blockage

We proceed with analyzing the human body blockage probability in response to dif-
ferent deployment parameters. We consider the Rx height hR = 1.3m, the blockers
height and diameter equal to 1.7m and 0.5m, respectively. The parameters for the
blockers height and diameter distributions areN (1.7 m, 0.1 m) andU (0.2 m, 0.8 m).
The remaining values for the parameters are given in Table II of Publication I [34].
First, from Fig. 2.4 we note that the blockage probability for the infinitesimal Rx is
always higher than for the non-infinitesimal Rx. It is explained by greater chances to
block the point than the line representing the Rx. For a constant mean diameter of
a blocker and the Rx size of 8cm, this difference may reach up to 5%. By decreasing
the length of the Rx further, this difference decreases as well.

Further, from Fig. 2.4, one may notice that the distance between the Tx and the
Rx plays a crucial role in the blockage probability. For the 2D distance of 100m
and the infinitesimal Rx, the blockage probability may reach up to 89% (hT = 4m,
hR = 1.3m, and λB = 0.3). Next, we analyze the effect of density of blockers on the
blockage probability in the case of the infinitesimal Rx as illustrated in Fig. 2.5. One
may note that increasing the blockage density from 0.1 b l/m2 up to 0.5 b l/m2, the
blockage probability increases from 0.52 to 0.98. The qualitative behavior in case of
the non-infinitesimal Rx remains the same as for the infinitesimal Rx.

As shown in Fig. 2.5 for the case of the infinitesimal Rx, the blockage probability
can be decreased by increasing the height of the Tx. For instance, by increasing
the Tx height from 4m to 10m the blockage probability is decreased by 44% for
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Figure 2.4 Blockage probability for non-infinitesimal and infinitesimal Rx.

Figure 2.5 Blockage probability as a function of Tx height and blockers density for infinitesimal Rx.

λB = 0.3. Therefore, by adjusting the Tx height, one may significantly decrease the
blockage probability.

2.3.4 Key findings

The human body blockage can drastically attenuate the mmWave signal and, thus,
should be considered when analyzing the performance of mmWave networks. To
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characterize the blockage effect, we developed the analytical human body blockage
model that accounts for the main deployment parameters such as density of block-
ers and height of nodes. This model can be further integrated into comprehensive
system-level frameworks, as shown later in Chapter 4. Moreover, it can also replace
complex physical blockage models in computer simulations to decrease computa-
tional time.

With the help of the developed model, we demonstrate that the blockage prob-
ability can be notably high in realistic deployments. The blockage probability can
reach up to 0.89 for dense crowds (i.e., λB = 0.3 bl/m2) and large Tx-Rx separation
distance (i.e., r0 = 100 m). At the same time, we have also shown that the blockage
probability can be notably decreased by densifying the network with BSs and select-
ing an appropriate BS height. For instance, when increasing the BS height from 4 m
to 10 m in the considered deployment, the blockage probability decreases from 0.89
to 0.5. Hence, we further analyze the BS height optimization and other blockage
mitigation techniques in Chapter 4.

2.4 Dynamic Human Body Blockage Analysis

In the previous Section 2.3, we proposed the blockage probability that a user experi-
ences on average in a static field of blockers. The human body blockers are also char-
acterized by their mobility, introducing dynamics into the blockage process [41].
Besides time averaged metrics, it is also essential to determine temporal properties,
such as a time of uninterrupted blocked and non-blocked states. These metrics may
further clarify the behavior of a system under various environmental conditions,
blockage intensity, and a total time duration in different states.

In this section, we deliver the blockage probability and the time in uninterrupted
blocked and non-blocked states for a scenario with mobile human body blockers, de-
veloped in Publication II of [33]. Notably, we consider two typical outdoor deploy-
ments [63]: (i) sidewalk and (ii) square. The mobility of blockers in these scenarios
are described below as

• Sidewalk deployment. The blockers’ trajectories are parallel to each other
and the side of a street as illustrated in Fig. 2.6a. The blockers crossing points
of the street width are distributed uniformly.
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• Square deployment. The blockers’ trajectories are randomly oriented in a 2D
area as shown in Fig. 2.6b. The blockers crossing points of the LoS blockage
zone are distributed uniformly over the sides of this zone.

Tx

Rx
Arrival intensity
of blockers λ

hT

hB

dB

hR

Blockers

(a) Dynamic blockers in sidewalk deployment

Tx

Rx

Arrival intensity
of blockers λ

Blockers

(b) Dynamic blockers in square deployment

Figure 2.6 Considered scenario for mathematical modeling of dynamic human body blockers.

For the sake of analytical tractability, we consider the infinitesimal Rx and block-
ers with a constant height hB and a constant diameter dB, as described in Subsec-
tion 2.3.2. The Rx (a mmWave UE) of height hR is located at 2D distance r from the
Tx (a mmWave BS) of height hT. All model parameters are readily given in Table I
of Publication II [33].

2.4.1 Characteristics of dynamic human body blockage process

We start with the characterization of the process of blockers entering the LoS block-
age zone (see Fig. 2.3), a zone where the existence of a human body leads to the
occlusion of the LoS path as described in Subsection 2.3.2. We model the process
of blockers entering the street in the sidewalk deployment according to the Poisson
process in time, where time between each blocker crossing the width of the street fol-
lows the exponential distribution with a parameter λI . For the square deployment,
we assume the process of blockers entering the LoS blockage zone according to the
Poisson process in time with a parameter λI .

We note that the blockage process of a link by moving human bodies is well de-
scribed by the alternating renewal process, as shown in Fig. 2.7. Similarly to the
approach described in Subsection 2.3.1, we notice that an interval ξ is equal to the
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Figure 2.7 Alternating renewal process of LoS blockage time.

sum of blocked and non-blocked time intervals, ξ =ω+ η. Moreover, the interval
ξ is always repeated at the end of its own time interval.

Let us continue with a derivation of the time in blocked, η, and non-blocked,
ω, states. To characterize the time in its non-blocked state, ω, we apply the same
logic as in Subsection 2.3.1. The time between the end of the blocked time interval
and beginning of the next blocked time interval follows the exponential distribution
with the parameter λ, where λ is the intensity of blockers entering the LoS blockage
zone. We also note that for the sidewalk deployment, λ is derived from λI , while for
the square deployment λ is equal to λI . Therefore, a mean of the non-blocked time is
given asE[ω] = 1/λ, while a CDF of the non-blocked time is Fω(x) = 1−exp(−λx).

Next, we derive the characteristics of the blocked time interval η. We follow the
approach described in Subsection 2.3.1. Thereby, a mean of interval ξ = ω + η is
found from the density of the alternating renewal process and is equal to E[ξ ] =
(1/λ)exp(λE[T ]), where E[T ] is a mean time of a single blocker moving inside the
LoS blockage zone derived in Publication II [33]. The mean time in blocked interval
is then found as

E[η] =
∫︂ ∞

0
[1− Fη(x)]d x

=
∫︂ ∞

0

�

1− Fξ (x)−
fξ (x)

λ

�

d x =
1
λ
[exp(λE[T ])− 1], (2.8)

where Fη(x) and Fξ (x) are CDFs of η and ξ , respectively, while fξ (x) is a pdf of ξ .

We further note that the blocked and non-blocked intervals can be seen as empty
and busy periods in the M/GI/∞ queuing system. Particularly, the inter-arrival
time of blockers follows the exponential distribution referring to Kendall’s notation
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M. The blocked period of the Rx follows an arbitrary distribution, which is de-
noted as GI. Finally, an infinite number of blockers may theoretically arrive to the
LoS blockage zone simultaneously, which refers to the infinite, ∞, capacity of the
queuing system. Therefore, the blocked time interval can be interpreted as the busy
period from the M/GI/∞ queuing model, and its CDF is given as [24]

Fη(x) =1−
�

�

1− FT (x)
�

�

1−
∫︂ x

0

�

1− Fη(x − z)
�

exp
�

−λFT (z)
�

λd z
�

+

∫︂ x

0

�

1− Fη(x − z)
�

|d e−λFT (z)|
�

, (2.9)

where FT (x) is a CDF of time that a single blocker moves inside the LoS blockage
zone.

Finally, we derive the blockage probability as a fraction of the mean blocked pe-
riod to the sum of mean blocked and non-blocked periods, given below as

pB =
E[η]

E[ω]+E[η]
. (2.10)

The described methodology can be then applied to account for different blockers’
mobility models, e.g., the models described in Subsection 2.4. The chosen mobility
model affects the time that a single blocker walks inside the LoS blockage zone. The
exact derivations of the mean E[T ] and the distribution FT (x) are given in Publica-
tion II [33].

2.4.2 Effect of dynamic human body blockage

The time in an uninterrupted blocked/non-blocked state can further describe a sys-
tem behavior under various blockage conditions. We consider the Tx and Rx with
heights equal to 3m and 1.3m, respectively. The height and diameter of blockers
are equal to 1.7m and 0.5m, while their speed is 1m/s. The remaining values of the
system parameters are given in Table II of Publication II [33].

We first start by understanding the implications of the blockers’ mobility models
on the metrics of interest demonstrated in Fig. 2.8. Notably, the mean time in the
blocked state is higher for the square deployment as compared to the sidewalk de-
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Figure 2.8 Mean time in blocked state as a function of blockers intensity.
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Figure 2.9 Mean time in non-blocked state as a function of blockers intensity.

ployment. The reason for this difference is that the blockers are likely to spend more
time in the LoS blockage zone with a random trajectory in the square deployment,
as can be seen from the geometry (see Fig.2.6b). Given this observation, the choice
of the human mobility model may greatly affect system performance.

Next, we demonstrate an impact of the blockers intensity on the mean time in
blocked state. From Fig. 2.8, one may notice that for the blockers intensity of λI =
0.5 bl/s the mean time in blocked state reaches 0.76 s for the square deployment.
Compared to the frame length of 10 ms and 80 slots in one frame for SCS=120 kHz in
NR [3], the overall time spent in a blockage might be quite significant for mmWave
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NR systems in case of dense crowd scenarios. By increasing the blockage intensity
further, the time in blocked state grows almost linearly. Note that this qualitative
behavior is similar for the sidewalk deployment.

To further understand the dynamics of link blockage, we analyze the time spent
in non-blocked state. From Fig. 2.9 we note that the said time reaches up to 10 s for
λI = 0.1 bl/s (low blockers intensity) in the square deployment while the time in
blocked state is equal to 0.66 s. By further increasing the intensity up to 0.5 bl/s,
the mean time in the non-blocked state becomes around 2 s. While the time in the
non-blocked state decreases exponentially with the increased blockers intensity, the
time in the blocked state does not increase that much. This implies a significantly
increased frequency of blockage events for high blockers density scenarios. In ad-
dition, the time in the blocked state is considerably long and reaches 0.76 s for the
same set of parameters.

2.4.3 Key findings

In order to comprehensively characterize the effects of human body blockage, not
just the blockage probability (as detailed in Section 2.3) but also uninterrupted time
in the blocked and non-blocked states is needed. This section examines the dynamic
blockage model, revealing the temporal metrics of the human body blockage process
in real deployments to facilitate this goal. It may be especially important when mod-
eling dynamic services over a network and higher layers, e.g., evaluation of Trans-
mission Control Protocol (TCP) performance in 5G mmWave systems, as in [51],
where our model was employed in a simulator.

Our numerical study concludes that time in the blocked state may reach up to
several hundred milliseconds, e.g., 540 ms for the sidewalk deployment with the
blockers intensity equal to 0.71 bl/s. Given the NR radio frame design for higher
frequencies, it may lead to a loss of ten of frames, notably lowering system reliability.
One potential solution is to provide at least one alternative link to minimize a service
interruption time, e.g., by employing the multi-connectivity technique [30, 72]. We
will further consider and analyze this technique in Chapter 4.
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2.5 Large-scale Blockage Analysis

Despite several existing studies on the LoS probability, there is still a need in mod-
eling a regular grid deployment of buildings, one of the typical scenarios in 5G [6].
Moreover, most of the models are specifically designed for terrestrial users and do
not account for the height of buildings and their distribution. However, besides con-
ventional users, future wireless networks are entitled to accommodate various types
of users, e.g., a UAV [4]. The height of such users can be comparable to, or even
much higher than, the height of surrounding buildings, thus making the latter an
essential part of LoS probability models.

With all the above in mind, we propose an analytical model for the LoS proba-
bility in a city grid deployment illustrated in three-dimensional (3D) and 2D view
in Fig. 2.10a and developed in Publication III [29]. We define the LoS probability
as a probability that no building occludes the BS-UE link. We particularly consider
a UAV as an exemplary UE, with a height that can be comparable to the height of
surrounding buildings. Nevertheless, the analysis is valid for other types of users
operating in grid type deployments, e.g., conventional UEs, high altitude platforms
(HAPs), and others.

The BS with height hT is located at 2D distance ℓ2D from the UAV of height hR.
We also note that the BS is deployed along the street termed as a typical street. All
model parameters are summarized in Table I of Publication III [29].
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(a) 3D scenario of urban grid deployment
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(b) 2D scenario of urban grid deployment

Figure 2.10 Considered scenario for analytical modeling of large-scale blockers (reproduced from [29]).
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2.5.1 LoS probability in urban grid deployment

We start by providing an analytically tractable model to approximate an urban grid
deployment. It was shown in [15] that the Manhattan Poisson Line Process (MPLP)
could well model a city grid, as pictured in Fig. 2.10b. The MPLP is described with
the PPP on the X- and Y-axis, where the points represent the beginning of the streets
with a density λ. The resultant rectangles are the blocks of buildings.

To derive the LoS probability, we need to find a probability that there are no
buildings higher than the LoS at their intersection point. Due to the regular deploy-
ment of the buildings, the position of each block depends on the other. Therefore,
the approach of directly thinning out all of building blocks (similar to the one in
Subsection 2.3.1) will lead to recursive equations and extensive computations.

To solve the problem, we first note that there is just one side on a 2D plane (bot-
tom or left for the geometry presented in Fig. 2.10) of every block that can occlude
the link. The number of these sides coincides with the number of points gener-
ated on the X- and Y-axis, which also follows the Poisson distribution. Next, recall
that not all sides on the X- or Y-axis will block the LoS, only those with height
higher than the LoS at the intersection point. Thus, we employ the procedure de-
scribed in Subsection 2.3.1 and thin out the given PPP on X-axis with a probability
P r {HB > h x

m(x,ℓ2D,φD)}. The resultant probability that no side on the X-axis is
higher than LoS is given as

p (x)nB (ℓ2D,φD) = exp

�

−λ

ℓx
∫︂

x0

�

1− FHB

�

h x
m(x,ℓ2D,φD)

�

�

dx

�

, (2.11)

where HB is the height of a building, h x
m is the height of the LoS at the point of

the intersection given in Publication III [29], and φD is the LoS angle of departure
(AoD).

The above procedure is also applied to thin out the PPP on Y-axis and given in
Publication III [29].

Next, we need to find a probability that no points from the thinned PPP are
generated on the X- and Y-axis between the BS and the UAV. Given the independence
of the two processes on different axes, we multiply the probabilities of no points
on the projection of LoS on the X- and Y-axis. We also need to account for a first
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contact side, the side that the 2D projection of LoS intersects first, to be lower than
the LoS height at the point of their intersection. The resulting LoS probability is
then calculated as follows

PLoS(ℓ2D,φD) =FHB

�

h0
m(ℓ2D,φD)

�

exp

�

−λ

ℓx
∫︂

x0

h

1− FHB

�

h x
m(x,ℓ2D,φD)

�

i

dx−

λ

ℓy
∫︂

y0

h

1− FHB

�

hy
m(y,ℓ2D,φD)

�

i

dy

�

, (2.12)

where FHB
is a CDF of building height.

Note that the above (2.12) is the LoS probability for a general building height
distribution. In Publication III [29], we provide closed-form solutions for three dif-
ferent distributions of building height: uniform, exponential, and Rayleigh.

2.5.2 Effect of large-scale blockage

We continue with the numerical assessment of the LoS probability for various de-
ployment parameters. Particularly, we consider the BS with height equal to 10m.
The width of the typical horizontal and vertical streets is equal to 20m. The values
for the urban grid geometry are given in Table III of Publication III [29].

For the aerial users, large-scale blockers, e.g., buildings, would affect the existence
of the LoS based on multiple factors. Notably, in Fig. 2.11, we notice that a spatial
orientation of buildings significantly affects the LoS probability. As one may note,
the user located closer to the street with the deployed BS, on average, has a larger
LoS probability than the user located at the same distance from the BS but in the
middle of two axes. This insight could further be used when planning a trajectory
of aerial users in order to maximize the LoS probability.

It is also noted that the height of the aerial user plays a vital role in the LoS prob-
ability, as shown in Fig. 2.11. It is illustrated that increasing the height of the aerial
user from 50 m up to 150 m increases the LoS probability by five times. Such sig-
nificant improvement illustrates a benefit of optimizing the height of the aerial user
together with its orientation when planning for a flight trajectory.

Further, in Fig. 2.12, we illustrate that the distribution of a building height no-
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Figure 2.12 LoS probability as a function of mean building height.

tably affects the metrics of interest. We provide the numerical results for the fol-
lowing building height distributions: (i) uniform [20], (ii) exponential [70, 95], (iii)
Rayleigh [94], and (iv) gamma. In Fig. 2.12, we assume the UAV height of 150m.
It was noted that the difference between the models is relatively small (1%-20%) for
the mean height of buildings in a range of (0 m, 20 m). When the mean height is in-
creased from 20 m to 60 m, the values typical for urban deployments, the difference
between the models becomes significant (up to 3.5 times). Furthermore, there is no
essential difference for the mean height greater than 60 m as the LoS probability is
small in that case.
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2.5.3 Key findings

In this section, we contributed the LoS probability model for grid type deployments.
We demonstrated that the choice of environment and the considered deployment pa-
rameters (e.g., the height of buildings and its distribution) would drastically impact
the final metrics of interest. For instance, when changing the building height dis-
tribution alone, the difference between the LoS probabilities may reach up to 350%
for the same set of parameters. Therefore, even for the first-order evaluation studies,
one needs to select the appropriate deployments and the associated models carefully.

Our numerical evaluation demonstrated the LoS probability can be as low as 0.43
for the UAV height of 150 m and 2D distance of 150 m. Given the harmful effect of a
blockage caused by a building for the mmWave signal (40-80 dB of loss as per [83]), it
is of special importance to consider it in further evaluation studies. We also observe
that not only the 3D BS-UAV distance but the relative locations of the UAV to the
BS affect the LoS probability. For example, when the AoD is changed from 45◦ to
16◦, the LoS probability increases by two times. This consideration can be further
employed for a UAV trajectory optimization in future networks.
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3 MULTIPATH BLOCKAGE MODELING

3.1 Research Motivation

As seen from numerous experiments, presence or absence of a LoS path notably af-
fects an overall performance of directional mmWave communication systems [83,
84]. Therefore, it is essential to incorporate LoS state information into the evalu-
ation of mmWave systems performance. In Chapter 2, we discussed the possible
types of blockers that may occlude mmWave communication links. We then pro-
vided the analytical formulations for the blockage probability, when the LoS path
can be occluded by human bodies and buildings.

In many real deployments, besides a LoS path, there are multiple other paths,
e.g., reflected, diffracted, or scattered [91, 101, 107]. With highly directional and
steerable antennas, mmWave devices can employ various paths to operate with [60,
102]. Therefore, if a LoS link is not available, e.g., the LoS link is blocked, a UE
can choose an alternative link to continue the data exchange [84]. However, such
alternative links are also susceptible to blockage from various objects, hence may
be or not be available for a particular UE [13]. It thus implies the benefit of the
blockage modeling of not only the LoS path, but also other possible paths [99].

3GPP provides a 3D channel model that generates multipath components via
angles of arrivals/departures, delays, and powers [1]. The model can also account
for blockage of a LoS and multipath components. However, due to the algorithmic
nature of the model, the multipath generation becomes suitable for simulations and
not for analytical studies. Moreover, 3GPP multipath generation procedure requires
considering every blocker in a scenario individually. The latter leads to the increased
simulation time when the density of blockers is high. Thus, it is desirable to deliver
a faster method to account for blockage effects that can be used in analytical studies
as well as to speed up computer simulations.

Below, in Section 3.2 we first describe the 3GPP 3D channel model in more de-

29



tail. Further, in Section 3.3 we propose an analytical approximation of the 3GPP
channel model parameters. We then deliver multipath blockage and outage prob-
abilities. Finally, in Section 3.4 we contribute with an algorithm assigning link
states (blocked/non-blocked) by taking into account spatial consistency between
these links states. All these allow investigating the potential alterations in the block-
age process characteristics when considering multipath propagation and spatial con-
sistency across the mmWave links states.

3.2 3GPP 3D channel model description

There were multiple requirements for the channel model for frequencies above 6
GHz settled by ITU [45]. Particularly, according to ITU, the channel model have to:
(i) have 3D space and time characteristics for both LoS and non-line-of-sight (nLoS)
conditions, (ii) support beamforming modeling, (iii) account for temporal charac-
teristics of a channel to support a UE mobility and non-stationary environment
modeling (e.g., moving crowd).

Following the recommendations, 3GPP delivered the geometry-based stochastic
channel model for the frequencies up to 100 GHz [1]. The channel modeling consists
of multiple steps:

1. Scenario setting. This step requires to choose an appropriate scenario. Dif-
ferent scenarios have different deployment parameters (e.g., height of BS) and
propagation models.

2. Antenna modeling. A BS antenna is modeled with a uniform rectangular
panel array described as (M g ,Ng , M ,N , P ), where M g and Ng are the numbers
of panels in a column and a row, respectively, M is the numbers of antenna
elements per column and N is the number of columns, while P is the antenna
polarization.

3. Path loss and LoS probability modeling. The scenario of interest determines
appropriate models for a path loss in LoS/nLoS and a LoS probability model.

4. Channel coefficient generation. This step refers to a generation of multipath
components described in more detail below.

5. Additional components modeling. This step is assumed for advanced simu-
lations to model, e.g., blockage, spatial consistency, etc.
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In this chapter, we are particularly interested in Step 4 from the channel mod-
eling procedure above, which is responsible for generating multipath components.
There are three main blocks needed to determine the parameters of interest: (i) an
environment setting, a LoS/nLoS state assignment, and a path loss calculation; (ii)
generation of large-scale parameters – delay spread (DS), angular spreads, Ricean K
factor (K), and shadow fading (SF); (iii) generation of small-scale parameters – angles
of arrival/departure, delays, clusters power share. By term cluster here, we assume
a set of rays that traverse from Tx to Rx with a minor variation in their angles of
arrival and departure [84].

After a scenario of interest is chosen, one may find a LoS/nLoS state by employ-
ing a LoS probability as provided in Table 7.4.2-1 of 3GPP technical report (TR)
38.901 [1] and then calculate a path loss from Table 7.4.1-1 [1]. The large-scale pa-
rameters are described by a mean and standard deviation as well as cross-correlation
among the parameters taken from Table 7.5-6 of TR 38.901 [1].

Finally, the small-scale parameters can be calculated by following this step-by-step
approach:

• Generate a delay τn for every cluster n. First, the delay for each cluster is
randomly generated as τ

′
n = −rτDSln(Xn), where rτ is a delay distribution

proportionality factor and Xn = U ni (0,1). Next, the resultant delays τn are
sorted in ascending order to account for the clusters with the shortest path up
to one with the longest path.

• Generate power share Pn of every cluster n. The power share of every cluster
n is given as Pn = exp(−τn

rτ−1
rτDS )10−Zn/10, where Zn ∼N (0,ζ 2) is per cluster

shadowing term in dB. The cluster power shares are then normalized so that
the sum of power shares to be equal to 1.

• Generate azimuth and elevation angles of arrival/departure for every cluster

n. First, find the angle of arrival (AoA) as φ
′

n,AOA=
2(ASA/1.4)

⎷
−ln(Pn/max(Pn))
Cφ

,

where ASA is the AoA spread, Cφ is a scaling factor. Then assign a negative
or positive sign via uniformly distributed random variable Xn = {1,−1} and
introduce a random variation Yn ∼ N (0, (ASA/7)2). The resultant AoA is
then equal to φn,AOA = Xnφ

′

n,AOA+ Yn +φLOS,AOA, where φLOS,AOA is the
LoS AoA. A similar approach is applied to calculate other angles.

As a result of this procedure, every cluster from the multipath propagation model
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is characterized by its delay, power share, and angles.

The cluster generation procedure shown above is based on the algorithmic ap-
proach and thus is not suitable for analytical studies. Meanwhile, to calculate the
multipath blockage probability, it is important to have the analytical characteristics
of the cluster parameters.

3.3 Multipath Blockage Analysis

The multipath propagation can be seen as one of the options to increase spatial diver-
sity of available links [78, 84]. Thus, if a primary link is blocked, there are chances
to continue operation over the strongest reflected path if it is available. To assess
whether the path is available or not, we need to consider for possible occlusion of re-
flected paths. For that purpose, in this section, we introduce the multipath blockage
model, developed in Publication IV [35].

In what follows, we focus on a small-scale blockage of multipath components
considering no large-scale blockers occluding a LoS. Notably, we assume cylinders
with height hB and base diameter dB (radius is rB ) representing human body block-
ers. The human bodies form the PPP with density λB . The Tx (a mmWave BS) is
located at 2D distance x from the Rx of infinitesimal size (a mmWave UE). The Tx
and Rx heights are hA and hU , respectively. All system parameters are given in Table
I of Publication IV [35].

To provide the multipath blockage model, we need input parameters accounting
for the multipath components, such as angles of arrival. As discussed earlier, 3GPP
delivers the parameters needed to characterize the multipath propagation, e.g., an-
gles of departure/arrival, power share from every path [1]. However, due to the
algorithmic nature of the generation procedure, we first need to find an analytical
approximation of the required parameters.

Therefore, in Subsection 3.3.1 we deliver the analytical approximation of a ZoA
and power share of reflected signals. Then, in Subsection 3.3.2 we provide the mul-
tipath blockage probability of every path available at the Rx by taking the approx-
imated parameters as an input. Next, we integrate the blockage probability into an
outage probability. Finally, in Subsection 3.3.3 we provide the numerical results re-
lated to the multipath blockage modeling.
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3.3.1 Analytical approximation of 3GPP channel model parameters

We start with approximating the 3GPP channel model parameters needed for our
analysis of blockage and outage probabilities. For that purpose, we implement the
3GPP channel model in an in-house simulator. We collect statistical data of the fol-
lowing parameters as depicted in Fig.3.1: (i) ZoA of the nth cluster, θn , and (ii) power
share of the nth cluster, Ps ,n .
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Figure 3.1 Scenario with multipath propagation for mathematical modeling.

We continue with the approximation of ZoA, θn , which is the parameter needed
to define the blockage probability for each cluster described later in Subsection 3.3.2.
By analyzing a pdf of the ZoA, we observe that it is well fitted into the Laplace
distribution with parameters (an , bn), given below as

fθn
(y) =

1
2bn

exp
�

−
|y − an |

bn

�

, n = 2,3, . . . ,N , (3.1)

where parameter an is a mean and bn is a variance of the ZoA of nth cluster.

Next, we find the parameters an and bn for the Laplace distribution. For that
purpose, we collect the mean and variance of ZoA for a different set of geometric
parameters (height of nodes, 2D distance, etc.). The obtained data demonstrates
that the variance of each cluster, bn , is a constant value and changes only if the cluster
number changes (the exact values are provided in Publication IV [35]). Furthermore,
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it is noted that the ZoA mean of each cluster, an , coincides with the LoS ZoA and
thus can be written as

an =
π

2
− arctan

�

hA − hU

x

�

, n = 2,3, . . . ,N , (3.2)

where x is 2D distance between the Tx and the Rx.

We proceed with the analysis of data collected for the power share of every cluster,
Ps ,n . It is observed that a power share distribution of cluster N = [2, . . . , 5] is well
fitted to the log-normal distribution with parameters (cn , dn) and is given below as

fPs ,n
(z) =

1

zdn
⎷

2π
exp

�

−
(ln z − cn)

2

2d 2
n

�

, n = 2,3, . . . ,N . (3.3)

To find the parameters cn and dn we first define them via a mean and variance of
power share of every cluster. We then collect the mean and variance in response to
the different geometry of the scenario and observe that those can be approximated
with a constant value different for every cluster. The parameters (cn , dn) are then
calculated from the relation to the mean and variance and are given in Publication
IV [35].

We note that the power share distribution described above is found for the clusters
N = [2, . . . , 5]. The power share distribution for the first cluster (LoS, N=1) appears
to be different from the other clusters power. By collecting and analyzing the results,
we reveal that the LoS power share distribution is approximated by the log-normal
distribution with the argument (1-z) and the parameters (c1, d1) as shown below

fPs ,1
(z) =

1

(1− z)d1

⎷
2π

exp

�

−
(ln(1− z)− c1)

2

2d 2
1

�

, (3.4)

where the values for c1 and d1 are given in Publication IV [35].

3.3.2 Multipath blockage and outage probabilities

Applying the above approximations, we proceed with the mathematical derivation
of the multipath blockage and outage probabilities for the Tx-Rx link. We start
by deriving the blockage probability for every cluster, employing the methodology
shown in Chapter 2. Recall that the LoS blockage probability derived earlier for the
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infinitesimal Rx is a function of various parameters, including distance between the
Tx and the Rx. However, the distance between a reflected point and the Rx is not
known from the 3GPP channel model.

To derive the blockage probability for a single cluster, we first need to obtain the
required distance. In order to do that, we assume a single bounce reflection following
the approach in [69] and then express the distance as a function of ZoA. The blockage
probability of cluster n as a function of ZoA, where ZoA = (0,π/2), is given below
in (3.5), while the expressions for other cases can be obtained following a similar
approach.

qn(y) = 1− e−2λB rB (tan y(hB−hU )+rB ). (3.5)

Due to a random ZoA for every cluster, we continue with an integration of qn(y)
over possible angles multiplied by the ZoA distribution, fθn

(y), derived in Subsec-
tion 3.3.1. The resultant blockage probability of cluster n is calculated as

pn(x) =
∫︂ π

−π

qn(y)

2bn e
|y−an (x)|

bn

d y. (3.6)

Next, we proceed with a derivation of the outage probability. First, we define
an outage event as the summation of two mutually exclusive events: (A) all clusters
are simultaneously blocked, or (B) the received power of the strongest non-blocked
cluster is below a threshold. We assume that in the case of blockage, the blocked
cluster experiences infinite attenuation.

The probability of event A is found as pO,1(x) =
∏︁N

n=1 pn(x). To find the proba-
bility of event B, we first need to calculate a pdf of the received power of every cluster
given a transmit power PT and the pdf of the power share of each cluster fPs ,n

(z). By
calculating the received power using path loss and employing the transformation of
a random variable, we obtain the pdf of the received power of every cluster Pn as

f Pn
(z; x) =

1

10(PT −30−32.4−20 log10 fc−21 log10(D3))/10

fPs ,n

� Pn(x)
10(PT −30−32.4−20 log10 fc−21 log10(D3))/10

�

, (3.7)

where fc is a carrier frequency in GHz and D3 is the 3D distance between the Tx
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and the Rx in meters. We also note that the path loss coefficients in (3.7) are taken
directly from the 3GPP UMi - Street canyon model [1].

We continue with the pdf of the received power from the strongest non-blocked
cluster as the sum of weighted pdfs. Recall that the clusters are enumerated in order
of increased delay, and thus decreased power. Therefore, the pdf of the received
power from the strongest cluster is found as

fP (z; x) =
N
∑︂

n=1

⎡

⎣(1− pn(x))
n−1
∏︂

j=1

p j (x)

⎤

⎦ fPn
(z; x), (3.8)

where the first term under the summation is the probability that cluster n is not
blocked while the product implies that all previous clusters (1, · · · , n−1) are blocked.

The probability of event B is then calculated as pO,2(x) =
∫︁ ST

0 fP (z; x)d z, where
ST is the received power threshold. Finally, the outage probability can be derived as
follows

pO (x) =
N
∏︂

n=1
pn(x)+

∫︂ ST

0
fP (z; x)d z. (3.9)

3.3.3 Impact of multipath blockage modeling

We proceed with the numerical evaluation of the outage probability in the case of
the multipath channel model. The BS height is equal to 10m, while the UE height is
1.5m. The height and diameter of blockers are equal to 1.7m and 0.5m, respectively.
The remaining parameters are given in Table I of Publication IV [35].

First, in Fig. 3.2 we compare our mathematical results with simulator-based re-
sults where an implementation of the 3GPP channel model is used. We observe a
good match between these results, demonstrating accuracy of the proposed approx-
imations for the channel model parameters.

Next, we compare: (i) the outage probability in the scenario when the multipath
channel model is in use; with (ii) the outage probability when only the LoS compo-
nent is modeled. For the latter, in the case of the LoS blockage by human bodies, we
subtract X dB from the received power [30]. We assume X = 20 dB as per measure-
ments in [108].

In Fig. 3.2 we present the outage probability models mentioned above as a func-
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Figure 3.2 Outage probability as a function of Tx-Rx distance.

tion of Tx-Rx distance. Our findings allow us to distinguish between the following
intervals described below as

• Less than 28 m. The outage probability for both scenarios is close to 0. The
reason for such behavior is that the user is located near its serving BS. There-
fore, for the scenario with the multipath channel model, chances for all the
clusters to be blocked simultaneously are low. Moreover, the power of the
clusters is high enough for communication. For the scenario with the LoS
only modeling, short distance between the UE and the BS also decreases the
chances of the LoS to be blocked. In case the LoS is blocked and 20 dB is sub-
tracted, the received power is still high enough to continue communication.

• From 28 m to 44 m. The outage probability for the scenario with the LoS-
only modeling is still close to 0. The reason is that the received power, even
in a blocked state, is still higher than the settled outage threshold. The out-
age probability for the scenario with the multipath channel model is slightly
higher than 0. That is because the blockage probability is not negligible any-
more, and the power of the reflected clusters becomes low. The difference
between the models for the given interval is about 1%.

• From 44 m to 170 m. This interval demonstrates the largest difference be-
tween the models. We note that the outage probability in the scenario with the
LoS only modeling is significantly higher than the one in the scenario with the
multipath channel model. That is explained by the high blockage probability
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of a single path as in the scenario with the LoS-only modeling. In contrast, ex-
tra multipath diversity in the multipath model brings more chances for at least
one non-blocked path to be available, and having the received power higher
than the outage threshold. The difference between the two models may reach
up to six times in the given interval.

• Over 170 m. The difference between the models still exists, but it is less than
1%. The reason is that the blockage probability is high enough for all the paths,
and the received power of the majority of clusters becomes smaller than the
threshold. Hence, all the available paths are very likely blocked, and those that
are not blocked still have the received power lower than needed for reliable data
exchange.

3.3.4 Key findings

Not only characteristics of the LoS but also other paths, i.e., reflected/scattered from
various objects in the environment, can impact the quality of a BS-UE link. Thereby,
in this section, we developed a multipath blockage model that considers a mmWave-
specific multipath propagation. Particularly, we provided the analytical approxima-
tion of the necessary 3GPP 3D channel model parameters (ZoA and power share of
clusters) and delivered the blockage and outage probabilities.

The proposed model complements the LoS-only blockage model presented in
Section 2.3. Compared to the latter model, the multipath blockage model enables a
more accurate estimation of the outage probability, especially for the medium BS-UE
separation distances (between 40 m and 100 m), which are typical for the upcoming
deployments of mmWave systems [14]. On the other side, taking more parame-
ters into account, the multipath blockage model is more complex than the LoS-only
model. Hence, depending on the desired accuracy/complexity trade-offs, one can
apply a more appropriate blockage model. We further utilize the multipath block-
age model when evaluating the impact of UAV assistance in mmWave networks in
Section 4.4.
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3.4 Multipath and LoS Blockage States Generation

The LoS and multipath blockage models introduced in this thesis may be employed
as a part of the mathematical frameworks for performance evaluation studies. The
blockage probability can also be employed in the system level simulators instead of
physical blockage modeling to decrease computational time.

There are two different approaches to identify the state of each link by using
blockage probability. The first approach is to generate a state for every link inde-
pendently from each other, applying the blockage probabilities derived earlier in
Chapters 2 and 3. The second approach to generate links states is to consider spatial
consistency between those. Although the second approach is more sophisticated
than the first one, it can be favorable for scenarios where the spatial consistency
among states is essential to obtain more accurate results (e.g., MIMO studies).

Following the ITU recommendations, 3GPP considered spatial and temporal
consistency as a part of the channel model for the frequencies up to 100 GHz [45].
Particularly, 3GPP small-scale blockage model A [1] described in Chapter 2 is ex-
tended to account for the spatial and temporal consistency among blockers posi-
tions. The model introduces an auto-correlation function to account for the spatial
and temporal consistency of blockers centers. It also considers a constant correlation
distance and time for every 3GPP deployment scenario.

There are several limitations identified in this 3GPP blockage model. First, the
blockers are generated at a constant distance from a user. In practice, it is more
realistic to consider random distance from blockers to the UE. Second, the model
aims to check every blocker in a scenario, whether it blocks every cluster or not.
Such an approach helps to implicitly account for correlation between links states,
but it also significantly increases simulation time, especially for high densities of
blockers and users. Finally, due to constant correlation distance, nearby users on a
border will face a lack of spatial consistency.

In order to overcome the limitations mentioned above, we aim to complement
the 3GPP channel model by providing a spatially-consistent blockage state genera-
tion algorithm as described in Subsection 3.4.1 and developed in Publication V [32].
For that purpose, we extend the blockage modeling framework to account for corre-
lation between link states. The proposed algorithm considers any density of blockers
and provides a spatially-consistent zone dependent on deployment parameters. Fi-
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nally, in Subsection 3.4.2, we conduct the numerical study to identify environments,
where spatial consistency among the link states plays an important role.

3.4.1 Spatially-consistent blockage state generation algorithm

Here, we describe the contributed algorithm that distributes link states (blocked/non-
blocked) among every Tx-Rx and Cluster-Rx pair. We first create a simple yet repre-
sentative scenario with one Tx (a mmWave BS) and K Rx (mmWave UEs) distributed
uniformly in a cell. The human body blockers act as potential blockers and form the
PPP with density λB . We assume a static environment (e.g., a snapshot), where all
the nodes and blockers do not change their location during one simulation round.
Once the nodes are distributed, we generate the 3GPP 3D channel model and multi-
path parameters for every Tx-Rx pair. These include powers of every cluster arriving
at the Rx side and their associated angles of arrival/departure. We note, that all pa-
rameters are summarized in Table I of Publication V [32].

The algorithm employs the mathematical spatially-consistent blockage model that
considers correlation between links states. The overall framework is described in
Publication V [32] and [93]. With all required parameters in hand, the algorithm
proceeds with a state distribution for every Tx-Rx and Cluster-Rx pair taking into
account spatial consistency between those links. We divide the algorithm into two
parts: (i) blocked/non-blocked state generation for the Tx-Rx LoS links; (ii) blocked/
non-blocked state generation for every cluster received by every Rx.

The first part of the algorithm starts with a blocked/non-blocked state assign-
ment for the first reference Tx-Rx pair, using the LoS non-blockage probability (de-
noted as PnB in Algorithm 1) derived following the approach in Section 2.3 of Chap-
ter 2. Next, with the help of conditional probabilities [93] (denoted as p10, p00 in
Algorithm 1), we derive a 2D spatially-consistent (SpCon) zone around the reference
Rx, the state of which was identified earlier. The SpCon zone denotes the space,
where any Rx falling within will have a spatially-consistent link state with the refer-
ence Rx.

Next, we find the states of all Rx inside the SpCon zone using the conditional
probabilities from [32], where states 0 and 1 represent the non-blocked and blocked
states, respectively. We continue to identify the SpCon zones and all Rx inside these
zones around every Rx with a calculated state. The procedure repeats itself until all
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Algorithm 1: Blocked/non-blocked LoS state generation
Result: Blocked/non-blocked LoS states for all Tx-Rx pairs

1 Generate uniformly distributed coordinates (xR,1, yR,1), . . . , (xR,K , yR,K ) of K Rx
2 Define the sets NU1 =∅ and NU2 =∅ for the coordinates of Rx w/o and w/

blocked/non-blocked state, respectively
3 Define the set NU,s =∅ for blocked/non-blocked states of every Rx
4 Save the coordinates of every Rx to the set NU1 = {(xR,1, yR,1), . . . , (xR,K , yR,K )}
5 while NU1 ̸=∅ do
6 Choose the coordinates of Rx k from the set NU1
7 Find the unconditional state qR

u,k = {0 or 1} of Rx k based on the non-blockage
probability, PnB following [32]

8 Save the state of Rx k to the set NU,s =NU,s ∪ qR
u,k

9 Remove the coordinates of Rx k from the set NU1
10 Add the coordinates of Rx k to the set NU2 =NU2 ∪ (xR,k , yR,k )
11 while NU2 ̸=∅ do
12 Choose the coordinates of Rx l from the set NU2
13 Calculate the SpCon zone for Rx l using the conditional probabilities, p10,

p00, and the non-blockage probability, PnB following [32]
14 Remove the coordinates of Rx l from NU2
15 Find any Rx from the set NU1 in the SpCon zone of Rx l
16 if Rx m from the set NU1 is in the SpCon zone then
17 Find the conditional state qR

c ,m = {0 or 1} of Rx m
18 Add the coordinates of Rx m to the set NU2 =NU2 ∪ (xR,m , yR,m)
19 Save the state of Rx m to the set NU,s =NU,s ∪ qR

c ,m
20 Remove the coordinates of Rx m from the set NU1

the LoS links are assigned with a state. The exact step-by-step procedure is given in
Algorithm 1 and further detailed in Publication V [32].

The second part of the algorithm refines the link states for all clusters of every
Rx. Since the first part of the algorithm already provides the LoS link states, we use
them as a reference state for cluster to Rx link states. Note that all the clusters have
different heights for their reflection points. Thus, no common 2D SpCon zone can
be derived, as in the previous part of the algorithm. Thereby, we take the reference
link state and calculate a state for every cluster arriving at this Rx using the con-
ditional probabilities from [32]. The developed algorithm distributes the states for
other clusters of every Rx following the procedure described above, until all the links
have their states. The exact step-by-step procedure is given in Publication V [32].

Concluding, the algorithm employs the blockage model that considers spatial
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consistency among links states to generate link states. Compared with the 3GPP
spatially-consistent blockage Model A, the proposed algorithm uniformly distributes
blockers over the area, considering the SpCon zone dependent on deployment pa-
rameters. This approach avoids physical blockage modeling and allows to change
density of blockers without increasing the time of a simulation.

3.4.2 Impact of spatial consistency among multipath and LoS blockage

states

We compare two approaches to generate blockage states, as described earlier in this
section. The first approach generates states without taking correlation among them
into account, while the second approach considers correlation among states. The
algorithm presented earlier in Subsection 3.4.1 covers the second approach and is
more time-consuming than the independent blockage state generation algorithm. To
motivate consideration of correlation among links states, we aim to identify deploy-
ment options, where the correlation plays a non-negligible role. For that purpose,
we compare the numerical results in the case of the spatially-consistent state against
independent state generation in terms of received power and its CDF.

We consider the Tx and Rx heights equal to 4m and 1.5m, respectively. The
blockers density is equal to 1 blocker per square meter. All the remaining parame-
ters are given in Table II of Publication V [32]. We consider a squared area, where
a left bottom point of the area is located at coordinates (xL,B , yL,B ) = (15,15), while
the Tx is located at the origin (0,0). First, we start with analyzing the effect of cor-
relation among the links states between the Tx and Rx distributed uniformly in a
squared area of 10x10 m2. Fig. 3.3a demonstrates a CDF of received power for four
cases: (i) no blockers generated; (ii) independent link blockage state generation – ev-
ery link is assigned with a state independently of each other; (iii) spatially-consistent
link blockage state generation – every link state is assigned with a state via the al-
gorithm described in Subsection 3.4.1; (iv) explicit blockage modeling via a physical
blockers drop – the geometrical cylinders are dropped into the area, and the blockage
is calculated based on the real occlusion by those.

One may note that the CDFs of received power depicted in Fig. 3.3a for the cases
(ii)-(iv) are similar to each other. This is primarily explained by the fact that the Sp-
Con zone is considerably small when compared to the overall deployment area (ap-
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Figure 3.3 Comparison of spatially-consistent vs. independent state generation in terms of received
power.

proximately 1 m wide and 10 m long). Hence, only a small fraction of Rx is located
close enough to each other to experiences a strong correlation among link states.

In contrast, Fig. 3.3b illustrates an extreme case, where all the Rx are deployed
within a small area of 1x1 m2. Here, the overwhelming majority of deployed Rx
will have link states correlated with each other. Hence, e.g., a blocked state for the
first deployed Rx will lead to blocked states for the links to most other Rx and vice
versa. Therefore, the overall CDF of the received power from spatially-consistent
and independent blockage state generation procedures becomes different, as all the
link states are randomized with independent state generation procedure.

3.4.3 Key findings

The multipath blockage model, developed in Section 3.3, does not take into account
the possible correlation between the blockage states of individual paths. This section
presents the algorithm that allows a generation of the blockage states for correspond-
ing links, considering their correlation. The correlation among links states may be
used for the development of practical communications algorithms. For instance, a
link state of one user can be a reference for scheduling other neighboring users if the
link quality is good or not scheduling if the link quality is low. This can help utilizing
the resources more efficiently and improving the overall network performance.

From the conducted numerical study, we observe that for the averaged metrics
and typical areas of interest, the correlation among the small-scale blockage states
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does not drastically impact the final results. However, when focusing on a particular
node and its neighbors, the difference between the spatially-consistent and indepen-
dent state generation procedures, in terms of the received power, may reach up to
22%. Given the complexity/accuracy tradeoff and the scenario of interest, one may
decide whether to account for the correlation among the small-scale blockage states
aiming for improved accuracy or disregard it for simplicity.
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4 SYSTEM-LEVEL ANALYSIS OF BLOCKAGE

MITIGATION TECHNIQUES

4.1 Research Motivation

Small-scale blockers, particularly human body blockers, are characterized by their
unpredicted mobility. The latter, together with the dimensions of these blockers -
significantly larger than a millimeter wavelength - may lead to frequent and abrupt
service interruptions, challenging the communication over mmWave links [41, 61].
That in turn calls for more advanced algorithms and techniques to support a reliable
mmWave connection, even under severe blockage conditions.

There are various solutions to reduce the effect of signal blockage, which are
actively discussed in the literature. In this chapter, we mainly focus on a multi-
connectivity [72] and additional aerial connectivity from UAVs [66]. The multi-
connectivity technique allows for switching to a back-up connection in a fast man-
ner if a primary link is blocked [39]. UAVs capable to carry BSs (unmanned aerial
vehicle base stations (UAV-BSs)), become attractive to the telecommunication sector
due to their unconstrained 3D mobility and ability to be deployed on demand [66].
Particularly, the possibility to adjust UAV 3D location significantly helps to improve
channel conditions between the UAV-BS and terrestrial users [19].

These enhancements do not come for granted, as they bring extra overheads as
well as increase complexity and costs, both capital and operational. Thereby, it is
essential to understand the best mode of operation to gain maximum benefits when
integrating these functionalities into real systems. Despite several simulation studies
on multi-connectivity [73, 87, 104] and UAV support [52, 65], there is still a lack of
suitable mathematical frameworks that can explore these blockage mitigation tech-
niques. In their turn, such mathematical frameworks allow for studying an extensive
range of deployment parameters and their influence on overall performance metrics.
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In this chapter, we propose a set of mathematical frameworks to evaluate the
performance of mmWave systems enhanced with blockage mitigation techniques.
For this purpose, the tools of stochastic geometry, probability theory, and queuing
theory are applied. We take into account a detailed 3GPP-based mmWave channel
model enhanced by the human body blockage model described in Chapter 2. The
frameworks are capable of considering additional back-up connections and the mo-
bility of UAV-BSs. This work helps to evaluate system performance, understand
main trade-offs and dependencies, as well as reveal deployment parameters that re-
duce the harmful effect of blockage.

In Section 4.2, we describe the overall methodology to incorporate the multi-
connectivity and associated performance improvements. Further, in Section 4.3, we
quantify the benefits of a UAV-BS height optimization. Finally, in Section 4.4, we
analyze the possible improvements brought by UAV-BSs serving users when flying
over a service area. The system-level analysis of mmWave networks enhanced with
the named blockage mitigation techniques allows to study the performance gains
enabled by those and identify the configurations where the introduced benefits are
the most profound.

4.2 Intra-RAT Multi-connectivity Support

One possible solution to deal with frequent and unpredicted mobility of human
body blockers is to provide a spatial diversity between multiple serving nodes by
employing the multi-connectivity technique. Among different multi-connectivity
strategies discussed in the literature [10], in this thesis we focus on intra-RAT multi-
connectivity [39]. Hence, in case of a sudden link blockage, a UE is switched to
another BS in proximity within the same RAT.

A number of works on multi-connectivity actively explore various practical re-
alizations and the performance evaluation of different schemes. The authors of [39]
proposed a scheme where a UE sends sounding reference signals (SRSs) on every
unit of time, in all directions, while potential serving nodes collects these SRSs and
construct a table with a suitable path. In case a primary link is blocked, a central
unit informs UE and a secondary cell in order to switch to a back-up link. Further,
in [76], the authors proposed different approaches to choose a suitable alternative
connection in case of a primary link blockage. It was demonstrated that even the
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simplest reference signal received power (RSRP)-based connection can provide no-
table improvements.

Despite its benefits, various multi-connectivity schemes are associated with extra
overheads in signaling with every additional link consuming extra energy at the UE
and occupying additional radio resources [87]. Therefore, it is important to identify
a sufficient number of BSs (degree of multi-connectivity) to support robust service
provision. For that purpose, we present a mathematical framework, developed in
Publication VI [30], that is able to evaluate a mean spectral efficiency and outage
probability in a scenario with link blockages and multi-connectivity as a function
of different deployment parameters. The resultant framework is then employed to
numerically demonstrate the required degree of multi-connectivity needed to reach
a given performance level.

4.2.1 Methodology and analysis

We continue with a description of our contributed framework specifically tailored
to analyze a system that utilizes multi-connectivity. The scenario of interest is illus-
trated in Fig. 4.1. We particularly concentrate on a cell edge user as the one having,
on average, challenging channel conditions. We thus imply there are no BSs closer
than RnL to the target UE. The height of the UE is hU , while the BSs of height hA

form the PPP with density λA. We consider two types of blockers: (i) large-scale
blockers (e.g., by buildings) and (ii) small-scale blockers (human bodies). The hu-
man body blockers form PPP with density λB . A human body is represented by a
cylinder with the height hB and the base radius of rB .

The UE selects N BSs that have the highest received signal strength and is orig-
inally connected to the best BS among those N , where N is termed as a degree of
multi-connectivity. In case of blockage, the UE can switch to the next best BS among
N BSs. In order not to infinitely increase overheads associated with monitoring back-
up connections we need to find the minimal value of N that provides sufficient per-
formance. We thus proceed with characterizing an outage probability and a mean
spectral efficiency as a function of the degree of multi-connectivity, N .

We distinguish between the following link states: (i) LoS non-blocked – neither
large-scale nor small-scale blockage; (ii) LoS blocked – a small-scale blockage of the
LoS; and (iii) nLoS – a large-scale blockage of the LoS. We model a LoS/nLoS state
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Figure 4.1 Multi-connectivity scenario for mathematical modeling.

using a LoS probability given in 3GPP TR 38.901 [1]. The small-scale blockage is
modeled employing our approach described in Chapter 2. In order to find an average
received power, we employ a path loss in LoS/nLoS conditions as per [1]. In case
of a small-scale blockage, we follow the field measurement results from [108] and
assume 20 dB of signal degradation.

Next, we divide the area around the UE into multiple zones as illustrated in
Fig. 4.1 and described below

• The distance between the UE and the BS is larger than RnL – the large-scale
blockage between the user and the BS in this zone causes an outage.

• The distance between the UE and the BS is larger than RB – the small-scale
blockage between the user and the BS in this zone causes an outage.

• The distance between the UE and the BS is larger than RO – the link between
UE and BS in this zone is in outage even in LoS non-blocked state.

The distances RnL, RB , RO depend on the system parameters and are calculated as
shown in Publication VI [30].

We start with the derivation of the outage probability qO,N . We consider the
outage on the BS to the UE link in case the signal strength is below a certain threshold
level. The zones mentioned above help us identify scenarios leading to the outage
between the UE and the BS: (i) no BSs in non-outage conditions in the ring (RnL,
RB ) and (ii) no BSs in non-outage conditions in the ring (RB , RO ).
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The outage in the scenario (i) appears when two mutually exclusive events hap-
pen: (a) the event A1 – no BSs in the ring (RnL, RB ) and (b) the event A1

2 – all BSs
in the ring (RnL, RB ) are in nLoS in case of the event A2

2 – there is at least one BS
in that ring. Meanwhile, the outage in the scenario (ii) appears when the following
mutually exclusive events happen: (a) the event B1 – no BSs in the ring (RB , RO ); (b)
the event B1

2 – all BSs in the ring (RB , RO ) are in nLoS in case of the event B2
2 – there

is at least one BS in that ring; (c) the event B1
3 – the nearest min(N , m) BSs in LoS

blocked state in case of the event B2
3 – only m BSs in LoS in the ring (RB , RO ) and

the event B3
3 – at least one BS in the ring.

We continue with the derivation of the probabilities of the events A1 and B1,
P r (A1) and P r (B1), which are derived via void probabilities and are equal to P r (A1) =
e−λAπ[R

2
B−R2

nL] and P r (B1) = e−λAπ[R
2
O−R2

B ]. Next, we continue with the probability
of the event A1

2, P r (A1
2). For that purpose we first thin the original PPP of BSs in

the ring (RnL, RB ) to leave only those in LoS conditions

Λ
RnL,B
L =

1
R2

B − R2
nL

∫︂ RB

RnL

2xλA pL(x)dx. (4.1)

We then employ the void probability to find no BSs in the ring (RnL, RB ) in LoS

P r (A1
2) = e−Λ

RnL,B
L π[R2

B−R2
nL]. (4.2)

The probability of the event B1
2 is found similarly.

Next, we derive the probability, P r (B3), of the event that there are m LoS BSs in
the ring (RB , RO ) and min(N , m) of BSs are blocked in case there is at least one BS
in that ring. The general equation for P r (B3) is given below as

P r (B3) =
h

1− p
RB ,O
0

i ∞
∑︂

m=1
p

RB ,O
m

min(N ,m)
∏︂

i=1

pO,i (m), (4.3)

where p
RB ,O
m is the probability of m BSs in LoS derived from the Poisson distribution

and pO,i (m) is the outage probability with the i -th nearest BS in (RB , RO ). The latter
is derived as

pO,i (m) =
∫︂ RO

RB

f
Y

RB ,O
i

(x; m)
�

1− pnB (x)
�

dx, i ≤ m, (4.4)
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where pnB (x) is the non-blockage probability derived following the approach in
Chapter 2 for the infinitesimal Rx and f

Y
RB ,O
i

is the pdf of distance to the i -th nearest

BS from m BSs given in Publication VI [30].

With the help of the derived intermediate probabilities for the events described
earlier, we can proceed with the final equation for the outage probability as

qO,N =
�

e−λAπ[R
2
B−R2

nL]+
�

1− e−λAπ[R
2
B−R2

nL]
�

e−Λ
RnL,B
L π[R2

B−R2
nL]

�

×

�

e−λAπ[R
2
O−R2

B ]+
�

1− e−λAπ[R
2
O−R2

B ]
�

×

�

e−Λ
RB ,O
L π[R2

O−R2
B ]+

∞
∑︂

m=1
p

RB ,O
m

min(N ,m)
∏︂

i=1

pO,i (m)
�

�

. (4.5)

The derivation of the mean spectral efficiency follows a similar methodology as
employed for the outage probability. Here, we give the final equation while all the
intermediate calculations can be found in Publication VI [30]. The mean spectral
efficiency is obtained as

E[CN ] =
�

1− p
RnL,O
0

�

∞
∑︂

k=1

pk

min(N ,k)
∑︂

j=1

v j ,k

∫︂ RO

RnL

fZ j
(x; k) log2

�

1+ SnB , j (x)
�

dx+

�

1− p
RnL,O
0

�

∞
∑︂

k=1

pk wRnL,B pB ,k×

min(N ,k)
∏︂

j=2

pB , j ,k

∫︂ RB

RnL

fZ1
(x; k) log2

�

1+ SB ,1(x)
�

dx, (4.6)

where SnB , j (x) is the signal-to-noise ratio (SNR) when UE is connected to the j -th
nearest BS in the LoS non-blocked state and SB ,1(x) is the SNR when UE is connected
to the first BS in the LoS blocked state in (RnL, RB ).

The first part of (4.6) corresponds to the event that the nearest LoS BSs with
index j out of min(N , k) is in a non-blocked state in case of having at least one BS
in the ring (RnL, RO ) and k BSs residing in LoS in that ring with probabilities v j ,k ,

pk , 1− p
RnL,O
0 , respectively. The second part of (4.6) is associated with the event of

having the closest BS in LoS residing in the ring (RnL, RB ) (with probability wRnL,B )
in case of seeing min(N , k) LoS BSs in a blocked state having k BSs in LoS and at
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least one BS in the ring (RnL, RO ).
To summarize, we delivered a mathematical framework that calculates the outage

probability and the mean spectral efficiency for the scenario with multi-connectivity
of degree N , large-scale and small-scale blockers. In the following subsection, we
apply this framework to numerically characterize the key metrics of interest as a
function of N and other deployment parameters.

4.2.2 Improvements introduced by multi-connectivity

The use of multi-connectivity enables more robust mmWave communications in
scenarios with frequent and unpredictable blockage dynamics. However, every addi-
tional mmWave connection requires extra resources and signaling messages from the
network. Therefore, one should carefully estimate an appropriate number of links to
satisfy user requirements. In this subsection, with the help of analysis demonstrated
above, we present the numerical results that show the mmWave system performance
in response to the varying degree of multi-connectivity (MC).

We start with the evaluation of the outage probability and the mean spectral effi-
ciency as a function of multiple deployment parameters and the degree of MC. The
heights of BS, UE, and blockers are equal to 10m, 1.5m, and 1.7m, respectively. The
density of BSs is set to λA = 10−4. We consider an operation over frequency equal
to 28GHz and 1GHz of bandwidth. The remaining parameters are given in Table I
of Publication VI [30].
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Figure 4.2 Outage probability as a function of blockers density.
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Figure 4.3 Spectral efficiency as a function of degree of MC.

Fig. 4.2 demonstrates behavior of the outage probability in response to the block-
ers density with different degrees of MC. Let us first study the effect of N . We notice
that the degree of MC larger than N = 4 does not bring any notable gains. The rea-
son is that every additional BS is located farther away from the UE, and thus has a
higher blockage probability and lower chances to be available for communication.
Our second important observation is that the highest relative gain (up to 72% for
considered set of parameters) is achieved with the degree of MC, N , equal to 2. Any
additional link brings significantly less gain, calling for careful selection of the total
links to maintain.

We now proceed exploring the impact of blockers density in Fig. 4.2. Here, we
observe that the gain from an extra degree of MC increases when increasing the den-
sity of blockers up to 0.4 bl/s for modeled set of parameters. Meanwhile, by increas-
ing the blockers density further, the gain from higher degree of MC decreases. The
later is caused by the fact that when the blockers density is large the distant BS has
a higher chance of being blocked and thus cannot bring sufficient gains. As an ex-
ample, the difference between N = 4 and N = 1 decreases from 95% down to only
11%, when the blockers density grows from 0.1 bl/m2 up to 1 bl/m2.

Further, in Fig. 4.3 we demonstrate the mean spectral efficiency as a function of
the degree of multi-connectivity. The behavior of the mean spectral efficiency as a
function of the degree of MC is similar to what was observed with the outage prob-
ability. When the density of blockers increases from 0.1 to 0.5 bl per m2 we notice
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that the gain from degree of MC N = 2 increases from 19% to 41%. Therefore, the
additional links bring more benefits for moderate rather than low blockers density.

4.2.3 Key findings

In this section, we evaluate the performance of the mmWave system enhanced with
multi-connectivity to mitigate blockage in urban deployments. Given that the block-
age probability is especially high at relatively large distances between a BS and a UE
(e.g., 100 m as discussed in Section 2.3), we particularly focus on a cell edge user
in this study. For such a setup, we deliver the mathematical framework that calcu-
lates the outage probability and the mean spectral efficiency for the scenario with
multi-connectivity of degree N , large-scale and small-scale blockers. The framework
is further employed in following studies focusing on the performance evaluation of
mmWave systems with multi-connectivity, including [37].

Following our numerical study, we observe that multi-connectivity is indeed a
powerful mechanism to mitigate the blockage effect and support the performance
and reliability of mmWave communications. We observe that even one additional
link (the degree of MC is N = 2) can decrease the outage probability by 1.6 times
when the blockers density is equal to 0.3 bl/m2. However, our study also indicates
that the careful choice of the degree of MC is of paramount importance. We note
that for the considered deployment parameters, the maximum degree of MC that
brings non-incremental performance gains is N = 4. The further increase of the
degree of MC does bring any substantial gain. These findings may be particularly
useful when adjusting the multi-connectivity feature for the prospective mmWave
communication systems.

4.3 Semi-Static UAV Support

With a rapid technology development, UAVs become in high demand in many dif-
ferent fields. Nowadays, UAVs with their unconstrained 3D mobility are actively
employed for video monitoring, surveillance, package delivery, entertainment, and
many other services [113]. Besides the named applications, a telecommunication
sector also considers on-demand BSs carried by UAVs, termed as UAV-BSs [43].

The concept of a UAV-BS implies that a UAV carries a BS thus delivering wireless
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communication to the desired location [80]. Such type of BS can provide several
advantages to both operators and end users. One of the advantages is the ability of
a UAV-BS to arrive at a location quickly in response to a spike in the service de-
mand [65]. For instance, an operator can support massive temporal events (e.g.,
marathons, fairs) with on-demand UAV-BSs and avoid over-provisioning when the
latter is not needed. Another scenario of interest, where a network can benefit from
a UAV-BS, is a back-up communication in disaster areas, where some of the BSs are
destroyed or temporary out of service. [112]. In such a case, a UAV-BS can establish
a backhaul connection to a distant BS and provide communication to ground users
in critical situations.

Despite numerous benefits, a UAV-BS has several limitations and challenges. One
challenge is related to a UAV-BS operating in nLoS visual conditions, calling for ap-
propriate route selection and/or a human operator involvement [18, 66]. Another
challenge is service time limitation due to UAV battery constraint [97]. On top
of those, there are also noise restrictions, weight limitations, and safety regulations
that challenge UAV-BS operation [98]. All of these require careful investigation of
the most efficient way to employ UAV-BSs to maximize possible gains.

A number of works actively studied UAV-BSs in various deployments and scenar-
ios. In [19], authors propose an algorithm that provides an optimal 3D location for
a UAV-BS to maximize performance metrics. Further, the paper [52] investigates
backhaul constraints while optimizing a 3D UAV-BS location. The paper demon-
strates the importance accounting for of backhaul connectivity as it significantly im-
pacts the final UAV-BS location. The work in [106] describes an algorithm to plan
a UAV-BS optimal paths from a charging place to a service area.

When referring to mmWave communications, a UAV-BS height optimization
plays a significant role, especially, under severe link blockage conditions. The higher
a UAV-BS is located, the lower blockage probability will be observed. However, in-
creasing 3D distance from a UAV to a UE will also increase the path loss. In the next
subsection we propose a UAV-BS height optimization to minimize the impact of the
blockage effect, as developed in Publication VII [28].
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4.3.1 Methodology and analysis

We consider the scenario illustrated in Fig. 4.4 for a contributed UAV-BS height op-
timization. We assume the area of interest with suddenly increased traffic demand.
An operator sends a mmWave-based UAV-BS to support static infrastructure. The
UAV-BS with height hD connects to a static infrastructure via a wireless backhaul
link.

UAV-BS

hR

UE

Terrestrial
Infrastructure

(xD, yD)* * 

h*

R

Blocker

UE

Figure 4.4 Scenario with semi-static UAV-BS for mathematical modeling.

The users of height hR are randomly distributed in the scenario of interest follow-
ing the PPP with density λ. Every user acts as a potential blocker to other users. We
imply that in the open square scenario a human body is the only source of blockage.
A human body is represented by a cylinder with height hB and base diameter gB .
Thus, we model two possible UE states: (i) LoS non-blocked and (ii) LoS blocked.
The human body blockage is modeled as described in Chapter 2 and the path loss
for the LoS is calculated following 3GPP TR 38.901 [1]. All the model parameters
are summarized in Table I of Publication VII [28].

The optimization algorithm described in [28] finds the optimal (x∗
D , y∗

D , h∗) – 2D
and 3D locations of the UAV. The primary purpose of the 2D optimization is to
maximize the number of served UEs with the appropriate SNR level. Further, the
UAV-BS height optimization is performed aiming to improve channel conditions
between the UAV-BS and the ground UEs. In the scope of this thesis, we provide the
mathematical height optimization while the rest of the algorithm with 2D and 3D
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placement is described in more detail in [28].

In order to deliver the optimal UAV height, we first need to provide the average
path loss given below as

La,i = PL(R, hD )LL,i +[1−PL(R, hD )]LN ,i , (4.7)

where LL,i and LN ,i are the pass losses in non-blocked and blocked states, respec-
tively.

The first term of (4.7) is referred to the path loss in non-blocked conditions with
non-blockage probability PL while the second term of (4.7) is referred to the blocked
LoS conditions with blockage probability 1−PL. The blockage probability is found
following the approach from Chapter 2. The optimization is provided for a cell edge
user, assuming that the users located closer than the UAV-BS cell radius, R, will face
better channel conditions on average.

We further note that the function La,i has a unique minimum point under a cer-
tain height termed as optimal height of UAV, h∗. The prove of the above follows a
similar approach as in Publication VII [28]. Thereby, to find an optimal height, we
need to find the minimum of La,i by taking the derivative of La,i and equating it to
0 as

−C
�

αL −αN
��

(h∗− hR)
2+R2�e

C
h∗−hR + 10C

�

βN −βL
�

log10

�

Æ

(h∗− hR)2+R2
�

+
10
�

βL −βN
��

h∗− hR
�3

ln(10)
e

C
h∗−hR + 10βN = 0, (4.8)

where the auxiliary variable C =−λgB R(hB − hR), αL, αN , βN , βL are the param-
eters of path loss models.

Finally, we numerically solve (4.8) due to its complex structure. The equation (4.8)
helps assessing the optimal UAV-BS height to minimize the blockage probability
and keep the path loss at its minimum value. Besides UAV height optimization, the
proposed approach can be applied to improve the performance of static mmWave
infrastructure.
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4.3.2 Improvements introduced by UAV-BS height optimization

We proceed with the numerical study to understand the effect of the UAV-BS optimal
height by employing the analysis presented in the previous subsection. Specifically,
we concentrate on the following metrics of interest: (i) the average path loss as a
function of the UAV-BS height and (ii) the optimal UAV-BS height as a function
of the blockers density. We assume a cell edge user that, on average, has the worst
channel conditions.

We consider the UE with height equal to 1.3m. The height and diameter of
blockers are equal to 1.7m and 0.5m, respectively. The UAV-BS is operating over
28GHz frequency band. The remaining parameters are given in Table II of Publica-
tion VII [28].

Fig. 4.5a illustrates the average path loss as a function of the UAV-BS height and
the cell radius, R. As discussed in the previous subsection, there is a single point
where the average path loss takes its minimum value. By increasing the UAV-BS
height up to the optimal value, the average path loss decreases due to the decreased
blockage probability. When increasing the UAV-BS height further, the average path
loss starts increasing. The reason for the latter behavior is that increased path loss,
caused by increased 3D distance, starts dominating the gains from decreased blockage
probability.
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Figure 4.5 Effect of UAV-BS height optimization.

As one may also notice from Fig. 4.5a, the optimal height increases with the cell
radius, R, growing. That is explained by increased blockage probability for larger 2D
distance between the UAV-BS and the cell-edge UE, thus requiring higher UAV-BS
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height to minimize the chances that the link is blocked. Similar behavior is observed
in Fig. 4.5b, which demonstrates the optimal UAV-BS height as a function of the
blockers density. By increasing the density of blockers, the blockage probability
increases, calling for a higher altitude to mitigate the effect of blockage.

4.3.3 Key findings

In contrast to a static infrastructure, the UAV-BS, with its flexible mobility, can ad-
just the height and location to improve the performance of the corresponding cells.
This section introduces the mathematical framework that allows achieving the min-
imum average path loss (thus a maximum average SNR) between a UAV-BS and a
UE. The developed framework can also be reused to optimize the height of a static
BS. We applied this approach in further studies evaluating the performance gains in-
troduced by UAV-based mmWave infrastructure, including but not limited to [36,
77].

Our numerical findings reveal that there are two contradicting trends when in-
creasing the height of a mmWave UAV-BS. On one side, the greater height results
in lower blockage probability. On the other side, the increased height leads to a
longer separation distance between the BS and the UE and thus increases the path
loss. Using the developed framework, we observe that the average path loss (when
both distance and blockage effects are taken into account) is a non-monotonic func-
tion of a BS height with a single minimum value. We also notice that the optimal
height of the UAV-BS grows with the density of blockers in the area. Particularity,
when increasing the radius of a UAV-BS mmWave cell from 35 m to 80 m, the UAV-
BS height should be increased from 15 m to 35 m to keep the average path loss at its
minimum value. The discovered findings, together with the developed framework,
may help to improve the performance of prospective mmWave networks.

4.4 Mobile UAVs Support

In the previous Section 4.3, we focused on a single UAV-BS that serves users from
an optimal location. Besides a semi-static UAV-BS operation, UAV-BSs could also
provide service while flying over the area without hovering at any particular loca-
tion [117]. On-the-fly connectivity can be employed in situations where e.g., UAV
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wing configuration does not allow hovering (e.g., fixed-wing UAVs) or when there
is a need to support mobile crowd (e.g., a marathon) [117]. Another possibility is to
employ third-party UAVs that fly over the area on their mission [98], while provid-
ing a relay capability in case of mutual agreement with an operator [57]. The latter
use of UAVs allows an operator to employ a fleet of UAVs without maintaining them
directly.

In all the described scenarios, such UAVs provide both some benefits together
with certain challenges. The benefits of UAV-BSs flying over the service area are,
e.g., increased spatial diversity and decreased energy consumption when comparing
to hovering UAVs [115]. Another benefit of mobile UAVs, particularly third-party
UAVs on a mission (e.g., video monitoring during a concert), is that with an appro-
priate agreement, an operator can have extra relay opportunities without investing
in a fleet of UAVs. At the same time, the dynamics of UAVs bring another level
of mobility in addition to users and blockers mobility, thus increasing the system
complexity. All these factors call for an appropriate system performance evaluation,
where the main features of UAVs (e.g., mobility) and mmWave communications
(e.g., blockage and multipath propagation) are considered. In-depth evaluation will
further help to unleash the gains brought by mobile UAV-BSs to prospective wireless
networks.

There are various papers that consider mobile UAVs available up to date. The pa-
per [56] aims to optimize a trajectory of UAV-BSs to maximize a system throughput,
taking into account the UAV speed, flight restriction areas, and the minimum re-
quired data rate. The work demonstrates an increase in the system throughput com-
pared to the baseline scheme, where no trajectory optimization is made. In [114], the
authors propose a convex optimization to maximize throughput for a mobile UAV-
BS and a UAV-BS hovering at particular locations. The numerical results demon-
strate that the scheme with mobile UAV provides a better performance compared to
the hovering UAV scheme. Similarly, papers [110, 116] demonstrate an optimization
of UAVs trajectory to maximize the performance taking the UAV energy constraint
into account.

Despite several works on mobile UAV-BSs support of ground users, an integrated
mathematical framework considering the main features of UAVs (e.g., mobility)
and mmWave communications (e.g., blockage and multipath propagation) has not
been delivered yet. Thereby, in the next Subsection 4.4.1, we propose a mathemati-
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cal framework, developed in Publication VIII [31], that accounts for the mmWave-
specific propagation, the small-scale link blockage, and the mobility of UAVs. Later,
in Subsection 4.4.2, we quantify the gains brought by the mobile mmWave UAV-BSs
under various deployment parameters.

4.4.1 Methodology and analysis

The scenario of interest, where mobile mmWave UAVs can assist ground UEs is
illustrated in Fig. 4.6. We consider a circular area of radius R. A static BS with height
hA is located at the circumference of the circle. The blockers in the scenario are
human bodies modeled as cylinders with height hB and base radius rB . The blockers
form the PPP with density λB .

We assume a massive event, where on-demand infrastructure is needed to comple-
ment a single static BS. In our example scenario, these are cell-on-wheels BSs (COW-
BSs), that are uniformly distributed in the open square scenario. The COW-BSs with
height hC form the PPP with density λC . Several UAV-BSs fly across the area of in-
terest with constant speed vD and at predefined height hD . The process of UAV-BSs
entering the area is assumed to be a Poisson in time with intensity λD . We assume
that every UAV-BS enters the area at a random point of the circumference and flies
through the center of this circle. Each of the UAV-BSs is capable of serving up to KD

COW-BSs simultaneously. All the model parameters are given in Table I of Publica-
tion VIII [31].

The wireless backhaul link between the COW-BSs and the static mmWave BS
located at the circumference of the area is provided via mmWave links. Due to the
low height of COW-BS, there is a possibility that the nodes might be blocked by
human bodies uniformly distributed in the area. In that case, we assume traffic is
relayed to the static mmWave BS via one of the mmWave UAV-BSs flying over the
area if at least one is available. For the mmWave channel model, we employ the
3GPP 3D channel model [1]with approximated parameters introduced in Chapter 3.
With the proposed framework, we calculate the following main metrics of interest:
(i) outage probability and (ii) mean spectral efficiency.

We start with a description of the outage probability derivation. We first note
that the COW-BS is always connected directly to the static BS if there is no outage.
The outage on the link between the COW-BS and the static BS may happen in case
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Figure 4.6 Scenario with mobile UAV-BSs for mathematical modeling.

the signal strength on the COW-BS to BS link is below a threshold together with one
of the following events: (i) the signal strength between COW-BS and UAV-BS is be-
low a certain threshold or (ii) there is no UAV-BS available to relay traffic. Therefore,
the outage probability is derived as

pO = pA,O

�

u0+
�

1− u0
��

u0,n +(1− u0,n)pD ,nav
�

�

, (4.9)

where pA,O and u0,n are the outage probability on the links between COW-BS and
BS/UAV-BS, u0 is the probability that no UAV-BS is currently traveling the area, and
pD ,nav is the probability that the UAV-BS is not available due to the limitation on
the total users it could serve simultaneously (KD ).

The outage probability on the links between COW-BS and BS/UAV-BS is derived
using the stochastic geometry tool and following the approach in Section 3.3. We
proceed with the outage probability for the link between the COW-BS and the sta-
tionary BS pA,O . Note that COW-BS operates not only with LoS link but also other
nLoS clusters in case of LoS blockage.

We first find the pdf of the received power as follows

fPA
(y) =

N
∑︂

k=1

⎡

⎣(1− pA,k )
k−1
∏︂

j=1

pA, j

⎤

⎦ fPA,k
(y), (4.10)
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where N is the number of clusters generated per node, pA,k is the blockage proba-
bility for LoS (following Section 2.3) and other clusters (following Section 3.3), and
fPA,k

is the pdf of received power of cluster k.

The outage probability, pA,O , on the link between COW-BS to the BS is then
derived as

pA,O = P r {PA(y)≤ N0TS}=
∫︂ N0TS

0
fPA
(y)d y, (4.11)

where N0 and TS are the Johnson-Nyquist noise and the SNR threshold, respectively.

We continue with the derivation of pD ,nav – the probability that no UAV-BS is
available at the moment the link between the COW-BS and the BS is in outage. To
derive pD ,nav , we first obtain the probability that at least one UAV-BS is available
pD ,av = P r {KD U −W > 0}, where KD is the number of simultaneously supported
users by a single UAV-BS, while U is the number of the UAV-BSs flying above the
area at the moment and in non-outage conditions, and W is the total number of
COW-BSs that currently experience outage for their direct links towards the sta-
tionary BS.

Next, we find the number of UAV-BSs in the service area and in non-outage condi-
tions U . Recall that the UAVs entering the zone are described via a Poisson process
in time. We further note that the UAVs entering and leaving the service area can
be described by the queuing model M/G/∞. From [67], we learn that the UAVs
in the service area at every instant of time form the PPP and the number of UAVs
follows a Poisson distribution with a parameter λDTD , where TD is the flight time
of the UAV-BS over the area. To find U , we thin out the resultant PPP with the
probability (1− pD ,O ) and get the following

un =
[λDTD (1− pD ,O )]

n

n!
e−λD TD (1−pD ,O ), n = 0,1, . . . , (4.12)

where pD ,O is the probability that a randomly selected UAV-BS is in outage.

The number of COW-BSs in outage conditions follows the Poisson distribution
with a parameter λC pA,OπR2. Therefore, the probability of the UAV-BS available
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for a service is found as

pD ,av = P r {KD U −W > 0}=
∞
∑︂

i=1

P r {Z = i}, (4.13)

where Z =KD U −W .

The probability mass function (pmf) of Z is then derived as

P r {Z = z}=
∞
∑︂

x=0

|KD x − 1|
KD

[λC pA,OπR2](KD x−z)

(KD x − z)!
×

e
�

−λC pA,OπR2−λD TD (1−pD ,O )
� [λDTD (1− pD ,O )]

x/KD

(x/KD )!
. (4.14)

We now can calculate the outage probability given in (4.9) by employing all the
intermediate probabilities for the events introduced earlier.

The framework for the mean spectral efficiency consists of similar elements as for
the outage probability with the detailed derivations found in Publication VIII [31].

4.4.2 Improvements introduced by mobile UAV-BSs

To demonstrate the benefits from the UAV-BSs flying over the serving area, we pro-
ceed with the numerical evaluation of the modeled system. Particularly, we assume
the height of BS is equal to 10m, while the height of UAV-BSs is 20m. The height
and diameter of blockers are equal to 1.7m and 0.4m, respectively. The rest of pa-
rameters are given in Table II of Publication VIII [31].

In Fig.4.7a, we present the outage probability as a function of the UAV-BSs inten-
sity, which is the number of the UAV-BSs entering the area per minute. This param-
eter directly affects the number of the UAV-BSs currently present in the area of inter-
est. Therefore, by increasing the UAV-BSs intensity, the outage probability decreases
as the chances increase that the COW-BS will find an alternative link in case of poor
signal quality with its primary BS. We further note that for the crowded scenario
(λB = 0.3) and UAV-BSs intensity equal to approximately 4 UAV-BSs per minute,
the outage probability could reach a similar value as in less crowded (λB = 0.1) sce-
narios with no UAV-BS support. Hence, the use of UAV-BSs allows to mitigate the
negative impacts of blockage.

Next, we study the impact of the UAV-BSs speed and the number of simultane-
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Figure 4.7 Outage probability and spectral efficiency as a function of UAV-BSs temporal intensity, UAV-
BSs speed, and number of supported users.

ously supported users KD on the mean spectral efficiency as shown in Fig. 4.7b. It is
observed that decrease of the UAV-BSs speed increases the spectral efficiency. This is
caused by the increased number of UAV-BSs present in the area of interest in case of
a lower UAV-BSs speed. Our numerical study demonstrates that by decreasing the
UAV-BSs speed from 30 km/h down to 15 km/h, one can increase the mean spectral
efficiency by two times.

We continue by analyzing the effect of the number of simultaneously supported
users by the UAV-BS, KD . For low UAV-BSs speed equal to 5 km/h, increasing the
number of KD from 1 to 5 increases the spectral efficiency by 22%. When increasing
the speed to 20 km/h the difference in the mean spectral efficiency between KD = 1
and KD = 5 reaches 69%. Such behavior demonstrates that when the density of
the UAV-BSs is high enough, there is no need to increase the radio part complexity
by increasing the number of simultaneously supported users. However, for a low
number of the UAV-BSs available, the advanced radios with more users supported
simultaneously (high KD ) may notably increase performance.

4.4.3 Key findings

In this section, we study the performance gains brought by mobile mmWave UAV-
BSs when assisting ground mmWave nodes. For this purpose, we develop the com-
prehensive mathematical framework that accounts for mmWave specific multipath
propagation, the small-scale link blockage, and the mobility of UAVs. This com-
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pound framework particularly reuses the LoS blockage model developed in Sec-
tion 2.3 and multipath blockage model described in Section 3.3.

Our numerical study indicates that the mobile UAV-BSs can notably increase the
performance of a static mmWave network. At the same time, we observe that the
gains strongly depend on the number of UAVs entering the area. For example, the
outage probability decreases from 5.5% down to 1% when the intensity of UAV-BSs
entering the service area increases from 2 per min up to 10 per min for the density of
blockers equal to 0.5 bl/m2. Another possible approach to improve the performance
(if applicable) is to send a dedicated request to UAVs entering the area to temporally
decrease their flight speed. This allows increasing the amount of time that UAVs
stay in the area to provide the additional connectivity. Hence, the study illustrates
that not only the strategically allocated semi-static UAV-BSs but also the fully mobile
UAV-BSs, can support mmWave users suffering from human body blockage.
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5 CONCLUSIONS AND FUTURE WORK

5.1 Summary

A non-negligible impact of blockage on mmWave communications demands to in-
clude these effects in performance evaluation methodologies used for system-level
analysis. Such analysis can further strengthen an understanding of mmWave com-
munication system behavior in various deployments and conditions. For that pur-
pose, in this thesis, we delivered the mathematical methodology to characterize the
possible blockage of mmWave links by different objects and the impact of this effect
on system performance. Moreover, we analyzed the mmWave system with various
blockage mitigation techniques and demonstrated the possible gains of those in dif-
ferent deployment configurations.

First, in Chapter 2, we considered the LoS blockage by human bodies (small-scale
blockers) and buildings (large-scale blockers). As a result, we calculated the block-
age probabilities taking into account the size of Rx, the density of blockers (human
bodies or buildings), the height of BS, UE, and blockers. To better understand the
dynamics of the human body blockage process, we then presented the model to de-
liver the characteristics of uninterrupted time in blocked and non-blocked states in
the scenario with mobile small-scale blockers.

In Chapter 3, we extended the LoS blockage model from Chapter 2 to the mul-
tipath blockage model, thus accounting for the multipath nature of mmWave prop-
agation. For that purpose, we provided the approximation of the 3GPP mmWave
channel model parameters and calculated the multipath blockage and outage prob-
abilities. We also delivered the algorithm that distributes the blocked/non-blocked
states across all Tx-Rx and Cluster-Rx links, taking into account the correlation be-
tween the links states.

Finally, in Chapter 4, we studied possible mechanisms to mitigate the blockage
effect. We particularly developed mathematical frameworks capable of evaluating
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the performance of mmWave networks enhanced with multi-connectivity and UAV
relaying. First, we presented the framework capable of analyzing the benefits from
intra-RAT multi-connectivity. Second, we considered possible assistance from the
mmWave UAV-BSs and delivered the framework capable of accounting for the UAVs
mobility, blockage, and mmWave multipath propagation.

The models and frameworks developed in this thesis enable an evaluation of
mmWave system performance in various realistic deployment configurations. This
study helps to quantify the impact of the blockage effect on the performance of
mmWave systems. Moreover, it provides an assessment of the performance gains
introduced by individual techniques to mitigate the blockage.

The main observations from our numerical study are summarized as follows:

• The blockage probability for mmWave link highly depends on the geometry
of the scenario. Three main parameters play a key role here: the separation
distance between a UE and a BS, difference in the nodes’ heights, and the den-
sity of blockers. We identify that the blockage effect is especially profound
for cell-edge users. Hence, network densification is identified as one possible
solution to decrease the blockage probability in mmWave networks.

• Increasing the height of a BS can also decrease the blockage probability, but
will simultaneously increase the separation distance between the BS and the
target UE. Therefore, one needs to carefully choose the appropriate BS height
to keep the average path loss to its minimal value. A UAV-BS with flexible
mobility can be further exploited, as they can adapt its height dynamically,
thus improving channel quality for connected users.

• The human body blockage is a highly dynamic process with two major states,
blocked and non-blocked, with notably different channel conditions. The
time spent in a blocked state can be as high as several hundreds of ms, leading
to the potential loss of tens of NR frames. The multi-connectivity technique
is a promising solution to maintain a reliable yet high data rate connection
between a UE and network infrastructure in case of frequent blockage events.

• The choice of the degree of MC needs to be made carefully, as for higher
degrees MC the overheads and the complexity of the underlying protocols
also increase. Notably, it is shown that substantial performance gains can be
achieved with the degree of MC equal to two, whilst the degree of MC higher
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than four provides only incremental gains.

• Non-negligible benefits can be provided to a static mmWave infrastructure by
mobile UAVs. With the intensity of UAV-BSs entering the service area equal to
three per minute, the outage probability can be decreased two fold compared
to the scenario with no UAV-BS support. Hence, the UAV-based infrastruc-
ture can be a promising addition to static mmWave networks.

5.2 Future Work

The work in this thesis highlights possible research directions for future study. The
methodology developed here can be further employed to investigate other deploy-
ments and potential enhancements to mitigate the blockage effect in mmWave net-
works. Below, we discuss some areas of interest that could be explored.

First, in this thesis, we considered multi-connectivity as one of the options to
maintain an uninterrupted connection in the case of a sudden blockage event. A
rapid switch between available links can indeed provide better performance. How-
ever, in practical deployments, the trigger to switch the link activates when a block-
age event has already occurred. In that case, the link will operate with diminished
signal strength for a certain period of time. For particular applications, e.g., virtual
and augmented reality, such a situation can significantly decrease session quality and
the associated user experience. Therefore, one possible direction could be to create
a method for detecting an upcoming blockage event, leading to a switch to the alter-
native link in a proactive manner. This will maintain the quality of the link to the
desired level during any given session.

The second research direction is related to providing native support of flying
UAVs with mmWave networks. It is expected that network operators will soon have
to accommodate a new type of user known as a UAV. With an increased number of
UAVs, the associated traffic will increase significantly, calling for more bandwidth to
accommodate them. The mmWave networks can help provide the necessary band-
width. However, the narrow beam mmWave communication can become a chal-
lenge for the UAV support due to its 3D mobility. New beam selection mechanisms,
3D beamforming, and many other enhancements are expected to reliably integrate
the UAVs into the mmWave network.

Lastly, scheduling algorithms can further be improved to better account for the
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inherent features of mmWave communications. Particularly, it could be essential to
exploit additional information when distributing available resources within a highly
dynamic environment and fragile mmWave links. For example, with the help of
conditional blockage probabilities, one can take the spatial correlation between links
states into account. Particularly, when a certain user is blocked, it is likely that the
neighboring user is blocked as well. Considering the correlation between links states
as extra information to adjust the scheduling decision may help in further improving
the performance of mmWave networks.
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Abstract—The presence of a line-of-sight (LoS) component is
of particular importance for extremely high frequency (EHF)
systems, including millimeter-wave (mmWave) communications
technology, as it helps differentiate between acceptable and poor
wireless links. While these emerging systems are expected to be
deployed outdoors as a part of the fifth-generation (5G) mobile
technology, thus delivering high-rate connectivity in crowded ur-
ban environments, the presence of obstacles such as humans will
become a crucial factor that affects the existence of a LoS link. In
this paper, we propose a novel model for analyzing human-body
blockage in cellular mmWave systems. We model the human body
locations as three-dimensional cylinders with random positions,
height, and radius as well as apply the renewal process theory
to characterize metrics related to receiver blockage. Finally,
we demonstrate how our model can be employed to optimize
the transmitter location across various deployment parameters
and confirm our findings with detailed mmWave ray-launching
simulations.

Index Terms—Fifth-generation networks; cellular mmWave
communications; urban environment; human-body blockage.

I. INTRODUCTION AND MOTIVATION

The use of extremely high frequency (EHF) band, also
known as millimeter-wave (mmWave), as a part of fifth-
generation (5G) ecosystem brings along its unique specifics
to the wireless system designers. Given that electromagnetic
waves cannot travel around obstacles with the dimensions
exceeding their wavelength, numerous objects in the wireless
channel act as natural blockers. According to the recent
empirical and theoretical studies, even at the frequencies that
are much lower than the EHF band, around 60%-85% of
useful power comes from the line-of-sight (LoS) propagation
path [1]. Further, employing directional antennas for future
mmWave cellular systems has been demonstrated to provide
reliable coverage on the order of up to tens of meters, thus
making them suitable for extremely high-rate mobile user
access in outdoor scenarios including streets, intersections,
and squares [2]. In these crowded urban environments, human
bodies around the receiver could become the major factor to
impact the blockage of the LoS component.

In this paper, we propose a new analytical model for
characterizing LoS mmWave communications in the presence
of human-body blockage. The proposed model represents
humans as cylinders with arbitrarily distributed heights and
bases of arbitrary radii, whose centers follow the Matern
hard-core process in two dimensions. Coupling the tools from
stochastic geometry and renewal processes, we estimate the

total blockage probability of the receiver having a certain
length and located at a particular distance from the transmit-
ter. We also consider infinitesimal (that is, extremely small)
receiver – approximating it by a point – and show that the
corresponding modeling complexity can be reduced signifi-
cantly. We also calibrate our proposed mathematical model
with detailed mmWave ray-launching simulations and confirm
that the former allows to accurately predict the presence of a
LoS path. Finally, we demonstrate how the model at hand can
be utilized by the system designers to decide upon the best
possible placement of the mmWave transmitter in crowded
outdoor environments.

The major claims of our paper are: (i) we use the ray-
launching simulator to show a considerable gap in LoS and
non-LoS path loss; (ii) our proposed model captures all the
key characteristics of the considered environment, including
the random height and width of blockers, different heights of
transmitter (Tx) and receiver (Rx), as well as variable distance
between them. The rest of this text is organized as follows.
The overview of the related work is provided in Section II. We
introduce our system model and the corresponding analytical
framework in Section III. This proposed model is calibrated
with the ray-launching simulations in Section IV. We also
discuss how to optimize the mmWave Tx placements in the
same section. Conclusions and future work are highlighted in
the last section.

II. BACKGROUND AND RELATED WORK

The aspect of the LoS blockage has been addressed in a
number of previous papers. These studies, however, vary in
the range of environmental characteristics taken into account
and the applicability of the respective scenarios. In particular,
the early models were developed for microwave systems. In
[3], the authors addressed the problem of LoS blockage in
conventional cellular networks, where the buildings block the
direct propagation path. This model included dimensions of
buildings and the distance between the Tx and Rx. The authors
continued their efforts in [4], where their proposed model
was extended to take into account the height of the Tx and
Rx. The receiver size was assumed to be infinitesimally-small
and the blockers (those high enough to block LoS) were dis-
tributed uniformly, without considering alternative deployment
patterns. The results of [4] were then used by [5] to derive
the probability of blockage for mmWave wearable networks.
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Fig. 1. The considered scenario for analytical modeling.

This model included the distance between the Tx and Rx,
as well as the dimensions of a human body, where wearable
devices have been deployed. Further, the statistical 3GPP
urban outdoor micro-cellular model [6] has been developed
to evaluate the probability of LoS as a function of distance
only, thus providing a first-order approximation for the LoS
analysis. The comparison between different LoS models for
cellular systems, all having different levels of detail, has been
completed in [7].

Compared to microwave wireless systems, cellular mmWave
communications are expected to operate over much shorter
distances in crowded urban environments [2]. Since the height
of the Tx would then need to be much lower, humans of
various heights are becoming to act as blockers. Hence, in
addition to the heights of the Rx and Tx, the distance between
them, and the spatial dimensions of blocking objects, we also
have to take into account the random heights of humans.
Further, due to much smaller distances between the Tx and Rx,
and accounting for the possible antenna arrays at the Rx [2],
the linear dimensions of the receiver may be non-negligible in
practice. In a number of studies [8], an empirically-estimated
mmWave LoS probability has been assumed [2]. This empir-
ical LoS probability is a function of the Tx-Rx distance only
and does not take into account the aforementioned important
system parameters.

In contrast to past studies, this paper takes into account the
key parameters of interest that affect the resulting throughput
of the mmWave cellular system. Particularly, the heights of
the Tx and Rx, the distance between them, the random width
and the height of blockers as well as human user density
across the landscape are taken into account. Further, our
proposed model allows for a number of useful extensions as
well as simplifications, including those that lead to closed-
form expressions for the LoS probability.

III. PROPOSED ANALYTICAL FRAMEWORK

A. Spatial model

Consider the scenario illustrated in Fig. 1(a, b). There is a
Tx located at a certain height hT above the ground and a Rx
located at the height hR. The base of the Rx is at the distance
r from the base of the Tx. The potential blockers, humans,
are distributed over the landscape. We model the blockers as
cylinders [9] with a certain height, H , and the base diameter of

D. Both D andH are random variables (RVs). It is known that
the distribution of the height for men and women is Normal
with the mean and the standard deviation provided in [10].
Following [10], the mixture of users is closely approximated
by the Normal distribution H ∼ N(µH , σH). Generally, any
distribution could be used to provide a result based on the
current methodology. The RV D is assumed to be uniformly-
distributed between dmin and dmax. The centers of cylinder
bases follow a Matern hard-core point process on the plane
with the intensity λI . The length of the Rx is assumed to be
lm. In summary, the main parameters and the description of
employed notation are given in Table I. In what follows, our
main metric of interest is the probability of blockage for both
the non-infinitesimal and infinitesimal receiver.

B. Blockage probability

To represent the centers of blockers on the landscape, we
have employed the Matern hard-core process ensuring that the
locations of blockers do not overlap. Using the results of [11],
the Matern process can be replaced by the equivalent Poisson
process for a wide range of intensities λI . Further, observe
that for different values of hT , hR, and the distribution of the
blocker heights H , not all the blockers affect the LoS between
the Tx and Rx. The number of blockers should increase as the
x-coordinate grows from O to r, as in Fig. 1(c). The spatially-
varying intensity of centers of blockers along the radial lines
that may potentially affect the LoS between the Tx and Rx is
given by

λ(x) = λIg(x), g(x) = Pr{H > hm(x)}x ∈ (0, r), (1)

where hm(x) is a function describing the distance between the
line AB and OX at x.

Note that hm(x) is linear, hm(x) = ax+ b, where a is the
tangent of hm(x) with respect to the positive direction of OX ,
while b is the height of a function at x = 0. We thus have

hm(x) = −hT − hR

r
x+ hT , x ∈ (0, r). (2)

The probability g(x) = Pr{H > hm(x)} for each x is
a complementary cumulative distribution function (CCDF) of
H . Since H ∼ N(µH , σH), we have

g(x) = 1− 1

2

[
1 + erf

(
hm(x)− µH

σH

√
2

)]
, (3)



where erf(·) is the error function.
To determine the effective density of blockers at any sepa-

ration distance x, the original homogeneous Poisson process
is thinned with the probability g(x). The resulting process
is non-homogeneous, but still Poisson, with spatially-varying
intensity along the radial lines, λ(x) [12]. The intensity λ(x)
is minimal at x = 0 and increases non-linearly as x grows.
Consider now the projection of the blocker centers along the
radial lines, represented by points on the circumference of the
circle with radius r and center at Tx, see Fig. 3. It is easy
to prove that the process of projections on the circumference
is homogeneous Poisson, as it has a Poisson distribution of
projections in any bounded arc that depends only on the length
of an arc and satisfies the independence property of the Poisson
process.

To establish the intensity of blocker centers at the circumfer-
ence, consider the arc with length larc as illustrated in Fig. 3.
The mean number of points, E[NB ], in the sector ATxB is

E[NB ] =

∫ r

0

λ(x)x
larc
r

dx, (4)

leading to the intensity of blockers at the circumference as

µ =
1

larc

∫ r

0

λ(x)x
larc
r

dx =
λI

r

∫ r

0

xg(x)dx, (5)

where g(x) is given in (3). Although this integral cannot be
expressed in elementary functions due to the error function in
g(x), it can be easily computed numerically with any required
accuracy.

Fig. 2. The top view of the scenario of interest.

To this end, we have characterized the point process of the
centers of blockers. Further, the distribution of a ”shadow”
created by an individual blocker at circumference is given.
Consider Fig. 2, which shows the top view of our scenario.
Observe that for r >> D, where r is the distance from the
base of Tx to Rx, we could replace the arc ARxB by a chord
AFB. From the geometric properties, we arrive at W , that is,
a RV denoting the length of a shadow as

W =
rD

L
, (6)

where L and D are the RVs denoting the distance from the
Tx to a blocker and the width of a blocker, respectively.
Recalling the principles of linear transformation of RVs [13],
the numerator of (6) reads as

frD(x) =
1

r(dmax − dmin)
, x ∈ (rdmin, rdmax). (7)

Consider now the denominator of (6). Recall that the
intensity of blockers increases along the radial lines according

to (1). Therefore, the probability to have a blocker increases as
we move from x = 0 to x = r. The density to have a blocker
at x conditioned on the event that there is a blocker shall
increase proportionally to g(x), as obtained in (3), and the
only aspect we have to determine calculating the probability
density function (pdf) of L is the normalization constant, such
that the area under fL(x) over x ∈ (0, r) is exactly 1. It can
be found as

N =

∫ r

0

(
1− 1

2

[
1 + erf

(
hm(x)− µH

σH

√
2

)])
dx, (8)

and normalized to obtain

fL(x) =
g(x)

N
, x ∈ (0, r). (9)

Now, to determine the pdf of the shadow, we have to find
the ratio between the RV rD and L, whose densities are given
by (7) and (9). Since these RVs are independent, the ratio is
formally offered by [13]

fW (y) =





∫ r

rdmin
y

xfrD(yx)fL(x)dx, for

dmin < y < dmax∫ rdmax
y

rdmin
y

xfrD(yx)fL(x)dx, for

y > dmax.

(10)

The integral (10) cannot be solved in elementary functions
due to the density of L in (9). However, one can compute the
distribution of W numerically.

C. Non-infinitesimal receiver

Consider now the Rx of length l. In practice, it corresponds
to when more than a single antenna is used at the user
equipment and/or the distance between the bases of the Tx
and Rx, r, is relatively small. In this case, we have to take
into account the length of the Rx explicitly and the task at
hand reduces to expressing the probability that an arc of a
constant non-zero width l is fully covered by arcs of random
length, whose center points follow a Poisson process with the
intensity µ as found in (4) and with the length pdf fW (x)
provided by (10).

Consider the projections of blockers on the circumference
as illustrated in Fig. 3. The widths of those projections
are independent and identically distributed (i.i.d) RVs with
the CDF FW (x) =

∫ x

−∞ fW (x)dx and the expected value
E[W ] =

∫∞
−∞ xfW (x)dx, where fW (x) is obtained from (10).

It is easy to show that not only the projections of the centers
of blockers, but also their left- and right-hand side projections,
form a stationary Poisson process on the line with the intensity
µ. The superposed process of all projections forms a renewal
process with the alternating blocked and unblocked parts. An
arbitrary point on the line is considered blocked, if it belongs
to one of the blocked intervals. The question of blocking is
then formulated as the probability of blocking this interval by



Fig. 3. Projections of blocker widths on the circumference.

the renewal process. An arc of length l is said to be blocked,
if all the points of this arc are blocked.

Let ωj ηj , j = 1, 2, . . . , denote the length of the unblocked
and blocked intervals respectively, and define ξj = ωj + ηj .
Points 0, ξ1, ξ1+ξ2, and ξ1+ξ2+ξ3 are the renewal moments
that form the renewal process. The density of this process is
[14], [15]

f(x) = µFW (x) exp

(
−µ

∫ l

0

[1− FW (y)]dy

)
. (11)

Let fξ(t) be the density function of ξj , j = 1, 2, . . .
Functions fξ(x) and f(x) are related to each other via the
renewal equation as [14], [15]

f(x) = fξ(x) +

∫ l

0

fξ(x− y)f(y)dy. (12)

The length of the unblocked part ωj follows the exponential
distribution with the parameter µ, Fω(x) = 1 − e−µx, with
the mean E[ω] = 1/µ [15]. This can be verified by observing
that the left-hand sides of the individual shadows follow a
Poisson process with the intensity µ. Hence, the distance
from the end of the blocked part, considered as an arbitrary
point, to the starting point of the next blocked interval is
distributed exponentially. Let Fη(x) and Fξ(x) be the CDFs
of the length of the blocked intervals ηj , j = 1, 2, . . . , and
the joint blocked/unblocked intervals, ξj , respectively, with
the means E[η] and E[ξ]. Further, let F ∗

η (s) and F ∗
ξ (s) be

the corresponding Laplace-Stieltjes transforms (LSTs). For the
joint interval ξj , we have

F ∗
ξ (s) = F ∗

η (s)F
∗
ω(s) = µ

F ∗
η (s)

µ+ s
, (13)

which can be solved for Fη(x) in the RV domain as

Fη(x) = Fξ(x) +
fξ(x)

µ
. (14)

Observe that the renewal density f(x) is f(x) = 1/E[ξ],
when l → ∞. From (11), we see that it is also equal to
f(x) = µ exp (−µE[W ]), where E[W ] is the mean length

of the blocked intervals. Consequently,

E[ξ] =
1

µ
exp(µE[W ]). (15)

Then, E[η] can be established as

E[η] =

∫ ∞

0

[1− Fη(x)]dx =

=

∫ ∞

0

(
1− Fξ(x)−

fξ(x)

µ

)
dx = E[ξ]− 1

µ
. (16)

Substituting (15) into (16), we arrive at

E[η] =
1

µ
[exp(µE[W ])− 1]. (17)

The probabilities that a random point on the line will be on the
unblocked and blocked intervals, respectively, are the ratios of
the corresponding parts, E[ω]/E[ξ] and E[η]/E[ξ].

If a point is on the blocked part, then the distribution
function of the length of the interval from this point to the
right end of the blocked interval is

F̃η(x) =
1

E[η]

∫ l

0

[1− Fη(y)]dy. (18)

Knowing the probability of blockage for a point, we can
now obtain the probability of total blockage of the Rx of length
l. Let P (l) be the conditional probability that the interval (0, l)
is not blocked completely, meaning that the blocked interval
containing the left-hand side of the Rx will end before l. The
probability of the total blockage of the interval of length l,
given that the left-hand side of this interval is blocked, can be
found by using (14), (17), and (18) as

1− F̃η(x) =
1

E[η]

∫ ∞

l

[1− Fη(y)]dy =

=
µ

exp(µE[W ])− 1

∫ ∞

l

(
1− Fξ(y)−

1

µ
fξ(y)

)
dy, (19)

and the probability that the left-hand side is blocked is
E[η]/E[ξ].

Finally, the probability of the total blockage follows from
(19) as

PB = 1− P (l) = µ exp(−µE[W ])×

×
∫ ∞

l

(
1− Fξ(y)−

1

µ
fξ(y)

)
dy. (20)

In the special case when the length of the receiver is less
than the minimum diameter of the blocker the probability of
the total blockage is given by

PB = µ exp(−µE[W ])[1 + µl]. (21)



TABLE I
DESCRIPTION OF NOTATION AND PARAMETERS

Notation Description
hT Height of Tx
hR Height of Rx
r Distance between the bases of Tx and Rx
l Length of Rx
H ∼ N(µH , σH) Normally-distributed height of blockers
D ∼ U(dmin, dmax) Uniformly-distributed width of blockers
λI Initial intensity of blockers
λ(x) Spatially-varying intensity of centers of

blockers along the radial line
g(x), FH(y) CCDF, CDF of height of blockers
µ Intensity of blockers at the circumference
W Length of a blocker’s shadow
fL(x) pdf of a distance between Tx and a blocker
fW (y), FW (y), E[W ] pdf, CDF, and mean of a blocker’s shadow
ωj , Fω(x), E[ω] Length, CDF, and mean of unblocked inter-

vals
ηj , Fη(x), E[η] Length, CDF, and mean of blocked intervals
ξj , Fξ(x), E[ξ] Length, CDF, and mean of ωj + ηj
f(x) pdf of renewal process
fξ(x) pdf of ξj , j = 1, 2 . . .
fR(y), FR(y) pdf, CDF of blocker’s radius

D. Infinitesimal receiver

In many important cases, the size of the Rx can be as-
sumed to be infinitesimally-small compared to other linear
dimensions of objects. Equipped with this assumption, we
provide a simpler method for calculating the LoS and blockage
probabilities for a point receiver, when the width of the Rx is
not considered. To this end, consider a rectangularly-shaped
area as illustrated in Fig. 4. Since this area is supposed to
fit all the potential LoS blockers, its width is bounded by
dmax, that is, the maximum width of blockers. The length
of the area is r. Note that the coordinates of each particular
center are uniformly-distributed over (0, dmax) and (0, r). To
determine the probability of LoS blockage, we have to estimate
the probability that at least one blocker, which is falling into
the area of interest, blocks the LoS path.

Fig. 4. Top view of the blocking area.

Let the events Ai define the probability of having i block-
ers in the area of interest. Since each blocker has its own
dimensions, for each of those we define the following events:
(i) event B0 that the radius of a blocker’s base is not large
enough to cross the LoS between the Tx and Rx and (ii) event
B1, which is complementary to event B0. To calculate the
probabilities of these events, we integrate over the blocker’s y
coordinate as

Pr{B0} =

∫ rmax

−rmax

fR(y)FR (|y|) dy, (22)

and Pr{B1} = 1−Pr{B0}, where fR(y) and FR(y) are the

pdf and CDF of the blocker’s radius, respectively. The radius
of a blocker is uniformly-distributed in (dmin/2, dmax/2).

Recall that the radius and height of a blocker are indepen-
dent. Define the following events: (i) event C0 that the blocker
is not high enough to block the LoS and (ii) event C1, which is
complementary to event C0. The probabilities of these events
are

Pr{C0} =

∫ r

0

fR(x)FH

(
hT r − (hT − hR)x

r

)
dx, (23)

and Pr{C1} = 1 − Pr{C0}, where fR(x) is the pdf of a
uniform distribution from 0 to r, and FH(y) is the CDF of
the blocker’s height.

Having defined all the events of interest, we can proceed
with obtaining the probability of LoS. It includes the proba-
bility of the event A0, when there are no blockers in the area.
Using the law of total probability, we establish

PLoS = Pr{A0}+

+

∞∑

i=1

Pr{Ai}
∞∏

j=1

(Pr{B0}+ Pr{B1|C0}) . (24)

Since the height of a blocker is assumed to be independent
from its width, we have Pr{B1|C0} = Pr{B1}Pr{C0}.
Substituting these parameters into (24), we arrive at

PLoS = p0 +

∞∑

i=1

pi

∞∏

j=1

(∫ rmax

−rmax

fR(y)FR(|y|)dy+

+

∫ rmax

−rmax

∫ r

0

fR(y)(1− FR(|y|))fR(x)×

× FH

(
hT − (hT − hR)x

r

))
dydx. (25)

where pi, i = 0, 1, . . . are the Poisson probabilities.

IV. NUMERICAL RESULTS AND DISCUSSION

A. Calibration with simulations

For the verification of our analytical model, we employed
our own mmWave ray-launching simulator, which approxi-
mates the propagation of electromagnetic waves with geo-
metric lines. In addition, the tool accounts for detailed re-
flection effects, which accurately mimic mmWave diffraction,
refraction, and scattering. Based on the information about the
ray delays, phase, and received power, any relevant statistical
data could be obtained. As a result, our industry-grade ray-
launching tool makes it possible to recreate the needed urban
environment and obtain results, which are reasonably close to
real measurements. A simplified example of a ray-launching
based simulation run without scattering and diffraction effects
(for simplicity of exposition) is shown in Fig. 5(a).

We continue by calibrating the model with the ray-launching
tool based on the path loss comparison. In Fig. 5(b), the
results of the simulated LoS and non-LoS path loss are given
by red and blue dots, respectively, while the average ray-
launching path loss is plotted in green. Finally, the results



(a) Scenario modeled with ray-launching (b) Path loss calibration with ray-launching
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Fig. 5. Summary of calibration results.

of our analytical modeling are presented in a form of average
path loss calculated as

Le = PLoSLLoS + (1− PLoS)LnLoS , (26)

where PLoS is the LoS probability computed according to
(25), LLoS and LnLoS are the path loss for LoS and non-
LoS components, which have been parameterized according
to the real measurements in [2]. The comparison between
the average ray-launching and the average analytical path loss
indicates a marginal difference. However, it should be noted
that the results have only been simulated at shorter distances
due to excessive computational complexity. In the plot, it is
also visible that the LoS path loss values differ from the
corresponding non-LoS figures by at least 20 dB. Based on
this observation, we conclude that if the LoS component is
not present, there is a high probability of poor mmWave link,
similar to complete receiver blockage due to very low SNR.

To facilitate a more detailed comparison, and in addition to
ray-launching, we developed a simplified system-level sim-
ulator providing the blockage probability as a function of
the model parameters, which are given in Table II. First, in
a square area of interest with the dimensions of ten times
greater than the distance between the Tx and Rx, we generated
the blockers according to the modified Matern hard-core
process with the parameters λI and U(0, dmax/2) following
the algorithm described in [12]. Here, the Tx is assumed to be
a point and is placed in the center, while the Rx is a segment
with the length of l positioned at the distance r from Tx,
such that the line connecting the center of Rx and Tx is a
normal. Both Tx and Rx are associated with heights hT and
hR, respectively. We further divide the segment l into N parts.
In these settings, (i) the event when the Rx is fully blocked
occurs when all of the lines are blocked; (ii) the event that at
least half of the Rx is blocked corresponds to having at least

TABLE II
MAIN SIMULATION PARAMETERS

Parameter Value
Height of Tx 4m
Height of Rx 1.3m
Distance between the bases of Tx and Rx 30m
Height of a blocker, N(µH , σH) N(1.7m, 0.1m)
Diameter of a blocker, U(dmin, dmax) U(0.2m, 0.8m)
Length of Rx 0.1m
Initial intensity of blockers 0.3 blockers/m2

Frequency 28GHz

half of the lines blocked; and (iii) the event of at least part of
the Rx blocked occurs when at least one line is blocked.

The comparison of the results obtained with simulations and
the proposed mathematical model for point and interval Rx of
size 10cm is shown in Fig. 5(c). First, notice that the maximum
absolute difference is attained at the average distances of
around 40 − 100 meters. For short and long distances, the
deviation is marginal. Nevertheless, the maximum difference
is always less than 0.1 for a reasonably large Rx of 10cm. The
slight deviations of the analytical results from simulations are
explained by the fact that we replaced the actual Matern hard-
core process by a Poisson process with the same intensity.

B. Understanding analytical results

First, Fig. 6 shows the results for the average path loss (Le)
as a function of the Tx height calculated according to (26).
As one may observe, for each separation distance between the
bases of Tx and Rx, there always exists an optimal height of
the Tx, where the average path loss takes the minimum value.

Fig. 6. Average path loss and optimal hT for different r.

To characterize the effect of non-infinitesimal Rx, Fig. 7
demonstrates the blockage probability for the interval Rx
across different ratios of the Rx size and the mean blocker
diameter l/dmax, as well as the distance between the bases of
Tx and Rx r. We notice that for any value of r and l/dmax,
the blockage probability for the point Rx is slightly higher
than that for the interval Rx. The increase in l/dmax, however,
decreases the blockage probability.

The height of the Tx, hT , is one of the most important
parameters available for system designers. Intuitively, the
higher the height is, the smaller the probability of the LoS



blockage should be. However, the final effect is expected to
heavily depend on the Tx-Rx separation distance.

Fig. 7. Blockage probability as a function of r and l/dmean.

The impact of the Tx height and distance between the Tx
and Rx for a point Rx is demonstrated in Fig. 8. As we
expected, the probability of blockage reduces exponentially
as hT increases. The effect of the Tx-Rx distance is however
inverse – longer separation distances lead to higher block-
age probability. Fandrewsor large hT , the increase is linear,
whereas for smaller hT it is exponential. Also, notice that
starting from a certain Tx-Rx separation distance, the blockage
probability remains nearly the same. It is explained by the
fact that at such distances, and for a given human user density
λI = 0.3, the probability to ”meet” a blocker along the LoS
path is extremely high.

Fig. 8. Blockage probability for different hT and r.

V. CONCLUSIONS

The presence of the LoS signal path is crucial in determining
the ultimate performance of the 5G-grade mmWave cellular
communications, especially in highly-crowded outdoor envi-
ronments. Using the ray-launching simulator, we first demon-
strated that the difference between the LoS and non-LoS path
loss values is at least 20 dB. Moreover, due to shorter ranges
of mmWave cellular technology, smaller obstacles will affect
the corresponding quality of signal propagation. All of the
above leads to the need of having a comprehensive analytical
methodology for determining the presence of the LoS link.
However, existing models, such as 3GPP urban outdoor micro-
cellular model, do not deliver the desired detalization. This

substantiates the importance of our conducted LoS-centric
analysis.

To this end, we developed a novel framework for capturing
the effects of the most important mmWave system parameters
on the probability of blockage for both the infinitesimal
receiver and the receiver of a fixed non-zero length. As a
result, it was shown that an increase in the ratio between the
length of the Rx and blocker sizes leads to a closer match
between the two. Moreover, we demonstrated the existence
of the optimal Tx height, which is an important learning for
system designers. The studied parameters of interest included
the distance between the bases of the Tx and Rx and their
heights, as well as the density of blockers on the landscape
and their random dimensions.

Finally, also with the help of an advanced ray-launching
tool, it was confirmed that our analysis offers accurate results
to model human-body blockage in urban mmWave deploy-
ments.
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On the Temporal Effects of Mobile Blockers in
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Mustafa Riza Akdeniz, Ehsan Aryafar, Nageen Himayat, Sergey Andreev, and Yevgeni Koucheryavy

Abstract—Millimeter-wave (mmWave) propagation is known
to be severely affected by the blockage of the line-of-sight (LoS)
path. In contrast to microwave systems, at shorter mmWave
wavelengths such blockage can be caused by human bodies, where
their mobility within environment makes wireless channel alter-
nate between the blocked and non-blocked LoS states. Following
the recent 3GPP requirements on modeling the dynamic blockage
as well as the temporal consistency of the channel at mmWave
frequencies, in this paper a new model for predicting the state of a
user in the presence of mobile blockers for representative 3GPP
scenarios is developed: urban micro cell (UMi) street canyon
and park/stadium/square. It is demonstrated that the blockage
effects produce an alternating renewal process with exponentially
distributed non-blocked intervals, and blocked durations that
follow the general distribution. The following metrics are derived
(i) the mean and the fraction of time spent in blocked/non-blocked
state, (ii) the residual blocked/non-blocked time, and (iii) the time-
dependent conditional probability of having blockage/no blockage
at time t1 given that there was blockage/no blockage at time t0.
The latter is a function of the arrival rate (intensity), width, and
height of moving blockers, distance to the mmWave access point
(AP), as well as the heights of the AP and the user device. The
proposed model can be used for system-level characterization
of mmWave cellular communication systems. For example, the
optimal height and the maximum coverage radius of the mmWave
APs are derived, while satisfying the required mean data rate
constraint. The system-level simulations corroborate that the
use of the proposed method considerably reduces the modeling
complexity.

Index Terms—Cellular networks, mmWave, human body
blockage, temporal consistency, mobility of blockers.

I. INTRODUCTION

The rapidly growing number of mobile devices as well as
the associated growth of mobile traffic call for an unprece-
dented increase in access capacity. To meet more stringent
performance requirements, the use of the so-called cellular
millimeter-wave (mmWave) technology operating at frequen-
cies such as 28 GHz and 73 GHz has been proposed in fifth-
generation (5G) mobile systems [1]–[3].

Together with the phenomenal increase in access capacity,
the use of the extremely high frequency (EHF) bands creates
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unique challenges for wireless communication systems. One
of them is a need for development of appropriate mmWave
channel models. Indeed, various groups and organizations have
recently developed a number of such channel models [4]–[10].
In contrast to microwave systems, the propagation charac-
teristics of mmWave systems (with wavelengths of under a
centimeter) are impacted not only by larger objects such as
buildings, but also by much smaller obstacles such as cars,
lampposts, and even humans. Given that mmWave systems are
envisioned to be deployed in urban squares and streets, 3GPP
has identified humans as one of the major factors affecting the
mmWave propagation and has incorporated a blockage model
into TR 38.901 of Release 14 [5].

The performance of mobile communications systems is
typically characterized by developing system-level simulation
(SLS) frameworks [11], [12]. Modeling the path loss with
simple power-law abstractions, these SLS tools may take into
account the necessary details of the target technologies and
deliver their output results within a reasonable time. How-
ever, when conducting system-level evaluation of a mmWave
system, in addition to the path loss model that captures the
propagation environment, one needs to explicitly represent
and track all of the relevant static and mobile objects with
dimensions larger than a few centimeters. This significantly
increases the required computational resources and expands
simulation time.

Motivated by the new effects in mmWave communications
systems as well as by the recent 3GPP requirements for 5G
channel modeling, this paper studies the dynamic blockage
caused by humans in outdoor urban mmWave cellular de-
ployments, while specifically concentrating on the temporal
consistency of the link states for a static user.

A. Background and Related Work

The importance of dynamic blockage of the LoS path in
mmWave deployments has recently been shown to be one of
the critical design factors that affect system performance [4]–
[6], [13]. An example illustration of the measured path gain
experienced by a node in a realistic crowded environment is
shown in Fig. 1. As one may observe, dynamic blockage by
small mobile objects within the environment, such as moving
people, cars, trucks, etc., introduces additional uncertainty in
the channel, which may eventually result in sharp drops (up
to 30 ∼ 40 dB) in the received signal strength [14], [15]. The
blockage frequency, duration, and the resultant degradation of
signal strength affect the performance of a mmWave system.

Recent work has studied the impact of LoS blockage in
urban microwave systems [16], [17]. However, the results do
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Fig. 1. Path gain in presence of dynamic blockage, reproduced from [14].

not directly apply to mmWave systems as the objects of inter-
est in mmWave and microwave systems are of fundamentally
different nature and hence would require different models for
their accurate representation. Indeed, in addition to mobility
of smaller obstacles, such as humans, one also needs to take
into account their inherently random dimensions.

The LoS blockage by humans in mmWave systems has been
evaluated through simulation studies in [18]. In [19], a LoS
blockage model where humans are represented as cylinders
of random width and height was proposed. However, there
the authors assumed that both the users and the blockers are
stationary. In addition to academic work, the 3GPP community
is currently exploring various options for modeling the impact
of human blockage appropriately [14], [20].

In [5], the human body blockage is taken into account
by creating rectangular screens dropped onto the simulation
map. A similar approach is adopted by [21], [22], where the
authors also evaluated the accuracy of their methods. Due to
the properties of the propagation model, which generates a
random sample of the propagation path at each run, a particular
attention of the 3GPP work groups is being paid to spatial and
temporal consistency of the mmWave links [5], [20].

In [23], the authors contributed a model for temporal
correlation of interference in a mobile network with a certain
density of users. It was demonstrated that the correlated
propagation states across the users significantly impact the
temporal interference statistics. Analytically tractable models
for correlated outdoor and indoor shadowing have been pro-
posed in [24] and [25], thus accentuating the high correlation
between the locations of the nodes and the shadowing effects.
The analytical expression to characterize the correlation be-
tween the signals of two antennas was given in [26].

Even though there has been a considerable literature cov-
erage on user mobility in general [27]–[30], to the best of
our knowledge there are only a few studies that incorporate
the user mobility into analytically tractable models [31], [32].
These latest results confirm the presence of memory in the LoS
blockage process and highlight its dependence on the mobility
characteristics of the users.

B. State-of-the-Art and Contributions

The goal of this paper is to contribute a novel mathematical
methodology that aims to characterize the dynamics and the
temporal correlation of LoS human body blockage statistics.
In this work, a model of the LoS blockage for a stationary

user in a moving field of blockers is proposed. This scenario
is more typical for outdoor mmWave systems as compared
to stationary blockage models assumed in prior work. The
blockers are modeled as cylinders of a certain height and width
that enter the LoS zone of a mmWave receiver according to a
Poisson process in time.

The analysis is based on the combined application of
stochastic geometry, renewal process theory, and queuing
models. Three different scenarios are addressed, including two
street canyon use cases and a park layout (see Fig. 2). The
metrics of interest are those reflecting temporal behavior of
the LoS blockage process, such as the mean and the fraction
of blocked/non-blocked LoS, the residual time in blocked/non-
blocked states, and the time-dependent effects of conditional
blocked/non-blocked state probabilities.

In summary, the following contributions are delivered by
this work:

• To analyze the temporal correlation and the dynamic
blockage process by human bodies at mmWave frequen-
cies, a novel mathematical model is proposed. It is shown
that the analytical expression could be utilized to replace
explicit simulation of the mobile blockers in the SLS
studies. The associated improvement in the simulation
times depends on the crowd intensity and may reach
several orders of magnitude.

• To capture the general structure of the dynamic LoS
blockage process, including the impact of mobile ob-
stacles, the corresponding mathematical methodology is
developed. It is observed that non-blocked/blocked peri-
ods form an alternating renewal process where the non-
blocked intervals follow an exponential distribution and
the blocked intervals have a general distribution. The
latter is captured by employing methods for the busy
period analysis in the M/GI/∞ queuing model.

• To characterize the temporally consistent human body
blockage process, a simplified approach is developed to
calculate the conditional probabilities. It is demonstrated
that for realistic input parameter values, in all the consid-
ered scenarios there always is a significant dependence
between the states of the user at t0 and t1 over small
timescales.

• To demonstrate the applicability of the proposed method-
ology, the optimal height of the mmWave AP that max-
imizes the average time in non-blocked LoS conditions
as well as the maximum coverage radius that satisfies the
required mean data rate are estimated.

The rest of this paper is organized as follows. In Section II,
the system model and a description of the outdoor scenarios
proposed by 3GPP, which reflect real-life mmWave system
usage situations, are introduced. The analysis for the perfor-
mance metrics of interest is summarized in Section III. The
numerical results, particularly those related to the temporal
dependencies in the LoS blockage process, are discussed in
Section IV. Section V elaborates on the applications of the
proposed methodology. Conclusions are presented in the last
section of the paper.
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(a) Sidewalk 1, S1 (b) Sidewalk 2, S2 (c) Park/stadium/square, S3

Fig. 2. Three considered scenarios for further analytical modeling.

II. SYSTEM MODEL

A. General Considerations

The proposed system model is illustrated in Fig. 2. The
transmitter (Tx) and the receiver (Rx) are deployed at the
heights of hT and hR from the ground, respectively. The two-
dimensional distance between the Tx and Rx is r0. Follow-
ing [33], the potential blockers (i.e., humans) are modeled as
cylinders with the height of hB and the base diameter of dm.

Note that there always is an area between Tx and Rx,
where the emergence of a blocker will cause occlusion of
the mmWave LoS link. With the above parameters, this area
may be approximated by a rectangular shape, named here the
LoS blockage zone and denoted as ABCD in Fig. 3. The
particular dimensions of this area, its geometrical shape, and
the position with respect to Tx and Rx can be estimated given
the aforementioned parameters as discussed in what follows.

The speed of blockers V is assumed to be constant. How-
ever, the actual mobility model of blockers depends on the
scenario as introduced below. The main parameters and the
description of employed notation are collected in Table I.

B. Blocker Mobility and Arrival Modeling

To characterize the human mobility, the following three
scenarios are considered:
• Sidewalk 1 (First scenario, S1). In this scenario, the

mmWave Tx (the AP) is assumed to be mounted on the
wall of a building while the Rx may reside at any location
on the sidewalk of width wS within the coverage area of
the mmWave AP. The blockers move along the straight
line parallel to each other and the side of the sidewalk at a
constant speed of V while their y-coordinates of crossing
the width of the sidewalk are distributed uniformly within
(0, wS), see Fig. 2(a). The arrival process of blockers
crossing a vertical line – the width of the sidewalk wS –
is Poisson in time with the arrival intensity λI .

• Sidewalk 2 (Second scenario, S2). This scenario is similar
to the previous case, except for how the blocker positions
are distributed in the sidewalk. In practice, the users tend
to move closer to the center of the walkway. Therefore,
y-coordinates of crossing the width of the sidewalk are
modeled by employing a symmetric triangular distribu-
tion over (0, wS), see Fig. 2(b). The arrival process of
blockers crossing the width of the sidewalk is again

Poisson in time with the arrival intensity λI of blockers
per time unit.

• Park/Stadium/Square (Third scenario, S3). In this sce-
nario, the users are allowed to enter and leave the
mmWave LoS blockage zone at any point along the
three sides of the rectangle, see Fig. 2(c). It is assumed
that both the entry and the exit points are distributed
uniformly over the side lengths for each individual user.
The arrival process of users into the LoS blockage zone
is Poisson with the arrival intensity of λI per time unit.

The proposed methodology generally allows to capture more
specific types of blocker mobility. For example, one may
decide to relax the assumption of the straight movement

TABLE I
SUMMARY OF NOTATION AND PARAMETERS

Notation Description
hT , hR, hB Height of Tx, Rx, blockers
r0 Two-dimensional distance between Tx and Rx
dm, V Diameter and speed of blockers
wS Width of the sidewalk
wE , r Effective width and length of LoS blockage zone
λI Initial arrival intensity of blockers per time unit
λ Arrival intensity of blockers entering the LoS block-

age zone per time unit
λS Arrival intensity of blockers entering the unit area

of LoS blockage zone
λN Density of users per unit area
yA, yB , yC , yD y-coordinates of the edges of the LoS blockage zone
α Angle between Y-axis and the segment Tx-Rx
L Distance walked by a blocker in LoS blockage zone
T Residence time of a blocker in LoS blockage zone
ωj , ηj The non-blocked and blocked time interval
Fω(x), E[ω] CDF, the mean of non-blocked time interval
Fη(x), E[η] CDF, the mean of blocked time interval
FT (x), fT (x),E[T ] CDF, pdf, the mean of LoS zone residence time
FY (x) CDF of the y-coordinate of blocker entry point
F
Ỹ
(x) Truncated distribution of the entry point defined on

yA ≤ x ≤ yC
FL, fL CDF and pdf of the residence distance L
E[Tl], E[Tn] Fraction of time in non-blocked/blocked states
Ftω (x), Ftη (x) Residual time in non-blocked/blocked states
ξj jth time interval equal to ωj + ηj
Fξ(x), fξ(x), E[ξ] CDF, pdf, the mean of ωj + ηj
f(x) pdf of renewal process
p00, p01 Conditional probabilities to be in non-

blocked/blocked states at time t1 (0 and 1)
given that there was non-blocked state at t0

p10, p11 Conditional probabilities to be in non-
blocked/blocked states at time t1 (0 and 1)
given that there was blocked state at t0
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and thus model the walking street environment, where the
user trajectories are not required to remain parallel to the
sides of the street. Also note that the straight trajectories of
blocker mobility inside the LoS blockage zone are the direct
consequence of small dimensions of the said zone, hence
resulting in negligible changes of behavior with respect to the
angle of motion.

The considered metrics of interest are those pertaining to the
temporal behavior of the LoS blockage process and include (i)
the mean and the fraction of time in the blocked/non-blocked
state as experienced by the Rx, (ii) the residual time in the
blocked/non-blocked state, and (iii) the conditional probability
that there is blocked/non-blocked state at t1 given that there
was blocked/non-blocked state at t0, t1 > t0.

III. PROPOSED SYSTEM ANALYSIS

All of the three scenarios introduced in the previous Sec-
tion II can be characterized by following the proposed method-
ology. The key difference between them is in the distribution
of the residence time in the LoS blockage zone (that is, the
time that a blocker spends in the LoS blockage zone while
crossing it). In this section, the general method to obtain the
distribution of the zone residence time in the LoS blockage for
the first scenario (i.e., Sidewalk 1, S1) is described. For the
second and the third scenarios, the corresponding derivations
are reported in Appendix A. Finally, the target metrics of
interest are produced.

The step-by-step analytical approach may be summarized
as follows:
• Specify the zone where blockers may occlude the LoS

path and thus determine the LoS blockage zone geometry;
• Describe the process of blockage by introducing the

alternating renewal process that captures the non-
blocked/blocked intervals;

• Obtain the probability density function (pdf) of the non-
blocked time interval by analyzing the alternating renewal
process in question;

• Produce the pdf of the blocked interval by representing it
as a busy period in the M/GI/∞ queuing system1, where
the service time distribution corresponds to the time spent
by a blocker in the LoS blockage zone;

• Calculate all of the metrics of interest, including the
moments, the residual time distributions, as well as the
conditional non-blocked/blocked state probabilities by
applying conventional techniques.

A. LoS Blockage Zone Geometry

Consider the geometrical scenario represented in Fig. 3.
It should be noted that rectangle ABCD, named the LoS
blockage zone, is the only area where the presence of a blocker
causes blockage of the LoS link. Any blocker which appears
outside of this zone (closer to Tx, outside of ABCD) will not
affect the LoS link.

Since any blocker entering the LoS blockage zone in ques-
tion (particularly, the center of a cylinder) occludes the LoS,

1According to the Kendall notation: M is Poisson arrival process, GI is
general distribution of service time, and ∞ is infinite number of servers.

the width of the zone equals the base diameter of the blocker,
dm. The length of this zone reflects the maximum possible
distance, where the height of the blocker still affects the LoS.
As illustrated in Fig. 3, from the geometrical considerations
the latter follows as

r =
r0(hB − hR)

hT − hR
+ dm/2, (1)

where r0 is two-dimensional distance between the Tx and the
Rx, while hB , hR, and hT are the heights of the blocker, Rx,
and Tx, respectively.

The coordinates of Tx and Rx located at the points P and
O (see Fig. 3), respectively, are then given by

xP = 0, yP = wS ,

xO = r0 sin(α), yO = wS − r0 cos(α). (2)

The coordinates of the blockage zone vertices are thus

xA = xO −
dm
2

cos(α), yA = yO −
dm
2

sin(α),

xB = xO +
dm
2

cos(α), yB = yO +
dm
2

sin(α),

xC = xB − r cos(
π

2
− α), yC = yB + r sin(

π

2
− α),

xD = xA − r cos(
π

2
− α), yD = yA + r sin(

π

2
− α), (3)

where α is the angle characterizing the position of the Rx in
relation to the Tx location, as shown in Fig. 3.

B. Renewal process analysis

Let ωj and ηj , j = 1, 2, . . ., denote the time spent in the
non-blocked and blocked intervals, respectively, as shown in
Fig. 4. As one may observe, these intervals alternate, that is,
non-blocked period always precedes the blocked one and vice
versa. Since the entry of blockers into the LoS blockage zone
is modeled as a Poisson process, durations of non-blocked and

Tx

Fig. 3. Geometry of the LoS blockage zone.
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Fη(x) = 1−
(

[1− FT (x)]

[
1−

∫ x

0

(1− Fη(x− z)) exp(−λFT (z))λdz

]
+

∫ x

0

(1− Fη(x− z))|de−λFT (z)|
)
. (4)

blocked intervals are mutually independent. Hence, the process
of the LoS blockage can be modeled as an alternating renewal
process, as displayed in Fig. 4. The proposed methodology is
valid for all three scenarios of interest.

Define ξj = ωj+ηj . The points 0, ξ1, ξ1+ξ2, and ξ1+ξ2+ξ3
are the renewal moments that form the process at hand. The
density of this process follows from [34] as

f(x) = λFT (x) exp

(
−λ
∫ x

0

[1− FT (y)]dy

)
, (5)

where λ is the intensity of the blocker arrivals into the zone,
FT (y) is the cumulative distribution function (CDF) of the
zone residence time T = L/V for a single blocker, where L
is the distance over which a blocker travels inside the blockage
zone.

The time spent in the non-blocked part, ωj , follows an expo-
nential distribution with the parameter λ, Fω(x) = 1− e−λx,
with the mean E[ω] = 1/λ [35]. This result follows directly
from the fact that the left-hand sides of the time intervals
spent in the LoS blockage zone by a single blocker follow a
Poisson process in time with the arrival intensity of λ per time
unit. Therefore, the time period between the end of an interval
ηj (see Fig. 4), which is considered as an arbitrary point,
and the starting point of the next interval ηj+1 is distributed
exponentially.

Consider now the blocked interval.

Proposition 1. Let Fη(x) be the CDFs of the time in the
blocked intervals, ηj , j = 1, 2, . . . , with the mean of E[η].
The distribution of the blocked interval, Fη(x), is the same
as the distribution of a busy period in the M/GI/∞ queuing
system given by (4), see e.g., [36].

Proof. The proposition is proved by exploiting the analogy
with the busy time distribution in M/GI/∞ queuing system.
Consider now an evolution of a busy period in M/GI/∞
system. It starts at some t = t1 with a customer arriving into
the system. Each arrival during the service time of this cus-
tomer prolongs the busy period if and only if its service time is
greater than the service time of the customers that are currently
in service. The busy period ends when a customer upon its

η1 ω2 η2

ξ1

ω1

ξ2

time

Blocked 
time interval

Non-blocked 
time interval

0

A blocker leaves the 
 LoS blockage zone

 Moving time of a blocker
 inside LoS blockage zone

A blocker arrives at the 
LoS blockage zone border

Fig. 4. Renewal process associated with the LoS blockage, where every
blocker might spend different time when occluding the LoS.

departure leaves an empty system. Analyzing the illustration of
the renewal process associated with the LoS blockage interval,
the analogy with the busy period in M/GI/∞ system is
established. Indeed, each blocker extends the LoS blockage
period if and only if its blockage time is greater than the
blockage time of those blockers currently occluding the LoS.
The CDF of the busy period in M/GI/∞ system has been
obtained in [36] and is provided in (4).

Note that (4) can be evaluated numerically for any FT (x).

C. Residence Time in the LoS Blockage Zone
To proceed further with deriving the metrics of interest, the

CDF of the residence time T = L/V in the LoS blockage
zone for a single user is required. Recalling the principles of
linear transformation of random variables [37], the pdf of the
time T = L/V (for all the scenarios of interest) reads as

fT (x) = V fL(xV ). (6)

Hence, it is sufficient to find the pdf of distance L that one
blocker travels inside the LoS blockage zone, fL, in order to
derive fT . The notation employed in what follows is clarified
in Fig. 3. Note that the arrival intensity of the blockers λ that
enter the LoS blockage zone is different for all the considered
scenarios and is derived in what follows by using λI . The
latter is the initial arrival intensity of blockers that cross the
width of the sidewalk for the first and second scenarios, S1 and
S2 (see Fig. 2). For the sake of the analysis, the park/square
scenario, S3, has the arrival intensity of λI = λ.

Note that the derivation of distance L is a scenario-specific
part of the analysis as it requires a certain distribution of the
entry points of blockers to the LoS blockage zone.
First scenario, S1. Let FY (x), 0 ≤ x ≤ wS , be the CDF of

the y-coordinate of the entry point for a blocker. Since only
the blockers crossing the blockage area are of interest, this
distribution is truncated. The resulting distribution FỸ (x) is
defined on yA ≤ x ≤ yC .

The CDF of the distance L traversed by a blocker in the
LoS blockage zone is therefore

FL(x) =





0, x < 0,

FỸ (yC)− FỸ (yC − x cos(α) sin(α))

−
(
FỸ (yA)− FỸ (yA + x cos(α) sin(α))

)
,

0 ≤ x < xmin,

1, x ≥ xmin,

(7)

where xmin = min(dm/ cos(α), r/ sin(α)).
For the sidewalk 1 scenario (S1) (see Fig. 2(a)), (7) takes

the form of

F 1
L(x) =





0, x ≤ 0,
x sin(2α)

yC − yA
, 0 < x ≤ xmin,

1, x > xmin.

(8)
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The arrival intensity of blockers entering the zone that
affects the LoS for the first scenario, S1, is delivered as

λ = λI
wE
wS

, (9)

where wS is the width of the sidewalk, λI is the ar-
rival intensity of blockers on the width wS , and wE =
max(yA, yB , yC , yD)−min(yA, yB , yC , yD) is the projection
of rectangle ABCD on Y-axis, named the effective width, as
shown in Fig. 3.

The residence time in the LoS blockage zone for the second
and the third scenario is derived in Appendix A.

D. Metrics of Interest

1) Mean and Fraction of Time in Non-Blocked/Blocked
State: The fraction of time in the non-blocked/blocked state
can be produced by utilizing the mean time spent in each state,
i.e., [35]

E[Tl] =
E[ω]

E[ω] + E[η]
, E[Tn] =

E[η]

E[ω] + E[η]
, (10)

where E[ω] and E[η] are the means of the non-blocked/blocked
intervals.

Recall that due to the exponential nature of ω, E[ω] = 1/λ.
The mean E[η] can be obtained numerically by using (4).
However, there is a simpler approach that is outlined below.
Observe that the renewal density f(x) is f(x) = 1/E[ξ], when
t→∞. From (5), after employing the Laplace transform (LT),
we establish that it is also equal to f(x) = λ exp (−λE[T ]),
where E[T ] is the mean zone residence time for a single
blocker, see [19] for details. Hence, the following holds

E[ξ] =
1

λ
exp(λE[T ]). (11)

Then, E[η] can be established as

E[η] =

∫ ∞

0

[1− Fη(x)]dx

=

∫ ∞

0

(
1− Fξ(x)− fξ(x)

λ

)
dx = E[ξ]− 1

λ
. (12)

Substituting (11) into (12), we arrive at

E[η] =
1

λ
[exp(λE[T ])− 1]. (13)

2) Residual Time in Non-Blocked/Blocked State: Here,
the distribution of the residual time spent in the non-
blocked/blocked state given that the user is currently in the
non-blocked/blocked state is characterized. Recall that the
distribution of the non-blocked interval is exponential, while
the CDF for the blocked interval is provided in (4). Hence,
the residual time distribution in the non-blocked state is also
exponential with the same parameter. Therefore, the residual
blocked time CDF is

Ftη (t) =
1

E[η]

∫ t

0

[1− Fη(y)]dy, (14)

and the residual non-blocked time CDF is

Ftω (t) = 1− e−λt, t ≥ 0. (15)

3) Conditional Non-Blocked/Blocked State Probabilities:
Consider now two instants of time, t0 = 0 and t1, t1 − t0 =
t > 0. Denoting the non-blocked and the blocked states by 0
and 1, respectively, the conditional probabilities, p00(t), p01(t)
as well as p10(t), p11(t) that there is non-blocked/blocked
state at t1 given that there was non-blocked/blocked state at
t0 are calculated further. The general solution for this problem
follows from [35] and particularly p00(t) can be established
as

p00(t) =
E[ω]

E[ω] + E[η]
+
g(t)

E[ω]
, (16)

where g(t) has the LT of

g∗(s) =
E[ω]E[η]

(E[ω] + E[η])s
− (1− f∗ω(s))(1− f∗η (s))

s2(1− f∗ω(s)f∗η (s))
, (17)

where f∗ω(s) and f∗η (s) are the LTs of fω(x) and fη(x),
respectively.

In the target case, the density of the blocked period is
not available in a closed form, thus preventing from tran-
sitioning to the LT domain. For practical calculations, a
simpler approach is proposed below based on utilizing the time
domain convolutions. Observe that the probabilities p00(∆t)
and p01(∆t) can be represented as

p00(∆t) =
∞∑

i=0

P{Ai(∆t)},

p01(∆t) =

∞∑

i=1

P{Bi(∆t)}, (18)

where Ai(t) are the events corresponding to starting in the
non-blocked interval at t0 and ending in the non-blocked
interval after some ∆t = t1 − t0, while having exactly i,
i = 0, 1, . . . , blocked periods during ∆t. Similarly, Bi(t) are
the events corresponding to starting in the non-blocked interval
at t0 and ending in the blocked interval at t1, while having
exactly i, i = 1, 2, . . . , non-blocked periods during ∆t.

The probability of the event A0, which is defined as residing
in the non-blocked interval ω at time t1 = t0 + ∆t given that
the system was in the same non-blocked state ω at time t0, is
produced by

P{A0(∆t)} = 1− Ftω (∆t), (19)

where Ftω (∆t) is the residual time in the non-blocked period
as obtained in (15).

The probability of the event B1, which is defined as residing
in the blocked interval η at time t1 given that the system was
in the preceding non-blocked state ω at time t0, is

P{B1(∆t)} = 1− Fη+tω (∆t)− (1− Ftω (∆t))

= Ftω (∆t)− Fη+tω (∆t), (20)

where Fη is the CDF of the blocked interval from (4) and
Fη+ω denotes the CDF of the sum of random variables x and
y. As it was stated previously, note that the random variables
η, ω, and tω are independent. Hence, the CDF of the sum
Fη+ω is obtained by convolving the densities of x and y and
then integrating from 0 to x.
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Fig. 5. Benchmarking the analytical model against the simulation results for the first usage scenario, S1.

Consider the event A1 corresponding to when the Rx is in
the non-blocked interval at time t1 given that it was in the
preceding non-blocked interval at time t0 (there is a blocked
interval embedded in between t0 and t1). The probability of
this event is

P{A1(∆t)} = Fη+tω (∆t)− Fω+η+tω (∆t), (21)

where Fω is the CDF of the non-blocked interval.
Further, the probability of the event B2 that the Rx is in

the blocked interval at t1 given that it was in the preceding
blocked interval at t0 (there is an additional non-blocked
interval embedded in between t0 and t1), is established as

P{B2(∆t)} = Fω+η+tω (∆t)− Fη+ω+η+tω (∆t). (22)

Finally, the following is obtained

P{Ai(∆t)} = F∑i−1
j=1(η+ω)+η+tω

(∆t)

− F∑i
j=1(η+ω)+tω

(∆t), i ≥ 1,

P{Bi(∆t)} = F∑i−1
j=1(η+ω)+tω

(∆t)

− F∑i−1
j=1(η+ω)+η+tω

(∆t), i ≥ 1. (23)

Note that the sum in (18) is infinite, and the probabilities
p00 and p01 are numerically approximated by summing the
terms up to the next summand that is sufficiently close to zero,
until when the desired accuracy is achieved. The probabilities
p10(∆t) and p11(∆t) are obtained similarly.

IV. ACCURACY ASSESSMENT AND NUMERICAL ANALYSIS

In this section, the accuracy of the proposed model is
assessed by benchmarking against system-level simulations.
Then, the extent of temporal dependence under study is
characterized as a function of the input parameters.

A. Accuracy Assessment

In Fig. 5, the benchmarking of the proposed analytical
model is conducted by utilizing our in-house simulation
framework developed specifically for the purposes of this
study. For the sake of exposition, it is assumed that the
location of the user device of interest is fixed. The initial
number of deployed blockers is calculated based on the arrival

intensity of blockers entering the width of the sidewalk, λI .
Particularly, considering the first usage scenario, S1, whenever
the simulation is started, new blockers appear at the sidewalk
edge of length wS according to a Poisson process with the
arrival intensity of λI . Blockers then move around across the
deployment with the constant speed up to the edge of the
deployment area.

Fig. 5(a) reports on the average user blockage time for the
first scenario (S1) obtained by using simulations as well as
produced with the proposed analytical model for the width of
the sidewalk, wS = 10 m where the remaining parameters
are given in the plot and Table II. The target accuracy was
set to 10−4 which required from 6 to 9 summands in (18) to
achieve it. As one may observe, the analytical results agree
well with the simulation data, while both increase linearly
with the growing arrival intensity of blockers. To assess the
time correlation in the non-blocked/blocked state, the CDF of
blocked duration is displayed in Fig. 5(b), where the width
of the sidewalk is taken as wS = 10 m, r0 = 7.9 m, and
α = 18.4o with the rest of the parameters given in the Table II.

Here, close match between the analytical and the simulation
results is also clearly visible. Small discrepancy between sim-
ulation and analysis is caused by the specifics of the analytical
model. Particularly, in simulations the LoS blockage zone is
explicitly modeled by taking into account the circular nature
of the blocker. In the developed mathematical model, the LoS
blockage zone is assumed to be of rectangular shape thus
neglecting the curvature caused by the blocker, see Section III

TABLE II
BASELINE SYSTEM PARAMETERS

Parameter Value
Height of Tx, hT 3 m
Height of Rx, hR 1.3 m
Tx-Rx distance, r0 4.6 m
Height of a blocker, hB 1.7 m
Diameter of a blocker, dm 0.5 m
Speed of a blocker, V 1 m/s
Width of the sidewalk, wS 5 m
Angle, α π/6
Frequency 28 GHz
Bandwidth, B 1 GHz
Noise level −84 dBm
Transmit power 30 dBm
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for details. Even though one could extend the model to the
case of more complex geometry of the LoS blockage zone
thus leading to more complex expressions, the resulting error
of approximation by a rectangle is negligible. Also, note that
the steep behavior of the CDF around 0.5 s is explained by
the fact that for these particular environmental parameters and
intensity of blockers most of the busy periods on the associated
M/GI/∞ queue are caused by a single blocker.

B. Numerical Analysis

Further, the response of the blockage-related metrics to
the selected ranges of input mmWave system parameters is
analyzed. It should be mentioned that the choice of values for
the parameters, and especially the Tx-Rx distance, is according
to the need to compare all three mobility models. However,
all parameters are adjustable during the computation if needed.
Therefore, the key performance indicator in the deployment of
interest is considered, namely, the fraction of time spent in the
non-blocked state as illustrated in Fig. 6. It is a function of
the arrival intensity of blockers, λI , for all the three scenarios
under study. It should be noted that the fraction of time in
blocked state is the complement of the fraction of time in
the non-blocked state. The parameters for scenarios that are
collected in the plot are shown in Table II.

For the purposes of a numerical comparison, consider the
initial intensities for the first (S1) and the second scenario
(S2) to be equal to 1 and 3 blockers per second, respectively.
This corresponds to the following intensities of entering the
LoS zone: 0.24 and 0.71 blockers per second. The initial
arrival intensity is equal to the intensity of entering the
LoS zone for the third scenario (S3). Clearly, as the arrival
intensity of blockers grows, the fraction of time spent in
the non-blocked/blocked state decreases/increases correspond-
ingly. The main observation here is that the resulting trend
is close to linear. One may notice further that for the arrival
intensity of 0.24 blockers per second the fraction of time spent
in the non-blocked state is almost the same for all the three
scenarios. As the arrival intensity increases and approaches the
value of 0.71, the difference between the first two scenarios
and the third scenario becomes more considerable.

Fig. 7(a) and 7(b) report on the absolute values of the mean
time spent in the non-blocked/blocked state for the same input
parameters. As one may observe, the mean time spent in the
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Fig. 6. Fraction of time in non-blocked/blocked state as a function of λI .

non-blocked state decreases significantly as λI increases from
0 to 3. However, the difference between the three scenarios for
the two selected intensities is not significant. The mean time
spent in the blocked state is the longest for the third scenario. It
may be explained by the fact that the possible walking distance
of a blocker is higher in this third scenario, since the blocker
can move closer to the diagonal of the rectangle. Note that the
blocked state behavior does not change drastically over a wide
range of the considered blocker intensities. This is because
even for higher intensities of blockers the blocked intervals
are likely to feature only a single blocker occluding the LoS.

The mean time spent in the non-blocked/blocked state
together with the associated fractions produce a direct im-
plication on the dimensioning of mmWave systems. More
specifically, using an appropriate propagation model, such as
the one presented in [38], as well as accounting for the set
of the modulation and coding schemes, one can evaluate the
average throughput of a user located at a certain distance from
the mmWave AP over a particular time slot. Given a certain
value of the target mean data rate at the input, this information
can be used further for determining the optimal coverage of
a single mmWave AP. A close match with the result in [29]
in terms of the mean time of LoS link blockage under the
corresponding values of parameters is noted.

In Fig. 7(c) and 7(d), the CDFs of the residual time in the
blocked/non-blocked state are shown. As one may observe,
the probability for the time spent in the blocked interval to
exceed the blocker’s mean residence time is rather small.
For example, the mean time in the blocked interval for the
first scenario with λI = 1 bl/s is about 0.5 s and the CDF
Ftη (t < 0.5) = 0.9 approximately. This fact implies that for
a wide range of the considered intensities, in most cases, the
blocked interval coincides with the residence time of a single
blocker. Therefore, a user enters the non-blocked state after a
certain time interval, which mainly depends on the size and
the speed of the blocker, and less so on the arrival intensity of
the blockers (note that the mean time in the blocked interval,
Fig. 7(a), and the CDF of the residual time in the blocked state,
Fig. 7(c), do not change drastically with increasing arrival
intensity of blockers). Generally, knowing that the Rx is in the
blocked interval, one can estimate the remaining time in this
period. This may reduce the amounts of signaling information
required for tracking the state of mmWave receivers. Also, the
shape of the CDF curves for the residual time in the blocked
interval is explained by the particular behavior of the CDF of
time for a single blocker movement inside the LoS blockage
zone, which has a distinct plateau.

Fig. 7(e) and 7(f) illustrate the behavior of the conditional
probability to be in the non-blocked/blocked state at time t1
given that the Rx was in the non-blocked/blocked state at time
t0 = 0, t1 > t0. Due to the long average time in the non-
blocked state as compared to the average time in the blocked
state, the probability to change the state from non-blocked
to blocked is rather small for the considered values of t1. In
contrast, the probability to become non-blocked given that the
Rx was blocked at time t0 increases significantly. After that,
the conditional probability converges to the unconditional one
and the process in question “loses” its memory.
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Fig. 8. Optimal height of the mmWave AP vs. cell radius and arrival intensity of blockers for the third scenario, S3.

V. EXAMPLE APPLICATIONS OF THE METHODOLOGY

This section first summarizes two important analytical re-
sults stemming from the direct application of the proposed
methodology. Then, the achievable performance gains in terms
of the computation complexity are demonstrated after applying
the model for system-level evaluation of mmWave systems.

A. Optimal Height of the mmWave AP

Let us first determine the height of the mmWave AP, such
that the average path loss to the user is minimal. To this end,
the blocker mobility model to estimate the fraction of time in
the non-blocked state as a function of hT is utilized, and then
the mmWave propagation model from [38] to characterize the
mean path loss as a function of hT is applied.

The average path loss can thus be established as in [19]

Le = E[Tl]LLoS + (1− E[Tl])LnLoS , (24)

where E[Tl] is the fraction of time that the Rx spends in
the non-blocked state, which has been derived in (14), while

LLoS = 61.4 + 20 log10(d) and LnLoS = 72 + 29.2 log10(d)
are the path loss values for the LoS and the nLoS components
for 28 GHz as obtained in [38] and d =

√
(hT − hR)2 + r20

is the three-dimensional distance between Tx and Rx.
For any value of the arrival intensity of blockers, the optimal

height of the mmWave AP within the range of reasonable
values can now be established by utilizing the graphical
approach and plotting (24) to identify the value minimizing the
average path loss at the cell edge (two-dimensional distance
between Tx and Rx, r0, is equal to the cell radius in that
particular problem). The same could be derived numerically
by taking a derivative of the average path loss from (24).
To vary the arrival intensity of blockers that enter the LoS
blockage zone proportionally to its dimensions, it is assumed
that λS = 0.1 bl/s is the arrival intensity of blockers crossing
the unit square area. The intensity of blockers entering the
LoS blockage zone can then be written as λ = λSrdm.

Fig. 8(a) demonstrates the optimal Tx height for different
cell radius values in the third scenario. Here, the constant
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Fig. 9. Mean data rate of the user at the cell edge vs. cell radius, user densities, and blocker arrival intensities for the third scenario, S3.

arrival intensity of blockers is set to λS = 0.1 bl/s, while the
remaining parameters are given in Table II. As one may learn,
an increase in the cell radius requires the mmWave Tx to be
deployed higher in order to achieve the optimized propagation
conditions at the cell edge. Further, Fig. 8(b) shows the optimal
height of the Tx for a fixed cell radius of 30 m and different
intensities of blockers that enter the unit square area of the LoS
blockage zone, λS . It could be noticed that with the growing
blocker arrival intensity the optimal height of the mmWave
Tx increases as well. This effect is explained by the fact that
the probability of residing in the non-blocked state decreases;
hence, one needs to increase the height of the Tx to maximize
the fraction of time spent in the non-blocked state.

The impact of the cell radius and intensity of blockers on
the optimal height of the AP is summarized as follows:
• The optimal height of the AP from the range of realistic

values highly depends on the cell radius, e.g., after
increasing the cell radius by 7 times the optimal height
grows by approximately 6 times.

• The impact of the intensity of blockers on the optimal
height is less pronounced. For example, after increasing
the intensity of blockers by 10 times the optimal height
grows by only 1.7 times.

B. Cell Range Analysis

Another direct application of the proposed model is to
determine the maximum coverage range of the mmWave AP,
such that a certain average data rate is delivered to all of the
users. The latter can be achieved by ensuring that the user data
rate at the cell edge is higher than the required minimum.

Assume a Poisson field of users in <2 with the density of
λN users per square unit. Let x be the intended radius of the
mmWave coverage zone. The number of users in this covered
area follows a Poisson distribution with the parameter λNπx2.
The traffic model is considered here to be “full buffer”, that
is, the mmWave system is observed in the highly-loaded
conditions. Further, the maximum radius x is determined, such
that the capacity of at least k Mbps is provided to each user.
The bandwidth of the mmWave system, B, is allowed to be
infinitesimally divisible. For simplicity, an equal division of
bandwidth between all of the users is considered, even though

any reasonable resource allocation mechanism can in principle
be assumed, e.g., max-min or proportional fair [39].

The capacity delivered to the mmWave Rx located at x can
be derived as

R(x) = cBi log[1 + S(x)], (25)

where Bi is the bandwidth made available to the user of
interest, S(x) is the average signal-to-noise ratio (SNR) at
this user, and c is a constant accounting for imperfections of
the modulation and coding schemes. In what follows, c = 1
is taken for simplicity.

Since the radio resource in the system is assumed to be
distributed equally between all of the users, the bandwidth
share actually available2 to the Rx located at x is Bi = B/N ,
where N is a discrete random variable (RV) having a Poisson
distribution with the density of λNπx2 per considered area of
interest. To obtain the SNR S(x), the mmWave propagation
model in [38] is employed by defining as s0(x) the SNR asso-
ciated with the LoS state and as s1(x) the SNR associated with
the nLoS state. The aggregate SNR is a two-valued discrete
RV taking the values of si(x), i = 0, 1, with the probabilities
corresponding to the fraction of time spent in the non-blocked
(E[Tl]) and blocked (1 − E[Tl]) state, respectively. The RVs
Bi and S(x) are independent and their joint probability mass
function (pmf) is derived as the product of the individual pmfs.

Once this joint pmf is obtained, one may proceed with
determining the mean capacity R(xc) that is provided to a
user located at the cell edge xc as

E[R] =
∞∑

N=1

(λNπx
2
c)
N (e−λNπx

2
c)

N !

×
(
E[Tl]c

B

N
log[1 + s0(xc)]

+ (1− E[Tl])c
B

N
log[1 + s1(xc)]

)
, (26)

which can be evaluated numerically.
The mean capacity made available to a user located at the

cell edge xc is reported in Fig. 9 for different user and blocker

2Note that instead of equal division of the bandwidth, more sophisticated
resource allocation strategies can be enforced providing a certain degree of
trade-off between fairness of per-user rates and aggregate system capacity,
e.g., max-min, proportional fairness, weighted α-fairness, see [40].
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intensities. It is a function of the cell radius as well as the
user and blocker intensities. The rest of the parameters are
collected in Table II. In Fig. 9(a), the density of the users is
set as λN = 0.01 users/m2, and the height of the mmWave
Tx is assumed to be hT = 10 m. As an example, these
plots correspond to the third scenario of interest. As one may
observe, the mean data rate decreases as the cell range and/or
the arrival intensity of blockers grows. It should be noted
that for equal density of users and cell radius, increase in the
density of human blockers leads to the drop in the mean data
rate. Provided with a particular target data rate, one may use
Fig. 9 to estimate the maximum cell radius for given blocker
and user intensities, such that the chosen data rate is made
available to all of the mmWave users.

In addition to the above, the analytical formulation for the
mean data rate R(x) of each user in the cell is given as

E[R] =
∞∑

N=1

(λNπx
2)N (e−λNπx

2

)

N !
c
B

N

×
∫ xc

0

(
E[Tl(x)] log[1 + s0(x)]

+ (1− E[Tl(x)]) log[1 + s1(x)]
)
fXU (x)dx, (27)

where fXU (x) = 2x/x2c is the pdf of the distance XU between
Tx and Rxs uniformly distributed in the cell of the radius xc,
while the fraction of time in non-blocked state is obtained by
using (10) and (13) as

E[Tl(x)] =
1

exp(λE[T ])
, (28)

where E[T ] is the mean residence time.
The mean rate of a randomly selected user in the cell is

illustrated in Fig. 10. As one may observe, increasing the
arrival intensity of blockers entering the unit area of the LoS
blockage zone, λS , does not drastically affect the mean rate
of a randomly selected user, as opposed to the mean rate at
the cell edge.

The main points of the cell range analysis are summarized
below:
• It is demonstrated that higher intensity of blockers de-

creases the mean rate of the user at the cell edge. By
increasing the cell radius, the impact of the intensity of
blockers becomes stronger, e.g., at the cell edge of 30 m

the mean rate of a user is decreased by 1.7 times when
the intensity grows by 10 times. However, when the cell
radius is 100 m, the mean rate is 30 times lower.

• The mean rate of an arbitrarily chosen user decreases with
the increased intensity of blockers. However, the effect of
cell coverage on the mean rate is rather limited for all the
considered intensities, e.g., 10 times higher intensity of
blockers in the cell of radius 30 m decreases the mean
rate by a factor of 1.05, whereas the same increase for
100 m radius cell decreases the mean rate by 1.3.

C. System-Level Simulation Complexity

Today, the performance of complex wireless systems is
primarily assessed within large-scale system-level simulation
(SLS, see e.g., [41]) environments. The proposed mathematical
model can be efficiently utilized as part of an SLS tool
to substitute for the need to explicitly model the blockage
process. This may drastically improve the simulation run
times, especially in highly crowded urban scenarios.

In Table III, the computation complexity measurements is
reported in terms of the SLS run time as a function of the
blocker arrival intensity and the environment update interval,
TU for the two cases: (i) direct simulation of the blockage
process and (ii) application of the proposed model. From the
SLS perspective, the environment update interval corresponds
to how frequently the state of the users is monitored. In the
latter case, each user has been associated with the pdf of the
non-blocked and blocked intervals, thus implying that there is
a need to update its state whenever the said interval expires.
In the former direct modeling approach, at each environment
update interval, one has to re-estimate the state of the users
by employing the straightforward geometry considerations.
Doing so significantly increases the computation complexity
of the SLS evaluation, especially in dense environments. The
experiments were conducted for the following parameters: the
distance between the mmWave AP and the user is r0 = 10 m
and the blocker speed is V = 1 m/s. The simulation time was
set to 50 s, while the hardware parameters were Intel Core
i7-6700HQ CPU, 2.60 GHz (1 core run), and 32 GB RAM.

As it can be established by analyzing Table III, the complex-
ity of both simulation and analysis grows as the environment
update interval decreases. Even though the simulation run time
does not depend on the blocker density (nor on the distance
between the mmWave AP and the Rx), the SLS modeling
complexity increases with a higher number of blockers. This

TABLE III
ABSOLUTE RUN TIME MEASUREMENTS IN SLS EVALUATION, S.

Tu, ms
λI , bl./s. 0.1 0.3 0.5 0.7 1.0

100 simulation 0.101 0.215 0.532 0.860 0.928
analysis 0.250 0.272 0.243 0.256 0.292

70 simulation 0.208 0.290 0.820 1.356 2.801
analysis 0.342 0.398 0.287 0.316 0.351

50 simulation 0.581 1.012 1.91 3.282 5.982
analysis 0.681 0.538 0.369 0.694 0.499

10 simulation 1.211 3.921 5.867 7.119 10.92
analysis 2.968 3.690 1.762 2.774 2.104

1 simulation 10.28 21.40 54.91 78.92 1.24e2
analysis 22.64 18.18 23.98 19.09 22.11
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is because the computation complexity is associated with the
need to characterize an intersection with every blocker to
determine the current state of each user. For the SLS results
reported in this work, the blockers are deployed at the edge
of the modeled scenario and move across the street. From the
simulation perspective, computation complexity grows linearly
as blocker arrival intensity increases, i.e., the overall modeling
complexity is O(n). Although the use of sophisticated tech-
niques, such as spatial hashing, may reduce the complexity
down to O(log(n)) at the expense of more cumbersome
implementation, the resulting complexity would still grow
rapidly for higher user densities. In stark contrast, with the
proposed analytical modeling, the complexity remains constant
at O(1). Finally, with the decreasing update interval TU , both
analytical and simulation complexity grow linearly (O(n)).
However, it may not be as important, because the value of
TU <1 ms is seldom used in practical systems.

VI. CONCLUSIONS

This work is aimed at a systematic characterization of
the effects caused by the LoS blockage in cellular mmWave
systems in presence of mobile blockers. To this end, three
representative urban scenarios – as discussed in the current
3GPP specifications – were considered. The underlying pro-
cess in the proposed mathematical approach was shown to
be of alternating renewal nature, where non-blocked periods
interchange with blocked intervals. The distribution of the non-
blocked intervals was characterized by a simple memoryless
exponential formulation, while the blocked periods were estab-
lished to follow a general distribution. As example applications
of the model, the height optimization of the mmWave AP, the
mmWave cell range analysis, and the system-level modeling
complexity reduction were considered.

Relying on the developed mathematical methodology, the
impact of the LoS blockage is analyzed by establishing that
the mean time in the blocked state is around 400-1000 ms for
the typical input parameters, which amounts to a significant
number of mmWave cellular superframes (around 20-50 ac-
cording to [2]). Moreover, a strong temporal correlation for
the timescales of interest in mmWave systems (i.e., less than
about a second) was demonstrated. The contributed temporal
analysis could be useful for modeling human body blockage
in the mmWave-specific system-level evaluation tools as well
as when designing the mmWave-centric communication pro-
tocols.

APPENDIX A
RESIDENCE TIME IN THE LOS BLOCKAGE ZONE

Here, the CDFs of the residence time in the LoS blockage
zone is derived for the sidewalk 2 and the park/square/stadium
scenarios (see Fig. 2).

Second scenario, S2. Consider the sidewalk 2 scenario.
Here, the main difference as compared to the sidewalk 1
scenario is in that the users tend to move closer to the central

lane of the street. We model this effect by using the triangular
distribution with the following CDF

FY (x) =





0, x ≤ 0,
x2

wSc
, 0 < x ≤ c,

1− (wS − x)2

wS(wS − c)
, c < x ≤ wS ,

1, x > wS ,

(29)

where c is the mode of the triangular distribution, which
denotes the point with the highest probability density.

The distribution of distance, which is traveled by a blocker
in the blockage zone, depends on the position of the LoS
blockage zone with respect to the mode of the triangular
distribution. The following five different cases are observed:

1) If yC ≤ c:

F 2,1
L (x) =





0, x ≤ 0,
x sin(2α)

yC − yA
, 0 < x ≤ xmin,

1, x > xmin.

(30)

2) If yC − ymin ≤ c < yC , ymin = xmin cos(α) sin(α):

F 2,2
L (x) =





0, x ≤ 0,
sin(2α)(4c(yA+yC)−wS(x sin(2α)+4(c+yA)))

4wS(y2A+c(c−2yC))+c(y2C−y2A)
,

0 ≤ x < yC−c
sin(α) cos(α) ,

wS(c−yC)2+x sin(2α)(c−wS)(yA+yC)
wS(y2A+c(c−2yC))+c(y2C−y2A)

,
yC−c

sin(α) cos(α) < x ≤ xmin,
1, x > xmin.

(31)

3) If yA + ymin ≤ c < yC − ymin:

F 2,3
L (x) =





0, x ≤ 0,
x sin(2α)(4c(yA+yC)−wS(x sin(2α)+4(c+yA)))

4(wS(y2A+c(c−2yC))+c(y2C−y2A))
,

0 < x ≤ xmin,
1, x > xmin.

(32)

4) If yA ≤ c < yA + ymin:

F 2,4
L (x) =





0, x ≤ 0,
x sin(2α)(4c(yA+yC)−wS(x sin(2α)+4(c+yA)))

4(wS(y2A+c(c−2yC))+c(y2C−y2A))
,

0 < x ≤ c−yA
sin(α) cos(α) ,

wS(c−yA)2+xc sin(2α)(yA+yC−2wS)
wS(y2A+c(c−2yC))+c(y2C−y2A)

,
c−yA

sin(α) cos(α) < x ≤ xmin,
1, x > xmin.

(33)

5) If c ≤ yA:

F 2,5
L (x) =





0, x ≤ 0,
x sin(2α)
yC−yA , 0 < x ≤ xmin,

1, x > xmin.

(34)
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For the second scenario, the arrival intensity of the blockers
that enter the LoS blockage zone is given by

λ = λI

(
FY (yC)− FY (yA)

)
. (35)

The above may be explained by the fact that the majority
of blockers cross the width of the sidewalk in the middle
by following the triangular distribution for the entry point.
Therefore, the Poisson process in time has the arrival intensity
of blockers emerging at the effective width per time unit, wE ,
equal to λ as derived in (35).

Third scenario, S3. Finally, for the park/stadium/square
scenario, the CDF of distance walked by a blocker in the
blockage zone is given by

F 3
L(x) =





0, x ≤ 0,

w1F
3,1
L (x) + w2F

3,2
L (x),

0 < x ≤
√
d2m + r2,

1, x >
√
d2m + r2,

(36)

where the weights w1 and w2 are the probability for a blocker
to enter from the long side (AD or CB, see Fig. 3) and to
leave from another long side (AD or CB), and the probability
for a blocker to enter from the short side (DC) and to leave
from the long side (AD or CB), respectively, which are given
by

w1 =
d2m + 3dmr

d2m + 3dmr + 2r2
,

w2 =
2r2

d2m + 3dmr + 2r2
, (37)

and the corresponding CDFs are

F 3,2
L (x) =





0, x ≤ dm,
d2m−x2+2r

√
x2−d2m

r2 ,

dm < x ≤
√
d2m + r2,

1, x >
√
d2m + r2,

(38)

and

F 3,1
L (x) =





0, x ≤ 0,
πx2

4rdm
, 0 < x ≤ min(r, dm),

1
2rdm

(min(r, dm)
√
x2 −min(r, dm)2

+x2 arcsin(min(r,dm)
x )),

min(r, dm) < x ≤ max(r, dm),
1

2rdm
(min(r, dm)

√
max(r, dm)2 −min(r, dm)2

+dm(
√
x2 − d2m −

√
max(r, dm)2 − d2m)

+r(
√
x2 − r2 −

√
max(r, dm)2 − r2)

+ max(r, dm)2(arccos( r
max(r,dm) )

+ arcsin( min(r,dm)
max(r,dm) )− arcsin( dm

max(r,dm) ))

+x2(arcsin(dmx )− arccos( rx ))),

max(r, dm) < x ≤
√
d2m + r2,

1, x >
√
d2m + r2.

(39)

The arrival intensity of the blockers that enter the zone,
which affects the LoS for the third scenario, is then λ = λI .
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Line-of-Sight Probability for mmWave-based UAV
Communications in 3D Urban Grid Deployments

Margarita Gapeyenko, Dmitri Moltchanov, Sergey Andreev, and Robert W. Heath Jr.

Abstract—The network operators will soon be accommodat-
ing a new type of users: unmanned aerial vehicles (UAVs).
5G New Radio (NR) technology operating in the millimeter-
wave (mmWave) frequency bands can support the emerging
bandwidth-hungry applications facilitated by such aerial de-
vices. To reliably integrate UAVs into the NR-based network
infrastructure, new system models that capture the features of
UAVs in urban environments are required. As city building
blocks constitute one of the primary sources of blockage on
the links from the UAV to its serving base station (BS), the
corresponding line-of-sight (LoS) probability models are essential
for accurate performance evaluation in realistic scenarios. We
propose a LoS probability model in UAV communication setups
over regular urban grid deployments, which is based on a
Manhattan Poisson line process. Our approach captures different
building height distributions as well as their dimensions and
densities. Under certain characteristic distributions, closed-form
expressions for the LoS probability are offered. Our numerical
results demonstrate the importance of accounting for the building
height distribution type as well as the orientation of the UAV with
respect to its BS. By comparing our model with the standard ITU
and 3GPP formulations, we establish that the latter provide an
overly optimistic approximation for various deployments.

Index Terms—3D LoS probability, urban grid deployment,
mmWave radio, UAV communication, 5G NR technology

I. INTRODUCTION

According to recent studies, millimeter-wave (mmWave)
communication promises to support connectivity between un-
manned aerial vehicles (UAVs) and their serving radio infras-
tructure [1], [2]. With larger available bandwidths, mmWave
transmission enables UAV-based applications and services that
require high data rates, such as real-time video transfer, area
surveillance, and many more. As mmWave bands are embraced
by 5G New Radio (NR) access technology, the latter is
expected to accommodate a new type of UAV users [3]–[5].
However, the incorporation of specific UAV features, such
as their three-dimensional (3D) mobility, introduces further
challenges and requires modifications to the existing channel
models [6], [7].

One of the essential roadblocks for arranging seamless UAV
support in mmWave-based 5G NR systems is the blockage
of line-of-sight (LoS) radio propagation paths. As UAVs are
envisioned to be utilized in city deployments [8], buildings
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sity, Tampere, Finland (e-mail: firstname.lastname@tuni.fi)
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constitute a major source of LoS blockage for the UAV to base
station (BS) links [9]. The penetration losses on mmWave links
occluded by a building may reach up to 40 dB [10], which can
cause frequent and harmful service interruptions. As a result,
characterizing the LoS blockage probability is a timely and
important problem in the field.

The challenge of LoS blockage by buildings in urban
deployments has been addressed in the literature, where several
models were ratified by 3GPP and ITU-R [11], [12]. However,
as we review in Section II, most of these earlier efforts
consider fixed building heights and/or widths as well as
randomized building layouts. These deployment parameters
may significantly affect the resultant LoS probability, espe-
cially in urban grid scenarios. Moreover, some of the past
models do not allow for simple closed-form solutions for
the LoS probability that are suitable for further performance
assessment of the prospective UAV deployments with system-
level evaluations.

In this work, we develop an analytical model to derive
the LoS probability for both fixed UAV locations and the
cases where the UAVs are distributed uniformly over the BS
coverage area. We consider a regular urban grid deployment of
building blocks captured by a Manhattan Poisson line process
(MPLP) having generally distributed building heights. For the
fixed UAV location case, we produce a closed-form expression
for the LoS probability under certain characteristic distribu-
tions of building heights. Our proposed model is capable of
assessing the impact of urban grid deployment type on the
LoS probability for the UAV to BS connections. Further, we
systematically study the effects of the building heights and
densities on the links between the UAV and its serving BS.

The main contributions of this work are the following.
• We propose a novel mathematical model that captures the

essential details of 3D urban grid deployments to assess
the existence of the LoS BS-to-UAV path. The developed
model provides the LoS probability as a closed-form solu-
tion for a set of well-known building height distributions.

• Our performance evaluation campaign demonstrates that
the LoS probability is highly sensitive to the (i) type of
the urban grid deployment, (ii) form of the building height
distribution, and (iii) UAV location with respect to the BS.

• Our comparison of the proposed model with the existing
standardized formulations (e.g., those by 3GPP and ITU-
R) indicates that the latter offer an overly optimistic
approximation for the UAV LoS probability for a range
of various deployments.

The rest of this text is organized as follows. In Section II,
we provide a brief account of the related studies. Further,
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in Section III, our system model is outlined together with
its main components. In Section IV, the respective analysis
method is developed. We study the effects of the key system
parameters on the UAV LoS blockage probability in Section V.
The conclusions are offered in the last section.

II. RELATED WORK

In this section, we provide a literature review related to the
blockage in general. We then give a comprehensive description
of the LoS blockage models available to the academia and
standardization bodies.

A. Blockage Modeling

According to the IMT-2020 requirements [13], the channel
models for the bands of above 6 GHz should have accurate 3D
space-time characteristics in LoS and non-LoS (nLoS) condi-
tions. Different types of blockage may transition the channel
state from LoS to nLoS, namely: (i) self-body blockage, e.g.,
head of a user; (ii) small-scale blockage, e.g., vehicle or human
body; and (iii) large-scale blockage, e.g., buildings.

In [14], the study delivered a model characterizing self-body
blockage via a cone blockage approach. In [15], the authors
proposed a method to calculate the probability of blockage
caused by human bodies, where humans are distributed uni-
formly over the area. Application of stochastic geometry tools
allowed to capture more comprehensive human-body blockage
scenarios. For example, in [16], the proposed model simulta-
neously accounted for link blockage, transmission directivity,
and vertical or horizontal directionality of transmit and receive
antennas in mmWave UAV-to-ground communication scenar-
ios. In [17], a coverage analysis was offered, while in [18],
an overview of mathematical models for mmWave system
modeling was provided.

There are two inherent properties of the reviewed models
that allow for in-depth analysis: (i) distance between the BS
and the user equipment (UE) is assumed to be much larger as
compared to the dimensions of blockers and (ii) humans are
distributed irregularly over the landscape. The latter property
permits to utilize purely random models of UE locations, such
as Poisson Point Process (PPP), while the former one does
not force to count the exact number of blockers that may or
may not occlude the LoS propagation path. However, these
two properties do not hold for large-scale blockage. Below,
we conduct a review of the existing LoS probability models
that consider large-scale blockage and complete this section
by indicating the gap that the proposed model can fill in.

B. Large-Scale Blockage

There has been extensive work to estimate, analytically eval-
uate, or otherwise compute the LoS probability due to block-
age by buildings. The research back from 1984 [19] proposed
a mathematical formulation to derive the LoS probability in
built-up areas for a receiver (Rx) to transmitter (Tx) pair. The
proposed framework [19] relied on an analysis of the mean
free path of moving particles in randomly distributed targets.
The resultant LoS probability was calculated for the scenario

where buildings are located along the X-axis between the
Tx and the Rx, and under exponentially distributed building
heights.

Further, in [20], the scenario considered a link between a
ground user and a satellite. That study addressed the blockage
arising from the buildings directly adjacent to the Rx because
of the high altitudes of satellites. Hence, the derivation of the
LoS probability was reduced to an integration of the building
heights. The work in [21] considered the Fresnel zone to
derive the LoS probability. For this purpose, a single knife-
edge diffraction model was employed to identify the radius of
the Fresnel zone and thus characterize the LoS probability.

The recent studies of terrestrial mmWave users actively
considered the LoS probability due to its significant role in
mmWave communication scenarios [18]. Particularly, the re-
search in [22] contributed an analytical framework to establish
the LoS probability for Tx to Rx links in an irregular de-
ployment of buildings. The latter was represented as random-
sized rectangles with the centers forming a PPP on a plane.
The proposed approach argued for a reasonable approximation
of the LoS probability in the scenarios where deployment is
irregular, e.g., a university campus.

Later, the research in [23] contributed the LoS probability
for air-to-everything links in a scenario with randomly dis-
tributed screens by following a similar approach as in [22].
The screens were representative of buildings with their height
disregarded in the derivations. To further simplify the LoS
modeling and provide a closed-form expression for the LoS
probability, the work in [24] demonstrated the so-called LoS
ball model. Accordingly, there is a circular area of a certain
radius around the BS, where there is LoS with probability 1.
Otherwise, there is link blockage for the Rx located outside
of this radius.

The study in [25] proposed a frequency-dependent LoS
probability model for a scenario with randomly-dropped
cuboid buildings and uniformly-distributed building heights.
That work also considered the first Fresnel zone and delivered
the LoS probability in its integral form. Closed-form solutions
were obtained for a number of special cases of interest
including the situation where there is no height difference
between the Tx and the Rx.

Not limited to irregular urban deployments, a number of
studies addressed regular urban grids. In [26], the derived
framework captured an urban grid with the MPLP wherein
its lines represented the streets. Due to the features of the
considered setup, where the user height was assumed to be
shorter than the building height, the model imposed LoS
conditions whenever a user was located on the street where
the BS was deployed. However, this approach is not directly
applicable to the UAV users as their altitudes of flight are
comparable to the heights of buildings and cannot be ignored.

In [27], the authors contributed system-level simulation
results for LTE and mmWave-based systems that support
UAVs. That study was based upon real-world data from the
city of Gent. Particularly, it reported the LoS probability
between the terrestrial BSs and the UAV as a function of the
UAV height derived from simulation data. The research in [28]
proposed a method for deriving the LoS probability based on a
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point cloud collected with a scan laser, where it was checked
whether any point fell into the Fresnel zone of a BS-to-UE
link. The methodology in question was applied to both open-
square and shopping-mall scenarios for gathering the data and
fitting them into an exponential LoS probability model.

A large-scale measurement campaign for the LoS proba-
bility was performed in [29] by using a ray-tracing approach.
Similarly to [28], the obtained statistical data were fitted to the
model. A limitation of these past studies is in the amounts of
time required to conduct measurement campaigns, ray-tracing
studies, or system-level simulations on the city-wide scales and
with varying parameters, such as BS and building heights, etc.

C. UAV LoS Modeling by 3GPP and ITU-R

ITU-R and 3GPP also considered an urban grid deploy-
ment as part of their efforts. Particularly, ITU-R P.1410 [12]
addressed the frequency range of 20 to 50 GHz. The LoS
probability was defined as PITU

LoS(r, hT, hR, α, β, γ), which is
the probability that the Tx-to-Rx link is not occluded by a
building. The input parameter r is the two-dimensional (2D)
distance in kilometers between the Tx and the Rx, hT and hR
are the Tx and Rx heights, respectively. The value of α is the
fraction of the area covered by buildings to the total area, β
is the average number of buildings per unit area, and γ is a
height distribution parameter.

To simplify the notation, we further employ PITU
LoS as the ITU

LoS probability, which is given as

PITU
LoS =

m∏

n=0


1− exp


 (hT − (n+ 1

2 )(hT−hR)

m+1 )2

2γ2




 , (1)

where m = br
√

(αβ)c − 1 is the number of buildings in-
between Tx and Rx. The work in [30] considered this model
for the air-to-ground LoS probability modeling. One of the
limitations of this formulation is that it assumes the building
bases to be perpendicular to the LoS projection between the
Rx and the Tx onto <2. Even though the model accounts
for different mean heights of Tx and Rx, it captures neither
alternative building height distributions nor the LoS angle of
departure (AoD). Finally, the output of this modeling is only
available in the product-form, which limits its applicability.

To broadly characterize the UAV-based scenarios, 3GPP in
TR 36.777 [11] proposed a LoS probability model for the
link between the UAV and the BS. It distinguishes various
deployment types by delivering separate dedicated solutions.
The structure of this model is different for various heights
of the BS and the UAV. Below, we provide an example for
the UMi street canyon LoS model P3GPP

LoS (`2D, hR), which is
applicable for hT = 10m and the UAV heights in the range
of 22.5m < hR < 300m. The input parameter `2D is the 2D
distance in meters between the UAV and the BS.

We further employ P3GPP
LoS as the 3GPP LoS probability that

is defined as follows1

P3GPP
LoS =

{
1, `2D ≤ d,
d
`2D

+
[
1− d

`2D

]
exp

[
−`2D
p1

]
, `2D > d,

(2)

where the variables p1 and d are given as

p1 = 233.98 log10(hR)− 0.95,

d = max(294.05 log10(hR)− 432.94, 18). (3)

The precomputed parameters of the 3GPP LoS model do not
permit to alter the deployment dimensions, such as building
heights or densities. Furthermore, 3GPP provided the LoS
model for a fixed BS height.

To summarize, when considering the UAV-to-BS operation
in typical urban deployments, one cannot assume purely
stochastic deployments of blockers as cities typically follow
semi-regular street layouts. Moreover, the sizes of blockers
are then comparable to the lengths of the propagation paths.
Hence, one needs to explicitly consider each potential blocker
and its position with respect to the LoS path. Finally, as
the UAV height is comparable to the heights of buildings
(in contrast to the terrestrial users), the latter cannot be
disregarded in the LoS blockage modeling.

Despite several studies completed to date, there are no LoS
probability models that simultaneously capture the features of
a regular urban grid deployment, the planar urban geometry,
and the building height distribution. As many of the civil UAV-
based applications, such as video monitoring and package
delivery, are more relevant in urban deployments, the intended
LoS link blockage analysis in the corresponding environment
becomes essential.

Having an accurate LoS probability model as part of system-
level analysis allows to calculate the metrics of interest
more carefully and thus assess the operation of a UAV-
ready network. The system-level simulation times in UAV-
centric scenarios may be reduced dramatically by avoiding
exact modeling of the city deployment and instead employing
analytical LoS probability values. In what follows, we propose
a new LoS model that captures the said parameters, assess
their effects, and compare the results against those for the
formulations ratified by 3GPP and ITU-R.

III. SYSTEM MODEL

In this section, we introduce the considered urban grid
deployment. We then specify additional assumptions on the
locations of the communicating entities and define the metrics
of interest. The main parameters are collected in Table I.

A. Urban Grid Layout

We consider an urban grid setup illustrated in Fig. 1. It
assumes that the mean side of a building block is equal to
µb and the mean street width is µs. To capture a Manhattan-
type urban grid deployment, we utilize a commonly-employed
MPLP [26] as shown in Fig. 1(b). This process is specified by

1For different BS heights, hT, 35 m for RMa-AV, 25 m for UMa-AV, refer
to Table B-1, TR 36.777. For hR below 22.5 m, the UMi model in Table
7.4.2-1 of TR 38.901 becomes applicable.
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two one-dimensional (1D) homogeneous PPPs along the X-
and Y -axis with the intensity λ = 1/(µb + µs) and the origin
at point O. The points generated by the PPPs are the origins
of the streets displayed as parallel straight lines in Fig. 1(b).

We assume that the line segment between two neighboring
points along the X- and Y -axis contains the side of a building
block (hereinafter referred to as “block”) in the proportion of
µb/(µb + µs), while the remainder is the street. As demon-
strated in Fig. 1(b), the resultant rectangles represent buildings.
They act as potential blockers for the LoS path between the BS
and the UAV. The height of each block is a random variable
(RV) HB with the probability density function (pdf) fHB(h)
and the cumulative distribution function (CDF) FHB(h).

B. Network Deployment

Further, we consider the locations of the BS and the UAV
in our urban grid layout as illustrated in Fig. 1(a). We assume
that the BS is deployed along the street named a typical street.
The location ground point of the BS is point T and the height
is hT. The UAV is placed at point R and at height hR. We
assume that the UAVs cannot be located inside buildings. The
building always remains below the UAV in the case where their
2D positions coincide. There are two commonly considered
BS locations in urban grid deployments, which are studied in
our work [31]:
• The BS is placed at the intersection of two perpendicular

typical streets with a constant width of wh and wv. In this
scenario, the origin of the urban grid is located Khwh
and Kvwv away from the BS position as depicted in
Fig. 2(a). The coefficients Kh and Kv in the range of
(0, 1) represent the relative position of the BS along the
typical street, e.g., Kh = Kv = 0.5 refers to the BS
located at the center of the intersection.

• The BS is placed on the typical street with a constant
width of wv. In this scenario, the origin of the urban grid
is Kvwv away from the BS position as shown in Fig. 2(b).

TABLE I
SUMMARY OF NOTATION AND PARAMETERS

Notation Description
hT BS height
hR UAV height
HB Building block height
fHB (h) pdf of building block heights
FHB (h) CDF of building block heights
`2D 2D distance between BS and UAV
φD LoS AoD
λ Intensity of points along X- and Y -axis
wh, wv Width of horizontal and vertical typical streets
Kh, Kv BS position coefficients on horizontal/vertical streets
h0

m LoS height at the intersection point with the first contact side
hxm(x) LoS height at the intersection point with the vertical sides
hym(y) LoS height at the intersection point with the horizontal sides
x0, lx x-coordinates of the first two LoS projections on X-axis
y0, ly y-coordinates of the first two LoS projections on Y -axis
ps Probability of UAV being located on a typical street
R Cell radius
fΦ(φD) pdf of LoS AoD
fL(l2D) pdf of BS to UAV 2D distance
PLoS LoS probability
P∗

LoS Area LoS probability

hT

hR

HB

BS

UAV

R

(a) 3D view of our scenario

x

y

y0
wh

wv

x0
φD

UAV

T

R

O

K
hw

h

Kvwv

Building block

Typical street

2D

x

y

(b) 2D view of our scenario

Fig. 1. 3D and 2D urban grid snapshots for analytical modeling. BS base is
located at point T . UAV having base projection R onto 2D plane is separated
by `2D 2D distance from BS. Points along X- and Y -axis represent starting
points of streets generated according to PPP with intensity λ.

We note that if Kh = Kv = 0.5, our scenario becomes fully
symmetric. In this work, we also consider the BS coverage as
a circle of radius R on the plane, see Fig. 1.

C. LoS Blockage

We proceed with the conditions leading to blockage of the
BS-to-UAV link by buildings. Here, a LoS blockage decision
is made based on an occlusion of the optical LoS. Therefore,
a blockage occurs if at least one building that intersects the
LoS is higher than the optical BS-to-UAV LoS path.

Note that the LoS projection on the 2D plane TR can only
cross the 2D projection of the left (perpendicular to the X-
axis) and bottom (parallel to the Y -axis) sides of the blocks.
We thus consider only the sides that actually affect the LoS
blockage. We further refer to the side that is the first one to
intersect with TR as the contact side. The LoS 2D projection
TR can in fact intersect only one contact side of the block
that it interacts with.

We continue with UAV placement in the considered de-
ployment. For certainty, we consider the UAV located at any
point of the first quadrant. Observe that such analysis is similar
to that for other quadrants. Further, UAV location parameters
Kh = Kv = 0.5 make our setup fully symmetric. We also
require the height of the UAV to always remain above the
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height of the block if its position coincides with this block.
The latter forces the UAV to reside in the LoS or nLoS state
depending on the blockage from buildings along the LoS path
between the BS and the UAV. The 2D distance from the BS
to the UAV is denoted as `2D, while the LoS AoD is φD as
displayed in Fig. 1(b).

D. Metrics of Interest

We conclude with a description of two metrics of inter-
est, which are considered in our mathematical modeling. To
characterize communication between the UAV and the BS
in different urban deployments, we first address the LoS
probability parameter. To capture the UAV inside the BS
coverage, we then calculate the area LoS probability.

Definition 1. The LoS probability is the probability that the
height of every building with its base intersecting the LoS link
projection is lower than the height of the LoS link between the
BS and the UAV at the point of their intersection.

Therefore, for a fixed UAV location, we derive the LoS
probability conditioned on the urban grid deployment, the
UAV height, the UAV-to-BS separation distance, and the AoD
value. This parameter of interest can be incorporated into fur-
ther system-level analysis of UAV networks. Comprehensive
performance evaluation of such setups aims at demonstrating
the capability of wireless networks to accommodate UAV
users.

Definition 2. The area LoS probability is the probability
that the LoS link between the UAV (distributed randomly and
uniformly within the BS coverage of radius R) and the BS is
not occluded by any building with its base intersecting the LoS
link projection on a 2D plane.

We evaluate the area LoS probability within the region of
radius R, where R can be selected, e.g., based on the BS
density. The latter parameter of interest provides insights into
whether the current BS deployment is sufficiently provisioned
to support the UAVs. If the area LoS probability is low, one
may adjust the inter-site distance between the BSs by reducing
their coverage radius. Another option is to consider different
BS heights for supporting aerial users.

IV. PROPOSED ANALYSIS

In this section, we derive the two metrics of interest based
on the system model and the assumptions introduced above.
Below, we briefly outline our approach and then proceed
by calculating the UAV LoS probability and the area LoS
probability.

A. Methodology at Glance

To determine the LoS probability, PLoS, it is sufficient to
establish the probability that the 2D projection of the LoS
path, TR, does not intersect a block, whose height is higher
than the LoS height at the point of intersection. We then need
to determine all the contact sides of TR by specifying the
probability that the height of the building side at 2D distance
of x is lower than the height of LoS at x, Pr{HB < hxm(x)}.

We continue with determining the number of intersections
of TR with the contact sides. Even though there is a number
of sides for every line perpendicular to the X-axis, the TR can
in fact intersect only one of them. Therefore, the number of
intersections of TR with the contact sides perpendicular to the
X-axis equals the number of points on the X-axis generated
between the points T and R. The same holds for the sides
perpendicular to the Y -axis.

Hence, to determine the LoS probability, there is no need
to iterate over all of the possible combinations of blocks. To
preserve analytical tractability, we recall that the width of the
street is significantly smaller than the width of the block side.
Consequently, we assume that the LoS path always intersects
the side of the block. In Section V, we numerically confirm
that this simplification does not impact the results significantly.

After identifying the number of intersections of TR with
the contact sides, we consider the actual LoS probability. For
an UAV to experience the LoS conditions, all the contact
sides intersecting the LoS path need to be lower than the LoS
height at the point of their intersection. Hence, to determine
the effective density of points occluding the LoS path, one has
to thin the PPP with the probability of side height being above

R

φD,2

φD,1
θh,1

θv,1

Urban gridBS coverage

BS

O

Kvwv

Khwhwh

wv

(a) BS located at intersection

BS

R

φD,2

θv,1

Urban grid

O

BS coverage

wv

Kvwv

(b) BS located on street

Fig. 2. UAV is located randomly within BS coverage of radius R. Coefficients
Kh and Kv in (0,1) determine BS location on typical streets. UAV located
outside of typical streets has LoS AoD (φD,1, φD,2).
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the LoS path, which leads to a non-homogeneous PPP.
Further, using the void probability of the resulting non-

homogeneous PPP, one may determine the probability that
there are no sides occluding the LoS path. The only exception
to this procedure is that one also needs to account for the first
contact side. The latter is the first side to be intersected by
TR, which is located at a fixed distance from the BS position.

B. Main Formulations

In this subsection, we derive our main results including the
LoS probability and the area LoS probability.

Proposition 1. The LoS probability, PLoS(`2D, φD), for the
general distribution of building heights is given below. The
expression employs FHB(h) as the CDF of the block heights.
FHB

(
h0

m(`2D, φD)
)

is the probability that the first contact side
height is lower than the LoS height, h0

m(`2D, φD), at the point
of their intersection.
FHB

(
hxm(x, `2D, φD)

)
and FHB

(
hym(y, `2D, φD)

)
are the

probabilities that the sides perpendicular to the X- and
Y -axis are lower than the LoS heights, hxm(x, `2D, φD) and
hym(y, `2D, φD), at the point of their intersection, respectively.

PLoS(`2D, φD) = FHB

(
h0

m(`2D, φD)
)
×

exp

(
− λ

`x∫

x0

[
1− FHB

(
hxm(x, `2D, φD)

)]
dx−

λ

`y∫

y0

[
1− FHB

(
hym(y, `2D, φD)

)]
dy

)
. (7)

Proof. First, we determine the distances from the point T to
the first and the second endpoints of the TR projection on the
X- and Y -axis, x0, `x and y0, `y as illustrated in Fig. 1(b) and
is given below. These expressions contain the parameters Kv
and Kh, which are the coefficients related to the position of
the BS on the typical vertical and horizontal streets, wv and
wh that are the widths of such streets, and φD as the LoS AoD.

x0 = max
(
Kvwv,Khwh cot(φD)

)
,

`x = `2D cos(φD),

y0 = max
(
Khwh,Kvwv tan(φD)

)
,

`y = `2D sin(φD). (8)

To derive the CDF FHB

(
hxm(x, `2D, φD)

)
), one has to obtain

the LoS height at the points of intersection with the sides
perpendicular to the X-axis as a function of the 2D TR
projection on the X-axis, x. From the model geometry, the
latter is calculated as

hxm(x, `2D, φD) =
x(hR − hT) + hT`2D cos(φD)

`2D cos(φD)
. (9)

Similarly, to find the CDF FHB

(
hym(y, `2D, φD)

)
, we estab-

lish the LoS height at the points of intersection with the sides
that are perpendicular to the Y -axis as a function of the 2D
TR projection on the Y -axis, y as

hym(y, `2D, φD) =
y(hR − hT) + hT`2D sin(φD)

`2D sin(φD)
. (10)

The LoS height at the point of intersection with the first
contact side for the CDF FHB

(
h0

m(`2D, φD)
)

is provided below
as

h0
m(`2D, φD) =

x0(hR − hT)

`2D cos(φD)
+ hT. (11)

Recalling the PPP properties [32], the probability that there
are no sides perpendicular to the X-axis, which are higher
than the LoS at the point of their intersection is derived by
using the void probability of the thinned PPP, i.e.,

p
(x)
nB (`2D, φD) =

exp

[
− λ

`x∫

x0

(
1− FHB

(
hxm(x, `2D, φD)

))
dx

]
. (12)

Similarly, the probability that there are no sides perpendic-
ular to the Y -axis, which are higher than the LoS, is given
by

p
(y)
nB (`2D, φD) =

exp

[
− λ

`y∫

y0

(
1− FHB

(
hym(y, `2D, φD)

))
dy

]
. (13)

The probability that the first contact side does not occlude
the LoS is readily available by using the block height distri-
bution in the form

p
(0)
nB (`2D, φD) = FHB

(
h0

m(`2D, φD)
)
. (14)

Since vertical and horizontal block and street deployments
are independent from each other, the LoS probability is
provided by a direct product of (12)-(14) as in (7).

We now formulate three important corollaries that offer
closed-form solutions for the LoS probability under three
block height distributions that are widely used in the literature:
uniform [33], exponential [19], and Rayleigh [12], [20]. These
results are available via direct integration of (7).

Corollary 1. For the uniformly distributed block heights HB ∼
U(h1, h2), the LoS probability is provided by

PLoS(`2D, φD) =
h0

m(`2D, φD)− h1

h2 − h1
×

exp

(
− λ
∫ `x

x0

[
1− hxm(x, `2D, φD)− h1

h2 − h1

]
dx−

λ

∫ `y

y0

[
1− hym(y, `2D, φD)− h1

h2 − h1

]
dy

)
, (15)

which leads to a closed-form solution in (4).

Corollary 2. For the exponentially distributed block heights
HB ∼ exp(λB), the LoS probability is provided by

PLoS(`2D, φD) =
(
1− exp

(
− h0

m(`2D, φD)λB
))
×

exp

(
− λ
∫ `x

x0

exp
(
− hxm(x, `2D, φD)λB

)
dx−

λ

∫ `y

y0

exp
(
− hym(y, `2D, φD)λB

)
dy

)
, (16)
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PLoS(`2D, φD) =
h0

m − h1

h2 − h1
×

exp

(
(h2 − hT)

(
− λ(`x − x0)− λ(`y − y0)

)

h2 − h1
+

λ(`2x − x2
0)(hR − hT)

2`2D(h2 − h1) cos(φD)
+

λ(`2y − y2
0)(hR − hT)

2`2D(h2 − h1) sin(φD)

)
. (4)

PLoS(`2D, φD) =
[
1− exp(−h0

mλB)
]
exp

(
λ`2D exp(−λBhT) cos(φD)

λB(hR − hT)

(
exp

[−λB`x(hR − hT)

`2D cos(φD)

]
−

exp

[
−λBx0(hR − hT)

`2D cos(φD)

])
+
λd2D exp(−λBhT) sin(φD)

λB(hR − hT)

(
exp

[−λB`y(hR − hT)

`2D sin(φD)

]
− exp

[−λBy0(hR − hT)

`2D sin(φD)

]))
. (5)

PLoS(`2D, φD) =

(
1− exp

(
− (h0

m)
2

2σ2

))
×

exp

(−λ`2D cos(φD)σ
√
π
(
exp

(
h2

Tσ
2−h2

T
2σ2

))(
erf
(

(hR−hT)`x+hT`2D cos(φD)σ√
2`2D cos(φD)σ

)
− erf

(
(hR−hT)x0+hT`2D cos(φD)σ√

2`2D cos(φD)σ

))

√
2(hR − hT)

+

−λ`2D sin(φD)σ
√
π
(
exp

(
h2

Tσ
2−h2

T
2σ2

))(
erf
(

(hR−hT)`y+hT`2D sin(φD)σ√
2`2D sin(φD)σ

)
− erf

(
(hR−hT)y0+hT`2D sin(φD)σ√

2`2D sin(φD)σ

))

√
2(hR − hT)

)
. (6)

which leads to a closed-form solution in (5).

Corollary 3. For the Rayleigh distributed block heights HB ∼
Rayleigh(σ), the LoS probability is provided by

PLoS(`2D, φD) =

[
1− exp

(
−
(
h0

m(`2D, φD)
)2

2σ2

)]
×

exp

(
−λ
∫ `x

x0

[
exp
(
−
(
hxm(x, `2D, φD)

)2

2σ2

)]
dx−

λ

∫ `y

y0

[
exp

(
−
(
hym(y, `2D, φD)

)2

2σ2

)]
dy

)
, (17)

which leads to a closed-form solution in (6).

We continue with a characterization of the area LoS proba-
bility for the UAV that is located randomly within the BS cell
area as depicted in Fig. 2.

Proposition 2. The area LoS probability, P∗LoS, for the UAV
that is located randomly and uniformly within the BS coverage
area having the radius of R is given by

P∗LoS = ps + (1− ps)PLoS, (18)

where ps is the probability that the UAV projection onto the
ground plane is located along the typical street (with BS),
while PLoS is the LoS probability as the UAV is placed at any
other point.

The derivation of PLoS contains fΦ(φD) ∼ U(φD,1, φD,2),
which is the pdf of the AoD. We define fL(`2D) ∼
U(x0/ cos(φD), R) as the pdf of the 2D distance between the

BS and the UAV located outside of the typical streets.

PLoS =

∫ φD,2

φD,1

fΦ(φD)dφD

∫ R

x0
cos(φD)

fL(`2D)

[
FHB

(
h0

m(`2D, φD)
)
×

exp

(
− λ

∫ `x

x0

[
1− FHB

(
hxm(x, `2D, φD)

)]
dx−

λ

∫ `y

y0

[
1− FHB

(
hym(y, `2D, φD)

)]
dy

)]
d`2D. (19)

Proof. According to the deployment geometry, the BS can
be located either at the intersection of two perpendicular
typical streets or on a typical street. In both cases, if the UAV
projection onto the ground plane is placed on the typical street,
the LoS path is not occluded. For all other UAV locations,
there is a non-zero probability that the LoS path is blocked,
(1− PLoS).

To determine PLoS, one needs to integrate (19) over all of
the possible orientations and distances from the BS to the UAV
located outside of the typical streets. Hence, to determine the
area LoS probability, we have to provide ps together with the
integration limits for the two considered BS locations. The
integrands in (19) are given as

fΦ(φD) =
1

φD,2 − φD,1
,

fL(`2D) =
cos(φD)

R cos(φD)− x0
. (20)

Let us first determine ps and the integration limits for the
BS located at the intersection as depicted in Fig. 2(a). For the
UAV that is distributed uniformly within the BS coverage area,
the LoS AoD is also distributed uniformly in (0, 2π). We then
calculate the minimum φD,1 and the maximum φD,2 AoD for
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the UAV projection onto the ground plane located outside of
the typical street to establish

φD,1 = arcsin(Khwh/R), φD,2 = arccos(Kvwv/R). (21)

The probability of the UAV being placed on the typical
street with BS, ps, is then available as a ratio of the street
area to the total cell area, πR2. To establish the typical street
area, we calculate the segment area associated with the angle
θv,1 and the typical vertical street, see Fig. 2(a). The opposite
segment area is obtained by using the angle θv,2. We then
subtract these areas from the circle area and arrive at the
typical vertical street area.

The same approach is employed to characterize the area of
the typical horizontal street. Accordingly, we add two typical
street areas together and then subtract the common intersection
area as it appears two times. We thus have

ps = 2− θv,1 − sin(θv,1)

2π
− θv,2 − sin(θv,2)

2π
− whwv

πR2
−

− θh,1 − sin(θh,1)

2π
− θh,2 − sin(θh,2)

2π
, (22)

where the angles θv,1, θv,2, θh,1, and θh,2 are as in Fig. 2(a):

θv,1 = 2arccos

(
Kvwv

R

)
, θh,1 = 2arccos

(
Khwh

R

)
,

θv,2 = 2arccos

(
(1−Kv)wv

R

)
,

θh,2 = 2arccos

(
(1−Kh)wh

R

)
. (23)

For the BS located on the typical street, the approach is
similar but has minor changes due to the deployment geometry,
see Fig. 2(b). Particularly, the distances from point T to the
first endpoint of the TR projection on the X- and Y -axis are

x0 = Kvwv, y0 = Kvwv tan(φD). (24)

The minimum and the maximum angles for the location of
the UAV residing outside the area of the typical street are
given by

φD,1 = 0, φD,2 = arccos(Kvwv/R). (25)

Finally, the probability that the UAV projection is placed
on the street where the BS is positioned can be delivered by
a ratio of the respective areas. Simplifying, we establish

ps = 1− θv,1 − sin(θv,1)

2π
− θv,2 − sin(θv,2)

2π
, (26)

where the angles to calculate the area segments are available
as

θv,1 = 2arccos

(
Kvwv

R

)
,

θv,2 = 2arccos

(
(1−Kv)wv

R

)
. (27)

After identifying the integration limits, we arrive at the
integral form (19). Substituting (19) into (18), we conclude
the proof for both cases.

TABLE II
BASELINE SYSTEM PARAMETERS

Parameter Value
Height of BS, hT 10 m
Width of typical vertical street, wv 20 m
Width of typical horizontal street, wh 20 m
Coefficient Kv 0.5

TABLE III
URBAN GRID GEOMETRY

Type Mean building
height, µH

Mean side
width, µb

Mean street
width, µs

Suburban 10 m 37 m 10 m
Urban 19 m 45 m 13 m
Dense urban 25 m 60 m 20 m
Highrise urban 63 m 60 m 20 m

V. NUMERICAL RESULTS

In this section, we evaluate the developed model numer-
ically and illustrate the UAV LoS probability for several
practical deployments. We start with assessing the accuracy
and the applicability of our model by comparing its results
with those obtained based on computer simulations. Then,
we proceed by studying the impact of the system parameters
and the urban deployment types on the UAV LoS probability.
Finally, we compare the results of the proposed modeling to
those discussed in the standards.

The default system parameters are summarized in Table II.
To parametrize the scenario2, we rely upon settings for an
urban district as made available in [12] and [30]. Particularly,
we consider four different urban grid types: (i) suburban, (ii)
urban, (iii) dense urban, and (iv) highrise urban. We derive
the relevant parameters of the considered urban deployments
from the density of buildings, the fraction of land covered by
them to the total area, as well as the variable for the height
distribution provided by ITU-R [12], [30] to collect these in
Table III.

A. Accuracy and Applicability Limits

We begin by verifying the accuracy of the developed model
and assessing its applicability limits. For this purpose, we de-
velop a simulator that relaxes the following key assumption on
the urban deployment as adopted in Section III: the probability
that the LoS projection intersects a building block is always
one. Recall that this assumption stems from the typical urban
deployments, where the street width is usually much smaller
than the block width.

In Fig. 3, we offer a comparison between the UAV LoS
probability obtained with the developed mathematical model
vs. computer simulations for a dense urban deployment (see
Table III), Rayleigh distribution of the building heights HB ∼
Rayleigh(20) as in [30], block and street mean widths (µb
and µs) of 60m and 20m, respectively. The simulations were
conducted by employing the method of replications [34].

2The general form of the LoS probability in (7) can accept any building
height distribution. Moreover, one can parametrize our model by using the
statistical data of a particular city or district by extracting it from the database.
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Fig. 3. LoS probability as function of UAV location in dense urban deployments. Building heights follow Rayleigh distribution HB ∼ Rayleigh(20). BS is
located in the center of intersection of two typical streets with the width of 20 m. LoS AoD φD for subplots (a) and (b) is 30o.

First, in a single run, our modeler generates the considered
deployment and then assesses the LoS path to the UAV
located within the region at a certain distance, height, and
angle with respect to the X-axis. A sequence of these runs
forms statistically independent samples. Due to acceptable
complexity of modeling the environment, we were able to
carry out a sufficient number of experiments, such that the
confidence intervals were always under 0.01 of the respective
absolute values for the level of significance set to 0.95.

As a result, Fig. 3 demonstrates only point statistical es-
timates. As one may observe, the simulation output agrees
tightly with the analytical results across a realistic range of
the input parameters. The computational complexity of the
simulations grows linearly as the density of building blocks
increases. Specifically, the system-level modeling complexity
is O(N), whereas for the analytical derivations it remains
constant at O(1). Statistical LoS/nLoS probability models have
proven themselves as computationally effective yet accurate
tools [10]. Hence, we primarily resort to our developed ana-
lytical model for the purposes of this numerical analysis.

Observe that our assumption of LoS path always intersecting
the block is actually close to reality where the block width
is much larger than the street width as assumed in Fig. 3.
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Fig. 4. Effects of the ratio of block side to street mean width on modeling
accuracy. Building heights follow Rayleigh distribution HB ∼ Rayleigh(20).
BS is located in the center of intersection of two typical streets. UAV height
is 150m, 2D distance between BS and UAV is 300m, LoS AoD φD is 30o.

Let us now consider the response of our model to different
ratios of block side to street mean widths as studied in Fig. 4
for a dense urban deployment, Rayleigh distribution (HB ∼
Rayleigh(20)) of the building heights, UAV altitude of 150m,
300m 2D distance to the UAV, and LoS AoD of 30o.

Analyzing the collected data, one may observe that the
accuracy of the considered model heavily depends on the
ratio between the block width and the street width. If the
block width becomes larger than the street width, as in
typical urban deployments, our formulation is more accurate
in approximating the LoS probability. For the ratio of two and
the street widths of 10 and 20 m, the difference between the
simulation and the analysis is around 3% and 2%, respectively.
After increasing the ratio further, this difference decreases.
This behavior demonstrates the dominant effect of the block
side width compared to the street width on the LoS probability
analysis.

B. UAV LoS Blockage Analysis

1) Effects of UAV and BS Positions: We continue by
assessing the effects of the UAV and BS placement on the
UAV LoS probability. We first address the impact of the UAV
location with respect to the BS. Particularly, Fig. 3 illustrates
the influence of the BS to UAV 3D distance, UAV height, BS
height, and LoS AoD on the UAV LoS probability for the
Rayleigh distribution (HB ∼ Rayleigh(20)) of the building
heights. As our typical deployment, we choose dense urban
layout characterized by the mean street width of 20m and the
side width of 60m.

We consider the effect of 3D distance as displayed in
Fig. 3(a) for the LoS AoD of 30o, BS height of 10 m, and
two UAV flight heights, 50 and 150m. As one may observe,
the UAV LoS probability decreases exponentially with the
growing distance from the BS. Further, the impact of the
UAV height is of paramount importance. The difference in
the absolute values of LoS probabilities between the two
considered altitudes can reach 0.7.

We then increase the BS height to 25 m as one of the typical
heights for the Urban Macro scenarios specified by 3GPP [11].
We note that for the lower UAV height of 50 m, the BS height
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Fig. 5. Angle-dependent and -independent UAV LoS probability for dense
urban deployment. Building heights follow Rayleigh distribution HB ∼
Rayleigh(20). BS is located in the center of intersection of two typical streets
with width of 20 m. UAV height is 150m.

increase from 10 to 25 m, and the 2D separation distance of
100 m the LoS probability grows by 2.3 times. For the same
set of parameters and the greater UAV height of 150 m, the
BS height of 25 m yields the growth of the LoS probability
by 1.1 times.

Fig. 3(b) details this aspect by presenting the UAV LoS
probability across a wide range of UAV altitudes for two 2D
distances between the UAV and the BS. As one may note, by
increasing the UAV height up to 300 m and for the 2D distance
of 150 m, the LoS probability may reach 0.95.

The orientation of the UAV with respect to the BS is also
essential for the LoS probability assessment as confirmed by
Fig. 3(c). As one may learn, the LoS probability for the UAV
height of 150 m and the 2D distance of 150 m is around 1
for the LoS AoD close to 0 and π/2. At these LoS AoDs,
the UAV is located sufficiently close to the typical street
where the BS is deployed. Such a proximity reduces the
number of buildings potentially occluding the LoS between
the UAV and the BS, thus leading to higher LoS probability.
It then gradually decreases and reaches its minimum at π/4
orientation of the LoS AoD, see Fig. 3(c).

We note that this behavior is an important property of
realistic non-isotropic deployments that is not captured by
the standard Poisson-like models, which implies that the LoS
probability heavily depends on the UAV location with respect
to its BS. This effect is further emphasized in Fig. 5, which
shows the UAV LoS probability for different LoS AoDs as well
as the area LoS probability (BS is located at the intersection) as
a function of 3D distance between the BS and the UAV for the
UAV height of 150m. As one may see, the LoS probabilities
for the LoS AoDs of 10o and 80o coincide due to equal
intensity of points along the X- and Y -axes.

Furthermore, the area LoS probability may drastically devi-
ate from the LoS probability for a particular LoS AoD, which
accentuates the importance of the LoS AoD when evaluat-
ing the LoS probability for the UAVs. Regarding position-
dependent UAV LoS probability, we conclude that the relative
position of the UAV with respect to its BS largely affects
the LoS probability even when the UAV height is much
greater than the mean building height, which calls for a careful

planning of UAV flight trajectories.
2) Effects of Building Height Distribution: As one may

expect, the building height distribution produces a substantial
impact on the UAV LoS probability. Most of the models
proposed to date capture only the first moment of the building
height by completely disregarding its higher moments as well
as the form of the distribution itself. However, the architecture
of urban districts may yield a considerable variation in the
building heights.

In Fig. 6, we explore the impact of the building height
distribution on the UAV LoS probability. To this aim, we
evaluate the UAV LoS probability for a set of candidate
building height distributions (uniform, gamma, Rayleigh, and
exponential) as a function of its mean value for a constant
variance of 33, see Fig. 6(a). In Fig. 6(b), we plot the LoS
probability as a function of the standard deviation for a
constant mean related to a certain district type (see Table III)
and a gamma distribution of the building heights. Here, the
2D separation distance is 300 m, the LoS AoD is 30o, and the
UAV height is 150 m.

As one may infer by analyzing the data in Fig. 6(a), the
form of the distribution has a major effect on the UAV
LoS probability. Particularly, up to the mean building height
of 20m, the results for all three distributions deviate in-

(a) Constant variance = 33
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Fig. 6. LoS probability as function of building height distribution for 2D
separation distance of 300 m, LoS AoD of 30o, and UAV height of 150 m.
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Fig. 7. Impact of urban deployment type on area LoS probability. BS coverage
radius is 150m and building height distribution is HB ∼ Rayleigh(γ).

significantly and remain within approximately 0.1 of each
other. However, for greater average building heights of up to
60 m, which are typical for highrise urban deployments, the
difference can become more substantial. A further increase in
the mean building heights yields the LoS probability of close
to 0, with almost no difference across various building height
distributions.

Fig. 6(b) further illustrates the impact of the building height
distribution as a function of the standard deviation, while
keeping its mean related to a particular urban deployment as in
Table III. Understanding the presented results, one may note
that the difference is observable across the entire range of the
standard deviations and for all the urban deployment types.
Hence, we may conclude that for those layouts where the
mean building height is under 20m (e.g., suburban, urban,
and dense urban), the models capturing the mean and the
variance are sufficient for an accurate assessment of the UAV
LoS probability.

For the deployments characterized by greater mean building
heights (e.g., highrise urban), capturing the form of the height
distribution is, however, essential. Regarding the effects of the
building height distribution, we note that not only the first
two moments but also the form of the distribution affect the
UAV LoS probability, especially in the range [20 m,. . . ,60 m]
of the mean building heights. In what follows, we compare
our proposed model with those standardized to date, which
tend to disregard this crucial parameter.

3) Effects of Urban Deployment Type: We proceed with
studying the effects of an urban deployment type on the
UAV LoS probability by using the area LoS probability as
specified in Proposition 2 for the scenario with the BS located
at the intersection of two typical streets. Particularly, Fig. 7
demonstrates the considered parameter of interest as a function
of the UAV height for the UAVs deployed uniformly within
the BS coverage of 150m. The building height distribution
is assumed to be HB ∼ Rayleigh(γ), where γ is equal to
µH

√
2
π . As one may observe, the area LoS probability is

highly sensitive to the type of urban deployment since the
absolute deviation may be up to 0.8.

As one may notice, for all of the deployments except for

the highrise urban case the trend is exponential. In the case
of a highrise urban deployment, the area LoS probability
grows slower than exponential for the UAV heights under
approximately 63m. This effect is attributed to the relation
between the mean UAV height and the mean building height.
Particularly, whenever µH ≥ hR, the rise is slower than
exponential. Regarding the impact of urban deployments, we
may deduce that in practice the minimum height of the UAV
needs to be different for various layout options.

C. Comparison with Standardized Models

We conclude with a comparison of our proposed LoS formu-
lation against the presently standardized models to quantify the
impact of more detailed parametrization. Fig. 8 demonstrates
a comparison between the considered LoS probability model
and the models specified in [11], [12] as functions of BS-to-
UAV 2D distance in Fig. 8(a) and UAV height in Fig. 8(b). The
standardized models were discussed earlier in subsection II-C,
where (1) represents the ITU-R model while the 3GPP model
is captured by (2).

We observe that the ITU-R LoS model completely disre-
gards the features of spatial urban deployments by assuming

0 200 400 600 800 1000
BS to UAV 2D distance, [m]

0

0.2

0.4

0.6

0.8

1

Lo
S 

pr
ob

ab
ili

ty

Proposed LoS model, hR = 150 m
3GPP LoS model, hR = 150 m
ITU LoS model, hR = 150 m

(a) As function of 2D distance

50 100 150 200 250 300
Height of UAV, [m]

0

0.2

0.4

0.6

0.8

1

Lo
S 

pr
ob

ab
ili

ty

Proposed LoS model, 2D = 150 m
3GPP LoS model, 2D = 150 m
ITU-R LoS model, 2D = 150 m

(b) As function of UAV height

Fig. 8. Area LoS probability as function of UAV location for three models:
(i) proposed LoS model for dense urban deployment and BS located at the
intersection of two streets, building height distribution is HB ∼ Rayleigh(20);
(ii) 3GPP UMi street canyon LoS model (see 2); and (iii) ITU LoS model
(see 1).
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the building bases to be perpendicular to the LoS projection.
Further, the 3GPP model does not specify the deployment
parameters to characterize the LoS model. Hence, to provide
a fair comparison between the formulations in question, Fig. 8
reports the area LoS probability for the dense urban deploy-
ment and the BS located at the intersection of two streets.

Analyzing the presented results, one may note that both
ITU-R and 3GPP models capture the qualitative behavior of
the UAV LoS probability since all three options lead to an
exponential decrease for the parameter of interest in Fig. 8(a)
under the growing 2D separation distance. However, both
ITU-R and (especially) 3GPP formulations provide overly
optimistic results for the practical separation distances. This
is because the difference in terms of the absolute values can
be up to 0.4, which limits the use of these models for various
urban grid deployments. One may also observe the stepwise
behavior of the ITU-R formulation caused by a floor function
in the model specification, which may complicate the use of
this approach for analytical assessment.

Comparing the considered models with respect to the UAV
height in Fig. 8(b), one may learn that both 3GPP and ITU-
R options again drastically overestimate the actual UAV LoS
probability. It is noted that both standardized formulations are
much closer to each other than to our more exact model,
where the difference may reach 0.4. We emphasize that a
part of this discrepancy can be attributed to the fact that the
3GPP model does not capture the essential features of urban
deployments, such as the distribution of building heights and
does not specify the exact deployment parameters it employed.

At the same time, the ITU-R model considers the deploy-
ment parameters as well as assumes a Rayleigh distribution
of building heights but only accounts for a fixed number of
buildings between the BS and its user. It also disregards the
spatial distribution of buildings. All of these facts lead to a
significant overestimation of the LoS probability by contrast
to the proposed LoS probability model, which captures the
essential features of urban deployments.

VI. CONCLUSION AND FUTURE WORK

In this work, we develop a model for the LoS probability
evaluation on the BS-to-UAV link operating over mmWave
frequency bands in 3D regular urban grid deployments as a
function of building density as well as heights of the UAV,
BS, and buildings. For a set of well-known building height
distributions, closed-form expressions for the LoS probability
are provided. In contrast to similar past formulations, our
model allows to account for different building height distribu-
tions, spatial link orientations, as well as various deployment
parameters, such as density of buildings. As a result, the
flexibility of our formulation permits to study dissimilar urban
deployment types, including suburban, urban, dense urban, and
highrise urban layouts. We also note that the developed model
can be suitable for systems other than mmWave, assuming an
optical LoS for modeling purposes.

Our numerical results demonstrate that the UAV LoS proba-
bility heavily depends on the BS-to-UAV link orientation with
respect to the non-isotropic deployment grid. For instance,

the BS-to-UAV LoS AoD of π/4 makes the LoS probability
drop by almost a half as compared to the LoS AoD equal to
π/2. This implies that the choice of the UAV flight trajectory
is crucial for maintaining high LoS probability and thus
reliable connectivity between the UAV and the BS. Further,
our study accentuates the importance of accounting for the
building height distribution as it has a profound impact on the
LoS probability. By comparing our model with the standard
ITU and 3GPP alternatives, we argue that they both provide
extremely coarse approximations for the UAV LoS probability
as they do not capture the essential features of urban grid
deployments, while our approach can be more accurate and
applicable to various deployments.

To ensure reliable UAV support, it is imperative to conduct a
thorough analysis of the underlying network deployment. The
developed LoS probability formulation can thus become an
integral part of comprehensive system-level modeling frame-
works. The latter can merge the evaluated LoS probability
values with the UAV-to-ground propagation model [35], [36]
by additionally accounting for the transmit power, antenna
gains at the BS and UAV sides, possible beam misalignment,
as well as blockage-induced attenuation. Since conventional
cellular deployments employ downtilted antennas, the exis-
tence of an unobstructed LoS path between the UAV and
the BS does not however guarantee that communication is
feasible [37]. To capture this situation, one needs to account
for the antenna downtilt and evaluate the maximum user height
to be supported by the BS main lobe at a given distance as
well as the probability of having side lobes available. These
results may project, e.g., the required BS density to minimize
the link interruption times between the UAV and the terrestrial
network infrastructure.

APPENDIX A
CONSIDERATION OF ROOFTOP BSS

Reliable support of UAVs in early-stage 5G deployments
may require provisional network nodes mounted on, e.g.,
rooftops of the buildings. The model developed in this work
can capture this important case as demonstrated below.

When the height of a rooftop-mounted BS is known in
advance, one may directly apply our formulation by setting
the appropriate height in (7). Alternatively, one may assume
random heights of rooftop-mounted BSs. To account for this
case, we need to modify (7) as

PLoS(`2D, φD) =

∞∫

0

(
FHB

(
h0

m(`2D, φD, z)
)
×

exp

(
− λ

`x∫

x0

[
1− FHB

(
hxm(x, z, `2D, φD)

)]
dx−

λ

`y∫

y0

[
1− FHB

(
hym(y, z, `2D, φD)

)]
dy

)
fHB(z)dz

)
, (28)

where fHB is the pdf of the building heights and z is the height
of the rooftop BS.
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ABSTRACT
Accurate performance prediction for the emerging 3GPP
NewRadio (NR) technology overmillimeter-wave (mmWave)
bands is crucial for the upcoming deployments of 5G and
beyond cellular networks, utilizing NR. 3GPP has recently
presented a 3D multipath cluster-based mmWave channel
model for 5G NR, which captures the salient propagation
characteristics of the mmWave bands, allowing for better
prediction of mmWave system performance. However, it is
difficult to directly employ the 3GPP models for analytical
system characterization, as most of the parameters are com-
puted through iterative algorithms. In the paper, we address
this problem by presenting a statistical approximation for the
important parameters of the 3GPP 3D cluster-based channel
model, particularly, zenith angle of arrival and power share
of every cluster. We then show how the constructed approx-
imation can be used to analytically derive the performance
indicators for mmWave NR systems, including outage prob-
ability. We compare the results obtained with our proposed
statistical approximation model with those given by state-
of-the-art simplified single cluster analytical models as well
as illustrate the improvements in the accuracy of results.

KEYWORDS
3GPP New Radio, 5G wireless communications, mmWave
multipath propagation, 3D channel model

1 INTRODUCTION AND MOTIVATION
While the first release of 3GPP New Radio (NR) technology
specification has been completed [9], ongoing research con-
tinues to explore challenges related to advanced networking
options for 5G [7, 11]. These efforts require detailed perfor-
mance evaluation and optimization models that capture the
specifics of inherently complex millimeter-wave (mmWave)
band propagation.

This work was supported by Intel Corporation, the Academy of Finland
(projects WiFiUS and PRISMA), and by the project TAKE-5: The 5th Evo-
lution Take of Wireless Communication Networks, funded by Tekes. The
work of M. Gapeyenko has been supported by Nokia Foundation. V. Petrov
acknowledges the support of HPY Research Foundation funded by Elisa.

The propagation dynamics of mmWave wireless chan-
nels in realistic deployments were conventionally assessed
with real measurements and/or ray-tracing simulations [2, 8].
These results were later mapped onto models for further per-
formance assessment in realistic deployments. There are two
large classes of models proposed for mmWave channels. The
first one is presented in [1] and introduces the notion of
clusters that describe the rays between the transmitter (Tx)
and the receiver (Rx), which experience similar propagation
impairments in terms of delay, power attenuation, and geom-
etry of arrival and departure. This model explicitly captures
multipath propagation and randomness associated with each
of the arriving components. The second class of the models
employs “averaging” considerations for simplicity, so-called
single cluster, where the impairments of the propagation en-
vironment are averaged out to provide the mean propagation
losses at a certain separation distance. Both model classes
also feature extensions to human body blockage effects [4].

Performance assessment of 5G NR in various deployments
and use-cases is currently conducted with both analytical
tools and system-level simulations (SLS). However, so far,
the assumptions regarding the channel model used in such
performance assessment fundamentally differ. In SLS-based
studies [12], the authors chiefly rely on 3GPP 3D cluster-
based channel model specified in [1] as it provides a much
more detailed description of the propagation phenomena
that explicitly captures power, delay, and geometry of each
cluster arriving at the Rx. However, it comes at the expense
of more complex model structure, where the resulting pa-
rameters are calculated algorithmically for a given set of
environmental and system conditions. As a result, the model
is not analytically tractable; therefore, the authors working
with analytical modeling of 5G NR [3, 10] mainly utilize
simpler models that provide “average” propagation losses
(single cluster case) in typical environments, such as 3GPP
UMi-street canyon path loss model for line-of-sight (LoS)
and non-LoS (nLoS) from [1]. The use of “averaged” mod-
els affects the accuracy of the results and complicates the
process of calibration between the SLS and analytical tools.

In this paper, aiming to improve the accuracy of analytical
performance evaluation frameworks for 3GPP NR, we follow



a statistical approach to develop analytical approximations
for the output parameters of the 3GPP 3D cluster-based chan-
nel model in case of LoS. As an illustrative example, we focus
on zenith angle of arrival as well as the associated cluster
power shares, which become the parameters for our first-
order performance analysis of 5G mmWave cellular in urban
scenarios with human body blockage. We show that these
parameters follow well-known distributions for a wide range
of environmental and system conditions. We also apply the
proposed approximations to analytically derive the outage
probability in 5G mmWave systems. Finally, we compare the
results obtained with the proposed approximations against
those given by an algorithmic implementation of the 3GPP
3D cluster-based channel model as well as those derived by
employing the UMi-street canyon model (single LoS clus-
ter) with blockage enhancements [5]. We demonstrate that
our approximation model offers more accurate results as
compared to the “averaged” UMi-street canyon model.
The rest of this paper is organized as follows. First, in

Section 2, we describe the 3GPP 3D cluster-based channel
model parameters. In Section 3, we construct our proposed
analytical approximations. Finally, in Section 4, we assess the
accuracy of the developed approximation as well as consider
an illustrative example of the use of the formulated model.
Conclusions are drawn in the last section.

2 3GPP 3D CLUSTER-BASED MODEL
The standardized 3GPP 3D cluster-based channel model pre-
sented in [1] assumes that the received power at the user
equipment (UE) comprises power coming from a number
of clusters, including LoS path and several reflected compo-
nents. It thus binds the specifics of mmWave propagation en-
vironment to (i) zenith angle of arrival/departure (ZOA/ZOD)
and azimuth angle of arrival/departure (AOA/AOD) of a clus-
ter, (ii) delay of every cluster, and (iii) fraction of power
contributed by a cluster. However, this model involves com-
plex functions of random variables, which complicates its
usage in applied mathematical analysis.
According to 3GPP, 3D cluster-based channel modeling

can be decomposed into three steps: (i) specifying the sce-
nario and calculating its geometry, such as LoS ZOA/ZOD
and LoSAOA/AOD, (ii) deriving correlated large-scale param-
eters, including delay spread (DS), angular spreads, Ricean
K-factor (𝐾), and shadow fading (SF), as well as (iii) gener-
ating small-scale parameters: delay, power, AOA/AOD, and
ZOA/ZOD. The procedure describing the generation of large-
scale parameters is given in sub-clause 3.3.1 of WINNER II
Deliverable [6]. Note that the total number of clusters could
be chosen within the range of 4 to 20 [1], and this will affect
the values of some of the parameters of the model.

The 𝑛-th cluster’s delay is obtained as in Section 7.5 of [1],

𝜏 ′𝑛 = −𝑟𝜏DS ln(𝑋𝑛), (1)

where 𝜏 ′ is the delay before sorting procedure, 𝑟𝜏 is the delay
distribution proportionality factor taken from Table 7.5-6
Part 1 of TR 38.901 [1], DS is the delay spread with mean and
variance given in Table 7.5-6 Part 1 [1], while the generation
procedure is described in [1], 𝑋𝑛 is drawn from the uniform
distribution in (0, 1), and 𝑛 is the cluster index {1, 2 . . . 𝑁 }.
Once all the delays are calculated, they are normalized by
subtracting the minimum delay and then sorted in the in-
creasing order, 𝜏𝑛 = sort[𝜏 ′𝑛 −min(𝜏 ′𝑛)] .

The delays in case of LoS take the following form

𝜏LoS𝑛 = 𝜏𝑛/𝐶𝜏 , (2)

where 𝐶𝜏 = 0.7705 − 0.0433𝐾 + 0.0002𝐾2 + 0.000017𝐾3 and
𝐾 is the Ricean K-factor expressed in dB.
Once delays are calculated and sorted, one proceeds by

specifying the received power of each cluster. The power of
cluster 𝑛, 𝑃𝑛 , is obtained at step 6 of Section 7.5 in [1] as

𝑃 ′
𝑛 = exp

(
−𝜏𝑛

𝑟𝜏𝑛 − 1
𝑟𝜏𝑛DS

)
10

−𝑍𝑛
10 , (3)

where 𝑍𝑛 captures the effect of per-cluster shadowing and
follows a normal distribution with the zero mean and vari-
ance 𝜎2. The cluster powers in LoS conditions are given as

𝑃𝑛 =
1

𝐾𝑅 + 1
𝑃

′
𝑛∑𝑁

𝑛=1 𝑃
′
𝑛

+ 𝛿 (𝑛 − 1)𝑃1,LOS, (4)

where 𝛿 (·) is the Dirac delta function, 𝐾𝑅 is the Ricean K-
factor converted to linear scale, and 𝑃1,LOS = 𝐾𝑅/(𝐾𝑅 + 1).
According to step 7 of Section 7.5 in [1], ZOA is

\ ′𝑛,ZOA = −ZSA ln(𝑃𝑛/max(𝑃𝑛))
𝐶\

, (5)

where 𝐶\ = 𝐶NLoS
\

(1.308 + 0.0339𝐾 − 0.0077𝐾2 + 0.0002𝐾3)
for LoS and 𝐶NLoS

\
is given in Section 7.5 of [1].

Finally, the ZOA in LoS conditions is

\𝑛,ZOA = [𝑋𝑛\
′
𝑛,ZOA + 𝑌𝑛] − [𝑋1\

′
1,ZOA + 𝑌1 − \LoS,ZOA], (6)

where𝑋𝑛 is a discrete random variable (RV) that is uniformly
distributed over {−1, 1}, 𝑌𝑛 follows a normal distribution
with the zero mean and variance (ZSA/7)2, and \LoS,ZOA
is the ZOA of the LoS path calculated from the scenario
geometry.
The generation procedure for the remaining parameters,

such as ZOD and AOA/AOD, follows a similar approach and
is presented in step 7 of Section 7.5 in [1].
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Figure 1: 3GPP ZOA characteristics and proposed approximations for 𝑁 = 5 clusters.

3 OUR PROPOSED APPROXIMATION
In this section, we outline the proposed approximation for
the important output parameters of the 3GPP 3D cluster-
based model in case of LoS. For illustrative purposes, we
concentrate on two parameters required in the performance
evaluation of 5G mmWave cellular, accounting for random
signal blockage: 1) ZOA and 2) received power share. We
note that assuming the positions of blockers according to a
Poisson point process (PPP), the AOA becomes irrelevant as
the field of blockers is stochastically similar in any direction.
The approach may also be used to approximate other param-
eters of the 3GPP cluster-based model. The settings used for
the numerical examples are summarized in Table 1.

3.1 3GPP ZOA approximation
We begin with ZOA, whose characteristics are presented in
Fig. 1(a) for the heights of the mmWave access point (AP)
and the UE equal to ℎ𝐴 = 10m and ℎ𝑈 = 1.5m, respectively;
we also focus on 5 strongest clusters for simplicity. The 2D
distance, 𝑥 , between the AP and the UE is set to 10m, 40m,
and 70m for the illustration of 2-nd cluster, 3-rd cluster, and
4-th cluster, respectively. One may observe that ZOA can
be well approximated by a Laplace distribution with the
marginal probability density function (pdf) given by

𝑓\𝑛 (𝑦) =
1
2𝑏𝑛

exp
(
− |𝑦 − 𝑎𝑛 |

𝑏𝑛

)
, 𝑛 = 2, 3, . . . , (7)

where 𝑎𝑛 and 𝑏𝑛 , 𝑛 = 2, 3, . . . , 𝑁 , are the distribution parame-
ters, while 𝑁 is the number of clusters. While Fig. 1(a) shows
some mismatch between the statistical pdf and the proposed
approximation, the presented solution can be applied for the
first-order analysis as further illustrated in Section 4.
We now proceed with calculating the parameters of the

approximating Laplace distribution, since its mean and vari-
ance may depend on the scenario geometry (e.g., the distance
between the nodes). To this end, Fig. 1(b) shows that themean
value for all the clusters, 𝑎𝑛 , coincides with the 3GPP LoS

ZOA. Hence, the value of 𝑎𝑛 can be estimated as

𝑎𝑛 =
𝜋

2
− arctan

(
ℎ𝐴 − ℎ𝑈

𝑥

)
, 𝑛 = 2, 3, . . . , 𝑁 . (8)

The second key parameter of the Laplace distribution is 𝑏𝑛 ,
which is related to the distribution variance as 𝑏𝑛 =

√︃
𝜎2
\𝑛
/2.

Fig. 1(c) reports on the empirical variance of ZOA as a
function of the 2D distance between the nodes. As can be
observed, the variance for each of the clusters can be approx-
imated by a constant value, from which we find 𝑏𝑛 as

𝑏1 =0, 𝑏2 =0.3146, 𝑏3 =0.3529, 𝑏4 =0.4056, 𝑏5 =0.4897. (9)

Since both the approximating distribution and its key pa-
rameters have been established, we conclude that the approx-
imation of the ZOA parameter of the 3GPP cluster-based
model is constructed by combining (7), (8), and (9).

3.2 3GPP power share approximation
The knowledge of ZOA allows to carefully model the process
of clusters blockage by humans or other obstacles and thus
estimate the probability for each of the clusters to be blocked.
To evaluate the received power for certain clusters, we need
to identify the share of power that they contribute at the
Rx. This will further allow for estimating the key metrics of
interest, such as outage probability and link capacity.
Recall that according to 3GPP channel model outlined

in Section 2, the received power from each cluster is cal-
culated as a product of the received power determined by
the averaged path loss and a random power share for each
of the clusters normalized over the range (0, 1). Fig. 2(a)
presents the pdfs of the power share values for first 5 clus-
ters (ℎ𝐴 = 10m and ℎ𝑈 = 1.5m) as well as illustrates the
fitting of empirical pdfs by a log-normal distribution for the
2-nd, 3-rd, 4-th, and 5-th clusters (the 1-st cluster is a special
case discussed below), in the following form

𝑓𝑃𝑠,𝑛 (𝑧) =
1

𝑧𝑑𝑛
√
2𝜋

exp
(
− (ln 𝑧 − 𝑐𝑛)2

2𝑑2𝑛

)
, 𝑛=2, 3, . . . , 𝑁 , (10)

where 𝑐𝑛 and 𝑑𝑛 are the parameters of the distribution.
3
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Figure 2: 3GPP power share characteristics and proposed approximations for 𝑁 = 5 clusters.

The fraction of LoS power shown in Fig. 2(a) (1-st cluster) is
always the cluster characterized by the strongest power. This
value can be well approximated by a log-normal distribution
with the argument (1 − 𝑥) and the parameters (𝑐1, 𝑑1),

𝑓𝑃𝑠,1 (𝑧) =
1

(1 − 𝑧)𝑑1
√
2𝜋

exp
(
− (ln(1 − 𝑧) − 𝑐1)2

2𝑑21

)
. (11)

The discretized version of the 𝜒2 goodness-of-fit test has
been applied to the distributions in Fig. 2(a) with the level
of significance set to 0.95, which shows that the hypothesis
about the log-normal distribution does hold for the consid-
ered set of parameters. A similar conclusion applies to other
system parameters as well. Therefore, the power shares can
be approximated by the log-normal distribution and we con-
tinue by deriving its parameters.

We first notice that there is a direct relationship between
the distribution parameters (𝑐𝑛 and 𝑑𝑛) and the estimated
mean and variance (`𝑛 and 𝜎2𝑛). Following the approach, we
estimate the parameters of the power share distributions as

𝑐1 = −2.88, 𝑐2 = −3.55, 𝑐3 = −4.1, 𝑐4 = −4.98, 𝑐5 = −6.2,
𝑑1 = 1.2, 𝑑2 = 1.1, 𝑑3 = 1.3, 𝑑4 = 1.8, 𝑑5 = 2.51. (12)

In summary, the power share values can be well approxi-
mated by a combination of (10), (11), and (12). Hence, two
key parameters of the 3GPP 3D cluster-based model to ac-
count for random blockage in 5G NR systems have been
approximated by tractable analytical functions. The outlined
approximations as well as the derived parameters 𝑎𝑛 , 𝑏𝑛 , 𝑐𝑛 ,
and 𝑑𝑛 also hold for other environmental conditions (ℎ𝐴, ℎ𝑈 ,
etc.) as long as 𝑁 = 5.

4 APPLICATION OF OUR MODEL
In this section, we illustrate the applicability of the devel-
oped approximation to the analysis of 5G mmWave cellular
systems. We particularly calculate the UE outage probability.
We assume that the power share and ZOA do not depend
on each other; we demonstrate with simulations that this
assumption does not affect the outage probability. We then

proceed by comparing the obtained results with those based
on the algorithmic implementation of the 3GPP cluster-based
channel model and UMi-street canyon channel model.

4.1 Outage probability
We consider the UE located at a fixed 2D distance of 𝑥 from
its serving mmWave AP. The heights of AP and UE are as-
sumed to be constant and set to ℎ𝐴 and ℎ𝑈 . Blockers are
represented by cylinders with the base radius of 𝑟𝐵 and the
constant height of ℎ𝐵 . The blockers form a PPP with the den-
sity of _𝐵 . Owing to the random propagation environment,
the ZOA, \𝑛 (𝑥), and the received power share from each
cluster, 𝑃𝑠,𝑛 (𝑥), are all RVs, where index 1 corresponds to the
LoS path, 𝑛 = 2, 3, . . . , 𝑁 are clusters sorted in the increasing
order according to their delays. The UE is always associated
with the link having the strongest power. The UE is in outage
when all the clusters are blocked or when the received power
of the “best” cluster is below the target level.
Let 𝑝𝑛 be the probability that the 𝑛-th cluster of the link

between the AP and the UE is blocked and first consider the
blockage of the LoS path, 𝑝1. Employing the results of [5],
the LoS blockage probability is given by

𝑝1 (𝑥) = 1 − 𝑒2𝑟𝐵
(
𝑥

ℎ𝐵−ℎ𝑈
ℎ𝐴−ℎ𝑈

+𝑟𝐵
)
. (13)

In the 3GPP 3D cluster-based channel modeling algorithm,
the exact location of the reflection point is not specified.
However, by using ZOA, the blockage probability for the
𝑛-th cluster, 𝑝𝑛 (𝑥), could be calculated as

𝑝𝑛 (𝑥) =
∫ 𝜋

−𝜋
𝑓\𝑛 (𝑦;𝑥)𝑞𝑛 (𝑦)𝑑𝑦, (14)

where 𝑓\𝑛 (𝑦;𝑥) is the distribution of the ZOA at the dis-
tance of 𝑥 approximated by the Laplace distribution with
the parameters 𝑎𝑛 (𝑥), 𝑏𝑛 (𝑥), 𝑛 = 2, 3, . . . , 𝑁 , all estimated
from statistical data, 𝑞𝑛 (𝑦) is the probability of blockage as
a function of ZOA, which is given as

𝑞𝑛 (𝑦) = 1 − 𝑒−2_𝐵𝑟𝐵 (tan 𝑦 (ℎ𝐵−ℎ𝑈 )+𝑟𝐵 ) . (15)
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Table 1: Baseline system parameters
Parameter Value
Height of UE, ℎ𝑈 and AP, ℎ𝐴 1.5m and 10m
Height and radius of blocker, ℎ𝐵 and 𝑟𝐵 1.7m and 0.25m
Number of clusters, 𝑁 5
Transmit power, 𝑃𝑇 35 dBm
SNR threshold 3 dB
Carrier frequency, 𝑓𝑐 28GHz
Bandwidth 1GHz

Substituting (15) and Laplace pdf (7) into (14), we obtain

𝑝𝑛 (𝑥) =
∫ 𝜋

−𝜋

1 − 𝑒−2_𝐵𝑟𝐵 (tan 𝑦 (ℎ𝐵−ℎ𝑈 )+𝑟𝐵 )

2𝑏𝑛𝑒
|𝑦−𝑎𝑛 (𝑥 ) |

𝑏𝑛

𝑑𝑦, (16)

which can be evaluated numerically.
The received power of every cluster can be written as

𝑃𝑛 = 𝑃𝑠,𝑛10(𝑃𝑇 −30−𝐿)/10, 𝑛 = 1, 2, . . . , 𝑁 , (17)

where 𝐿 is the path loss and 𝑃𝑇 is the transmit power. Using
the 3GPP UMi LoS path loss model in (17), we arrive at

𝑃𝑛 = 𝑃𝑠,𝑛10(𝑃𝑇 −30−32.4−20 log10 𝑓𝑐−21 log10 (𝐷3))/10, (18)

where 𝐷3 is the 3D distance between the AP and the UE.
Note that 𝑃𝑛 is a function of a RV. Therefore, by utilizing

the RV transformation technique, the pdf of 𝑃𝑛 is given as

𝑓 𝑃𝑛 (𝑧;𝑥) =
1

10(𝑃𝑇 −30−32.4−20 log10 𝑓𝑐−21 log10 (𝐷3))/10

𝑓𝑃𝑠,𝑛

( 𝑃𝑛 (𝑥)
10(𝑃𝑇 −30−32.4−20 log10 𝑓𝑐−21 log10 (𝐷3))/10

)
. (19)

To evaluate the received power of the strongest cluster,
we employ a weighted sum of the received power pdfs

𝑓𝑃 (𝑧;𝑥) =
𝑁∑︁
𝑛=1

[
(1 − 𝑝𝑛 (𝑥))

𝑛−1∏
𝑗=1

𝑝 𝑗 (𝑥)
]
𝑓𝑃𝑛 (𝑧;𝑥), (20)

where the weights are the probabilities of choosing cluster 𝑛.
We now proceed by obtaining the outage probability. Ob-

serve that outage occurs when the following mutually exclu-
sive events happen: (i) all clusters are blocked or (ii) at least
one cluster is non-blocked but the received signal falls below
a certain threshold, 𝑆𝑇 . The former probability is given as

𝑝𝑂,1 (𝑥) =
𝑁∏
𝑛=1

𝑝𝑛 (𝑥). (21)

The probability that the received signal falls below 𝑆𝑇 is

𝑝𝑂,2 (𝑥) =
∫ 𝑆𝑇

0
𝑓𝑃 (𝑧;𝑥)𝑑𝑧, (22)

which leads to the outage probability in the following form

𝑝𝑂 (𝑥) =
𝑁∏
𝑛=1

𝑝𝑛 (𝑥) +
∫ 𝑆𝑇

0
𝑓𝑃 (𝑧;𝑥)𝑑𝑧. (23)

4.2 Numerical results
We continue with a numerical illustration of the outage
probability under LoS conditions and human blockage en-
vironment as well as compare the results based on the pro-
posed approximations against: (1) those given by an algo-
rithmic implementation of the 3GPP cluster-based channel
model [1] and (2) analytical model based on the 3GPP UMi-
street canyon channel model [5]. In the second case, only the
LoS path loss is considered for the analysis. In case of the LoS
blockage, the received power is reduced by the human body
loss (20 dB). The scenario parameters are given in Table 1.
Fig. 3 demonstrates the outage probability as a function

of 2D distance between the AP and the UE and _𝐵 = 0.1 for
three approaches. We may observe four major intervals in
this figure. For our set of parameters these are: (i) up to 28m;
(ii) from 28 to 44m; (iii) from 44m to 170m; (iv) over 170m.

The first interval shows outage probability close to 0 for
all three models due to the short distance between AP and UE
leading to a small LoS blockage probability and sufficiently
high received power at the UE side even in case of blockage.
In the second interval, both the simulation and approxima-
tion curves start increasing, since the chances of having the
paths blocked are not negligible anymore. Meanwhile, the
3GPP UMi model underestimates the outage probability, as
the modeled human body loss is not high enough to result
in SNR being lower than the threshold value.

The third interval shows a considerable gap between the
3GPP UMi model and the cluster-based model together with
its approximation. This is explained by increased blockage
probability and only a single cluster when considering the
3GPP UMi model. In case of blockage of a single LoS cluster,
the UE is considered in outage, while in cluster-based chan-
nel model the UE may communicate on different reflected
clusters if some of them are not blocked and the received
power is higher than the target level. Finally, the fourth inter-
val illustrates a close match between all three models as the
received clusters in the cluster-basedmodels are contributing
low power, so UE mainly employs the LoS cluster.
Fig. 4 shows the outage probability as a function of the

density of blockers for two AP–UE 2D distances of 70m
and 49m. The approximation gives a tight match with the
cluster-based model for a wide range of densities of blockers.
Some deviation from the simulation plots at higher densities
of blockers is due to imperfections of the approximated ZoA
distribution. However, the 3GPP UMi model considerably
overestimates the outage probability as compared to the
cluster-based model, especially at higher distances. This is
caused by increased blockage probability for higher densities
of blockers. For the 3GPP UMi model, this growth leads to a
significantly increased outage probability due to the absence
of cluster diversity. Meanwhile, the outage probability for
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Figure 4: Outage probability 𝑝𝑂 as a function of _𝐵 .

the cluster-based model increases much slower than that
for the 3GPP UMi model due to the presence of alternative
clusters that can be used in case of LoS blockage.

5 CONCLUSIONS
In this work, we developed analytically tractable approxi-
mations for the important parameters of the algorithmic 3D
cluster-based channel model by 3GPP, including the zenith
angle of arrival and the received power share of the clusters
in LoS conditions. We demonstrated that these parameters
can be well approximated by analytical distributions over
a wide range of the environmental and system conditions.
We also applied the proposed approximations to analytically
characterize the outage probability in 5G mmWave cellular.
We showed that the results obtained with our approxima-
tions closely match those directly produced by the algorith-
mic 3GPP 3D cluster-based model, in contrast to a simplistic
model not capturing the multipath mmWave propagation.

The use of our proposed approximations improves the ac-
curacy of known analytical approaches for the performance

evaluation of NR systems. In addition, the outlined methodol-
ogy can be further applied to construct more accurate approx-
imations for both outlined and other important parameters
of the 3GPP 3D cluster-based channel model, thus enabling
more precise yet analytically tractable constructions for 5G
and beyond mmWave networks.
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Spatially-Consistent Human Body Blockage
Modeling: A State Generation Procedure

Margarita Gapeyenko, Andrey Samuylov, Mikhail Gerasimenko, Dmitri Moltchanov, Sarabjot Singh,
Mustafa Riza Akdeniz, Ehsan Aryafar, Sergey Andreev, Nageen Himayat, and Yevgeni Koucheryavy

Abstract—Spatial correlation has been recognized by 3GPP as one of the key elements in millimeter-wave (mmWave) channel
modeling. Correlated channel behavior is induced by macro objects, such as buildings, as well as by micro objects, including
humans around the mmWave receivers. The 3GPP’s three-dimensional (3D) spatially consistent channel model designed to
capture these phenomena assumes a-priori knowledge of the correlation distance between the receivers. In this paper, we
propose a novel spatially-consistent human body blockage state generation procedure, which extends the standardized 3D
channel model by 3GPP to capture the correlation between the line-of-sight (LoS) links and the reflected cluster states affected
by human body blockage. The proposed model is based on analytical expressions for the conditional link state probability, thus
permitting the parametrization of the spatial field of receivers. It also does not require any a-priori information on the correlation
distance as the latter is identified explicitly based on the environmental parameters. We compare the results for the proposed
model with those obtained with the uncorrelated blockage model and conclude that in many special cases correlation manifests
itself in quantitatively different propagation conditions experienced at the nearby receivers.

Index Terms—5G, mmWave, 3GPP 3D channel model, human body blockage, spatial consistency, correlation.
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1 INTRODUCTION
Millimeter-wave (mmWave) communication is con-
sidered to be the core part of the emerging 5G mobile
networks, which are capable of supporting the strin-
gent requirements of IMT-2020 [1]. Larger available
bandwidths make the extremely high frequency bands
an attractive candidate for serving advanced future
applications [2]–[5].

Despite a number of benefits delivered by
mmWave, there are also several challenges to be
solved. For example, due to shorter wavelengths,
smaller objects in the channel may produce a
considerable impact on the mmWave propagation.
According to the recent studies, human body
blockage leads to a significant attenuation of the
mmWave signal [6]–[8] and should be taken into
account in mmWave channel modeling [9], [10].

An example of such models is the 3GPP three-
dimensional (3D) stochastic channel model (SCM)
proposed in [11] that has further been improved and
ratified by 3GPP in Release 15 [9]. It is currently
utilized by both academia and industry to capture the
mmWave channel properties in system-level simula-
tion (SLS) tools [12], [13].

If mmWave-based receivers are located next to one
another, they often experience similar propagation
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conditions [14]–[16]. This effect, known as spatial cor-
relation, has been recently recognized by 3GPP as
an important consideration in the mmWave channel
modeling [9]. The correlated state of the channel
at the receiver (Rx) may affect the implementation
and performance of beamsearching and beamtracking
mechanisms, resource allocation strategies, as well as
multiple-input multiple-output (MIMO) system de-
sign [9], [17]–[20].

1.1 Background and Related Studies

3GPP has recently extended its 3D SCM channel
model to capture the correlation of large and small
scale parameters (LSP and SCP) as well as (non)-line-
of-sight (n)LoS states. In [9], [21], three such methods
have been proposed. In the first one, named method
of spatially-consistent random variables, the spatial cor-
relation of channel clusters is accounted for by intro-
ducing the so-called spatial consistency to the channel
cluster specific random variables taken from the 3GPP
3D SCM model [9].

The second method is known as geometric stochas-
tic approach. In this case, the large scale parameters
(LSP) are pre-computed for every grid, and each Rx
inside it is associated with these LSP. The grid has
a rectangular shape with the side length of correla-
tion distance that is provided a-priori. In the third
alternative, called method of geometrical cluster locations
(grid-based GSCM, GGSCM), the cluster, path angles,
and delays are defined by the geometrical positions
(x, y) of the appropriate scatterers. In all these models,
the correlation distance is arbitrarily chosen as an
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input parameter, which leads to non-uniqueness of the
resulting propagation environment.

With the help of a ray-based simulator, the authors
in [22] demonstrated a profound impact of spatial
consistency on the path loss modeling. The work in
[23] described a spatially consistent path loss model
for the street urban scenarios. In [24], the authors pre-
sented their simulator wherein the spatially consistent
channel model is integrated.

In addition to macro objects affecting the LoS/nLoS
state, smaller objects (e.g., humans, vehicles, etc.)
induce blockage of the mmWave channel. When mod-
eling highly crowded realistic urban environments,
such as squares and stadiums, the use of ray-tracing
approaches is often difficult due to the associated
computational complexity. Recently, a number of an-
alytical models for blockage phenomena were pro-
posed [25]–[27]. However, these constructions either
do not capture the effect of spatial correlation or do
not offer a method to optimize the channel model.
In [28], the authors measured the channel from dif-
ferent base station (BS) locations and demonstrated
how the knowledge of correlation distance may help
find another best BS in case of blockage. Further,
in [29], the authors argued for the importance of
correlated blockage consideration. They proposed a
model to establish the probability that a certain target
is blocked, while having more than one transceiver
communicating with that target.

Recently, there have been multiple attempts within
3GPP to extend the SCM model by capturing the
spatial correlation of blockage caused by micro ob-
jects, including the human crowd [9]. Particularly,
in [9], a human body has been modeled and two
blockage models, namely, A and B, were introduced.
The model A stochastically generates M 2D blockage
regions uniformly distributed around each Rx. The
parameter M is a fixed number that may be changed
in case the density of blockers varies. The latter model
does not account for the height of blockers and as-
sumes a fixed distance between Rx and blocker, which
significantly reduces the applicability of this model. In
order to account for the spatial correlation between
blockers, a certain autocorrelation function is applied
to the centers of blockers. The limitation of this model
is in the correlation distance, which is a parameter that
needs to be specified in advance.

In model B, a total of M rectangular screens are
physically placed on a map. This allows to account
for any density, dimensions of blockers, as well as
spatial consistency during the simulation time. How-
ever, the computational complexity of this method
increases significantly with the growing numbers of
blockers, thus making it infeasible to apply for mod-
eling densely crowded environments.

1.2 Contributions of This Work

In this paper, we complement the existing 3GPP
3D channel model for the frequencies of 0.5 to
100 GHz [9] by accounting for the spatial correlation
caused by micro objects (particularly, humans bodies)
in crowded scenarios, e.g., squares, stadiums, etc.
Particularly, we propose a novel spatially consistent
blockage state generation procedure, which employs
our analytical framework for the conditional link state
probabilities. Compared to 3GPP blockage models,
our approach features the following advantages: (i)
correlation distance does not need to be specified in
advance, (ii) spatial correlation is captured across all
of the blockers, and (iii) computational complexity
does not depend on the density of blockers, which
makes it possible to model crowded environments.

Our main contributions are therefore as follows:
• We analyze the spatial correlation of human body

blockage caused by a dense crowd around the
receivers for the mmWave channel by propos-
ing a novel mathematical framework. We derive
the conditional channel state probabilities for ev-
ery link generated within the scenario, such as
Transmitter-Rx links or Reflector-Rx links.

• We integrate the proposed analytical model into
the SLS software [30], with our new block-
age state generation procedure taking into ac-
count the actual correlation across micro objects.
This blockage generation procedure allows to
optimize the channel model by introducing an
additional channel state (blocked/non-blocked)
for every link, which captures the spatially-
consistent human body blockage.

• We characterize the absolute received power dif-
ference when disregarding the correlation due to
micro objects in the mmWave channel by con-
ducting extensive simulations. We thus demon-
strate that the spatial correlation is a local effect,
which leads to significant received power varia-
tions at nearby locations when it is not accounted
for.

The rest of this paper is organized as follows. The
system model and its assumptions are introduced
in Section 2. Our mathematical framework is devel-
oped in Section 3. The spatially-consistent blockage
state generation procedure for mmWave propagation
modeling is outlined in Section 4. The key numerical
results are reported in Section 5. Conclusions are
drawn in the last section.

2 SYSTEM MODEL AND ASSUMPTIONS

2.1 Propagation Environment

The considered scenario is illustrated in Fig. 1. The
transmitter (Tx) is assumed to be located at the origin
and has the height of hT . The human body blockers
(referred to as blockers further on) are uniformly
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Fig. 1. The considered scenario of interest.

distributed in the area and modeled as cylinders [31]
with the random height of H as well as the constant
base diameter of dm. The blocker heights are assumed
to be approximated by a Normal distribution H ∼
N(µH , σH) [32]. The centers of the cylinder bases fol-
low a 2D Poisson point process (PPP) with the density
of λB . A total of K Rx are uniformly distributed in the
area S with the coordinates xR,k, yR,k, k = 1, . . . ,K.
The size of Rx is assumed to be infinitesimally small.
The rest of the parameters are summarized in Table 1.

As one may observe in Fig. 1, there are multiple
clusters arriving at Rx.

TABLE 1
Summary of notation and parameters

Notation Description
hT , hR Height of Tx, Rx
xR,k, yR,k x-, y- coordinates of Rx k, k = 1, . . . ,K
xT , yT x-, y- coordinates of Tx
xC,kn, yC,kn, zC,kn x-, y-, z- coordinates of reflecting point for

cluster n of Rx k
φD,kn, φA,kn Angles of departure and arrival of cluster n
θD,kn, θA,kn Zenith angles of departure and arrival of clus-

ter n
τkn Delay of cluster n
H , dm Height and diameter of a blocker, H ∼

N(µH , σH)
FH(x) CDF of the blocker height
λB Density of blockers per unit area
hC , h1, h2 Heights of points P , O, and M
r0 Two-dimensional distance from O to P
d Two-dimensional distance from O to M
α Angle ∠POM
p00, p01 Conditional probabilities to reside in non-

blocked/blocked states at point M (0 and 1)
given that there was non-blocked state at O

p10, p11 Conditional probabilities to reside in non-
blocked/blocked states at point M (0 and 1)
given that there was blocked state at O

Definition 1. A cluster is a set of rays that travel from Tx
to Rx with a small variation in their angles of arrival and
departure caused by diffuse reflections on the same surface.

The correlation between the current channel states
of the links is a consequence of the separation angle
of clusters. Particularly, two Rx, R1 and R2, in Fig. 1
are located nearby, which leads to the correlation
between their LoS links. In contrast, R1 and R3 are
well-separated, which implies that the presence of
blockage at R1 does not affect the LoS link at R3. The
situation is similar with the clusters. Two clusters, C1

and C2, arriving at Rx R4 are correlated with each
other as they are not well-separated in space, and
a single blocker occludes their paths. At the same
time, clusters C2 and C3 are independent. A spatially-
consistent model for mmWave channel needs to take
the effects of spatially-consistent human body block-
age into account.

2.2 3GPP 3D Channel Model
It is important to note that the proposed blockage
state generation procedure is compatible with any
channel model. Below, we briefly review the 3GPP
models with and without spatial correlation as they
are widely acceptable. 3GPP 3D channel model for
bands higher than 6 GHz was introduced in [9]. The
proposed considerations are based on a similar logic
as those in the LTE specifications [33], with modifi-
cations specific to mmWave frequencies. The model
thus allows to generate a set of correlated (with each
other) parameters (angle-of-departure (AoD), angle-
of-arrival (AoA), zenith-of-departure (ZoD), zenith-of-
arrival (ZoA), powers, delays, etc.) for each cluster
based on the measurements conducted in a specific
radio environment.

In Section 7.6.3 of [9], a spatially-consistent exten-
sion to the 3GPP 3D channel model is proposed. The
modeling procedure comprises two parts: 1) genera-
tion of spatially-consistent large scale and small scale
parameters for a static Rx drop; and 2) correlated
Rx mobility modeling. In step one, a regular hor-
izontal grid is generated, whose inter-site distance
equals the correlation distance specified in advance.
The standard mmWave model is used to specify the
propagation conditions for each node of the grid. The
propagation parameters of Rx are then interpolated
based on the nearest nodes, see [34] for details. When
Rx mobility is added, the delay, departure/arrival
angles, and cluster powers are updated according to
user direction and speed.

2.3 3GPP Cluster Localization Process
According to the 3GPP 3D channel model, there are
N clusters arriving at every Rx in the scenario, where
N is a scenario-specific parameter [9]. The model
provides the AoA, AoD, ZoD, ZoA, delay, etc. for
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Reflection point
of cluster n

Fig. 2. Illustration of location of a cluster.

each cluster, which become the input parameters for
our analytical framework outlined in Section 3. To
introduce our spatially-consistent blockage state gen-
eration procedure described in Section 4 and based on
a novel analytical framework introduced in Section 3,
it is also required to obtain the coordinates of the clus-
ter’s reflection points for Rx k, (xC,kn, yC,kn, zC,kn). In
order to do that, we follow [21] by assuming that Tx
and Rx are located at the foci of an ellipse, and that
the reflection point of a single bounce is located at
the arc of this ellipse as shown in Fig. 2. With this
method, we can extract the x-, y-, and z-coordinates
of the reflecting point of cluster n for Rx k, which are
required to parametrize our analytical framework, as
follows:

• as the random generation of AoA and AoD ac-
cording to 3GPP [9] does not guarantee that the
arrival and departure clusters will intersect in 3D
space, we randomly choose Tx-side or Rx-side;

• compute the coordinates (xC,kn, yC,kn) as:
– choosing Tx-side, we have:

xC,kn = xT + dT,kn cosφD,n,

yC,kn = yT + dT,kn sinφD,n, (1)

– alternatively, choosing Rx-side we have:

xC,kn = xR,k + dR,kn cosφA,kn,

yC,kn = yR,k + dR,kn sinφA,kn, (2)

where dT,kn and dR,kn are the distances be-
tween the reflecting point of cluster n and Tx
or Rx k, respectively, xT , yT , xR,k, and yR,k
are the coordinates of Tx and Rx k, φD,kn and
φA,kn are the angles of departure and arrival
of cluster n, dkn = dT,kn + dR,kn is the total
travel distance of cluster n estimated as cτkn,
where τkn is the delay and c is the speed of
light;

• since (xC,kn, yC,kn) are the coordinates in case of
a single reflection, the distance may be chosen
uniformly between this point and Tx/Rx location.
The new distance from the last or first reflection,
depending on which side (Tx or Rx) is consid-
ered, is denoted as du,kn;

• compute the coordinate zC,kn as:

– in case of Tx-side, we have:

zC,kn = hT + du,kn tan θD,kn, (3)

– alternatively, in case of Rx-side we have:

zC,kn = hR − du,kn tan θA,kn, (4)

where hT and hR are the heights of Tx and
Rx k, while θD,kn and θA,kn are the zenith
angles of departure and arrival of cluster n,
respectively.

3 MATHEMATICAL FRAMEWORK

In this section, we develop a novel mathematical
framework for characterizing the conditional link
state probabilities. The considerations below are a
comprehensive extension of our previous model
in [27] that allow to consider different heights of
points O and M . In what follows, we first introduce
the preliminary details and then proceed by deriving
the unconditional and conditional link state probabil-
ities with respect to the channel with known blockage
state. These metrics form the foundation of the pro-
posed spatially-consistent human body blockage state
generation procedure for the mmWave channel model
introduced in Section 4.

3.1 Important Preliminaries

Consider Fig. 3 illustrating the top-view of the
scenario where two clusters are arriving/departing
at/from two location points O and M . These clusters
are departing/arriving from/at a common point P . In
the first case, Tx acts as a common entity located at
point P , which is associated with two Rx located at
points O and M . In the second case, Rx is considered
as a common entity located at point P , which receives
two clusters from the reflector points located at O and
M . Note that O and M may also be the coordinates
of two Tx communicating with a single Rx located at
P or, in general, the coordinates of any other nodes.

To establish the conditional link state probability
for the general case, we operate with the following
terminology: point P with height hC , point O with
height h1, and link state (i.e., blocked or non-blocked)
derived with unconditional link state probability, as
well as point M with height h2 and link state derived
with conditional link state probability. To capture
the spatial correlation with respect to the blockage
between two links, we are interested in the conditional
link state probabilities pij .

Definition 2. pij , i, j = 0, 1, are the conditional link
state probabilities (conditional probabilities) that the state
of a node at point M is non-blocked (j = 0) or blocked
(j = 1) given that the state of this node at point
O is non-blocked (i = 0) or blocked (i = 1), pij =
P [M is in state j|O is in state i].
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These probabilities can be organized into the fol-
lowing matrix

P =

(
p00 p01
p10 p11

)
, (5)

where states 0 and 1 reflect the non-blocked and
blocked states, respectively. The matrix P is a function
of the following variables:
• r0 is the two-dimensional distance from O to P ;
• d is the two-dimensional distance from O to M ;
• α is the angle ∠POM , see Fig. 3;
• λB is the density of blockers;
• hC , h1, and h2 are the heights of points P , O, and
M .

Since the following holds [27]

p00 = 1− p01, p10 = 1− p11, (6)

in order to parametrize (5), it is required to obtain p00
and p10.

The geometry of our proposed methodology is
demonstrated in Fig. 3, where two rectangles ABCD
and EFGH represent the areas affecting the link PO
and PM blockage. The width and length of these
rectangles are equal to dm (the diameter of a blocker)
and r0/r1 (the 2D distances PO and PM ), respec-
tively. One may notice that the intersection area of
two rectangles is the area affecting both links PO and
PM . For further analysis, the rectangles are divided
into multiple zones having a different impact on the
conditional probabilities as illustrated in Fig. 3
• Zone 1, NN ′LR, is the square area around the

point P . Further derivations are simplified signif-
icantly by omitting this zone, while the general
impact of this zone is considered to be negligible
due to its smaller size.

• Zone 2, ANSKD, is related to the path PO and
influences the conditional probability in case PO
path is blocked.

• Zone 3, IKEH , affects the PM path and does
not depend on the state at point O.

• Zone 4, SRK, is the common zone affecting both
links simultaneously and impacting the depen-
dency between the states at points O and M .

Zone 4 can be split further into two smaller zones,
4a and 4b, which represent the area on the right and
left sides, respectively, along with PU , which is the
line of intersection of two planes as shown in Fig. 3.
These zones are used to determine whether a blocker
that is blocking/not blocking the lower plane, is also
blocking/not blocking the upper one. Depending on
the heights of the involved entities, these zones will
correspond to different planes, which is reflected in
subsequent derivations.

3.2 Unconditional Link State Probability

We begin with characterizing the unconditional link
state probability by deriving it for point O located at
the distance of r from point P .

Definition 3. Unconditional link state probability, PnB,
is the probability that a given link is not occluded by a
human body, without taking into account the condition of
blocked/non-blocked state of the neighboring links.

We follow [26] to briefly sketch the derivation in
question. Consider a rectangular blockage zone in
Fig. 3 with the width corresponding to the diameter
of a blocker, dm, and the length of r. Recalling that
the process associated with the centers of blockers is
homogeneous Poisson, the coordinates of each par-
ticular blocker are distributed uniformly over (0, dm)
and (0, r), which corresponds to OY and OX coor-
dinates of the rectangle sides, respectively. Hence, the
blockage probability is the probability that at least one
blocker resides in the area of interest and occludes the
link at hand.

For different values of hC , h1, and the distribution
of the blocker height H , a blocker falling into the con-
sidered area occludes the link when P{H > hm(x)},
where x ∈ (0, r) and hm(x) is

hm(x) =
hC − h1

r
x+ h1, x ∈ (0, r). (7)

The non-blocked state probability can now be ob-
tained in terms of the void probability for the PPP
as

PnB = exp

[
λBdm

∫ r

0

(FH(hm(x))− 1) dx

]
, (8)

where FH(x) is the CDF of the blocker height.
The result in (8) is then employed to derive the

conditional link state probabilities. In subsections 3.3,
3.4, and 3.5 we establish the conditional probabilities
for the general case, where all of the entities are
located at different heights in relation to each other.
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Pnbz = fP (0, λB Sz) +
∞∑

i=1

fP (i, λB Sz)

[
∑N
j=1

xj+1∫
xj

yj+1∫
yj

FH

(
gy−fx−e

h

)
dy dx

]i

Siz
. (9)

P∗nbz = exp


λB

N∑

j=1

xj+1∫

xj

yj+1∫

yj

[
FH

(
gy − fx− e

h

)
− FH

(
by − ax− d

c

)
− 1

]
dydx


 . (10)

3.3 Probabilities p10 and p11 for hC > h2

By observing Fig. 3, one may notice that the planes
(ABC) and (EFG) intersect at PU . The zones 4a
and 4b are located on the right and left sides of PU ,
respectively. By using the 3D view of the scenario in
Fig. 6, where hC > h2, we may conclude that the zone
4a of Area 1, which corresponds to plane (ABC) from
Fig. 3, is always higher than the corresponding zone
of Area 2 depicted as plane (EFG). Alternatively,
in Fig. 7, when hC < h2, the zone 4a of Area 1 is
always lower than the zone 4a of Area 2. Therefore,
the conditional probabilities are independent of the
height h1, and it is sufficient to consider two cases,
hC > h2 and hC < h2.

Let L̃z and Lz be the events of having no blockers
in zone z that occlude the link paths at O and M ,
respectively. The events complementary to L̃z and Lz
are denoted by Ñz and Nz . Note that L̃z and Lz
occur when there are no blockers in zone z or all
the blockers are not high enough to occlude the link.
When hC > h2, p10 can be written as

p10 =
P [M is non-Blocked ∩O is Blocked]

P [O is Blocked]
. (11)

Lemma 1. The probability p10 for hC > h2 given in (11)
is simplified to the following form

p10 =
Pnb3

(
P̃b2P̃nb4bPnb4a + P∗nb4bPnb4a

)

1− P̃nb2P̃nb4aP̃nb4b
, (12)

where Pnbz and Pbz are the probabilities of the events Lz
and Nz , P∗nb4b is the probability of Ñ4b ∩L4b, and P̃nbz is
the probability of having no blockers affecting the link in
the corresponding zone for point O.

Proof: See proof in Appendix A, available in the
online supplemental material.

The probabilities Pnbz are derived similarly to the
unconditional link state probability in subsection 3.2.
They are given by (9), where the auxiliary parameters
are provided in Appendix B, available in the online
supplemental material, fP (i, λBSz) is the probability
of having i blockers in the zone z with the density of
blockers λB , Sz is the area of zone z, and FH([gy −
fx − e]/h) is the probability that a blocker with the
coordinates x, y is lower than the link PM . Note

that here each zone is actually a polygon formed by
the intersection of the projections of planes. Since, in
fact, (9) integrates over the area of the corresponding
zone, it is easier to represent the entire zone as a set
of trapezoids and/or triangles with their lower and
upper bounds represented as variables xj , xj+1 and
yj , yj+1. The integration limits are provided in our
technical report [35].

Using the Maclaurin series expansion of an expo-
nential function, (9) can be simplified as

Pnbz = eλB(I−Sz). (13)

Finally, the probability Pnbz is written as

Pnbz =

N∏

j=1

e
λB

xj+1∫
xj

yj+1∫
yj

[FH( gy−fx−e
h )−1]dydx

. (14)

Consider now P̃nbz, which corresponds to the case
where all of the blockers are lower than the plane
(ABC). These probabilities are obtained similarly to
Pnbz and read as

P̃nbz =
N∏

j=1

e
λB

xj+1∫
xj

yj+1∫
yj

[FH( by−ax−d
c )−1]dydx

. (15)

To simplify (12), observe that the following holds

P̃nb2,4 = P̃nb2P̃nb4aP̃nb4b,

P̃b2 = 1− P̃nb2,4
P̃nb4

, (16)

P̃nb4 = P̃nb4aP̃nb4b,

where P̃nb2,4 is the probability of having no blockers
in the rectangle ADRN for the link PO. It is calculated
by utilizing the generic form (9), which leads to

P̃nb2,4 = p0 +

∞∑

i=1

pi



xR∫

0

yR∫

0

FH

[
by−ax−d

c

]
dydx

||AD||||DR||



i

, (17)

where the integration starts at 0, since the point A is
located in the center of coordinates.

Finally, using the Maclaurin series expansion of the
exponential function, the probabilities P∗nbz are given
by (10), while the integration limits are provided in
our technical report [35]. The complementary proba-
bility p11 is 1− p10.
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Fig. 4. Illustration of spatially-consistent zone for hC = 4 m, h1 = 1.5 m, and h2 ∈ (0.5 m− 1.5 m).
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Fig. 5. Illustration of spatially-consistent zone for hC = 1.5 m, h1 = 4 m, and h2 ∈ (2.1 m− 4.1 m).

3.4 Probabilities p00 and p01 for hC > h2

First, the conditional probability p00 can be written as

P [M is non-blocked|O is non-blocked] =

P [M is non-blocked ∩O is non-blocked]

P [O is non-blocked]
. (18)

Note that the event (M is non-blocked) corre-
sponds to the event L3 ∩ L4a ∩ L4b, while the event
(O is non-blocked) corresponds to the event L̃2 ∩
L̃4a ∩ L̃4b. Observe that zone 4a exists in both planes,
while 4a of one plane is always higher than that of
another plane. If a blocker in zone 4a is lower for the
plane (FGH), it is lower for the upper plane as well;
therefore, the following holds: L̃4a ∩ L4a = L4a. The
same applies to L̃4b ∩ L4b = L̃4b. Hence, (18) can be
written as

p00 =
P
[
L3 ∩ L4a ∩ L4b ∩ L̃2 ∩ L̃4a ∩ L̃4b

]

P
[
L̃2 ∩ L̃4a ∩ L̃4b

]

=
P [L3 ∩ L4a]

P
[
L̃4a

] . (19)

Finally, the conditional probability p00 can be estab-
lished as

p00 =
Pnb3Pnb4a
P̃nb4a

, (20)

where Pnbz is the probability of having no blockers
in zone z, which is produced by (14), while P̃nbz is

derived in (15). The complementary probability p01 is
1− p00.

3.5 Conditional Probabilities pij for hC < h2

Consider now the case where a common entity height,
hC , is lower than the second entity height, hC < h2.
The analysis in this case is similar to the case of hC >
h2, which has been completed previously, but with
one important exception. Here, zones 4a and 4b are
located differently with respect to the plane having
the non-blocked link path. Hence, we modify (19) for
p00 as

p00 =
P [L3 ∩ L4b]

P
[
L̃4b

] , (21)

and the conditional probability p00 thus becomes

p00 =
Pnb3Pnb4b
P̃nb4b

. (22)

The complementary probability p01 can now be
established as p01 = 1− p00. Modifying (11) similarly,
we arrive at

p10 =
Pnb3

(
P̃b2P̃nb4aPnb4b + P∗nb4aPnb4b

)

1− P̃nb2P̃nb4aP̃nb4b
. (23)

The complementary probability p11 can now be
established as p01 = 1− p10.
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3.6 Shape of Spatially-Consistent Zone
To assess the effect of correlation caused by human
bodies, consider the shape of the spatially-consistent
(SpCon) zone.

Definition 4. A spatially consistent zone is the 2D zone
around the target node where for every node located inside
the SpCon zone the fraction of two conditional link state
probabilities, p10/p00, is lower than the value ∆x (∆x =
0.99). Every point at the edge of the SpCon zone coincides
with the distance where two conditional probabilities, p00
and p10, converge to unconditional probability, PnB [27].
Any node in the SpCon zone has a spatially consistent
blockage state with the target node link state.

The spatially-consistent zone for the case of hC =
4 m and h1 = 1.5 m as well as the distance between
points P and O of 50 m, is exemplified in Fig. 4,
where the height of point M , h2, varies within the
range (0.5, 1.5) m. The SpCon zone for the case of
hC = 1.5 m and h1 = 4 m is illustrated in Fig. 5.

As one may observe, the dimensions of the SpCon
zone for the second case, hC < h2, are considerably
larger that those for the first case where hC > h2. To
explain this behavior, consider two 3D illustrations
for the two considered cases, hC > h2 and hC < h2,
as displayed in Fig. 6 and Fig. 7, respectively. Here,
point P represents the common entity with the height
of hC . Points O and M are the entities with known
and unknown states, respectively. All the blockers are
smaller than the plane Ω, which is the maximum
considered height of a blocker.

Analyzing Fig. 6, which reflects the case of hC > h2,
we note that the area of the zone inducing the corre-
lation between the states is rather small. Indeed, the
zone FcGcHcIc (2D plane in Fig. 6) is the common
zone that affects both O and M , while only zone
JcKcHcIc is responsible for the dependence between
the states. Most of the common zone is located high
enough, where the blockers do not affect the link in
question. Hence, the dimension of the SpCon zone
in its minor axis is very small, since an increase in
the distance between points O and M decreases the
intersection area.

P

O M

Ω

Area 2
Area 1

FC GC

JC KC

IC HC

4b
4a

Fig. 6. Illustration of the case hC > h2.

P

OM

Ω

Area 2

Area 1

FC GC

JC
KC

ICHC

4b

4a

Fig. 7. Illustration of the case hC < h2.

In Fig. 7, the zone FcGcHcIc (2D plane in Fig. 7)
is the common zone that affects both O and M . Here,
only zone FcGcJcKc is responsible for the dependence
between the states. Hence, an increase in the distance
between the two entities maintains the correlation
farther than in the first case.

4 SPATIALLY-CONSISTENT BLOCKAGE
STATE GENERATION PROCEDURE

After obtaining the unconditional and conditional
link state probabilities, we proceed with specifying a
spatially-consistent blockage state generation proce-
dure for micro objects (human bodies). Our proposed
procedure can be overlaid on top of the standard
3GPP channel model or on top of any 3GPP-like
channel model.

The main goal of the proposed procedure is to
assign the spatially consistent blocked/non-blocked
state to every link in a given scenario. Algorithm
1 is responsible for generating blocked/non-blocked
states among all the Tx-Rx links, whereas Algorithm
2 is responsible for generating blocked/non-blocked
states among all the Reflector-Rx links. Both algo-
rithms employ our analytical framework to derive the
conditional link state probabilities given in Section 3.
The computation complexity of the algorithms grows
linearly with the number of Rx nodes i.e., the overall
modeling complexity is O(K), where K is the number
of Rx generated in the scenario. Note that the algo-
rithms do not depend on the blocker density, since this
density is a parameter of the analytical framework.

The proposed state generation procedure comprises
three phases. At the first phase, we associate every
Rx with the state (blocked/non-blocked) of the LoS
path. Initially, we generate K Rx with uniformly dis-
tributed x- and y-coordinates. Further, we introduce
two sets, NU1 and NU2, containing the coordinates of
Rx without and with generated blockage states. The
set NU,s contains blockage states of LoS links for all Rx.
Further, we choose the first Rx from the set NU1 and
find the unconditional state of that Rx by using the
unconditional link state probability, PnB, from (8). We
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Algorithm 1: Blocked/non-blocked LoS state gen-
eration

Result: Blocked/non-blocked LoS states for all Rx

1 Generate uniformly distributed coordinates
(xR,1, yR,1), . . . , (xR,K , yR,K) of K Rx

2 Define the sets NU1 = ∅ and NU2 = ∅ for the
coordinates of Rx w/o and w/ blocked/non-blocked
state, respectively

3 Define the set NU,s = ∅ for blocked/non-blocked states
of every Rx

4 Save the coordinates of every Rx to the set
NU1 = {(xR,1, yR,1), . . . , (xR,K , yR,K)}

5 while NU1 6= ∅ do
6 Choose the coordinates of Rx k from the set NU1

7 Find the unconditional state qRu,k = {0 or 1} of Rx
k based on the unconditional probability, PnB,
from (8)

8 Save the state of Rx k to the set NU,s = NU,s ∪ qRu,k
9 Remove the coordinates of Rx k from the set NU1

10 Add the coordinates of Rx k to the set
NU2 = NU2 ∪ (xR,k, yR,k)

11 while NU2 6= ∅ do
12 Choose the coordinates of Rx l from the set NU2
13 Calculate the SpCon zone (see Definition 4) for

Rx l using the conditional probabilities, p10
from (12), p00 from (20), and the
unconditional probability, PnB from (8)

14 Remove the coordinates of Rx l from NU2
15 Find any Rx from the set NU1 in the SpCon

zone of Rx l
16 if Rx m from the set NU1 is in the SpCon zone

then
17 Find the conditional state qRc,m = {0 or 1}

of Rx m using (12) or (20)
18 Add the coordinates of Rx m to the set

NU2 = NU2 ∪ (xR,m, yR,m)
19 Save the state of Rx m to the set

NU,s = NU,s ∪ qRc,m
20 Remove the coordinates of Rx m from the

set NU1

continue by calculating the SpCon zone for the first
selected Rx by following the Definition 4. All of the
Rx that fall into the SpCon zone have their link states
correlated with the link state of a chosen Rx. In case
where no Rx are in the SpCon zone, the next Rx from
the set NU1 is selected and the procedure repeats. The
generation procedure continues up until all the Rx are
assigned with blocked/non-blocked LoS states.

At the second phase, we generate the cluster chan-
nel parameters (AoA, AoD, ZoA, ZoD, and delay)
for every Rx by following the 3GPP channel model
generation procedure [21]. Finally, at the last phase,
the state of each cluster for every Rx is generated. The
set NC contains the aforementioned cluster channel
parameters of all clusters for all the Rx. The sets NCk1
and NCk2 contain cluster coordinates without and with
blocked/non-blocked states. The set NCk,s contains the
states of every cluster for each Rx in the scenario. We
choose the first cluster of Rx k = (1, . . . ,K) and find
the state by using the unconditional probability, PnB,

Algorithm 2: Blocked/non-blocked link state gen-
eration for every cluster of each Rx

Result: Blocked/non-blocked states for all clusters

1 Generate the cluster channel parameters
(φA,kn, φD,kn, θA,kn, θD,kn, τkn) for all K Rx [9]

2 Define the set NC = ∅ for the parameters of clusters
for every Rx w/o state

3 Define the set NCk,s = ∅ for the blocked/non-blocked
states of every cluster for each Rx

4 Add all the parameters of clusters for each Rx to the
set NC = (φA,kn, φD,kn, θA,kn, θD,kn, τkn)

5 while NC 6= ∅ do
6 Choose the parameters of clusters for Rx k from

the set NC
7 Find xC,kn, yC,kn, and zC,kn coordinates of clusters

n = 1, . . . , N , see subsection 2.3
8 Remove the parameters of clusters for Rx k from

the set NC
9 Define the sets NCk1 = ∅ and NCk2 = ∅ for the

coordinates of clusters for Rx k, w/o and w/
state respectively

10 Add the coordinates of clusters for Rx k to the set
NCk1 = {(xC,k1, yC,k1, zC,k1), . . . , (xC,kN , yC,kN ,
zC,kN )}

11 while NCk1 6= ∅ do
12 Choose the coordinates of cluster l from the set

NCk1

13 Find the unconditional state qCu,l = {0 or 1} of
cluster l based on the unconditional
probability, PnB, from (8)

14 Save the state of cluster l to the set
NCk,s = NCk,s ∪ qCu,l

15 Add the coordinates of cluster l to the set
NCk2 = NCk2 ∪ (xC,kl, yC,kl, zC,kl)

16 Remove the coordinates of cluster l from the
set NCk1

17 while NCk2 6= ∅ do
18 Choose the coordinates of cluster e from

the set NCk2
19 Find the conditional probabilities p10 and

p00 for the link state of cluster m from the
set NCk1

20 Remove the coordinates of cluster e from
the set NCk2

21 if p10/p00 < ∆x then
22 Find the conditional state

qCc,m = {0 or 1} of the cluster m based
on the conditional probabilities p10 or
p00

23 Save the state of cluster m to the set
NCk,s = NCk,s ∪ qCc,m

24 Add the coordinates of cluster m to the
set NCk2

25 Remove the coordinates of cluster m
from the set NCk1

(8). Due to different heights of the arrived clusters,
there is no common 2D SpCon zone for a given cluster
reflection point. Therefore, the rest of the clusters
without the link states are compared individually
with the chosen cluster to identify any correlated links
among the clusters. Any chosen cluster is considered
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Fig. 8. Unconditional probability, PnB, of non-blocked
state, λB = 1.

to have its link state correlated with the link state of
cluster 1 if the fraction of two conditional link state
probabilities, p10/p00, is lower than a certain value ∆x
(∆x = 0.99). The conditional state probabilities p10
and p00 are calculated based on (12)/(23) and (20)/(21)
by taking into account the heights of the considered
clusters and the Rx. The generation procedure contin-
ues up until all the clusters of all the Rx are assigned
with blocked/non-blocked states.

The pseudo code for the above phases is provided
in Algorithms 1 and 2, where Algorithm 1 covers the
first phase, while Algorithm 2 implements the second
and third phases.

5 KEY NUMERICAL RESULTS

In this section, we illustrate the performance of our
generation procedure as well as study the effects of
correlation caused by micro objects (human bodies)
in the mmWave channel, which we compare with the
case of no correlation among the links. We consider a
crowded environment, where the density of blockers
in the modeled area is λB = 1 blockers per square
meter. The height of Tx is 4 m and the height of
each Rx is 1.5 m. The Tx is located at the origin
(0, 0), while K Rx are distributed uniformly within
the area of interest. The received power of every Rx
is established by using the 3GPP urban micro (UMi)
street canyon path loss model and the cluster based
channel model [9]. In case the link is blocked, we
assume 20 dB loss [36]. The link blockage state is
derived by employing our spatially-consistent human
body blockage state generation algorithm as well as
independent generation of the link blockage states.
The remaining parameters are collected in Table 2.

Let the coordinates of K Rx be uniformly dis-
tributed in three different areas of 10 by 10 square
meters. The left bottom edges of these areas are
located at (xL,B , yL,B) coordinates of (1, 1), (15, 15),
and (40, 40) referring to the different 2D separation
distances between the Tx and the closest Rx. These

coordinates where chosen to study the impact of the
most probable link state in three different cases: (i) Rx
are mostly in non-blocked state (probability of non-
blocked state is about 0.8 in Fig. 8); (ii) there is no
dominant state (probability of non-blocked state is
about 0.5 in Fig. 8), and (iii) Rx are mostly in blocked
state (probability of non-blocked state is about 0.2 in
Fig. 8). Below, we formulate our key findings in terms
of several important statements.

We first compare the output of our algorithms with
the data from our simulator [30], where blockers were
captured explicitly. We model them as cylinders with
the density of λB = 1 blockers per square meter for
the scenario described above. In Fig. 9(b), it may be
observed that the simulation results match closely the
ones derived with the proposed algorithm. A slight
mismatch between the data sets is explained by the
assumption of the analytical model, where a blocker
occludes a link if its height is lower than the LoS link
at the point, where the blocker’s center is located. In
the simulator, the blocker might still occlude the path
with its edge in some cases.

Observation 1: Spatial consistency across the
blockage states of the links does not impact the
mean received power averaged over a large area
of interest but affects the received power of the
neighboring links. Fig. 9 demonstrates the CDFs of
the received power, PR, for three different assump-
tions regarding the blockage state generation: (i) no
blockers (all the Rx are in LoS); (ii) uncorrelated
blockage states; (iii) correlated blockage states for
three different positions of the left bottom edge of the
Rx distribution area of 10 m×10 m: (1, 1), (15, 15), and
(40, 40). Here, the number of Rx, K, was set to 100. As
one may observe in Fig. 9, the CDFs of the received
power coincide for the scenarios with correlated and
uncorrelated blockage states. The reason is that the re-
ceived power averaged across all of the Rx distributed
in the area larger than the SpCon zone of one Rx
remains the same on average. However, if we consider
the area that is much smaller than the SpCon zone of
one Rx, e.g., 1 m×1 m, the difference in the CDFs
of the received power for correlated and uncorrelated
blockage states becomes noticeable as confirmed in

TABLE 2
Baseline system parameters

Parameter Value
Height of Tx, hT 4 m
Height of Rx, hR 1.5 m
Height of a blocker, N(µH , σH) N(1.7 m, 0.1 m)
Diameter of a blocker, dm 0.5 m
Coordinates of the left bottom edge of the area
with distributed K Rx, (xL,B , yL,B)

(1, 1), (15, 15),
and (40, 40)

Density of blockers, λB 1 bl/m2

Carrier frequency 28 GHz
Transmit power 35 dBm
Blockage penalty 20 dB
Number of clusters, N 5
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Fig. 9. Received power CDF: 100 Rx distributed in 10 m×10 m area.

-90 -80 -70 -60 -50 -40
Received Power, PR [dBm]

0

0.2

0.4

0.6

0.8

1

C
D

F

No blockers
Uncor. blockage
Cor. blockage

Fig. 10. Received power CDF: 100 Rx, 1 m×1 m area,
(xL,B , yL,B) = (15, 15).

Fig. 10. It is explained by the fact that most of the Rx
are falling into the SpCon zone of one Rx, so that all
the links are correlated with each other. Therefore, the
correlation across the blockage states highly affects the
performance of the neighboring links.

However, note that these results do not imply that the
knowledge of correlated states of receivers cannot improve
the system performance. Even though there is no difference
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Fig. 11. Number of correlated receivers among 20 Rx
in 10 m×10 m area, (xL,B , yL,B) = (40, 40).

in the CDFs, one can schedule for service those Rx, which
currently reside in non-blocked conditions by benefiting
from knowing the correlated states of Rx.

Observation 2: Increased density of Rx leads to
a higher number of correlated links. The effect of
Rx density on the proportion of correlated links is
demonstrated in Fig. 11 and Fig. 12, where the total
numbers of Rx per 10 m×10 m area are 20 and 100,
respectively. The plots illustrate the difference in the
received power calculated for the same set of Rx but
with different blockage state generation procedure:
(i) correlated blockage states and (ii) uncorrelated
blockage states. The figures reflect only those Rx,
which see a difference in the received power. The
positions of the small squares in the plots represent
the aforementioned Rx locations and the color of the
squares demonstrates the absolute power difference.
It is observed that for one particular realization of the
field of Rx displayed in the plots the percentage of re-
ceivers with correlated link states increases from 45%
among 20 Rx to 97% Rx among 100 Rx in 10 m×10 m
area.

However, the number of Rx with different received
power is significantly smaller referring to the 10%
among 20 Rx and 16% among 100 Rx. The reason
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Fig. 13. Absolute received power difference between correlated and uncorrelated blockage state generation for
50 Rx, (xL,B , yL,B) = (1, 1).
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Fig. 14. Absolute received power difference between correlated and uncorrelated blockage state generation for
50 Rx, (xL,B , yL,B) = (15, 15).

is that there is a number of Rx, which are assigned
a blocked/non-blocked state based on the uncondi-
tional probability in the spatially consistent blockage
state generation procedure. For high unconditional
blockage probability, these states will most probably
be blocked states. The receivers that are located in the
SpCon zone of the Rx with unconditional blockage
states having a high probability will follow the link
state of the latter Rx. Therefore, the number of Rx with
different received power is low, since most of the Rx
will be assigned the most probable link state.

Observation 3: The difference between received
power calculated with the help of the correlated
and uncorrelated state generation procedures in a
single realization increases when the first chosen
Rx is assigned a less probable state (e.g., the uncon-
ditional non-blockage probability is 0.8, but with
the probability 0.2 the Rx could be assigned the
blocked state, which is a less probable state). It was
noted in the previous plots that the number of Rx with
different received power for two different blockage
state generation cases (conditional and unconditional)
is rather small, since the Rx is assigned the most
probable link states. With Fig. 13 and Fig. 14, we
study the effect of the link state that deviates from
the most probable case. For the three subplots in
Fig. 13, a set of 50 Rx was generated once in the
10 m×10 m area with the left bottom coordinates
(xL,B , yL,B) = (1, 1). The small squares refer to the

positions of Rx with different received power for the
correlated and uncorrelated blockage state generation
cases. Also, the position of every Rx is the same for
each subplot of Fig. 13. The first Rx chosen by the spa-
tially consistent blockage state generation procedure
is assigned a blockage state following three different
strategies: (i) the first chosen Rx is assigned a blockage
state based on the unconditional probability; (ii) the
first chosen Rx is assigned a non-blocked state; (iii) the
first chosen Rx is assigned a blocked state. The latter
strategies were chosen to study the effects related to
a single link state.

It was observed that the number of Rx with dif-
ferent received power for the two scenarios (uncon-
ditional and conditional blockage state generation
cases) increases when the first chosen Rx is assigned
a less probable state. For Fig. 13, this state is the
blocked state, since the unconditional non-blockage
probability is about 0.8. To further demonstrate the
impact of the most probable state of the Rx, we
generate 50 Rx in the area of 10 m×10 m area with
(xL,B , yL,B) = (15, 15); the results are depicted in
Fig. 14. These coordinates were chosen, since there
is no most probable state of the Rx (unconditional
blockage probability is around 0.5). The results indi-
cate no major difference between the number of Rx
with different received power when assigning the first
Rx with a blocked or non-blocked state.
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6 CONCLUSIONS

In this paper, we proposed a new 3GPP-compatible
spatially-consistent human body blockage state gen-
eration procedure for dense urban mmWave deploy-
ments. The contributed model is built on top of a
globally accepted 3GPP methodology and extends it
to the case of correlated signal behavior caused by a
human crowd around the mmWave receivers. We also
investigated in detail the effects of correlation created
by human bodies to demonstrate that it manifests
itself in a local fluctuation of the received signal
strength as well as heavily depends on the density
of the receivers. The main application area for the
proposed state generation procedure is in system-
level simulations of the emerging cellular mmWave
technology. In this setting, our model can be used
as an extension to the 3GPP model with correlated
macro objects, thus inducing additional dependency
in the received signal strength field caused by the
human crowd. The computational complexity of our
model does not depend on the blocker density, which
makes it suitable for characterizing densely crowded
environments.
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On the Degree of Multi-Connectivity in 5G
Millimeter-Wave Cellular Urban Deployments

Margarita Gapeyenko, Vitaly Petrov, Dmitri Moltchanov, Mustafa Riza Akdeniz,
Sergey Andreev, Nageen Himayat, and Yevgeni Koucheryavy

Abstract—Outage event caused by dynamic link blockage at
millimeter-wave (mmWave) frequencies is a challenging problem
for cell-edge users. To address it, 3GPP is currently working
on multi-connectivity mechanisms that allow a user to remain
connected to several mmWave access points simultaneously as
well as switch between them in case its active connection drops.
However, the actual number of such simultaneous links – named
the degree of multi-connectivity – to reach the desired trade-off
between the system design simplicity and the outage probability
levels remains an open research question. In this work, we char-
acterize the outage probability and spectral efficiency associated
with different degrees of multi-connectivity in a typical 5G urban
scenario, where the line-of-sight propagation path can be blocked
by buildings as well as humans. These results demonstrate that
the degrees of multi-connectivity of up to 4 offer higher relative
gains. Our analytical framework can be further employed for
the performance analysis of multi-connectivity-capable mmWave
systems across their different deployment configurations.

Index Terms—mmWave systems, multi-connectivity, macro
diversity, dynamic human body blockage, outage probability.

I. INTRODUCTION

The millimeter-wave (mmWave) radio links are known to
be susceptible to abrupt quality degradation due to the line-
of-sight (LoS) blockage by various objects in the channel in-
cluding the human crowd [1], [2]. To make mmWave systems
suitable for the applications that demand high reliability, 3GPP
has proposed the concept of multi-connectivity (MC) [3].

Currently, there is a number of multi-connectivity solutions,
such as dual connectivity (DC) or coordinated multi-point
(CoMP) transmission/reception [4], [5]. Originally proposed
in LTE Release 12, DC provides a user equipment (UE)
with the radio resources of two cells residing on the same
band but having different types or on multiple bands with
the same cell type (multi-RAT). The multi-RAT DC for 5G
is a generalization of the earlier where the UE may leverage
the resources of two cells, one of which provides E-UTRA
access and another one offers NR access [3]. Further, DC can
be extended to multi-connectivity where the resources of two
or more cells are made available to a UE. One of the MC
solutions named CoMP allows to receive/transmit a signal
from/to multiple cells on the same frequency [6]. It should
be noted that an exact architecture for each MC option may
vary and there are alternative realizations proposed [7]–[9].
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The advantages of MC techniques in mmWave and mi-
crowave bands have been demonstrated in [10]–[12]. Par-
ticularly, in [11], the authors proposed a scheduling frame-
work to distribute mmWave and microwave resources while
satisfying the quality-of-service (QoS) constraints. Further,
in [13], caching was employed to mitigate handover failures
and reduce energy consumption at the UE side. In [14], an
analysis of signal-to-interference-plus-noise ratio with MC has
been contributed.

However, to satisfy high-rate constraints of the emerging
applications, reliance only on microwave resources may not
be sufficient. Therefore, another wave of studies related to
MC was dedicated to considering multiple mmWave APs.
For example, in [4], the authors employed their simulation
framework to demonstrate that MC increases per-user through-
put in CoMP-based scenarios, while a comparison of various
AP switching strategies for MC-aided mmWave networks was
targeted by [15]. In [16], an active set management scheme
was proposed to avoid service interruptions.

One of the key practical aspects that has not been ad-
dressed comprehensively so far is selecting the degree of
MC, that is, the number of simultaneously supported links.
While higher degrees of MC can potentially lead to improved
performance indicators and more reliable service, this also
increases complexity of the networking protocols and may
yield significant signaling overheads [17]. Targeting the said
system design aspect, this paper analytically characterizes the
outage probability and spectral efficiency in a typical outdoor
urban 3GPP scenario as a function of the degree of MC with
both static (caused by buildings) and dynamic (caused by
humans) LoS blockage. We particularly focus on cell-edge
users that on average experience poor channel conditions even
with their closest AP.

The main contributions of this work are:

• To study the outage and spectral efficiency metrics for
multi-connectivity mmWave environments in the pres-
ence of LoS blockage caused by stationary and dynamic
objects, a unified mathematical framework based on
stochastic geometry and probability theory is proposed.

• To evaluate relative performance benefits of higher de-
grees of MC, a mathematical methodology is employed.
We demonstrate that the use of 4 simultaneous mmWave
links allows to achieve up to 95% gain in the outage prob-
ability and up to 74% gain in the spectral efficiency, while
improvements brought by higher degrees are marginal.

The remainder is organized as follows. Our system model is
introduced in Section II. The outage probability and spectral
efficiency for the cell-edge users in MC-aided mmWave net-
works are derived in Sections III and IV. Numerical results
illustrating the effect of the degree of MC are offered in
Section V. Conclusions are drawn in the last section.
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Fig. 1. Scenario considered for our analytical modeling.

II. SYSTEM MODEL

A. Deployment Model

The system model is illustrated in Fig. 1. Assume that the
locations of mmWave APs follow a Poisson point process
(PPP) in <2 with the density of λA. The AP height is fixed
and set to hA. We consider a single cell-edge UE dropped
randomly in <2, such that the distance between this UE and its
nearest AP is sufficient to result in an outage; hence, the signal-
to-noise ratio (SNR) is below its threshold value if the LoS
link between the UE and the closest AP is blocked. The target
user is assumed to remain stationary throughout its operation.
The UE height, hU , is constant as well.

The humans in the pedestrian area around the UE act as
potential blockers. Their spatial density in <2 is λB . These
blockers are modeled as cylinders and have the radius, rB [2].
The height of the humans is assumed constant and set to hB ,
hB > hU . To capture the mmWave LoS signal dynamics, we
assume that humans move according to a random direction
mobility (RDM, [18]) model.

B. Propagation Model

The LoS path between a mmWave AP and a UE in dense
urban environments can be blocked by: (i) large static objects,
such as buildings (nLoS state), and (ii) smaller dynamic ob-
jects, such as humans (blocked state). There are four possible
states for the link of interest: LoS non-blocked (nBl.) – no
large or small objects are occluding the LoS link, LoS blocked
(Bl.) – only small object is occluding the LoS link, nLoS
non-blocked – large object is blocking the LoS, and nLoS
blocked – LoS is blocked by a large object and all nLoS
paths are blocked by small objects. Following the current
3GPP considerations [19], we distinguish only three of them
by disregarding the worst case (nLoS blocked). The reason
is that the probability that all the available independent nLoS
paths are blocked simultaneously is negligible.

The LoS probability for the 2D distance x between the
mmWave AP and the UE, pL(x), is obtained by using the
3GPP urban micro (UMi) street canyon model [19] as

pL(x) =

{
1, x ≤ 18 m(
18 + xe−

x
36 − 18e−

x
36

)
/x, x > 18 m.

(1)

The associated UMi path loss measured in dB for three
different states (LoS nBl., LoS Bl., nLoS) is given by

L =





32.4 + 21.0 log10(d) + 20 log10 fc, LoS nBl.,
52.4 + 21.0 log10(d) + 20 log10 fc, LoS Bl.,
32.4 + 31.9 log10(d) + 20 log10 fc, nLoS,

(2)

where d is the three-dimensional (3D) distance between the
mmWave AP and the UE, while fc is the carrier frequency in
GHz. Targeting the mean SNR value at the cell-edge, we omit
the consideration of small-scale fading for simplicity.

Following the recent measurements of human body block-
age effects at mmWave frequencies [1], the LoS path occlusion
by humans is assumed to (on average) result in 20 dB of
additional degradation in the received signal strength. Note
that human body loss is a parameter and various values may
be applied [20] by modifying the LoS Bl. expression in (2).

As mmWave communications employ directionality, we
model directional antenna systems at both the AP and the UE
sides. They are characterized by the antenna gains GA and
GU (equal for LoS and nLoS), respectively. For simplicity,
we assume cone-shaped antenna radiation patterns at both the
AP and the UE, thus disregarding possible negative effects of
the side lobes [21]. We also assume perfect beam alignment
between the AP and UE beams in both LoS and nLoS.

C. Connectivity Model
The UE initially selects N APs with the highest received

signal strength, where N is the degree of MC. We assume
that the channels of a UE have been measured for sufficiently
long to determine the set of the closest APs regardless of
their instantaneous blockage situation; therefore, the static UE
maintains this set of APs (e.g., a steady-state set) and does
not connect to any AP beyond the N initially selected ones.
The state of each selected link changes from Bl. to nBl.
by following the dynamic blockage process1 as detailed in
subsection II-A. At any instant of time, the UE always chooses
the best link out of N (e.g., by monitoring the received signal
strength or SNR) for its data transmission, while connections
over other backup links are maintained constantly via MC [9].

In our analysis, the UE first selects its closest AP in nBl.
state as the one with the best SNR; in case all of the APs are
blocked, it selects the closest AP in Bl. state having the SNR
higher than the SNR threshold (no connection re-establishment
is required when the UE selects another AP). In case all APs
are blocked and/or their SNR values are below the threshold,
the UE suffers from outage. Since 3GPP standardization of
the MC operation is still in progress, the delay and overhead
values introduced by switching between the mmWave APs are
not known yet, even though they are envisioned to remain
small in most scenarios [3]. In this paper, we assume idealistic
switching process where the UE can instantaneously transition
to its best AP out of N selected initially.

III. MULTI-CONNECTIVITY ANALYSIS

A. Outage Distance
First, let SNR at the UE be

S = PA +GA +GU − L(fc, d)−N0(B), (3)

1This work assumes independent blockage state changes for simplicity.
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where PA is the transmit power, GA and GU are the antenna
gains, L(fc, d) is the path loss, while N0(B) is the total noise
power at the receiver and B is the bandwidth.

We define outage as a situation, when SNR at the receiver
becomes lower than a certain threshold (S < ST ). Hence, the
minimal 2D distances between the mmWave AP and the UE
resulting in outage w.r.t. the link conditions (nLoS, blocked
LoS, non-blocked LoS) are given by

RO=

√
10

PA+GA+GU−N0−ST −32.4−20 log10 fc
21 − [hA − hU ]2,

RB=

√
10

PA+GA+GU−N0−ST −52.4−20 log10 fc
21 − [hA − hU ]2,

RnL=

√
10

PA+GA+GU−N0−ST −32.4−20 log10 fc
31.9 − [hA − hU ]2, (4)

where RO is the distance at which the link enters outage in
non-blocked LoS state, RB is the distance at which the link
enters outage in blocked LoS state, RnL is the distance at
which the link enters outage in nLoS state, while ST is the
SNR threshold in dB. Analysis of (4) readily yields that RO is
the highest, while the relation between RnL and RB depends
on the input parameters. For the sake of exposition, we further
assume that Rnl < RB as the effect of nLoS is on average
more severe than the effect of human body blockage. However,
our proposed approach is generally applicable for Rnl > RB .

B. Outage Probability

Recall that for the cell-edge users we assume no APs closer
than RnL to the target UE. Let A and B denote the events
that there are no APs in non-outage conditions in the rings
(RnL, RB) and (RB , RO). Denoting the outage probability
for the degree of MC N by qO,N and using the independence
property of PPP, we have qO,N = Pr(A)Pr(B). Consider
now event A and observe that it may occur when the following
two mutually exclusive events happen: (i) event A1 of having
no APs in the ring (RnL, RB) and (ii) event A1

2 of having at
least one AP in the ring (RnL, RB) jointly with the event A2

2

of having all these APs in nLoS conditions. Let us denote the
probabilities of these events by Pr(A1) and Pr(A1

2, A
2
2).

Further, event B occurs when the following mutually ex-
clusive events happen: (i) event B1 of having no APs in the
ring (RB , RO), (ii) event B1

2 of having at least one AP in the
ring (RB , RO) jointly with event B2

2 of having all these APs
in nLoS conditions, and (iii) event B1

3 of having the nearest
min(N,m) APs in LoS blocked state jointly with the event
B2

3 of having exactly m APs in LoS conditions in the ring
(RB , RO), and event B3

3 of having at least one AP in that
ring. We denote these probabilities by Pr(B1), Pr(B1

2 , B
2
2),

and Pr(B1
3 , B

2
3 , B

3
3). The outage probability, qO,N , is then

qO,N =
(
Pr(A1) +

(
1− Pr(A1)

)
Pr(A2

2|A1
2)
)(
Pr(B1)+

(
1− Pr(B1)

)(
Pr(B2

2 |B1
2) + Pr(B1

3 , B
2
3 |B3

3)
))
. (5)

Consider events A1 and B1. Recall that the mmWave APs
follow a PPP with the density of λA. Hence, the probability
of having no APs in the ring (RnL, RB) is offered by

Pr(A1) = p
RnL,B

0 = e−λAπ[R2
B−R2

nL], (6)

and, similarly, Pr(B1) = p
RB,O

0 = e−λAπ[R2
O−R2

B ].

To determine the probability that all of the APs in the ring
(RnL, RB) are in nLoS, given that there is at least one AP
in this ring, Pr(A2

2|A1
2), we define a new process of APs

that includes only those APs, which are currently in LoS.
We obtain this new process as a probabilistic thinning of the
original one with the probability of pL(x), thus arriving at a
non-homogeneous Poisson process of APs with the density of
λApL(x), x > RnL, which decreases along the radial lines.

The density of APs residing in LoS in (RnL, RB) is

Λ
RnL,B

L =
1

R2
B −R2

nL

∫ RB

RnL

2xλApL(x)dx, (7)

which implies that the sought probability is given by

Pr(A2
2|A1

2) = e−Λ
RnL,B
L π[R2

B−R2
nL]. (8)

Similarly to (8), we can obtain

Pr(B2
2 |B1

2) = e−Λ
RB,O
L π[R2

O−R2
B ], (9)

where Λ
RB,O

L = 1
R2

O−R2
B

∫ RO

RB
2xλApL(x)dx.

Finally, consider the probability that there are m APs
residing in LoS in (RB , RO) and the nearest min(N,m) APs
are blocked, given that there is at least one AP in this ring,
Pr(B1

3 , B
2
3 |B3

3). Since the UE always connects to its nearest
AP, we need to have the nearest min(N,m) APs in LoS.

When there is at least one AP in LoS conditions in
(RB , RO), we first need to obtain the distance distribution
to i-th nearest AP in the ring (RB , RO). Let XRB,O be the
random variable (RV) denoting the distance to a randomly
chosen AP in LoS conditions in (RB , RO) and let fXRB,O (x)
be its probability density function (pdf). We thus have [22]

fXRB,O (x) =
xpL(x)

∫ RO

RB

xpL(x)dx
. (10)

Conditioning on m APs in the ring (RB , RO), the pdf of
distance to the i-th nearest AP, between m independent and
identically distributed (i.i.d) RVs, Y RB,O

i , becomes

f
Y

RB,O
i

(x;m) = mfXRB,O (x)

(
m− 1

i− 1

)
×

FXRB,O (x)i−1
(

1− FXRB,O (x)
)m−i

, (11)

where FXRB,O (x) is the CDF of XRB,O obtained from (10).
Consider the process of LoS blockage by dynamically

moving blockers around a stationary user of interest and a
mmWave AP located at the distance of x from the UE to
concentrate on non-blockage probability. Recall that a blocker
that moves according to the RDM model in a certain area is
distributed uniformly in this area [18]. The probability that
there is a non-blocked LoS path is then given by

pnB(x) = e
−2rBλB

[
x

hB−hU
hA−hU

+rB
]
. (13)

Denote by pO,i(m) the outage probability with i-th nearest
AP in (RB , RO) that is currently in LoS conditions, given that
there are m APs in LoS conditions in this ring. We arrive at

pO,i(m) =

∫ RO

RB

f
Y

RB,O
i

(x;m)
[
1− pnB(x)

]
dx, i ≤ m. (14)
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qO,N =

(
e−λAπ[R2

B−R2
nL] +

(
1− e−λAπ[R2

B−R2
nL]
)
e−Λ

RnL,B
L π[R2

B−R2
nL]

)
×

(
e−λAπ[R2

O−R2
B ] +

(
1− e−λAπ[R2

O−R2
B ]
)(
e−Λ

RB,O
L π[R2

O−R2
B ] +

∞∑

m=1

pRB,O
m

min(N,m)∏

i=1

pO,i(m)
))

. (12)

The probability of having m LoS APs in (RB , RO) is

pRB,O
m =

(
Λ
RB,O

L π[R2
O −R2

B ]
)m

m!
e−Λ

RB,O
L π[R2

O−R2
B ]. (15)

Combining (14) and (15), the sought probability is

Pr(B1
3 , B

2
3 |B3

3)=
[
1− pRB,O

0

] ∞∑

m=1

pRB,O
m

min(N,m)∏

i=1

pO,i(m). (16)

The outage probability, qO,N , is then derived by substituting
(6), (8), (9), and (16) into (5). The final result is given in (12).

IV. SPECTRAL EFFICIENCY

According to SNR analysis in subsection III-A, the UE is
associated with j-th AP in LoS non-blocked conditions out of
the nearest min(N, k) APs in the ring (RnL, RO), if k > 0. If
there are no such APs, the UE is associated with j-th nearest
AP in the ring (RnL, RB), which currently resides in LoS
blocked conditions, if any. Otherwise, the spectral efficiency
remains 0 until any of the APs becomes non-blocked again.
Hence, spectral efficiency is a mixed RV with the probability
mass at 0, the weight of qO,N , and several “branches”.

The first branch corresponds to the event of having the
nearest non-blocked LoS AP with index j out of min(N, k)
APs jointly with the event of having k APs residing in LoS
in the ring (RnL, RO) and at least one AP in that ring. The
associated probability, qn,nB , is given by

qn,nB =
(
1− pRnL,O

0

) ∞∑

k=1

pk

min(N,k)∑

j=1

vj,k, (17)

where pRnL,O

0 = e−λAπ[R2
O−R2

nL] is the probability of having
zero APs in the ring (RnL, RO) and pk is the probability of
having k APs in LoS in the ring (RnL, RO).

The probability vj,k that the nearest AP in (RnL, RO) resid-
ing in nBl. LoS conditions has index j = 1, 2, . . . ,min(N, k),
given that there are k APs in (RnL, RO), is

vj,k =
(
1− pB,j,k

) j−1∏

s=1

pB,s,k, (18)

where pB,j,k is the probability of blockage at j-th nearest AP

pB,j,k =

∫ RO

RnL

fZj (x; k)
[
1− pnB(x)

]
dx, (19)

where Zj is the RV characterizing the distance to j-th nearest
AP given that there are k APs, k ≥ j, in the ring (RnL, RO).
Note that fZj

(x; k) can be established similarly to fYi
(x;m).

The second branch of the spectral efficiency is associated
with the event of having the closest LoS AP reside in the ring
(RnL, RB) jointly with the event of seeing min(N, k) LoS

APs in blocked state having non-zero APs in LoS in the ring
(RnL, RO). The corresponding probability, qn,B , is given by

qn,B =
(
1− pRnL,O

0

) ∞∑

k=1

pkw
RnL,BpB,k

min(N,k)∏

j=2

pB,j,k, (20)

where pB,k is the probability of blockage for the closest AP
in the ring (RnL, RB),

pB,k =

∫ RB

RnL

fZ1
(x; k)

[
1− pnB(x)

]
dx, (21)

while fZ1
(x) = kfXRnL,O (x)(1 − FXRnL,O (x))k−1, where

fXRnL,O (x) and FXRnL,O (x) are the pdf and CDF of distance
to a randomly chosen LoS AP in the ring (RnL, RO) obtained
similarly to (10).

The final term in (20), wRnL,B , is the probability that the
closest LoS AP resides in the ring (RnL, RB), given by

wRnL,B =

∫ RB

RnL

kfXRnL,O (x)
(
1− FXRnL,O (x)

)k−1
dx. (22)

After obtaining the probabilities for the branches of interest,
the mean spectral efficiency takes the following form

E[CN ] =
(
1− pRnL,O

0

) ∞∑

k=1

pk

min(N,k)∑

j=1

vj,k ×

∫ RO

RnL

fZj
(x; k) log2

(
1 + SnB,j(x)

)
dx+

(
1− pRnL,O

0

) ∞∑

k=1

pkw
RnL,BpB,k

min(N,k)∏

j=2

pB,j,k ×

∫ RB

RnL

fZ1(x; k) log2

(
1 + SB,1(x)

)
dx, (23)

where SnB,j(x) is the SNR with j-th nearest nBl. LoS AP and
SB,1(x) is the SNR for the first Bl. LoS AP in (RnL, RB).

V. NUMERICAL ASSESSMENT

In this section, we numerically investigate the impact of
the MC degree together with the density of blockers and
APs on the outage probability and spectral efficiency. The
utilized system parameters follow 3GPP and are provided in
Table I. The outage thresholds, RnL = 92 m, RB = 107 m,
and RO = 963 m for the SNR threshold of ST = 3 dB are
computed with (2). The choice of the SNR threshold was
made with a reference to services that might require high SNR
levels [23]. The percentage illustrated in the plots demonstrates
the difference between the metrics for the MC degree of 1 and
the degree in question.

In order to verify our assumptions and analysis, we cross-
check the selected analytical results against those obtained
with the simulations conducted in Matlab. The geometrical
deployment closely follows the procedures detailed in subsec-
tion II-A, while the channels between all of the nodes are
modeled according to the 3GPP considerations [19].
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Fig. 2. Outage probability depending on density of blockers and APs, λB and λA, and degree of multi-connectivity, N .
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Fig. 3. Mean spectral efficiency depending on density of blockers and APs, λB and λA, and degree of multi-connectivity, N .

This framework operates in a time-driven regime with a
step of 0.05 s (resulting in human movement of not more than
5 cm with the speed of 1 m/s). Each simulation round begins
with a re-deployment of all the nodes of interest and then runs
for 60 s of real time by reporting time-averaged performance
indicators. All the intermediate simulation results have been
further averaged across 1, 000 independent replications. The
scenario was modeled for all the considered sets of input
parameters, which demonstrated a close match between the
analytical and the simulation output.

In Fig. 2(a), the outage probability is illustrated as a function
of blocker density. We observe that for low densities of
blockers, λB = 0.1, the MC degree N = 4 reduces the outage
probability by 95% as compared to N = 1. However, higher
densities of blockers, λB = 1, decrease the difference in the
outage probability between the MC degrees N = 4 and N = 1
by only 11%. For the chosen system design parameters and
the degree of MC, the multi-connectivity gains diminish as the
density of blockers increases. The underlying reason roots in
approximately geometric behavior of the probability that all
the available links reside in outage conditions.

Fig. 2(b) demonstrates the impact of the MC degree on
the outage probability for different AP and blocker densities
λB = 0.1. For λA = 10−4, adding only one additional
link reduces the outage probability by 72%. Increasing the
MC degree further leads to much smaller gains that vanish

TABLE I
BASELINE SYSTEM PARAMETERS

Parameter Value
Heights of AP, UE, and blockers, hA, hU , hB 10m, 1.5m, 1.7m, [19]
Radius of a blocker, rB 0.25m, [2]
Frequency and bandwidth 28GHz and 1GHz, [19]
Transmit power, PA 35 dBm, [19]
Gain, Rx- and Tx-side, GU and GA 5 dB and 10 dB, [24], [25]
SNR threshold, ST 3 dB, [23]

after N = 4. This is explained by the behavior of blockage
probability, which tends to 1 with an increased distance
between the AP and the UE. Also, decreasing the density of
APs down to λA = 4 · 10−5 shrinks the difference between
the two neighboring bars as compared to the same bars with
λA = 10−4. It could be explained by the fact that the APs
in sparse deployments are located (on average) farther away,
which leads to lower non-blockage probabilities. Moreover,
the benefit of having N = 4 links comprises 97% of all the
available gains when increasing the degree MC to ∞. Also
note that increased SNR thresholds lead to a decreased number
of APs, which a UE may communicate with at increased AP-
UE distances. Therefore, the UE cannot exploit higher degrees
of MC when the SNR threshold is high.

Fig. 2(c) and 3(a) highlight the effects of AP density on the
outage probability and the mean spectral efficiency. As can
be seen in the plot, for a lower density of APs (e.g., λA =
10−5) the outage probability is rather low as well; moreover,
the gains at higher degrees of MC are negligible. It can be
explained by the fact that the distance between the closest AP
and the UE is large, which makes the received signal weak
(due to blockage and path loss). Farther located APs cannot
deliver better signal quality, as they experience even worse
channel conditions. The benefit in the increased degrees of
MC is noticed for the density of APs equal to λA = 3 · 10−5

to λA = 2 · 10−4. By growing the density of APs further, the
main AP offers channel conditions that are sufficient for the
UE to reside on the same AP without switching to other ones.

In Fig. 3(b), the mean spectral efficiency as a function of
the MC degree is shown for different values of λB and λA. As
one may observe, high densities of blockers (e.g., λB = 0.5)
can be partially compensated by denser AP deployments and
higher MC degrees. With the latter parameters, the same
spectral efficiency is observed at much lower blocker densities,
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λB = 0.1, and for a sparse AP deployment λA = 4 · 10−5.
Therefore, the mean spectral efficiency in highly crowded
scenarios may be improved by densifying the AP deployment
and enabling the MC capability. However, one should note that
densification may lead to increased interference, which can
require coordination. In our study, for the given AP density
we assume noise-limited operation [26].

The relative MC gains for the mean spectral efficiency are
further depicted in Fig. 3(c). As one may notice, the relation
between the increased MC degree and the corresponding
benefits follows the same trend as the outage probability
assessed in Fig. 2(b). The main contributions are observed with
N = 2 and then with N = 3. A further increase of the MC
degree provides negligible impact. Note that N = 2 offers the
highest relative gain of over 40% in crowded environments
with higher densities of APs as compared to under 20% in
low blockage scenarios with λB = 0.1. The latter effect is
explained by already high spectral efficiency at lower densities,
which is sufficiently close to its upper limit.

VI. CONCLUSION

Multi-connectivity is a recently introduced 3GPP consider-
ation to improve the performance in the emerging mmWave
networks. However, it is also expected to increase the com-
plexity and signaling overheads of its enabling protocols.
Hence, a careful selection of the degree of MC for a given
deployment is of particular importance. In this work, we
develop an analytical model to study the outage probability
and the spectral efficiency in mmWave networks with the
MC capability by capturing the key mmWave deployment,
accounting for nLoS, blocked, and non-blocked LoS link con-
ditions, as well as dynamic transitions between these states.
Future work on this topic may include a performance study of
upper-layer protocols and beamforming overheads, as well as
the consideration of spatial and temporal consistency and the
effect of blocker density on the attenuation, among others.

Our numerical results support the following observations:
• For a moderately dense human crowd, λB ∈ [0.05; 0.7],

the use of the MC degrees of 2–4 notably improves both
outage and spectral efficiency metrics for the cell-edge users
over a given range of deployment parameters. In contrast,
any higher MC degree does not significantly benefit the
performance, which is important to note, since a higher degree
of MC may impose additional overheads on connectivity
management.
• The MC technique is most beneficial at moderate densities

of human blockers around the UE, λB ∈ [0.05; 0.7]. With
lower values of λB , the environment does not benefit from
reliance on the MC operation, whereas even the MC degree
of 10 cannot mitigate the outage probability for ultra-dense
crowds, since all of the possible paths around the UE become
blocked.
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Abstract—Due to their unconstrained mobility and capability
to carry goods or equipment, unmanned aerial vehicles (UAVs)
or drones are considered as a part of the fifth-generation (5G)
wireless networks and become attractive candidates to carry a
base station (BS). As 5G requirements apply to a broad range of
uses cases, it is of particular importance to satisfy those during
spontaneous and temporary events, such as a marathon or a rural
fair. To be able to support these scenarios, mobile operators
need to deploy significant radio access resources quickly and
on demand. Accordingly, by focusing on 5G cellular networks,
we investigate the use of drone-assisted communication, where
a drone is equipped with a millimeter-wave (mmWave) BS.
Being a key technology for 5G, mmWave is able to facilitate
the provisioning of the desired per-user data rates as drones
arrive at the service area whenever needed. Therefore, in order to
maximize the benefits of mmWave-drone-BS utilization, this paper
proposes a methodology for its optimized deployment, which
delivers the optimal height, coordinates, and coverage radius of
the drone-BS by taking into account the human body blockage
effects over a mmWave-specific channel model. Moreover, our
methodology is able to maximize the number of offloaded users by
satisfying the target signal quality at the cell edge and considering
the maximum service capacity of the drone-BS. It was observed
that the mmWave-specific features are extremely important to
consider when targeting efficient drone-BS utilization and thus
should be carefully incorporated into analysis.

Index Terms—5G networks and beyond; mmWave; human
body blockage; network slicing; drone-cell communications.

I. INTRODUCTION AND MOTIVATION

The recent developments in unmanned aerial vehicles
(UAVs) attracted an increased attention from the wireless
communications community. It is envisioned that UAVs are
about to become a part of the fifth generation (5G) of wireless
networks [1]. One of the emerging applications is the use
of the UAVs equipped with wireless transceivers, or drone
base stations (BSs), which have been proposed to improve
the connectivity levels in 5G systems and beyond [2]. In
particular, latest research illustrates that autonomous flying
robots become an attractive solution to boost network capacity
on demand, which is particularly desirable for spontaneous
and temporary events, such as rural fair [3] or marathon
use cases [4]. This paper specifically argues for the use of
drones enhanced with high-rate millimeter-wave (mmWave)
radio technology to support these scenarios.

While an autonomous fleet of drones flying around the
city [5] may still be a futuristic concept, the utilization of
several specialized drones operating under human control is
possible from an engineering perspective already today [6],
[7]. At the same time, the use of drone-BSs introduces new

challenges, such as extra operating costs, endurance, and back-
hauling [2], [8]. In order to seamlessly integrate drone-BSs
into the 5G system architecture, a new concept named network
slicing might become an appropriate candidate [2]. Slicing
can facilitate the integration of aerial BSs with the terrestrial
network by providing a slice with the necessary fronthaul,
backhaul, and network functions by also considering mobility
of the drone-BS. Smart integration of drones into the 5G
infrastructure additionally requires efficient drone placement
mechanisms to improve the overall system performance.

Despite a number of research works on drone deploy-
ment [9]–[11], the specifics of mmWave-based drone-assisted
communication has remained insufficiently studied so far. Op-
erating in extremely high frequency (EHF) bands and having
larger bandwidths at its disposal, mmWave radio technology
is being shaped as the 5G New Radio [12]. Along with their
benefits, mmWave systems are facing many challenges. One
of these is shorter wavelengths for which smaller objects, such
as humans, become obstacles for the line-of-sight (LoS) radio
propagation [13], [14]. Hence, it is crucial to account for the
human body blockage when evaluating the performance or
planning the deployment of mmWave-BSs. In contrast to lower
frequencies, another challenge at mmWave bands is that the
path loss (PL) increases significantly with the growing distance
from a transmitter (Tx) to a receiver (Rx) [15]. Hence, there is
a trade-off between placing a drone at a higher altitude (which
would provide better LoS links) and keeping the PL minimal
(which increases with the growing distance).

There are several important benefits that motivate the uti-
lization of mmWave-based drone-BSs, particularly for the
temporary and spontaneous events, as described below:
• Able to arrive at the crowded location quickly, drones

equipped with wireless access capabilities help operators
serve events, where traffic demand becomes higher than
expected for a certain period of time, but where it is not
feasible to deploy a static network infrastructure to serve
such amounts of data on a regular basis.

• Even though higher altitudes lead to larger probabilities
to maintain the LoS link, they also increase the three-
dimensional (3D) distance, thus making the PL higher.
Therefore, the optimal altitude may exist. While the
terrestrial infrastructure cannot alter the height of the
BSs quickly in order to improve the signal quality, the
flexibility of the drone-BSs offers an opportunity to place
them over the crowd and adjust their height when needed.



• To achieve 100 Mbit/s per user expected of the 5G
systems, mmWave communication is an appropriate so-
lution whereas the conventional infrastructure will need
a significant number of cellular BSs to support the
required data rate, which leads to severe interference. The
latter could be shown using simple analysis where the
link capacity for the cell edge-user over mmWave with
the carrier of 28 GHz and the conventional microwave
cellular link with the carrier of 2.1 GHz is calculated as
r(x) = Bu log[1 + S(x)]. Here, Bu is the bandwidth
available to the user of interest and S(x) is the average
signal-to-noise ratio (SNR) for this user at the cell edge
of radius x. For the same number of active users, the
cellular link with the maximum available bandwidth (B)
of 20 MHz delivers about 10 times lower data rates than
what mmWave (B = 1 GHz) does, even in ideal conditions
where no interference is assumed. In an optimistic case,
to provide the average data rate of 100 Mbit/s per user,
for a cell having 50 m radius and 70 users, one mmWave-
BS is sufficient, whereas the required number of the
conventional BSs is 10 times higher. Therefore, the larger
bandwidth of mmWave-BSs accentuates the utilization of
those to support the mass events and mitigate the growth
of interference to deliver the 5G date rates [16].

All of the above motivates the need for efficient placement
of mmWave-drone-BSs to provide with a better link quality
and benefit from the maximum number of users offloaded
from the cellular infrastructure, where the main features of
mmWave communication would be considered. In this paper,
we investigate efficient deployment of a mmWave-drone-BS
by taking into account the properties of mmWave communi-
cation, where the LoS link may be blocked by a human body.
Having in mind that the height of the mmWave-drone-BS is
comparable with the height of the BSs mounted on the walls of
the buildings and assuming quasi-stationary drones hovering
at a certain altitude [17], we approximate the air-to-ground
channel model with the terrestrial channel model [18] for the
sake of our first-order analysis.

The main contributions of this paper are as follows.

• By adopting a terrestrial mmWave channel model for
the air-to-ground mmWave communication as well as by
accounting for the human body blockage, we derive the
optimal height of the drone-BS.

• By assuming a Poisson distribution of user locations for
the adopted mmWave PL model, we formulate and solve
a 3D placement problem. The latter produces the optimal
height and horizontal location for the drone-BS as well
as the cell radius. Our theoretical results for the optimal
height demonstrate a tight match with those obtained by
solving the 3D placement problem.

The rest of this text is organized as follows. In Section II,
we introduce our system model with its main assumptions.
Then, the proposed optimization methodology is described in
Section III. The numerical results are offered in Section IV.
Conclusions are drawn in the last section.

II. SYSTEM MODEL

Our example rural-fair scenario considers a set of identical
users, M, which are distributed randomly in the area of
interest as illustrated in Fig. 1. We assume that the existing
operator’s infrastructure is not planned for such a spontaneous
and temporary mass event. Therefore, the operator is incapable
of serving all the users at the fair. Hence, we consider the
assistance of a mmWave-drone-BS to inject capacity across
space and time. The mmWave-drone-BS is integrated into
the current infrastructure via a dedicated long range backhaul
channel over a different frequency [19].

Inspired by the adoption of terrestrial channel models for
air-to-ground channels of quasi-stationary drone-BSs [9], [10],
[17], we employ the model in [20] for the first-order analysis
of mmWave-drone-BSs. There are two motivations for choos-
ing a terrestrial channel model. First, contemporary drone-
BSs with a rotary wing [21] can be made as stationary as
cell towers, especially under mild weather conditions. Second,
the short range of mmWave links prevents from using high-
altitude drones due to the inherently high PL with increasing
distance between the Tx and Rx. Therefore, the altitude of a
mmWave-drone-BS must be comparable with the altitude of
the static mmWave-BSs deployed on the walls, lamp posts,
etc. For the sake of our analysis, the small scale fluctuations
in the environment are neglected as proposed in [17].

The considered scenario consists of the mmWave-drone-
BS located at height hD and human blockers modeled as
cylinders with the average height of hB and the average
diameter of gB . For a snapshot analysis, assume a Poisson
field of static human blockers with the density of λ, where |M|
humans are distributed across the area S with the parameter
λS, and | · | indicates the cardinality of a set. Note that all
users are considered as blockers for each other. The user
terminal is assumed to be located at the height hR, where
hR < hB , since the terminal carried by a human is usually
lower than the height of the human itself. Hence, if the user
i is communicating with the mmWave-drone-BS, then all
other users/humans in the coverage area A with radius R are

hB

gB

mmWave-drone-BS 
cell coverage
with radius (R)

Blocker

User

User

mmWave-drone-BS
with coordinates 
(xD, yD, h  )* * *

Terrestrial
infrastructure

hR

Blocker

Fig. 1. Target scenario with mmWave-drone-BS, users, and blockers.



TABLE I
NOTATION AND PARAMETERS

Parameter Description
S Area of interest
hD , hR, hB Height of drone-BS, Rx, and human blockers
R Cell radius of the drone-BS
di, ri 3D, 2D distance between drone-BS and ith Rx
gB Diameter of human blockers
λ Density of human blockers
PL Probability of LoS
LL,i, LN,i Path loss for LoS/nLoS ith Rx
La,i Average path loss for ith Rx
|M| Total number of humans in the area of interest
h∗ Optimal height of the drone-BS
(xD

∗, yD∗) Optimal 2D position of the drone-BS
N Maximum number of users served by one drone-BS
Q, σi Target SNR, SNR for ith Rx
γ Maximum tolerable path loss

blockers, if their heights are large enough to block the LoS
between Rx and Tx. Note that the coverage radius R depends
on the ability of drone-BS to support on average the minimum
quality-of-service (QoS) experienced by the cell edge user;
therefore, it is highly affected by the height of the drone-BS
and the probability of LoS as will be shown later.

Following [22], we assume that radio interference does not
have a major effect, which is a common assumption for most
mmWave-based systems with highly directional antennas, and
that the system under study is noise-limited.

Recall that the PL models for LoS and nLoS links at
mmWave frequencies follow [18] and are given as

LL,i = αL + 10βL log10(di),

LN,i = αN + 10βN log10(di), (1)

where αL, βL, αN , and βN are the parameters
of the LoS and nLoS PL models, and di =√

(xi − xD)2 + (yi − yD)2 + (hD − hR)2 is the 3D distance
between the drone-BS and Rx.

In order to account for the human body blockage, we adopt
the probability of LoS, PL, for a user i from [20] by modifying
it in the case of the constant height and diameter of blockers
for further analytic tractability as

PL(ri, hD) = exp

(
− λgB

ri(hB − hR)

(hD − hR)

)
, (2)

where ri is 2D distance between drone-BS and Rx.
Then, the average PL for the cell edge user i, located at

distance R from Tx, becomes

La,i = PL(R, hD)LL,i + [1− PL(R, hD)]LN,i. (3)

As one may find in [17] and similar works, the average value
of PL is sufficient to perform the first-order analysis. Since the
random behavior with the corresponding distribution is not the
focus of this study, the distributions of fading and shadowing
are disregarded. As it was observed in [20], there exists the
optimal height of the Tx, where the average PL assumes its
minimum value.

III. MMWAVE-DRONE-BS DEPLOYMENT

In order to support the current cellular infrastructure and
provide higher data rates for every user in the area, the aim is
to offload as many users as possible to the mmWave-drone-
BS. Because the users are randomly distributed in the region,
the area to be covered by a mmWave-drone-BS (drone-cell
coverage) and the altitude of the drone-BS are not known a
priori.

On the one hand, deploying a mmWave-drone-BSs at a
higher altitude leads to the greater LoS probability as can be
observed from (2). On the other hand, mmWave-drone-BSs are
energy critical devices and higher altitudes may require more
transmission power due to increased distance between the
users and the drone-BSs to compensate for larger PL. There-
fore, the objective of covering the maximum number of users
with minimum energy means the smallest area enclosing the
highest number of users, while the minimum height that can
provide coverage over that area must be derived.

As observed in (2) and (3), the average PL depends on
the altitude of the Tx, as well as the horizontal distance
between the Tx and Rx. Therefore, the optimal placement
of a mmWave-drone-BS involves all dimensions, namely,
the optimal position is (xD

∗, yD∗, h∗). Fixing the horizontal
location of the drone-BS and searching for h∗ to provide the
maximum number of users to be covered (1D search), or fixing
the altitude and searching for (xD

∗, yD∗) (2D search) may
not result in the most effective deployment. The search for
the optimal position of a mmWave-drone-BS must thus be
performed in 3D. Not only the expansion of the search space
to 3D makes it very hard to conduct an exhaustive search,
but also (3) is analytically difficult. Therefore, in this section,
we propose an efficient 3D placement method for mmWave-
drone-BSs.

The problem to find (x∗D, y
∗
D, h

∗) can be formulated as

maximize
xD,yD,h,{mi}

∑

i∈M
mi (4a)

subject to
miσi ≥ miQ, ∀i = 1, ..., |M|, (4b)∑

i∈M
mi ≤ N, ∀i = 1, ..., |M|, (4c)

xl ≤ xD ≤ xu, (4d)
yl ≤ yD ≤ yu, (4e)
hl ≤ h ≤ hu, (4f)
mi ∈ {0, 1}, ∀i = 1, ..., |M|, (4g)

where mi is a binary variable indicating whether the ith user
of the set M is covered (1) or not (0), xD, yD are the possible
coordinates of the drone-BS, h = hD−hR, and σi is the SNR
for the user i. Then, Q and N represent the target SNR level
for the served user i and the capacity of the drone-BS in terms
of the maximum number of users that it can serve, respectively.
The upper and the lower limits of the available positions across
all three dimensions are indicated by the subscripts u and l,



correspondingly. While (4b) determines which users can be
served, (4c) captures the maximum number of the served users.

Apart from the antenna gains, transmit power, etc., the
maximum tolerable PL for the ith user, γ, corresponds to the
target SNR of the ith user, Q. Hence, using (3), (4b) becomes
miLa,i ≤ γ. Note that our approach is not limited to the
model in [18], and other channel models may be considered
as well. After further derivations, the QoS depicted in (4b)
can be represented in terms of distance between user i and
the drone-BS as

r2i + h2 ≤ 10[2γ̃+PL(R,h)k2]/[PL(R,h)k3+k4], (5)

where ri =
√

(xi − xD)2 + (yi − yD)2 is 2D distance be-
tween user i and the drone-BS, γ̃ = γ − αN , k2 = αN − αL,
k3 = 10(βL − βN ), k4 = 10βN , whereas R is the coverage
radius of the drone-BS. Note that any user with the horizontal
distance of less than R will be served, since its minimum
SNR requirements at the cell edge are satisfied on average.
Furthermore, introducing the variable ω = R/h and expressing
PL(R, h) in terms of ω, (4b) becomes

r2i ≤ Γ(ω), (6)

where Γ(ω) is the following

Γ(ω) =
10(2γ̃+k2e

ωk1 )/(k3e
ωk1+k4)

1 + 1
ω2

, (7)

where k1 = −λgB(hB − hR), hB > hR.

Proposition 1. The function Γ(ω) has the maximum point ω∗,
which is considered to be optimal.

Proof. To find the maximum point, we first need to establish
an extremum point of Γ(ω), by taking a derivative, equating
it to zero, and solving the following

k1e
ωk1(ω3 + ω)(k2k4 − k3γ̃) ln(10)

+ (eωk1k3 + k4)2 = 0. (8)

Note that the above always has a solution for βL < βN and
hB > hR. It could be solved numerically and offers the
extremum point, ω∗. By taking the second derivative of (8)
and obtaining the negative value at the extremum point ω∗,
we establish that ω∗ is also the maximum of Γ(ω).

As there is no closed form solution to find ω∗, it is important
to show the uniqueness of this point, which is formally proven
in Appendix.

The optimal value, Γ(ω∗), can be inserted into (6). The
resulting optimization problem is then

maximize
xD,yD,{mi}

∑

i∈M
mi (9a)

subject to

ri ≤
√

Γ(ω∗) +K(1−mi), ∀i = 1, ..., |M|, (9b)
xl ≤ xD ≤ xu, (9c)
yl ≤ yD ≤ yu, (9d)
mi ∈ {0, 1}, ∀i = 1, ..., |M|, (9e)

where K is a large enough value [9]. Once x∗D and y∗D are
obtained, R can be calculated by identifying the user at the
drone-cell edge, i.e., max

mi∈M
(ri|mi = 1). Then, h∗ can be

derived by using ω∗.
Moreover, the optimal height can also be produced directly

from (3) by taking a derivative of the average PL. Note that in
this case, the cell coverage R should be known beforehand. In
this paper, we propose an approach to numerically establish
the optimal height of Tx, h∗, by solving the following

− C
[
αL − αN

][
(h∗ − hR)2 +R2

]
e

C
h∗−hR

+ 10C
[
βN − βL

]
log10

(√
(h∗ − hR)2 +R2

)

+
10
[
βL − βN

][
h∗ − hR

]3

ln(10)
e

C
h∗−hR + 10βN = 0, (10)

where the auxiliary variable C = −λgBR(hD − hR).
The above 3D placement problem can be solved by using

e.g., interior-point optimization method via MOSEK [23], both
efficiently and accurately. Indeed, the efficient 3D placement
algorithm in (9a) offers the same result as in (10) for the same
value of R derived with our 3D placement algorithm.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we illustrate representative numerical results
produced for different human densities λ, where the humans
are uniformly distributed within a 100x100 m2 area. The pa-
rameters for the considered scenario are collected in Table II.
Our target is to serve the maximum number of users from the
set of total number of humans |M| with a mmWave-drone-BS.
It should be noted that for every realization of the scenario the
coordinates of the users as well as the total number |M| are
known for the problem to solve. We set the maximum tolerable
path loss, γ, equal to 110 dB based on the following assumed
parameters: bandwidth is 1 GHz, Rx and Tx antenna gains are
5 dB and 10 dB, respectively, Tx power is 20 dBm, noise figure
is 6 dB, and target SNR is 3 dB. Also, 95% confidence interval
is calculated for the entire set of runs to demonstrate the
consistency of the proposed method. The following formula
is used for confidence interval calculations: x̄±Za/2× σ√

(n)
,

where x̄ is the mean, Z is the confidence coefficient, a denotes
the confidence interval, while σ and n represent the standard
deviation and the sample size, respectively.

First, Fig. 2 demonstrates the behavior of the altitude of
the mmWave-drone-BS as the density of blockers increases.

TABLE II
BASELINE SYSTEM PARAMETERS

Parameter Value
Height of Rx, hR 1.3m
Height of a human blocker, hB 1.7m
Diameter of a human blocker, gm 0.5m
Frequency band 28GHz
LoS path loss model parameters αL = 61.4, βL = 2
nLoS path loss model parameters αN = 72, βN = 2.92
Maximum number of users served by drone-
BS, N

100

Area of interest, S 100x100 m2
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Fig. 2. Comparison of the optimal altitude results from 3D placement with
theoretical analysis vs. density of blockers, λ.

We observe that the altitude becomes higher as the density
grows. The reason is that higher altitude makes the probability
of blockage lower but sacrifices the radius of the drone-BS
coverage in order to reduce the 3D distance, in order to satisfy
the minimum SNR. This confirms the importance of appropri-
ate height selection. In addition, the plot shows a comparison
of the altitude by the 3D placement with that derived from
the theoretical result in (10). The analysis requires the cell
coverage obtained with the 3D placement in order to produce
the height of the BS. The results indicate a reasonable match
between the two. It should be noted that the proposed 3D
placement provides the coordinates of the drone-BS, not only
altitude but also the location in the horizontal plane, which
allows for efficient drone-cell deployment in order to serve
the maximum number of users.

In Fig. 3, the aforementioned relation between the mean
value of the mmWave-drone-BS cell coverage and the density
of blockers is displayed. It is observed that the cell radius,
R, decreases as the density grows. This could be explained
by the fact that the probability of blockage becomes larger,
thus yielding a higher altitude of the drone-BS and smaller
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Fig. 4. Number of users served by mmWave-drone-BS vs. density of
blockers, λ.

cell radius to reduce 3D distance in order to facilitate the
satisfaction of the minimum SNR requirements.

Further, we consider the number of served users as il-
lustrated in Fig. 4. We learn that the average number of
users served by one drone-BS decreases as the density of
blockers grows. This could be explained by the fact that
the effective cell radius degrades as it was shown earlier.
Therefore, the density of blockers highly affects the optimal
height of the drone-BS, which then impacts the shrinking of
the cell coverage, and finally the reduced number of served
users. This implies the importance of considering all of the
variables as they have a major effect on the load of the BS as
well as its ability to satisfy the minimum QoS requirements.

V. CONCLUSION AND FUTURE WORK

Drone-assisted cellular communication is currently attract-
ing significant research attention from both academia and
industry by becoming a new frontier in 5G wireless networks
and beyond. While mmWave radio systems are expected to
deliver the required 100 Mbit/s of user experienced data rate,
there still remains a question of how to boost cell capacity
quickly and on-demand, which is highly relevant for sponta-
neous and temporary events, such as open-air festivals in rural
areas or marathons [4]. To ensure efficient support of these
emerging scenarios, we advocate for the use of mmWave-
drone-BSs.

Despite a number of past papers on drone-BS placement, the
specifics of mmWave communication, including LoS blockage
by human bodies, has not been taken into consideration before.
In this paper, we study the effective deployment of a mmWave-
drone-BS as well as derive the corresponding height and cell
radius. Further, we produce an analytical result for the optimal
height of Tx. We thus observe that the density of blockers has a
dramatic effect on the desired height, the coverage radius, and
the number of served users. Furthermore, an increase in the
density of blockers leads to a sharp drop in the total number of
users that could be served satisfactorily. Therefore, our future
work is to consider the effects related to multiple drone-BSs
and their needed densities in order to serve all of the users.



APPENDIX

In order to demonstrate the uniqueness of the maximum
point ω∗, we prove that the Γ(ω) function is quasiconcave by
following the definition [24]

Γ
(
λCx+ [1− λC ]y

)
≥ min{Γ(x),Γ(y)}, (11)

where λC ∈ [0, 1], x, y ∈ SC , and SC → R.
Assume that x < y, then (11) could be written as

10

2γ̃+k2exp

(
k1(λCx+[1−λC ]y)

)

k3exp

(
k1(λCx+[1−λC ]y)

)
+k4

1 + 1
(λCx+(1−λC)y)2

≥ 10
2γ̃+k2exp(zk1)

k3exp(zk1)+k4

1 + 1
z2

, (12)

where z is equal to x or y depending on the minimum value
of Γ.

It is easy to see that by transferring the right part to the left
side of (12) and reducing to a common denominator, the last
one is always greater than 0. Therefore, to make the overall
expression be greater than 0, one should prove the positive
sign of the numerator.

Let A =
2γ̃+k2exp

(
k1(λCx+[1−λC ]y)

)

k3exp
(
k1(λCx+[1−λC ]y)

)
+k4

and B =

2γ̃+k2exp(zk1)
k3exp(zk1)+k4

, then the numerator of (12) becomes

10A
(

1 +
1

z2

)
− 10B

(
1 +

1
(
λCx+ [1− λC ]y

)2

)
≥ 0.

(13)

Note that Γ(ω) for ω ∈ (0, ω∗) is increasing; therefore, (12)
is always true.

After further derivations, it could be shown that A ≥
B for z = y. The calculations are omitted here due to
a large number of simple algebraic transformations. When
min{Γ(x),Γ(y)} = Γ(y), z = y, (13) takes the form of

10A +
10A

y2
− 10B − 10B

(
λCx+ [1− λC ]y

)2 ≥ 0. (14)

Finally, it is easy to see that (10A − 10B) ≥ 0 and
(
10A

y2 −
10B

(λCx+[1−λC ]y)2

)
≤ (10A−10B) in (14). Therefore, (12) holds

for z = y as well.
Therefore, ω∗ is a maximum point of Γ, [24].
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Flexible and Reliable UAV-Assisted Backhaul
Operation in 5G mmWave Cellular Networks

Margarita Gapeyenko, Vitaly Petrov, Dmitri Moltchanov,
Sergey Andreev, Nageen Himayat, and Yevgeni Koucheryavy

Abstract—To satisfy the stringent capacity and scalability
requirements in the fifth generation (5G) mobile networks, both
wireless access and backhaul links are envisioned to exploit
millimeter wave (mmWave) spectrum. Here, similar to the design
of access links, mmWave backhaul connections must also address
many challenges such as multipath propagation and dynamic link
blockage, which calls for advanced solutions to improve their
reliability. To address these challenges, 3GPP New Radio (NR)
technology is considering a flexible and reconfigurable backhaul
architecture, which includes dynamic link rerouting to alternative
paths. In this paper, we investigate the use of aerial relay nodes
carried by e.g., unmanned aerial vehicles (UAVs) to allow for such
dynamic routing, while mitigating the impact of occlusions on the
terrestrial links. This novel concept requires an understanding
of mmWave backhaul dynamics that accounts for: (i) realistic
3D multipath mmWave propagation; (ii) dynamic blockage of
mmWave backhaul links; and (iii) heterogeneous mobility of
blockers and UAV-based assisting relays. We contribute the re-
quired mathematical framework that captures these phenomena
to analyze the mmWave backhaul operation in characteristic
urban environments. We also utilize this framework for a new
assessment of mmWave backhaul performance by studying its
spatial and temporal characteristics. We finally quantify the
benefits of utilizing UAV assistance for more reliable mmWave
backhaul. The numerical results are confirmed with 3GPP-
calibrated simulations, while the framework itself can aid in the
design of robust UAV-assisted backhaul infrastructures in future
5G mmWave cellular.

Index Terms—5G New Radio; millimeter wave; multipath
3D channel model; UAV communications; integrated access and
backhaul; dynamic human body blockage; moving cells.

I. INTRODUCTION

Over the past years, the work on fifth-generation (5G)
networks has achieved impressive results [1], [2]. 3GPP has
recently ratified non-standalone 5G New Radio (NR) technol-
ogy to augment further LTE evolution. Currently, the standard-
ization has completed the standalone 5G NR specifications to
allow for independent NR-based deployments [3]. Catering
for high-rate and reliable wireless connectivity, the 5G cel-
lular paradigm aims to densify the network with terrestrial
base stations [4] by additionally employing moving (e.g.,
car-mounted) small cells for on-demand capacity boost as
well as harnessing more abundant millimeter-wave (mmWave)
spectrum for both access and backhaul radio links [5], [6].
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Despite the notable benefits of the mmWave band, it also
poses new challenges due to highly directional mmWave
links subject to complex multipath propagation, which is
susceptible to link blockage phenomena because of a wide
range of obstacles [7]–[9]. There has been a surge in research
work on reliability analysis of mmWave access to outline
techniques for mitigating the inherent limitations of mmWave-
based communication [10]–[14].

As that work matures, provisioning of high-rate back-
haul capabilities for 5G has attracted recent attention, as
mmWave backhaul links remain vulnerable to similar block-
age issues [15]. Aiming to assess and improve reliability
of mmWave backhaul operation in 5G NR systems, 3GPP
has initiated a new study on integrated access and backhaul,
which specifies the respective challenges and requirements.
The panned specifications target to construct a flexible and
reconfigurable system architecture with dynamic backhaul
connections. In this context, the capability to reroute backhaul
links in case of their blockage by moving humans and car
bodies becomes essential [16]. Extending the 3GPP studies on
the matter, the utilization of unmanned aerial vehicles (UAVs)
equipped with radio capabilities and acting as mobile relay
nodes may be considered to further improve flexibility and
reliability of backhaul operation.

The recent acceleration in user traffic fluctuations calls for
more flexible and reliable backhaul solutions in 5G mmWave
cellular, which may require dynamic rerouting. Therefore, the
integration of both terrestrial and aerial network components to
achieve this goal is essential. The corresponding performance
assessment requires an appropriate evaluation methodology
that may capture the dynamics of backhaul links, mmWave
radio propagation properties, and blockage phenomena caused
by moving objects. Different from mmWave access, the re-
search literature on 5G mmWave backhaul is scarce. In [17],
the authors propose an analytical model for coexistence of
access and backhaul links, while in [18] the capacity eval-
uation of cellular networks with in-band wireless backhaul
was proposed. In [19], a performance evaluation of mmWave
backhaul links is conducted.

To the best of our knowledge, an integrated methodology
for flexible mmWave backhaul operation with dynamic links
that reroute subject to the channel conditions has not been
available as of yet. Addressing that gap, this work offers a new
methodology that can assess complex scenarios with multiple
terrestrial and aerial base stations. These are equipped with
mmWave backhaul capabilities and can reroute their links to
maintain uninterrupted connectivity over unreliable blockage-
prone channels, while leveraging UAV-based relay assistance
as illustrated in Fig. 1.

Our considered scenario captures three important compo-
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Fig. 1. Scenario of interest with UAV-BS assistance.

nents of future 5G mmWave backhaul solutions: (i) dynamic
blockage of mmWave links; (ii) complex multipath propa-
gation in urban environments; and (iii) flexible mobility of
assisting UAV relays. A range of simpler scenarios can also be
assessed by applying the relevant components of our developed
framework with opportunistic UAV mobility model (e.g., those
with static deployment of UAV-based relays [20]–[22]). The
contributions of this work are therefore as follows.
• A novel mathematical framework that captures the es-

sential features of mmWave backhaul operation under
dynamic blockage by moving humans as well as possible
link rerouting to UAV-based relay nodes in realistic
scenarios under 3D multipath propagation. This analytical
framework is further verified with detailed system-level
simulations (SLS) that explicitly model the 3GPP 3D
multipath propagation channel.

• A performance assessment of flexible mmWave backhaul
operation in crowded urban deployments that includes
both time-averaged and time-dependent metrics of in-
terest, such as outage probability and spectral efficiency
together with outage and non-outage duration distribu-
tions. A highlight of our methodology is characterization
of uninterrupted connectivity duration, which accounts
for tolerable outage time subject to application-specific
requirements.

• An understanding of benefits made available with UAV
relay assistance to mmWave backhaul reliability in re-
alistic city scenarios. We demonstrate that under certain
speed, intensity, and service capacity, the use of UAV-
based relays enables significant gains for the system
performance. In particular, outage probability and out-
age duration in the considered scenario become notably
reduced, while spectral efficiency increases substantially.

The rest of this text is organized as follows. In Section II,

our system model of the target urban scenario is introduced.
The analytical framework for time-averaged performance eval-
uation of mmWave backhaul operation is outlined in Sec-
tion III. Further, an analytical model to assess temporal metrics
of interest in mmWave backhaul is contributed by Section IV.
The corresponding numerical results that explore the spatial
and temporal characteristics of flexible mmWave backhaul
by leveraging assistance of UAV relay nodes are offered in
Section V. Conclusions are drawn in the last section.

II. SYSTEM MODEL

A. Network deployment and COW-BSs

We consider a circular area with the radius of R, where
several “Cell on Wheels” base stations (COW-BSs) are dis-
tributed uniformly according to a Poisson Point Process (PPP)
with the density of λC . These COW-BSs provide connectivity
to the human users in their vicinity and are equipped with
mmWave backhaul links to the terrestrial New Radio base
stations (NR-BSs) as well as aerial UAV-carried base stations
(UAV-BSs) as illustrated in Fig. 2. In the scenarios where
over-provisioning leads to increased operator expenses (e.g.,
temporary and unexpected events), on-demand network den-
sification with COW-BSs might become a viable option. The
height of a COW-BS is hC . A terrestrial NR-BS is located at
the circumference of the circle area at the height of hA. Since
the height of a consumer vehicle is generally lower than that
of a pedestrian, the latter may act as a potential blocker to
the mmWave signal [23]. We assume that walking pedestrians
form a PPP with the density of λB and the height of hB ,
where hA > hB > hC .

The human blockers in our scenario are dynamic and their
travel patterns are assumed to follow the Random Direction
Mobility (RDM) model. The angle of movement in this
formulation is chosen uniformly within [0, 2π), while the time
of travel until the subsequent turn is distributed exponentially.
The UAV-BSs may fly through the center of the circle by
entering and leaving it at random points that are distributed
uniformly across its circumference [24]. This work considers
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Fig. 2. Geometrical 2D illustration of target setup.
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mobility of the UAV-BS as it becomes a distinguishing feature
for this new type of BSs. In [25], the authors demonstrate
the benefits of dynamic over static UAV deployments. There-
fore, mobility modeling is important to assess system-level
performance in the scenarios where several types of BSs may
coexist. The speed of the UAV-BSs is vD and their altitude
is hD. The process of entering the circle by the UAV-BSs is
assumed to be Poisson in time with the intensity of λD. The
remaining important notation is summarized in Table I.

B. 3D channel model and dynamic blockage of backhaul links

In order to model the mmWave backhaul links, we em-
ploy the current 3GPP 3D multipath channel model [11]
by taking into account all of the key features of mmWave
communication. The model assumes that there are multiple
alternative paths (named clusters) between the Tx and the Rx
(see Fig. 3), each featured by its own delay, pathloss, and
zenith of arrival/departure angles. Each of these paths can be
blocked or non-blocked by the moving human blockers using
the analytical model from [8].

The COW-BSs utilize beamsteering mechanisms to always
use the best path, which is currently non-blocked and has the
strongest signal. Beamsteering employed at all the communi-
cating nodes also minimizes the level of interference between
the backhaul links, thus making the considered mmWave
regime noise-limited [26]. Signal blockage by buildings is
not modeled, as none occlude the backhaul links between the
COW-BSs and the NR-BSs/UAV-BSs in the target scenario.

While the employed 3GPP model is sufficiently detailed
and accurate [27], the complexity of the used algorithms [11]
challenges its analytical tractability. Therefore, in our math-
ematical study, we utilize a statistical approximation of the
key modeling parameters [28], such as power of every cluster
transmitted by the NR-BS and the UAV-BS, PA,i and PD,i,
and zenith angle of arrival (ZOA) for every cluster, θA,i and
θD,i, where i = 1, 2, . . . , N is the cluster number.

C. mmWave backhaul connectivity model

The radio channel conditions of the backhaul links are dy-
namic in nature due to temporal variations of the propagation
environment. These are captured by the utilized propagation
model [28], while the mobility of human blockers surrounding
the COW-BSs is modeled explicitly in our work. The NR-BS
is assumed as the primary option for the backhaul links of
COW-BSs (see Fig. 1). When COW-BS is currently in outage

UAV-BS

θD,i
θA,1

NR-BS

COW-BS

LoS cluster

Reflected cl
ust

er
PA,i

PD,i
PA,1 PD,1

Fig. 3. 3GPP-driven 3D multipath channel model.

TABLE I
SUMMARY OF NOTATION AND PARAMETERS

Notation Description
Deployment

hA, hC , hD Heights of NR-BS, COW-BS, UAV-BS
λC , λB Density of COW-BSs and blockers per unit area
rB , v, hB Radius, speed, and height of a blocker
R Radius of the service area
λD Temporal intensity of UAV-BSs entering the service

area
TD , vD Time and speed of UAV-BSs traversing the service

area
KD UAV-BS service capacity

Technology
N Number of 3D multipath propagation clusters
θA,i and θD,i ZOA of i-th cluster from NR-BS and UAV-BS
fθA,i

and fθD,i
Pdf of ZOA of i-th cluster from NR-BS and UAV-BS

C and E[C] Spectral efficiency and its mean value
pO Outage probability
∆O Tolerable outage duration
TU and E[TU ] Uninterrupted connectivity time and its mean value

Mathematical framework
pD,av Probability of UAV-BS availability
PA and PD Received power at NR-BS to COW-BS and UAV-BS

to COW-BS links
fPA

and fPD
Pdf of received power at NR-BS to COW-BS and
UAV-BS to COW-BS links

fPA,i
and fPD,i

Pdf of power of i-th cluster arriving from NR-BS
and UAV-BS

un Pmf of number of UAV-BSs available for COW-BS
pA,i and pD,i Blockage probability of i-th cluster arriving from

NR-BS and UAV-BS
λB,T Temporal intensity of blockers crossing the blockage

zone
TB and LB Time and distance walked inside the blockage zone

by a single blocker
fη , fω Pdf of blocked and unblocked intervals
fO and fG Pdf of outage and non-outage duration

with respect to NR-BS (i.e., the signal received from NR-BS
is too weak), COW-BS may temporarily reroute its backhaul
traffic to UAV-BS traversing the area. Once the radio link to
NR-BS recovers, COW-BS reconnects to the terrestrial NR-BS
and reroutes its backhaul traffic back to it. Hence, the UAV-
BSs are employed in unfavorable conditions to improve the
continuity of backhaul links.

We measure the capacity of UAV-BS in terms of the
maximum number of simultaneously supported backhaul links,
which we denote as KD. This consideration reflects the
potential limitations of the mmWave radio equipment carried
by the UAV-BS as well as the specifics of the employed
network architecture and connectivity protocols. In its turn,
the connection between the UAV-BS and the core network is
inherently characterized by unobstructed line-of-sight propa-
gation without obstacles [29]. Therefore, this link is modeled
as always reliable.

D. Illustrative metrics of interest

To assess the performance quality of the mmWave backhaul
links in the described scenario, we concentrate on two types
of metrics, namely, time-averaged and time-dependent. In the
former case, we address (i) outage probability, pO, and (ii)
spectral efficiency, C. In the latter, we assume that the system
may tolerate a certain fixed outage duration ∆O and thus
derive (iii) the mean uninterrupted connectivity time, E[TU ].
As intermediate parameters, we also obtain (iv) the outage and
non-outage duration distributions, fO and fG, respectively.
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III. TIME AVERAGED ANALYSIS

In this section, we address the time-averaged system met-
rics, including outage probability and spectral efficiency.

A. Outage Probability
The outage probability pO for a randomly chosen COW-

BS in the area of interest is obtained as follows. Observe that
the COW-BS is always associated with the NR-BS when the
latter is in non-outage conditions. Otherwise, the COW-BS is
connected to a randomly chosen UAV-BS that is available,
provided that there is at least one UAV-BS in non-outage
conditions having fewer than KD COW-BSs connected to it.
Hence, the outage probability is produced as

pO = pA,O(u0 + (1− u0)(u0,n + (1− u0,n)pD,nav)), (1)

where u0 is the probability of having no UAV-BS traversing
the area at the moment, u0,n is the probability of having
no UAV-BS in non-outage conditions, pA,O and pD,nav are
the outage probability on the COW-BS to NR-BS link and
the probability that the UAV-BS is currently unavailable,
respectively. In what follows, we derive these unknown terms.

1) Outage probability on COW-BS to NR-BS and COW-BS
to UAV-BS links: Consider a randomly chosen COW-BS. Let
pA,i be the probability that i-th cluster between the NR-BS and
the COW-BS is blocked and first consider blockage of the LoS
path, pA,1. Fixing the distance x between NR-BS and COW-
BS, we observe that there is always a so-called blockage zone
as shown in Fig. 4. At any given instant of time t, the number
of blockers moving according to the RDM model within the
service zone follows a Poisson distribution [30]. Hence, the
probability that the LoS path is blocked is given by

pA,1(x) = 1− e
(
−2λBrB

[
x

hB−hC
hA−hC

+rB
])
. (2)

Let D0 be a random variable (RV) denoting the 2D distance
between the NR-BS and a randomly chosen COW-BS, and let
fD0

(x) be its probability density function (pdf). Noticing that
the COW-BSs are uniformly distributed within a service area
circle, the sought distance is [31]

fD0(x) =
2x

πR2
cos−1

( x

2R

)
, 0 < x < 2R. (3)
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Fig. 4. Illustration of dynamic blockage process.

The LoS path blockage probability is then

pA,1 =

∫ 2R

0

fD0
(x)pA,1(x)dx. (4)

Consider now the blockage probability for i-th cluster, i =
2, 3, . . . , N . As opposed to the LoS path, the 3GPP model does
not explicitly specify where the reflected cluster comes from.
Instead, it provides the ZOA, θA,i and θD,i, i = 2, 3, . . . , N .
In [28], it was shown that the ZOA for all clusters follows a
Laplace distribution and we denote it as the pdf fθA,i

(y;x).
The blockage probability pA,i(x) of every cluster is then

pA,i =

∫ π

−π

∫ 2R

0

fθA,i
(y;x)pA,i(y)dxdy, (5)

where pA,i(y) is the blockage probability as a function of the
ZOA, derived as

pA,i(y) = 1− e[−2λBrB(tan y(hB−hC)+rB)]. (6)

Substituting (6) and pdf of ZOA from [28], we obtain

pA,i =

π∫

−π

2R∫

0

1− e−2λBrB(tan y(hB−hC)+rB)

2bze
y−az(x)

bz

dxdy, (7)

where az(x) = π
2 −arctan

(
hA−hC

x

)
and bz , z = 2, 3, . . . , N ,

are the parameters estimated from the statistical data (see [28]
for details) and bz is given as

b1 =0, b2 =0.3146, b3 =0.3529, b4 =0.4056, b5 =0.4897. (8)

After characterizing the blockage probabilities of individ-
ual clusters on the COW-BS to NR-BS link, we derive an
expression for the received power. As shown in [28], the
fraction of power of i-th cluster between the NR-BS and the
COW-BS separated by the distance of x follows a Log-normal
distribution with the pdf fPA,i

(y;x).
Once the fraction of power distributions is obtained, the

received power from every cluster is calculated as

PA,z = Ps,z10(PT−30−L)/10, z = 1, 2, . . . , (9)

where PT is the transmit power in dBm and L is the path
loss in dB. Then, PA,z is given as

PA,z = Ps,z10(Ap−21.0 log10(D3,0))/10, (10)

where Ap = PT − 30− 32.4− 20 log10 fc.
As one may observe, PA,z is a function of two RVs, Ps,z

and D3,0, and fD3,0
(x) is the pdf of the 3D distance between

the NR-BS and the COW-BS in the form

fD3,0
=

2x

πR2
cos−1

(√
x2 − (hA − hC)2

2R

)
, (11)

where x ∈ (hA − hC ,
√

4R2 + (hA − hC)2).
Since D3,0 and Ps,z are independent, their joint pdf is

fPs,z,D3,0
(x1, x2) =

1

x1dz
√

2π
e

(
− (ln x1−cz)2

2d2z

)

×

2x2

πR2
cos−1

(√
x2

2 − (hA − hC)2

2R

)
, (12)
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where cz and dz , z = 2, 3, . . . , are the parameters derived
from the statistical data (see [28] for details) and given as

c1 = −2.88, c2 = −3.55, c3 = −4.1, c4 = −4.98, c5 = −6.2,

d1 = 1.2, d2 = 1.1, d3 = 1.3, d4 = 1.8, d5 = 2.51. (13)

Finally, the pdf of PA,z is

fPA,z
(y) =

∫ x2,max

x2,min

fPs,z,D3,0

(
y

10(Ap−21.0 log10(x2))/10
, x2

)
×

1

10(Ap−21.0 log10(x2))/10
dx2, (14)

where x2,min = hA−hC and x2,max =
√

4R2 + (hA − hC)2.
Assuming mutual independence in the cluster blockage, the

pdf of the received power is produced as

fPA
(y) =

N∑

k=1


(1− pA,k)

k−1∏

j=1

pA,j


 fPA,k

(y), (15)

where the weights are the probabilities of choosing cluster i.
Finally, the outage probability with the NR-BS is

pA,O = Pr{PA(y) ≤ N0TS} =

∫ N0TS

0

fPA
(y)dy, (16)

where N0 is the Johnson-Nyquist noise at the receiver and TS
is the SNR threshold. Note that due to the complex structure of
the conditional received power fPA

(y), the outage probability
pA,O can only be produced with numerical integration.

The LoS path and i-th cluster blockage probability on a link
between the UAV-BS and the COW-BS are obtained similarly
except for the 2D distance between UAV-BS and COW-BS,
D1, with the pdf given as

fD1(x) =
4x

πR2

[
cos−1

( x

2R

)
− x

2R

√
1− x2

4R2

]
, (17)

where x ∈ (0, 2R). Using this result, the corresponding 3D
distance between the UAV-BS and the COW-BS constitutes

fD3,1
=

4x

πR2

[
cos−1

(√
x2 − (hD − hC)2

2R

)
−

−
√
x2 − (hD − hC)2

2R

√
1− x2 − (hD − hC)2

4R2

]
, (18)

where x ∈ (hD − hC < x <
√

4R2 + (hD − hC)2).
2) Availability probability of UAV-BS: To complete the

derivation of pO, we find the probability that at least one UAV-
BS in non-outage conditions is available for service, pD,av.

The time spent by each UAV-BS within the service area is
constant and equals TD = 2RvD, where vD is the speed of
UAV-BS. Hence, the number of UAV-BSs that are available
in the service zone is captured by the M/G/∞ queuing
system with a constant service time. It is known that the
number of customers in M/G/∞ queue coincides with the
number of customers in M/M/∞ queue and follows a Poisson
distribution with the parameter λDTD [32]1.

1To ensure a certain number of UAV-BSs above the area one may directly
use a mean number of UAV-BSs.

Note that the availability of UAV-BSs is not sufficient for the
COW-BS to be able to associate with them. In addition, there
should be at least one UAV-BS in non-outage conditions. The
intensity of such UAV-BSs is λDTD(1 − pD,O), where pD,O
is the probability that a randomly selected UAV-BS resides in
the outage conditions. Therefore, the number of UAV-BSs that
are available for the COW-BS U follows a Poisson distribution
with the probability mass function (pmf) of

un =
[λDTD(1− pD,O)]n

n!
e−λDTD(1−pD,O), (19)

where n = 0, 1, . . . .
Let W denote the number of COW-BSs in the outage

conditions. The number of COW-BSs in the service area
follows a Poisson distribution with the density of λC . Hence,
the number of COW-BSs in the outage conditions also follows
a Poisson distribution with the parameter of λCpA,OπR2. The
probability that the UAV-BS remains available for service is

pD,av = Pr{KDU −W > 0} =
∞∑

i=1

Pr{Z = i}, (20)

where Z = KDU −W .
Observe that KDU is a scaled Poisson RV in (21), which

implies that pD,av can be evaluated numerically for any value
of KD. The pmf of Z is then established as

Pr{Z = z} =
∞∑

x=0

|KDx− 1|
KD

[λCpA,OπR
2](KDx−z)

(KDx− z)!
×

e

(
−λCpA,OπR

2−λDTD(1−pD,O)
)
[λDTD(1− pD,O)]x/KD

(x/KD)!
. (21)

B. Spectral efficiency
Consider now spectral efficiency of an arbitrarily chosen

COW-BS. Observe that this COW-BS spends a fraction of
time, pA, connected to the NR-BS and a fraction of time,
pD, connected to the UAV-BS. The rest of the time, pO, this
COW-BS resides in outage. Hence, the spectral efficiency is

C = pA log2

[
1 +

PA
N0

]
+ pD log2

[
1 +

PD
N0

]
, (22)

where PA and PD are the received powers whenever associ-
ated with NR-BS and UAV-BS.

Observe that pA,O = 1 − pA is the outage probability
when only NR-BS is available. Recalling that UAV-BS are
only employed when the NR-BS to COW-BS link experiences
outage conditions, the fraction of time that the COW-BS is
associated with the UAV-BS is pD = pA,OpD,av. Therefore,
the mean spectral efficiency is provided by

E[C] = (1− pA,O)

∫ ∞

0

fPA
(x) log2

[
1 +

PA
N0

]
dx+

+ pA,OpD,av

∫ ∞

0

fPD
(x) log2

[
1 +

PD
N0

]
dx, (23)

which can be evaluated numerically.
In addition to the mean value, the form of (22) enables us to

determine the distribution of the spectral efficiency. Observe
that the spectral efficiencies associated with the UAV-BS to
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COW-BS and the NR-BS to COW-BS links are independent
RVs. The resulting pdf takes the following form

fC(x) =





∫ ∞

0

(2fPA
(y) − 1)(2fPA

(x−y) − 1)

(N4
0 2x log2 2)−1

dy, x > 0,

pO, x = 0,

(24)

where the convolution integral can be evaluated numerically.

IV. TIME DEPENDENT ANALYSIS

In this section, we continue by quantifying uninterrupted
connectivity performance, including the outage and non-
outage duration distributions as well as the uninterrupted
connectivity duration.

A. Dynamics of cluster blockage process

To capture the temporal dynamics of the blockage process
for a single cluster, we need to track the blockers that are
crossing the blockage zone, see Fig. 4. We begin by consider-
ing the dynamics of the LoS blockage process and concentrate
on the temporal properties of the process when the blockers
are entering the blockage zone and occluding the LoS.

We specify the area around the blockage zone as shown
in Fig. 4, where the moving blockers may cross the blockage
zone by occluding the LoS between the COW-BS and the NR-
BS. To specify these conditions, the area around the blockage
zone is further divided into i, i = 1, 2, ...7, zones. The intensity
of blockers crossing the blockage zone of the COW-BS located
at the distance of x from the NR-BS is approximated as

λB,T (z) =
7∑

i=1

∫∫

Mi

gi(x, y)Pr{AB}Pr{TB > t}
(λBMi)−1

dxdy, (25)

where the event AB is when a blocker moves towards the
blockage zone (see Fig. 4), Mi is the area of zone i, gi(x, y)
is the pdf of the blocker locations in zone i. Here, gi(x, y) =
1/Mi as the blockers move according to the RDM model
and at every instant of time their coordinates are distributed
uniformly within the area [30], while Pr{TB > t} = e−1/E[τ ]

is the probability that such movement is longer than t seconds.
Observe that the probability for a blocker to move towards

CDEF is Pr{AB} = ξi(x, y)/2π, where ξi(x, y) is a range
of movement angles within zone i that lead to crossing the
blockage zone. We thus simplify (25) as

λB,T (z) =
λBe

−1/E[τ ]

2π

7∑

i=1

∫∫

Mi

ξi(x, y) dx dy, (26)

where ξi(x, y) are calculated as

ξ1(x, y)=ξ3(x, y)=ξ5(x, y)=ξ7(x, y)=cos−1
( x
vt

)
+tan−1

(y
x

)
,

ξ2(x, y) = ξ6(x, y) = 2 cos−1(x/vt),

ξ4(x, y) = 2 tan−1(x/y), (27)

and M1 = M3 = M5 = M7 with x-coordinate within the
range of (0, vt) and y-coordinate within the range of (0, vt/2),
M2 = M6 with x-coordinate within the range of (0, vt)
and y-coordinate within the range of (0, d − 2vt), M4 with
x-coordinate within the range of (0, 2rB) and y-coordinate
within the range of (0, vt), where 2rB < vt.

It has been shown in [33] that the process of meetings
between a stationary node and a node moving inside a bounded
area according to the RDM is approximately Poisson. We build
on this result to approximate the nature of the process of
blockers meeting the blockage zone. Due to the properties of
the RDM model, the entry point is distributed uniformly over
the three sides of the blockage zone [30].

Let η and ω be the RVs denoting the blocked and non-
blocked periods, respectively. Since blockers enter the zone
in question according to a Poisson process with the intensity
of λB,T (x), the time spent in the unblocked part, ω, follows
an exponential distribution with the parameter of λB,T (x),
Fω(t;x) = 1− e−λB,T (x)t, as demonstrated in [8]. The pdf of
η, fη(t;x), is the same as the distribution of the busy period in
the M/GI/∞ queuing system [34] given by (28), where FTB

is the CDF of time that one blocker spends in the blockage
zone, which is provided in [8].

The pdfs of the blocked and non-blocked intervals, fη(t;x)
and fω(t;x), are conditioned on the distance between COW-
BS and NR-BS. Deconditioning with (3), we obtain the pdfs
of the blocked and non-blocked intervals when associated with
the NR-BS as

fη(t) =

∫ 2R

0

fη(t;x)fD0(x;R)dx,

fω(t) =

∫ 2R

0

fω(t;x)fD0(x;R)dx, (29)

which can be calculated numerically.
To capture the dynamics of the cluster blockage process,

we can represent it by using a continuous-time Markov chain
(CTMC) process with two states, which is defined by the
infinitesimal generator in the following form

Λ1,A =

[
−α1,A α1,A

β1,A −β1,A

]
, (30)

where the subscript (1, A) shows that the model is built for
the LoS cluster of the NR-BS to COW-BS link, while α1,A =
1/E[η] and β1,A = 1/E[ω] are the means of blocked and
non-blocked intervals of the LoS cluster given in (29).

The process of blockage for other clusters on the NR-
BS to COW-BS link is analyzed similarly. The key differ-
ence is that the blockage zone is specified by the ZOA
instead of the heights of NR-BS and COW-BS as well as
the distance between them. Let us denote the generators
of all clusters associated with the NR-BS to COW-BS link
by Λi,A, i = 1, 2, . . . , N . Assuming independence between
the cluster blockage processes, the associated CTMC model,
{SA(t), t > 0}, SA(t) ∈ {1, 2, . . . , 2N}, is a superposition of
the individual blockage processes. The infinitesimal generator
of {SA(t), t > 0} is then given by the Kronecker product of
Λi,A, i = 1, 2, . . . , N .

The blockage dynamics of the UAV-BS to COW-BS link
is represented similarly by leading to the Markov process ap-
proximation {SD(t), t > 0}, SD(t) ∈ {1, 2, . . . , 2N}. Finally,
the aggregate blockage model of both links is represented by
a superposition of the blockage processes that characterize the
NR-BS to COW-BS and the UAV-BS to COW-BS links. The
resulting infinitesimal generator is Λ = ΛA ⊗ ΛD.
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Fη(x) = 1−
[

[1− FTB
(x)]


1−

x∫

0

(1− Fη(x− z)) exp(−λB,TFTB
(z))λB,T dz


+

x∫

0

(1− Fη(x− z))|de−λB,TFTB
(z)|
]
. (28)

B. Performance measures of interest
1) Outage and non-outage duration distribution: Having

the CTMC representation of the outage process, we can
now calculate time-dependent performance metrics of interest,
including the distributions of consecutive intervals spent in
outage and non-outage conditions, the corresponding distribu-
tions of residual time, as well as the distribution and the mean
duration of uninterrupted connectivity.

Let RVs G and O denote the non-outage and outage time du-
rations, respectively. The distribution of time spent in outage,
fO(x), x > 0, is directly given by the sojourn time in the state
where all clusters are blocked. For our model, it is always state
1. The distribution of time spent in the non-outage state can be
found by modifying the CTMC to have an absorption state in
outage. Then, the sought distribution is the first-passage time
(FPT) to the outage state that can be established by using [35].
Particularly, let fG(t) be the pdf of the FPT from the set of
non-blockage states, {2, 3, . . . , 2×2N}, to the blockage state.

It is easy to see that the sought distribution is of the phase-
type nature [36] with the representation (~α, S), where ~α is the
initial state distribution defined over {2, 3, . . . , 2 × 2N} and
S is obtained from the infinitesimal generator Λ by excluding
the first row and column. The pdf is then given by [37] as

fG(t) = ~αeSt~s0, t > 0, (31)

where ~s0 = −S~1, ~1 is the vector of ones with size 2N −
1, while eSt is the matrix exponential defined as eSt =∑∞
k=0

1
k! (St)

k.
The initial state distribution, ~α, is determined by the nor-

malized rates out of the outage state e.g.,

αi =

{
0, i = 1,

πi/
∑2N

j=2 πj , i = 2, 3, . . . , 2N .
(32)

2) Uninterrupted connectivity time: Consider now an appli-
cation that may tolerate at most ∆O in the outage conditions,
which implies that all of the outages whose durations are
less than ∆O do not cause connectivity interruptions. The
probability that a session is interrupted is

pI =

∫ ∆O

0

xfO(x)dx. (33)

As one may observe, the duration of uninterrupted con-
nectivity is produced by a geometrical distribution with the
parameter pI , which is scaled with the aggregate durations of
non-outage and outage intervals conditioned on the event that
it is smaller than ∆O. Hence, we have

E[TU ] =
1

pI
(E[G] + E[O|O ≤ ∆O]), (34)

where the means are readily given by

E[G] =

∞∫

0

xfG(x)dx, E[O|O ≤ ∆O] =

∆O∫

0

x
fO(x)

1− pI
dx. (35)

V. NUMERICAL RESULTS

In this section, the obtained analytical findings are illus-
trated, explained, and compared with the results produced
with our SLS framework. Below is an illustrative example
to demonstrate the capabilities of our proposed framework,
which is applicable for a range of comprehensive and realistic
deployment models currently under investigation.

We address a typical crowded urban deployment, where
a pedestrian plaza (e.g., St. Peter’s Square, Vatican City) is
modeled. The area of interest is assumed to be of circular
shape with the radius of 50 m. The terrestrial NR-BS is located
at a side of the square on the wall of one of the buildings at
the height of 10 m. Pedestrians move around the square by
following their travel patterns as described in Section II with
the fixed speed of 3 km/h. UAV-BSs are assumed to traverse
the pedestrian plaza at the height of 20 m with the fixed speed
that varies from 5 km/h to 40 km/h. The remaining modeling
parameters are summarized in Table II. Our simulation param-
eters partially follow the guidelines in [24] with respect to the
height and the speed of the UAV-BS, as well as refer to [11]
for modeling the radio part.

To validate the assumptions of our developed analytical
framework, we utilize an in-house SLS tool that incorporates
all of the relevant procedures considered by our study. The
mmWave-specific physical layer was designed by following
the corresponding 3GPP guidelines; particularly, the 3GPP’s
3D multipath channel model outlined in [11] was employed.
This simulation tool captures the following key procedures:
session arrival process, UAV-BS arrival and departure pro-
cesses, UAV-BS and pedestrian mobility, and dynamic back-
haul link rerouting between the UAV-BS and the NR-BS
enhanced with multi-connectivity operation [38].

The tool operates in a time-driven manner with the step of
0.01 s. To match the capabilities of our analytical framework,
idealistic and reliable signaling at all the connections has been
assumed: if the current connection is interrupted, the COW-
BS immediately attempts to reconnect via a UAV-BS and does
not spend any additional resources for this migration. For
the sake of better accuracy in the output results, all of the

TABLE II
DEPLOYMENT AND TECHNOLOGY PARAMETERS

Parameter Value
Deployment
Area radius, R 50 m
Height of NR-BS, hA 10 m
Height of UAV-BS, hD 20 m
Height of COW-BS, hC 1.5 m
Height of blocker, hB 1.7 m
Radius of blocker, rB 0.2 m
Speed of blocker, v 1 m/s
Technology
NR-BS transmit power 35 dBm
UAV-BS transmit power 23 dBm
Target SNR for non-outage conditions 3 dB
COW-BS antenna gain 5 dB
UAV-BS antenna gain 7 dB
NR-BS antenna gain 10 dB
Carrier frequency 28 GHz
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Fig. 5. Outage probability and mean spectral efficiency. Effect of crowd
density and intensity of UAV-BS flights.

collected intermediate data are averaged over 100 replications,
each starting with a re-deployment of the layout. Each of
such replications corresponds to 10 min of real-time operation.
Hence, approximately 17 hours of real-time system operation
have been modeled.

1) Effect of UAV-BS flight intensity: The UAV-BSs are
assumed to move at a moderate speed of 10 km/h. The point 0
on the OX axis represents the baseline scenario with no UAV-
BS assistance. Analyzing Fig. 5, we notice that both the outage
probability and the spectral efficiency are improved with the
growth in the intensity of UAV-BS traversals. Specifically, for
λB = 0.7 the outage probability decreases from 7.5% for the
baseline scenario to 1.5% for 10 UAV-BSs per minute. Mean-
while, the corresponding increase in the spectral efficiency is
from 6.5 bit/s/Hz to 8 bit/s/Hz, which is around 25%.

Going further, we observe that the benefits of UAV-BS
assistance for performance are more visible in challenging
conditions (high density of humans, such as 0.7) rather than
at low blocker densities (such as 0.1 or 0.3). Moreover, Fig. 5
clearly indicates that two UAV-BSs traversing the area of in-
terest per minute with λB = 0.7 reduce the outage probability
down to 5.3%, which is close to 5.2% observed with λB = 0.5
in the baseline scenario (no UAV-BSs, λD = 0).

We finally note that the results of our mathematical analy-
sis match well with those obtained via the simulation tool,
which confirms the accuracy of the analytical findings. A
slight difference between them is due to several simplifying
assumptions introduced by the mathematical framework for
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the sake of analytical tractability: e.g., an approximation of the
3GPP’s multipath propagation model as detailed in Section III
and [28].

2) Effect of UAV-BS flight speed: The intensity of UAV-
BSs traversing the area, λD, is fixed and set to 10 UAV-BSs
per min. We model a crowded scenario with λB = 0.7, while
the maximum number of simultaneous backhaul connections
per UAV-BS, KD, varies from 1 to 5. We observe that a
decrease in the UAV-BS speeds has a notable positive effect
on performance. As an example, lowering UAV-BS speeds
from 40 km/h down to 10 km/h for KD = 1 results in reduced
outage probability from 7.1% to 3.5%, which is over 2 times.
The corresponding gain in the mean spectral efficiency, E[C],
is smaller but still visible: from 6.9 bit/s/Hz to 7.7 bit/s/Hz.

We continue by evaluating the effect of the UAV-BS speeds
in Fig. 7, which presents the pdf of the outage duration for
certain values of vD and KD. The UAV-BS intensity, λD, is
set to 10 per min, while the density of humans in the area,
λB , equals 0.7. There is a notable decrease in the mean outage
duration, E[O], when UAV-BSs are utilized. Particularly, the
said parameter decreases from 276 ms for the baseline deploy-
ment down to as low as 88 ms for (vD = 10 km/h, KD = 10)
case. Finally, we notice that increasing the UAV-BS capacity,
KD, by two times (from 5 to 10 simultaneous connections)
brings a notable decrease in the mean outage duration.

3) Effect of service capacity of UAV-BSs, KD: To this
aim, we analyze the primary backhaul session continuity
related parameter – the average duration of the uninterrupted
connectivity subject to a certain tolerable outage duration. In
other words, a connection is assumed to be interrupted if and
only if the outage duration is longer than a certain value, ∆O.
We illustrate these results in Fig. 8 for two UAV-BS intensities
(λD = 1 and 10 UAV-BSs per min).

Studying Fig. 8, we notice that for 100 ms of tolerable
outage, the average duration of uninterrupted connectivity
grows from 7 s for the baseline scenario to 46 s for 10 UAV-
BSs per min, KD = 10. We then observe that the impact
of an increased UAV-BS capacity, KD, is notable but weaker
than that of the intensity of UAV-BS traversals: the curve for
(10 UAV-BSs per min, KD = 1) is much higher than the one
for (1 UAV-BS per min, KD = 10). This is mainly due to
the fact that at least one out of 10 UAV-BSs is much more
likely to reside in non-outage conditions with respect to the
COW-BS than a single UAV-BS, regardless of the capacity.
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Finally, we observe that the relative impact of KD on the
said parameter depends on the intensity of UAV-BS flights
across the area. Particularly, the improvement brought by
KD = 5 and KD = 10 vs. KD = 1 is significant for
1 UAV-BS per min and marginal for 10 UAV-BSs per min. In
summary, for high intensity of UAV-BS traversals, there is no
need for higher capacity of the UAV-BSs. Meanwhile, if the
intensity of UAV-BS flights is lower than required from the
connectivity perspective, there is a driver to invest resources
into advanced radio units on the UAV-BSs.

VI. CONCLUSION

Dynamic and reconfigurable system architectures aiming to
support backhaul operation in mmWave bands are one of the
recent focus items in the ongoing 3GPP standardization. They
can be further augmented by an emerging element in the 5G
landscape – UAVs with flexible mobility and capability to
carry radio equipment. These may become efficient backhaul
connectivity providers in 5G and beyond networks, especially
in case of highly dynamic traffic fluctuations to avoid excessive
over-provisioning of network resources.

To this aim, we contribute a new analytical framework that
incorporates 3GPP’s multipath channel model, heterogeneous
mobility of UAVs and humans, as well as human body
blockage effects, which are identified by 3GPP as one of the
main sources of performance degradation for the prospective
NR operation. Our methodology allows to produce both time-
averaged and continuous-time metrics in dependence on UAV-
BS speed and traversal intensity, heights of the communicating
entities within the scenario (NR-BS, UAV-BS, COW-BS, and
human blockers), as well as blocker dimensions and speeds.

We demonstrate that UAV-BS assistance can offer signif-
icant benefits to mmWave backhaul under certain system
parameters. For instance, the intensity of UAV-BS flights equal
to 10 reduces the outage probability on a COW-BS backhaul
link by 6 times. Moreover, by lowering the UAV-BS speed
above the service area from 40 km/h down to 10 km/h, the said
outage probability drops by 2 times. Further, one may derive
the target intensity of UAV-BS traversals that is required to
support the key performance indicators as a function of the
blocker density. The contributed framework can be applied
to a wide range of practical scenarios, such as conventional
layouts with the near-static deployment of UAV-BSs by e.g.,
adjusting the speed parameter.
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