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ABSTRACT 

Samuli Pohjola: Object Detector Fine-tuning for Computer Vision Applications 

Master of Science Thesis 

Tampere University 

Master’s Degree Programme in Information Technology 

May 2022 
 

The advancements of CNNs have made object detection increasingly popular and now it is 
used in a wide range of applications. There are many pretrained object detector implementations 
available, but these models do not always fulfil the needs of real applications. That is why retrain-
ing for application needs is often required although it can be expensive. One efficient way of 
retraining is fine-tuning a pretrained model with a small number of images.  

In this thesis object detection fine-tuning is studied to estimate the detection accuracy improve-
ments gained by fine-tuning with different data quantities. Experimentation is done on publicly 
available data from surveillance and adverse conditions data domains with the YOLOv5 object 
detector. The experimental results show that 50 to 75 fine-tuning images are enough to produce 
distinctively improved results for a single data source. Having more images would only increase 
the accuracy to a small extent, but also having less than 30 would produce worse results than the 
pretrained model. Similar results are obtained when fine-tuning a more general model with 15 
images from each source. The experiments also show that the training data needs to have enough 
object instances for successful learning. 

Additionally, an automatic fine-tuning image selection algorithm is proposed in the thesis. It 
uses the pretrained detection model to algorithmically select fine-tuning images. In the experi-
ments the algorithmic selection is seen to produce slightly better accuracy and less deviation in 
results when compared to random selection. The accuracy improvements are marginal, but the 
algorithm is useful with real-life camera streams where a suitable time for random selection is 
hard to estimate. In these cases, the algorithm could speed up data selection for fine-tuning and 
that way reduce expenses. 
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Konvoluutioon perustuvien neuroverkkojen kehitys on tehnyt kohteen tunnistuksesta suosittua 
ja nykyään sitä hyödynnetään monissa erilaisissa sovelluksissa. Kohteen tunnistukseen on tar-
jolla monia valmiiksi koulutettuja malleja, mutta nämä mallit eivät aina vastaa oikeiden sovellus-
kohteiden vaatimuksia. Sen vuoksi tunnistin täytyy usein kouluttaa uudelleen vastaamaan sovel-
luskohteen tarpeita, vaikka uudelleenkouluttaminen on hidas ja työläs prosessi. Yksi tapa tehdä 
uudelleenkoulutus tehokkaasti on hienosäätää valmista mallia pienellä määrällä kuvia. 

Tässä työssä tutkitaan kohteentunnistimen hienosäätöä, jotta saataisiin arvio kuvamäärästä, 
joka tarvitaan paremman tarkkuuden saavuttamiseksi. Työssä tehdään hienosäätökokeita 
YOLOv5-kohteentunnistimella. Kohteentunnistimen kouluttamiseen testeissä käytetään julkisia 
kuvasarjoja valvontakameroista ja tunnistukselle haitallisista sääolosuhteista. Kokeiden tulokset 
osoittavat, että 50–75 kuvaa on riittävä määrä tuottamaan hyviä tuloksia yhden kameran tai olo-
suhteen kuvia käytettäessä. Kuvien lisääminen parantaa tarkkuutta vain vähän ja kuvien vähen-
täminen alle 30:n tuottaa huonompia tuloksia kuin valmiiksi koulutettu malli. Kun haetaan ylei-
sempää mallia, samanlaisia tuloksia saadaan käyttämällä 15 kuvaa jokaisesta kamerasta tai olo-
suhteesta, jossa mallin halutaan toimivan. Kokeissa myös selviää, että koulutusdatassa tulee olla 
riittävä määrä tunnistettavia kohteita, jotta niiden oppiminen onnistuu. 

Lisäksi työssä esitellään algoritmi, jolla voidaan automaattisesti valita kuvia kohteen tunnisti-
men hienosäätöä varten. Algoritmi perustuu valmiiksi koulutetun kohteentunnistimen tekemiin 
tunnistuksiin, joiden pohjalta algoritminen valinta tehdään. Kokeissa algoritminen valinta tuottaa 
hieman paremman tarkkuuden ja vähemmän hajontaa tuloksissa kuin satunnainen valinta. Algo-
ritmilla saavutettu parannus on kuitenkin marginaalista, mutta algoritmi nähdään hyödylliseksi 
käytettäessä oikeiden kameroiden kuvavirtoja, joissa on vaikea arvioida sopivaa aikaa satunnai-
selle valinnalle. Näissä tapauksissa algoritmi nopeuttaa hienosäätökuvien keräämistä ja siten vä-
hentää siitä koituvia kustannuksia. 

 
 
 

Avainsanat: Syväoppiminen, Kohteen tunnistus, hienosäätö, konvolutiivinen neuroverkko, 
YOLOv5 
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1. INTRODUCTION 

CNNs (Convolutional neural networks) have dominated the object detection field for 

some time now [1]. They first rose to prominence in 2012 with the introduction of AlexNet 

and have continued to develop since then [2]. The evolution of CNNs has hugely im-

proved the performance of computer vision with various architectures like R-CNN (Re-

gion-based Convolutional Neural Network), Fast R-CNN and YOLO (You only look once) 

[3]. Nowadays they still hold a significant role in object detection, although there are also 

other prominent technologies like Transformer based object detectors. Although trans-

former-based architectures have been shown to produce good results in computer          

vision [4] their deployment options are still limited and they are not as easy to use as 

competing deep CNN architectures.  

The development of CNN based object detection has resulted in architectures that can 

provide accurate predictions with short inference times. There are premade and pre-

trained implementations of such CNN detectors that are fast enough to be used in real-

time object detection even with modest hardware [5, 6]. The possibility of real-time object 

detection has opened many new increasingly interesting real-life applications for com-

puter vision. Real-time object detection enables the usage of object trackers or real-time 

event detection, which can be used in, for example, security or smart city data analytics. 

Unfortunately, these use cases often have different view angles, detection needs and 

background conditions compared to what the pretrained models offer, which raises the 

need for detection model retraining. 

The need to retrain emphasizes the central issue of CNN-based object detection. Train-

ing CNN detectors often needs large amounts of accurately labeled data to produce good 

results [7, 8]. To accomplish this, data needs to be collected and annotated which can 

be time-consuming and expensive. To lower these expenses, crowdsourcing can be 

used to annotate the data and it has been shown that this can even yield accurate results 

in some scenarios [9]. However, in security and smart city applications the used data 

often includes private or confidential information and crowdsourcing the data could be a 

violation of regulations like the GDPR (General Data Protection Regulation). 

Another solution is using a pretrained detection model as a basis and fine-tune it to cor-

respond to the needs of the specific task. The process of fine-tuning makes use of an 
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existing network by starting the training process with weights that have been pretrained 

with a large-scale dataset and continues to fine-tune these weights with the new           

data [10]. This process is depicted in Figure 1. The features learned by the weights op-

timized by thousands of training images will remain during fine-tuning, but their relation 

to new or old classes can be fine-tuned. In fine-tuning some layers of the model can also 

be randomly initialized or frozen to the pretrained values. Random initialization is needed 

for the output layer of the network if new classes are added in fine-tune training. It can 

still be useful even when the detected classes stay the same. 

 

 Neural network fine-tuning uses pretrained model weights as a basis for 
new model training [11]. 

It has been shown that fine-tuning requires less data than complete retraining [12]. Fine-

tuning even with a small amount of data can produce significant accuracy gains. An ex-

ample is presented in Figure 2, where ground truth and predictions with a pretrained 

model and a fine-tuned detector are shown. Because of the costs and data limitations, 

fine-tuning a pretrained model with self-annotated data is usually the best solution for 

scenarios with sensitive data. However, the question of how much data and what quality 

is needed to produce good fine-tuning results remains open. 
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 Images showing benefits of small-scale fine-tuning. The leftmost images 
depict ground truth. The images in the middle and on the right show predictions 
from a pretrained model but for the rightmost images the model has been fine-

tuned with 50 images.  

The research objective of this thesis is to find out what amount of data is needed for fine-

tuning a pretrained object detection model to achieve improved accuracy. This objective 

is considered with real-life smart city analytics or other surveillance applications in mind. 

Answers to this question are searched by running fine-tuning experiments with real data 

and state-of-the-art CNN object detector YOLOv5. The data domains of this work’s ex-

periments are surveillance camera and adverse weather conditions, which could be both 

present in a smart city data analytics scenario. Publicly available data is studied and 

reviewed to find out the best matches for the chosen data domains.  

Extensive fine-tuning experiments are conducted on the data to find out how fine-tuning 

data quantity effects the accuracy of the results. The goal is to find out the accuracy 

gains of adding more data and to deduce estimates on optimized amounts of fine-tuning 

data required to produce improved accuracy. Also, an automatic fine-tuning image se-

lection algorithm is proposed and tested for easing the selection of fine-tuning data. The 

effects of fine-tuning data quality are also observed in the experiments. Additionally,     

experimentation is done with the generalization ability of the fine-tuned detection models 

inside the trained data domain.  

The rest of the thesis’ structure is as follows. Chapter 2 goes through related work on 

object detectors and examines datasets that depict surveillance or adverse condition 

data domains. Chapter 3 describes the methods and metrics used in the work’s experi-

ments and their theoretical background. Chapter 4 presents the experiments and their 

results in detail. Discussion on results and conclusions are also presented in Chapter 4. 

All results and conclusions are gathered in chapter 5 at the end of the thesis. 
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2. RELATED WORK 

This chapter goes through research in the field of object detection and a number of public 

datasets that can be used for object detector training. Section 2.1 introduces the current 

state of object detection and technologies used in the research field. Section 2.2 exam-

ines publicly available datasets with surveillance camera view angles or adverse weather 

conditions. Also, the suitability of these datasets for object detector training is assessed.  

2.1 Object Detection 

One of the most interesting and highly studied topics in computer vision is object detec-

tion [13]. The idea of object detection is to separate interesting objects from the image 

background and then assign these objects a predefined class label [13–15]. The objects 

are often marked by drawing bounding boxes around them in the image to show their 

size. Object detection has been done with different methods like HOG (histogram of ori-

ented gradients) or DPM (deformable part-based model), but the most prominent method 

used today is deep learning [16]. Deep learning mostly refers to DNNs (deep neural 

networks), which have complex architectures and many layers, and therefore capacity 

to learn more complex features [15]. 

In the present, the area of object detection can be divided into three prevalent algorithm 

categories: two-stage algorithms, one-stage algorithms and transformers [2]. Two-stage 

algorithms divide the detection task into two phases. The first phase generates region 

proposals on possibly interesting objects and the second phase classifies these               

regions [17]. Examples of two-stage detectors are R-CNN [18], SPP-Net [19], Fast R-

CNN [20] and Faster R-CNN [21]. The advantage of two-stage detectors is usually ac-

curacy at the cost of speed. 

One-stage algorithms on the other hand do not use region proposals, but instead extract 

direct features from input images and then perform classification and localization predic-

tions according to those features [22]. This makes the detection process faster but also 

lowers the accuracy when comparing to the two-stage algorithms. Popular one-stage 

detectors are YOLO [23], SSD (single shot detector) [24], Retina-Net [25] and               

CenterNet [26]. 

An emerging topic in computer vision is the use of transformers in visual tasks [27]. 

Transformers were adapted from NLP (natural language processing) to reduce structural 
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complexity for increased training efficiency and scalability [2]. The benefits of transform-

ers are self-attention layers which can aggregate information from whole input se-

quences allowing the creation of structures with less need for hand-designed compo-

nents [28]. The most well-known object detection transformer is DETR (Detection Trans-

former), which uses a CNN backbone with a transformer head [29]. Another popular 

transformer structure in object detection is the Swin Transformer that has been shown 

to produce state-of-the-art level detection accuracy [30–32]. 

2.2 Datasets 

Nowadays there are a lot of publicly available datasets that can be used to train and test 

object detectors. These datasets often have different characteristics. They differ in data 

quantity and annotation quality. Choosing the right datasets to be used in research can 

be a difficult and time-consuming task [33]. For object detection in surveillance or ad-

verse weather condition data domains there exist a few representative datasets, which 

are introduced here.  

2.2.1 VIRAT 

The VIRAT video dataset contains 8.5 hours of HD (high-definition) quality video clips 

that have been taken from cameras placed in surveillance camera angles. The dataset 

contains diverse scenes from mostly urban areas where human activity occurs. The vid-

eos have been shot mostly during daytime and the weather conditions differ from clear 

skies to light rain. [34] 

The VIRAT dataset is designed to be used in action or event detection with video data, 

and therefore it offers localized annotations for frames that include these actions or 

events. In addition, bounding boxes and classes are given for objects participating in 

these actions. Unfortunately, the bounding boxes do not cover all objects of the de-

scribed classes. This makes the dataset unsuitable for object detector training or fine-

tuning, as missing class labels for clearly visible objects hamper the learning of an object 

detection model. An example image from the dataset is shown in Figure 3. 
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 An example image from VIRAT video dataset that shows the view angle 
and that annotations are only given for some objects in the videos. 

2.2.2 AU-DETRAC 

The AU-DETRAC dataset is created from 10 hours of video data from multiple locations 

depicting traffic in urban settings or on highways from a surveillance camera view. The 

dataset is meant to be used as an object detection and tracking benchmark. The data is 

presented as annotated frames with 960x540 resolution that have been taken from the 

original videos. The weather conditions in the frames feature sunshine, clouds and some 

rain. Most of the frames are from daytime videos but some show a night-time                

scenery. [35] 

The dataset’s annotations are provided as bounding boxes, object identifiers and class 

labels for large and medium-sized vehicles including passenger cars, buses, trucks and 

vans. The annotations are only given for vehicles that are on the central roads of the 

camera view and not far away. For other parts of the frames the dataset provides static 

rectangular areas where objects are ignored and therefore not labelled. By hiding these 

ignored areas, the frames can be used in object detection training. However, the ignored 

areas are not perfect and in some frames partially visible vehicles do not have annota-

tions or their bounding boxes extend far into the ignored areas. Additionally, the cameras 

used to take the videos are unstable and they wobble slightly which moves the ignored 

areas and sometimes reveals unlabelled vehicles. Example images from the dataset are 

presented in Figure 4. 
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 Example images from AU-DETRAC dataset with annotations showing 
scene variety and problems with ignored areas. The ignored areas are marked 

with black rectangles. 

2.2.3 CADCD 

CADCD or Canadian Adverse Driving Conditions dataset is an autonomous driving da-

taset with images, LiDAR sweeps and other driving related data from snowy weather 

conditions. The data has been gathered by driving around urban areas with an autono-

mous vehicle platform which has produced videos, LiDAR sweeps and other information. 

The weather in the data varies from light snowfall to heavy snowfall and all of the data 

has been collected during daytime. [36] 

The published dataset contains labelled traffic scenes that feature camera images and 

LiDAR points from the data gathering vehicle’s sensors and 3D-bounding boxes for ob-

jects in the images. The annotation data has been given in a format that allows recon-

struction of these scenes in 3D, showing the locations and orientations of other objects 

near the data gathering vehicle. This allows for in-depth analysis of the driving scenes, 

but unfortunately is not as useful for object detection. The bounding boxes are given in 

3D coordinates and can be projected to the provided camera images as 2D bounding 

boxes, but this transition causes some errors in the box precision. The main problem for 

object detector training is that the annotations do not specify if an object is visible in the 

camera image or not. This leads to a large number of bounding boxes without visible 

objects. An example of these empty bounding boxes and a reconstructed LiDAR scene 

is shown in Figure 5. 
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 Image and LiDAR scene from CADCD. The image shows multiple bound-
ing boxes in the nearby building’s wall. This is because the annotation data does 

not mention object visibility in camera images. Adapted from [28]. 

2.2.4 DAWN 

Detection in Adverse Weather Nature or DAWN is an object detection dataset that de-

picts traffic in various adverse weather conditions in urban and highway scenery. The 

data is presented as a collection of around 1000 images with a wide range of different 

resolutions and varying view angles. The images have been divided into 4 different 

weather condition categories: fog, rain, snow and sand. The weather in these categories 

varies between light mist, heavy fog, light rain, rainstorm, light snowfall, blizzard and 

sandstorm. Most of the images are taken during daytime but some also feature night-

time. [37] 

Annotations in the DAWN dataset are given for all road users in a format that can be 

easily used with many object detectors. There are some mistakes in the annotations 

such as wrong class labels for some objects, missing labels for visible objects or wrong 

sized bounding boxes, but the overall data quality is good. Figure 6 shows example im-

ages from the dataset but overrepresents the portion of mistakes in the data. This makes 

the dataset suitable for object detector fine-tuning, but it is too limited to be used in com-

plete retraining. An object detection model fine-tuned with image data that represents 

various view angles and has more object variation will produce a more generalized model 
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as a result [38], but it is questionable if this dataset’s 1000 images are enough to produce 

a good generalization.  

 

 Example images from DAWN dataset showing the 4 different weather 
condition categories: fog, rain, snow and sand. The images also show missing 

and oversized bounding box errors. 

2.2.5 AAU RainSnow 

AAU (Aalborg University) RainSnow Traffic Surveillance Dataset provides video data 

from 7 different traffic surveillance cameras with RGB and thermal infrared capabilities. 

The original use for the dataset is rain removal algorithm evaluation with segmentation 

and feature tracking. There are 22 short videoclips and each of them have been split into 

100 randomly selected and labelled RBG and thermal image pairs with a 640x480 reso-

lution. Time of day in the labelled image pairs is split quite evenly between daytime and 

night-time. Weather conditions in the images feature varying amounts of rainfall and 

snowfall and also some fog and haze. [39] 

The AAU RainSnow dataset’s annotations are given as bounding boxes and segmenta-

tion masks for all road users that are not too far away from the camera. This means that, 

for example, cars parked beside the road are not annotated. To prevent these unlabelled 

areas from affecting training or evaluation, the dataset offers image masks that can be 

used to hide the areas where annotations are not provided. Unfortunately, some of the 

image masks do not completely cover all stationary objects on the side of the roads and 

some annotations are overlapping or completely inside the masked area. The cameras 

also wobble a bit in windy conditions, which moves the masked areas. In addition to 
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masking errors the dataset contains a few frames that are missing annotations for some 

road users or have wrong class labels on some objects. Nevertheless, these mistakes 

only cover a small percentage of the dataset’s images and rest of the data is suitable for 

object detection training and fine-tuning. Figure 7 shows example images from the da-

taset. 

 

 Example images form AAU RainSnow dataset showing variation and 
challenging detection tasks but also some mistakes. Black areas in the images 

represent the masks for unlabelled areas. 

2.2.6 MOTChallenge 

MOTChallenge is a multiple object tracking benchmark meant to be used to evaluate the 

performance on object trackers. It provides multiple videos with varying length and res-

olution from urban areas with multiple objects, but mostly people moving around. Some 

of the videos have a surveillance camera view angle and some have been taken from 

ground level. The videos are taken both during daytime and night-time and the weather 

in the videos is always clear or sunny. [40] 

Annotations in the MOTChallenge are given as tracking information and bounding boxes 

for the tracked objects. This tracking information is given for all moving objects in the 

videos and to some stationary ones. In some videos tracking annotations are given for 

uninteresting objects like vending machines or poles. The annotations however do not 



11 
 

include class labels for the tracked objects, even though they are not all of the same 

object class. Training an object detector model with this kind of data could hamper the 

models training process and result in a model that produces uninteresting data. This 

makes the data unsuitable for object detector training. Figure 8 shows example frames 

from the MOTChallenge with the given annotations. 

 

 Image extracted from a MOTChallenge video with given annotations. The 
annotation data does not include class labels which makes the data unsuitable 

for object detector training. 

2.3 Summary 

There are many prominent object detectors in the field of computer vision as was dis-

cussed in section 2.1. The famous YOLO algorithm is one of them as it is one of the 

fastest and most accurate single-stage detector structures. As detection speed is often 

a crucial element in real-life applications the object detector used in this thesis’ experi-

ments was chosen to be based on the YOLO algorithm. 

There are many publicly available datasets that depict surveillance or adverse weather 

condition data domains but not all of them can be used to train or fine-tune object detec-

tors. The AAU RainSnow and DAWN datasets were chosen to be used for the purposes 

of this theses’ experiments as they offered usable annotations for data that represented 

the selected data domains. The dataset choices are discussed more in depth in             

section 4.1. 
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3. METHODS 

The object detection technologies and performance metrics used in this thesis are pre-

sented in this chapter. Section 3.1 introduces the YOLOv5 object detector and goes 

through the methods used in its structure. Section 3.2 discusses common object detec-

tion performance metrics. 

3.1 YOLOv5 

Released in 2020 YOLOv5 is one of the latest iterations of the YOLO-based object de-

tectors [41]. YOLO detector is a single-stage detector built on the CNN based YOLO 

algorithm. The YOLO algorithm was first introduced in 2016 as YOLOv1 [42]. It was a 

fast detector that performed object detection through a regression problem [43]. The in-

put was divided into regions where preliminary bounding boxes and class categories 

were predicted and the most unlike ones were removed according to thresholds and the 

NMS (non-maximum suppression) algorithm [44]. The NMS algorithm removes overlap-

ping bounding boxes based on a predefined IoU (intersection over union) score. 

The later YOLO versions continued from this basis and introduced new features in every 

iteration. YOLOv2 added a new backbone with the introduction of Darknet-19. It also 

changed the bounding box predictions to use anchor boxes which are initial sizes for 

predicted boxes. YOLOv3 then updated the structure with Darknet-53 backbone and 

modified and increased the number of YOLOv2 anchor boxes to improve small object 

detection. YOLOv4 further improved the performance and accuracy of YOLOv3 by 

changing to CSPDarknet53 (cross stage partial Darknet53) backbone and adding spe-

cialized improvements like Mosaic data enhancement, SPP (spatial pyramid pooling), 

PANet (path aggregation network) and Mish activation function. [43, 44] 

YOLOv5 is a continuation of the previous YOLO version and is structurally quite closely 

related to YOLOv4, but with some new features and changes. YOLOv5 relies on the 

same backbone as YOLOv4: the CSPDarknet53 with SPP but with an added Focus layer 

that reduces memory usage and increases forward and backward propagation [45]. The 

neck of YOLOv5 is also built on the basis of YOLOv4 and uses an adapted version of 

PANet structure with a new FPN (feature pyramid network) that helps with propagation 

of low-level features [46]. As the last part of the network YOLOv5 uses the same YOLO 
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layer head as YOLOv3 and YOLOv4, and as with all earlier versions of YOLO the result-

ing output is finished with the NMS algorithm. The architectural structure of YOLOv5 is 

shown in Figure 9. 

 

 YOLOv5 architecture including CSPDarknet53 backbone, PANet neck 
and YOLO head. Adapted from [47]. 

For training and fine-tuning purposes YOLOv5 uses the same kind of Mosaic data en-

hancement as YOLOv4. The Mosaic data enhancement mixes four images into one by 

random scaling and clipping to enrich the training dataset and to enhance small object 

learning [48]. Sometimes the clipping results in images that do not show all of the base 

images. Examples of Mosaic enhanced training images are shown in Figure 10. Training 

new datasets is further helped with YOLOv5’s adaptive anchor box calculation [49]. The 

adaptive anchor boxes feature is used to calculate suitable bounding box anchors using 

the training dataset allowing the detector to learn different sized objects more                     

effectively [50]. Additionally, the loss function of YOLOv5 is based on GIOU (generalized 

intersection over union), which in training helps to preserve the error distance even if 

predictions and ground truth do not intersect [51]. 
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 YOLOv5’s Mosaic enhanced training images created by mixing randomly 
scaled and clipped base images.  

As premade deployment options YOLOv5 offers multiple pretrained model checkpoints 

that have been trained with the COCO (Common Objects in Context) dataset. There are 

5 different pretrained structures, n, s, m, l and x, that determine the depth of the back-

bone network and 2 resolution choices, 640x640 and 1280x1280, for each of these struc-

tures [52]. A deeper backbone can obtain more features from input images and increase 

accuracy, but it will also make running the network computationally slower. These pre-

trained weights can also be used as a basis for fine-tuning and YOLOv5 provides easy 

interfaces to use them.  

YOLOv5 offers a wide variety of different deployment options. It is based on a PyTorch 

implementation but also provides easy conversions to other formats like TensorFlow, 

ONNX (Open Neural Network Exchange), CoreML, TensorRT and OpenVINO [52]. This 

makes it easy to deploy fine-tuned or pretrained YOLOv5 on almost any platform. The 

shallowest network structures can efficiently be used on mobile devices while the deeper 

options can be deployed on computation servers to provide simultaneous real-time ob-

ject detection for multiple video streams. 

3.2 Performance Metrics 

Many different metrics are used in machine learning to compare the results of various 

methods and algorithms. These metrics are often based on 4 basic values: true positives, 

false negatives, false positives and true negatives [53]. In object detection true positives 

mean detections that correctly localizes and classifies a ground truth object. True nega-

tives, on the other hand, mean areas of an image without objects or detections. False 
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positives mean falsely localized or classified detections while false negatives mean 

ground truth objects that were not detected. Example detections depicting these values 

are shown in Figure 11. 

 

 The upper left image depicts a true positive detection and the upper right 
images a false positive one. The lower left image shows a false negative as the 
car in the image is not detected. The lower right is completely true negative as 

there are no objects or detections. 

These basic values are often used for metrics in object detection, but they are calculated 

using IoU. Object bounding box prediction is treated as a true positive if the predicted 

class label is the same as in ground truth and if the predicted bounding box IoU ratio with 

the ground truth box is higher than a predefined threshold [54]. All bounding boxes that 

do not fill these criteria are treated as false positives. Ground truth bounding boxes that 

are not matched by any predictions are regarded as false negatives. The IoU calculation 

is not used for true negatives as they often are not an interesting result and metrics 

relying on them are seldom used. Figure 12 demonstrates the IoU calculation’s effect on 

true positives, false positives and false negatives with example detection and ground 

truth bounding boxes. In the figure green bounding boxes depict ground truth and red 

bounding boxes depict detections. The figure has 2 images: one on the left and one on 

the right. With a 0.5 IoU threshold the left image’s detection would be counted as a true 

positive and the right image’s detection as a false positive. Additionally, the right image’s 

ground truth object would be counted as false negative as the detection for it was a false 

positive. 
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 Images with red detection and green ground truth bounding boxes and 
their IoU scores. The left image depicts a true positive and the right image de-

picts a false positive and a false negative.  

3.2.1 Precision 

Precision is a metric that shows what percentage of model’s positive predictions were 

correct [55]. It can be calculated with the following formula 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑝
 

where 𝑇𝑝 is the number of true positives and 𝐹𝑝 is the number of false positives [56]. In 

object detection the precision score is good at measuring the accuracy of predictions a 

model is making, but it alone is not enough to make assumptions about the model’s true 

accuracy. False negatives are not accounted for in precision which means that the model 

can miss almost every object in the input images but still have a precision score of 1.0. 

Nevertheless, in cases where the most important factor is minimization of false positives, 

precision can be a very useful metric for evaluating model performance. 

3.2.2 Recall 

Recall is a metric that indicates the percentage of ground truth that a model has correctly 

predicted [57]. It is calculated as follows 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑛
 

where 𝐹𝑛 is the number of false negatives [58]. In object detection recall can be used to 

easily check a model’s ability to find all the interesting objects from an input image. But 

as with precision, recall alone does not give a complete measure of model’s accuracy. 
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The model can achieve a high recall score just by predicting bounding boxes everywhere 

in an image, which as an output does not convey much information. 

3.2.3 Precision-Recall Curve 

The precision-recall curve is a plot that links two metrics: precision on the y-axis and 

recall on the x-axis [59]. The plot can be used to calculate a new metric AUC (area under 

curve) which represents the area left under the precision-recall curve. This new metric is 

a combination of precision and recall and can mostly overcome the view limitations of its 

components. The AUC score considers 𝑇𝑝, 𝐹𝑝 and 𝐹𝑛 which are the meaningful numbers 

for object detection. Therefore, it can be used as a complete metric for a model’s detec-

tion accuracy. However, the AUC score alone does not show the ratio between precision 

and recall which makes the precision-recall curve also important in a model’s accuracy 

analysis. The AUC also does not consider which IoU threshold is used to calculate 𝑇𝑝, 

𝐹𝑝 and 𝐹𝑛. An example precision-recall curve with AUC scores created by YOLOv5 frame-

work is show in Figure 13. 

 

 A precision-recall curve generated by YOLOv5 framework. The numbers 
in the legend show the AUC scores of the curves representing different classes. 
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3.2.4 Mean Average Precision 

The mAP (mean average precision) metric is widely used for accuracy and regression 

performance evaluation in object detection [60]. It is defined as the mean of class specific 

AP (average precision) scores. AP represents the AUC score of an individual class in a 

precision-recall curve. In object detection research mAP is often presented with a        

decimal number added to it in some format like mAP@0.5 [61-64]. The @0.5 notation 

represents the IoU threshold value used to calculate 𝑇𝑝, 𝐹𝑝 and 𝐹𝑛 [65]. The threshold 

value can also be given as a range mAP@.5:.95 which represents the average of mAP 

scores with threshold values from the given range [66]. The AUC scores in Figure 13 

represent AP@0.5 scores for their corresponding classes and all classes score repre-

sents mAP@0.5. 

With the IoU threshold value mAP offers an informatic performance metric for evaluating 

object detector accuracy. The metric might still not be optimal for specific tasks as it does 

not show the exact relation of precision and recall, but generally a higher mAP result with 

the same IoU threshold is better. In some research AP is used to refer to the same metric 

as precision and mAP is used to describe the average of the precision metric over all 

predicted classes [67]. In this thesis AP and mAP are always used to describe the AUC 

scores of a precision-recall curve. 
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4. EXPERIMENTS 

This chapter goes through experimental setup and the results obtained in the experi-

ments. In section 4.1 the datasets are further reviewed and suitable ones are selected 

for the experiments. Section 4.2 explains the parameters of the YOLOv5 object detector 

used in the experiments. Then the algorithmic fine-tuning image selector is proposed in 

section 4.3. Section 4.4 describes the preliminary experiment used to test the experi-

mental setup and datasets while section 4.5 presents the order and contents of the actual 

experiments. Section 4.6 shows the experiment results. The final section 4.7 has a sum-

mary of the results with observations. 

4.1 Datasets 

Surveillance and adverse weather object detection datasets were examined and re-

viewed for use in this thesis’ experiments. The examined datasets were chosen from 

publicly available data for their correspondence with the selected data domain. These 

datasets were introduced in section 2.3. The datasets were then closely reviewed and 

two of them were chosen to be used in the experiments: the AAU RainSnow dataset and 

the DAWN dataset.  

Many of the reviewed datasets had some major flaws that made them unsuitable for fine-

tuning experiments. The Virat dataset was left out because it only offered bounding 

boxes and class labels for some objects in its data, which would not be a good basis for 

fine-tuning. The CADC dataset, on the other hand, had too many objects labelled and 

many of them were not visible in the images. As there was no easy way to remove the 

annotations for objects that were not visible, the dataset was also discarded. The 

MOTChallenge set was also left out as it had many uninteresting objects annotated and 

did not offer class labels that could be used to sort them out. Also, object class labels 

were considered crucial for real-life object detection cases and therefore data without 

object classes could not be accepted. 

A more promising dataset was the AU-DETRAC, which provided well labelled data that 

had surveillance camera view angles. The ignored areas provided by the dataset were 

insufficient and did not take into account the shaking of the cameras which caused some 

unlabelled objects to show up in the images. Even with the flaws the data was still usable 

for fine-tuning but was not chosen for the experiments because of its overall simplicity. 

The scenes in the data had surveillance view angles, but were quite similar in terms of 
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weather conditions and surroundings. Additionally, with the ignored areas most of the 

annotated objects would be in the middle of the image and quite easily recognizable. 

This of course would be very convenient for computer vision based real-life applications 

and probably would not need fine-tuning, which made the data less interesting for this 

research. 

The most suitable datasets were chosen to be used in the experiments. The AAU 

RainSnow dataset was chosen as the main experiment dataset because its data repre-

sented both selected data domains and because it could be regarded as data from an 

actual traffic surveillance application. The dataset contains different weather conditions 

and has a surveillance view angle. It offers good annotations for all road users, which is 

good enough for traffic surveillance applications. The set has some flaws in the data, but 

not too much to prevent its usage. The biggest problem with the data is its size. The 

dataset has enough data for fine-tuning but not for complete retraining, which removes 

one possible comparison from the experiments. Nevertheless, it was seen as the best 

matching public dataset for this research. 

The second dataset chosen for the experiments was the DAWN dataset, which contained 

four different adverse weather condition categories. It had some images with the surveil-

lance view angle mixed with other type of viewpoints. Although the data could not be 

regarded as real-life application data, it was chosen for its wide variety of different 

weather conditions that could be present in computer vision solutions. Studying the 

amount of data needed for adapting to these conditions was seen as an important part 

of this research. The dataset had similar flaws as the other reviewed sets, but again they 

were not too prevalent. The number of images in the set was similar to that of AAU 

RainSnow and would be sufficient for fine-tuning but not enough for complete retraining. 

The data in AAU RainSnow was originally split into images from 7 different cameras. 

This was pruned down to 5 cameras for the experimentation. The annotated images from 

the cameras were from 2 to 4 different video clips. The images of one clip per camera 

were chosen as test sets for the corresponding camera while the others were kept as 

training images. The images were quickly scanned and the ones that had erroneous 

annotations were removed. The cameras were named with abbreviations of their name 

in the dataset. The used abbreviations for the cameras were: AAU-Had, AAU-Has, AAU-

Hjo, AAU-Ost and AAU-Rin. Figure 14 shows example images from these cameras. 
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 Example images from AAU RainSnow cameras selected for experiments. 
The used abbreviation names for the cameras are AAU-Had, AAU-Has, AAU-Hjo, 

AAU-Ost and AAU-Rin. 

The Dawn dataset was also divided into training and testing images. It did not have spe-

cific cameras or video clips but was instead divided by 4 weather condition categories: 

fog, rain, snow and sand. All these categories held 200 to 300 images, which were evenly 

split into test and training sets for every category. Table 1 summarizes the numerical 

features of the 2 selected datasets. 

 AAU RainSnow and DAWN datasets’ numerical features. 

 AAU RainSnow DAWN 

Number of  
cameras/categories 

7 4 

Number of images in total 2200 1027 

Number of images per  
camera/category 

100-500 200-323 

Number of annotated  
classes 

5 6 

Average number of  
annotated instances  
per image 

Around 5 Around 4 

 

4.2 Object Detector 

From the group of YOLO based detectors the YOLOv5 object detector was selected to 

be used in the experiments because of its speed and accuracy combined with a good 

framework that allows easy usage and versatile deployment options. The selected 

YOLOv5 network structure was the midway YOLOv5m, as it has adequate depth for 

feature extraction but is still quite fast to run. The network input resolution was chosen 

to be 640x640 because images in AAU RainSnow and DAWN were mostly in low reso-

lution. All fine-tuning experiments conducted with the detector used a batch size of 28 

and were run for 300 epochs. 
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4.3 Selection Algorithm for Fine-tuning Images 

Fine-tuning experiments were conducted with full training sets and with various number 

of selected fine-tuning images. The experiments with fewer images than full training sets 

were conducted with both randomly selected images and images selected algorithmically 

using the pretrained detection model. The idea in the algorithmic selection was to auto-

matically select good images for fine-tuning training. In applications where object detec-

tion is done on camera streams this kind of algorithm could be beneficial as it could 

automate the process of selecting images for annotation and fine-tuning.  

The selection algorithm used the pretrained YOLOv5 object detector to evaluate the im-

ages. It selected images based on the number of detected objects and the confidence 

scores of these detections. The algorithm only uses detections with confidence over 0.15 

in the selection. Detections with a confidence score of less than 0.15 were discarded as 

they were too unreliable to be used in the image selection.  

Half of the selected images had the largest number of detected object instances. The 

number of detected objects was used as the first parameter to ensure that the resulting 

image batch would have many example instances for feature learning. Large number of 

example instances would also reduce the risk of overfitting. The second half of the se-

lected images had the lowest average detection confidence. Low detection confidence 

was a good parameter because low confidence detections show that the pretrained 

model is not performing well and would require further learning. 

The selection algorithm did not take into account the differences in class instance counts 

which could lead to underrepresentation of some classes in the selected images. Also 

modifying the selection parameters and the confidence threshold would affect the selec-

tion results. This could affect the results of fine-tuning with the selected images but im-

proving and further testing the selection algorithm’s parameters and confidence thresh-

old was confined outside of this thesis’ scope. A Python class for running this algorithm 

is presented in appendix A and is also available in Github1.  

4.4 Preliminary Experiment 

Before the actual experimentation the datasets and the setup for the experiments were 

tested with a preliminary experiment. The preliminary experiment was conducted by run-

ning individual fine-tuning runs for each of AAU RainSnow’s cameras using their respec-

tive training sets. Afterwards the results were generated with validation runs of the test 

 
 
1 https://github.com/Romeroxx/Object_Detection_Fine-tuning 
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sets using the pretrained default model and the newly fine-tuned one. The results 

showed that the AAU RainSnow dataset’s person and bicycle classes were difficult to 

detect. The pretrained model scores were very low and in some cameras the fine-tuning 

had made improvements, but in others it had decreased the accuracy. The results of the 

preliminary experiment is presented in appendix B. 

The weak performance can mostly be explained with the small size of these objects in 

the dataset’s images and the low amount of object instances. Small objects are harder 

to detect due to their low resolution and noisiness [68]. The low number of object in-

stances in training data makes fine-tuning harder as there are fewer examples to learn 

from. This also means that more examples are needed in training and fine-tuning to pro-

duce effective results. Additionally, people riding bicycles in the images were only la-

belled as bicycles and not as a bicycle and a person, unlike in the COCO dataset which 

is the basis for the pretrained model. Examples of person and bicycle objects in AAU 

RainSnow dataset are shown in Figure 15. 

 

 Example images from AAU RainSnow showing the size of person and bi-
cycle class objects. 

The person and bicycle object classes were decided to be left out of further experiments 

because of their combination of small size and low object instance count. Using the bi-

cycle and person classes in the experiments would require data with more object in-

stances. The truck and bus classes also had low object instance count in the data, but 

they were decided to be left in as they were larger in size and would affect the learning 

of the car class. The DAWN dataset was also checked, and it also had a low object 

instance count for these classes. For the DAWN dataset bicycles and motorcycles were 

removed because of their low instance count, but the person class was retained because 

in DAWN the person object sizes were larger than in AAU RainSnow. 

It was also noted during the preliminary experiment that the AAU RainSnow data had 

several annotations inside the masked areas or annotations for objects that were barely 

visible. These annotations were mostly on the edges of the images where the masks 

start or where cars were leaving the image area. These annotations were programmati-

cally removed from the data to reduce the number of annotations inside the masked 
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areas. Also, the number of marginally visible cars that were about to leave or enter the 

image area was thus reduced because they were seen as uninteresting. The number of 

images, remaining classes and their number of object instances for the 5 AAU RainSnow 

and the 4 DAWN training sets after the modifications done in the preliminary experiment 

are summarized in Table 2.  

 The number of images and the number of class instances in AAU RainSnow and 
DAWN training sets after modification. 

 Number of  
images 

Number of 
cars 

Number of 
trucks 

Number of 
buses 

Number of 
 persons 

AAU-Had 89 453 25 0  

AAU-Has 200 823 82 4  

AAU-Hjo 296 1565 195 102  

AAU-Ost 297 1199 107 20  

AAU-Rin 199 385 37 5  

DAWN fog 150 873 97 39 63 

DAWN Rain 100 670 109 8 13 

DAWN sand 162 936 127 33 84 

DAWN snow 102 809 56 12 85 

 

4.5 Conducted Experiments 

Fine-tuning experiments were conducted on the selected datasets AAU RainSnow and 

DAWN with the YOLOv5 object detector. The purpose of the experimentation was to find 

out how many images are needed for good fine-tuning results with the selected data. 

Additionally, the proposed data selection algorithm’s performance was to be tested. Re-

sults from all the experiment runs are presented in categorized tables in appendix B. The 

results are also more thoroughly analysed in section 4.6.  

The experimentation was conducted as 6 separate experiments. Experiment 1 used 

each of AAU RainSnow’s cameras for individual fine-tuning runs. Results were obtained 

with validation runs on the cameras’ test sets. Experiment 2 continued with fine-tuning 

on the individual cameras with varying number of training images. Fine-tuning runs were 

made for each camera with 10, 30, 50, 75 and 100 images selected using the selection 

algorithm and random selection. Experiment 3 used images from 1, 2, 3 or 4 randomly 

selected AAU RainSnow cameras for fine-tuning while results were gained by validation 

with a camera that was not in the training set.  The last experiment with the AAU 

RainSnow dataset was Experiment 4. It used 5, 10, 15, 20, and 25 images from every 

AAU RainSnow camera for fine-tuning with random and algorithmic selection. Validation 

for these runs was done with all test sets.  
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After experimenting with AAU RainSnow, the DAWN dataset was used for similar exper-

iments. Experiment 5 used DAWN to fine-tune for individual weather condition categories 

with 10, 30, 50, 75 and 100 randomly and algorithmically selected images. In Experiment 

6 fine-tuning was also run for all weather categories with 5, 10, 15, 20 and 25 images 

from every category. The resulting models of these runs were tested with the individual 

categories and with all the categories respectively. 

4.6 Results 

The results from all 6 Experiments can be found in appendix B under individual experi-

ment headings. The main results were brought up in summarized format in the following 

sections. In the sections the experiments are gone through in order. The main findings 

are analysed in the summary chapter. 

4.6.1 Experiment 1 

The first experiment with the AAU RainSnow data showed the possible accuracy gains 

of fine-tune training. The results shown in Table 3 present the AP scores for the car class 

when validation was run with the pretrained model and the fine-tuned one. The results 

show that fine-tuning with the camera’s own image data always improves the accuracy 

of the predictions.  

 The first experiment’s number of fine-tuning images and AP scores for the car 
class with the pretrained and the fine-tuned model. 

 AAU-Had AAU-Has AAU-Hjo AAU-Ost AAU-Rin Average 

Number of  
fine-tuning 
images 

89 200 296 297 199 216 

Fine-tuned 
car AP 

0.895 0.923 0.924 0.902 0.662 0.861 

Pretrained 
car AP 

0.798 0.827 0.549 0.703 0.327 0.641 

 

The extent of the improvement seems to vary between the cameras. Some cameras like 

AAU-Hjo get a large improvement while others like AAU-Had and AAU-Has get a smaller 

improvement though this difference can probably be attributed to the differences in data. 

The images of AAU-Had and AAU-Has feature daytime while AAU-Hjo has mostly night-

time scenery in its images. The pretrained model is trained on mostly daytime images so 

it performs better on the AAU-Had and AAU-Has cameras. The fact that all the cameras 

except AAU-Rin have around 0.9 AP after fine-tuning shows that the model can learn 

new features given the data for that, but it also shows the possible learning limit of the 
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detector. Conclusions about the learning limit of the detector cannot be made with this 

amount of data as only 100 to 300 images were used for training per camera. The AAU-

Rin camera’s low scores are probably due to its angle and the glare caused by the wet 

road surface as is shown in Figure 16. 

 

 Images from AAU-Rin camera showing the effects of glare on detection. 
Images from left show ground truth, pretrained and fine-tuned detections. 

The improvement on bus and truck class AP scores is quite different. On some cameras, 

such as AAU-Hjo, there is major improvement in the scores but other cameras like AAU-

Had have a worse score than the pretrained model. These results can be explained with 

the class instance counts of the training and test sets. Overall, the AAU RainSnow da-

taset has a small and varying number of truck and bus class instances while it has about 

2 or more car instances per image. Table 4 shows class instance counts and fine-tuned 

AP scores for these classes on AAU-Had and AAU-Hjo cameras. The other cameras 

also had similar results. 

 The first experiment’s fine-tuned AP scores and class instance counts for bus 
and truck classes on AAU-Had and AAU-Hjo cameras. 

 AAU-Had bus AAU-Had truck AAU-Hjo bus AAU-Hjo truck 

Class AP 0.082 0.117 0.743 0.439 

Training set  
instances 

0 25 102 195 

Test set  
instances 

50 49 13 4 

 

From the class instance counts it is easy to see the reason for the fine-tuned model’s 

bad performance with AAU-Had as there are no buses and only a few trucks in AAU-

Had’s training set. AAU-Hjo on the other hand has a lot more class instances in its train-

ing set and is able to produce much better results. Although AAU-Hjo has more training 

instances for the truck class it produces worse AP score than the bus class. This is due 

to the small instance count of the test set as the truck class has only 4 test instances 

which might not represent the class properly. Another contributing factor is the variety of 
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the truck and bus classes. Although these objects are often large in size, their appear-

ance varies and a model would need examples of many variants to effectively learn their 

features. 

4.6.2 Experiment 2 

Fine-tuning with varying number of images in Experiment 2 showed that boosting the 

performance of the model does not require all the training images. The runs with varying 

number of images were repeated 5 times for AAU-Has and AAU-Hjo cameras to produce 

statistically more relevant results. The results of these runs are presented in Figure 17 

and Figure 18 where the charts’ bars are showing the average car class AP score over 

the 5 separate runs. The error bars also show the minimum and maximum AP scores 

produced in the experiment runs. 

 

 

 Experiment 2 average car class AP scores over 5 fine-tuning runs with 
varying number of training images from the AAU-Has camera training set. 
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 Experiment 2 average car class AP scores over 5 fine-tuning runs with 
varying number of training images from the AAU-Hjo camera training set. 

 

Both figures show that fine-tuning with 30 images is enough to produce a better AP score 

than what the pretrained model could provide. It can also be seen that the accuracy 

improves more significantly from 10 to 50 images than from 50 to 100. The AAU-Has 

model achieves its best score at 75 images and seems to saturate after that while AAU-

Hjo is still further improved by fine-tuning with more than 100 images as can be seen 

from comparing the fine-tuning run with 100 images to the results for AAU-Hjo in Exper-

iment 1. The AP score improvements could be seen on the actual detection level, as is 

shown in Figure 19, which presents an image from AAU-Has and AAU-Hjo test sets with 

ground truth, pretrained and fine-tuned detections. The AAU-Has camera model used 

for the Figure 19 was fine-tuned with 50 images and the AAU-Hjo camera model with 75. 
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 Images from AAU RainSnow AAU-Has and AAU-Hjo test sets with 
ground truth, pretrained and fine-tuned detections. The AAU-Has model fine-tun-

ing used 50 images while the AAU-Hjo model used 75. 

In AAU-Has the differences between runs with randomly and algorithmically selected 

images seem to be very small. Both selection practices seem to produce very even re-

sults which suggests that all images in AAU-Has training set are of good quality and 

equally effective as fine-tuning images. AAU-Hjo on the other hand produces better re-

sults with randomly selected data when the fine-tuning image count is low. This is prob-

ably due to the fact that the AAU-Hjo camera has mostly night-time images, but the se-

lection algorithm uses the pretrained model which makes better detections from daytime 

images. At a low fine-tuning image count this could lead the selection algorithm to prefer 

the few daytime images preventing the model from learning night-time features properly. 

This hypothesis is affirmed by the selection algorithm’s good performance with higher 

image quantities.  

The other cameras produced similar results as AAU-Has and AAU-Hjo except for AAU-

Rin which got a larger improvement by having more than 100 training images. Also, the 

selection algorithm seemed to perform better with low image quantities than with higher 

ones. This was again contributed to the glare effect which completely hides some of the 

objects in AAU-Rin’s images. The selection algorithm probably does not detect anything 

in the glare and prioritises images without it, which helps to a certain extent but has its 

limit. If images with the glare effect are not selected for the training set, then the model 

cannot learn the objects distorted by it.  
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4.6.3 Experiment 3 

The Experiment 3 tested the generalization ability of the fine-tuned models inside the 

AAU RainSnow dataset. The results of Experiment 3 showed that the similarity of the 

training images and test images had a larger influence on the results than having more 

training cameras. If the first camera used as a training set was similar to the test set, 

then the resulting scores would be almost as high as with 4 training cameras and a larger 

training set. Still, having more cameras usually resulted in better results as is seen from 

Table 5 and Table 6, which show results for AAU-Had and AAU-Ost cameras. The train-

ing set cameras were selected randomly and the results of the random selections are 

shown in the tables. 

 Experiment 3 fine-tuned car class AP scores for AAU-Had camera. 

Training  
sets 

AAU-Has  AAU-Has, 
AAU-Rin  

AAU-Has, AAU-
Rin, AAU-Hjo  

AAU-Has, AAU-Rin, 
AAU-Hjo, AAU-Ost  

AAU-Had 
car AP 

0.875 0.875 0.907 0.904 

 Experiment 3 fine-tuned car class AP scores for AAU-Ost camera. 

Training 
sets 

AAU-Rin AAU-Had, 
AAU-Hjo 

AAU-Had, AAU-
Hjo, AAU-Rin 

AAU-Had, AAU-Hjo, 
AAU-Rin, AAU-Has 

AAU-Ost 
car AP 

0.495 0.783 0.795 0.836 

 

The results for AAU-Had show that fine-tuning with just 1 camera resulted in the same 

level of accuracy as training with 4 cameras. On the other hand, testing AAU-Ost with a 

model fine-tuned with 4 cameras resulted in a much higher score than fine-tuning with 1 

camera. Both test sets also show slightly stagnant states, where adding training images 

from a new camera has little effect on the results. This shows that the similarity of the 

fine-tuning images and the test images is more important than the quantity of the training 

images. 

4.6.4 Experiment 4 

Experiment 4 tested fine-tuning for all 5 AAU RainSnow cameras (AAU-Had, AAU-Has, 

AAU-Hjo, AAU-Ost and AAU-Rin) at the same time. The test was repeated 5 times as in 

Experiment 2 to further validate the results. Figure 20 shows the resulting car class AP 

scores over the 5 runs with error bars showing minimum and maximum results.  
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 Experiment 4 AP scores for the car class when fine-tuned with varying 
number of images from all 5 of the AAU RainSnow cameras. The scores are an 

average over 5 runs where the error bars show the minimum and maximum. 

The results indicate that fine-tuning with 5 images from every camera is enough to pro-

duce a model that performs better overall than the pretrained one. The scores are im-

proved by adding more images but seem to somewhat saturate after using more than 75 

images in total for fine-tuning. The AP score at the saturation point is very close to the 

average of the individual camera scores obtained in Experiment 1. Figure 21 shows the 

effects of fine-tuning with 15 images from all 5 cameras with the AAU-Had test set. 

 

 An image from AAU RainSnow Had camera showing ground truth on the 
left and pretrained detections in the middle. The rightmost image’s detections are 

from a model that was fine-tuned with 15 images from every AAU RainSnow 
camera. 

The results show that randomly and algorithmically selected fine-tuning images produce 

similar results. The selection algorithm seems to get slightly better results, but this is 

mostly just a marginal difference. The biggest difference is in the run with 100 fine-tuning 

images where one of the 5 runs with random images has resulted in a noticeably lower 
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score. This shift could be caused to the random selection of the fine-tuning images, but 

in that case, there should be more deviation in the other tests as well. For that reason, it 

is more likely that the stochasticity of the DNN training process caused it to end up with 

less optimal weights on that single run. Nevertheless, the minimum and maximum scores 

for the runs would suggest that the algorithmic selection produces less deviation in the 

results, although the differences are not major. An exception to this is the run with 25 

images where both selection criteria have a large deviation in the results. The deviation 

in those runs is caused by the low number of training images. With a small training set it 

is more likely that the model does not learn all the important features. A small learning 

set also increases the possibility of overfitting. 

4.6.5 Experiment 5 

The DAWN dataset was tested in Experiment 5 with individual weather category runs. 

The results on these categories were similar to results in Experiment 1. Fine-tuning with 

30 images in all categories was enough to produce a better score than what the pre-

trained model could achieve. Almost top-level accuracy was achieved with 50 or 75 im-

ages. Figure 22 shows the average AP scores for 5 runs on every image count with the 

rain weather category. One of the runs with 75 fine-tuning images produced almost 0 AP 

scores with all classes. As no other run behaved similarly this result was dismissed as a 

by-product of stochasticity in the DNN training process. 

 

 Average car class AP scores over 5 runs for DAWN dataset’s rain cate-
gory in Experiment 5. The error bars show minimum and maximum from the 5 

runs. 
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Results in Figure 22 show that randomly and algorithmically selected images produce 

scores of the same level. Both have some deviation in the results with lower number of 

images but get more stable with larger training image batches. The runs with fog, snow 

and sand weather categories produced slightly better results with the selection algorithm, 

but again these differences were mostly marginal. Figure 23 shows the detection accu-

racy improvements produced by the 50-image fine-tuning with the rain category. 

 

 Ground truth, pretrained and 50-image fine-tuned detections on DAWN 
dataset’s rain category.  

Similar to the AAU RainSnow the DAWN dataset also has a varying number of object 

instances in other classes than the car class which has around 4 instances per image. 

The AP scores for the truck class were similar to the scores in Experiment 1. Having 

more truck instances in the training set improved the resulting accuracy and with suffi-

cient number of instances the resulting model could surpass the pretrained model. The 

AP scores for the bus class were similar to the truck class as the scores increased with 

more training samples but they would not surpass the pretrained model in every weather 

category. Additionally, none of the fine-tuned models were able to surpass the pretrained 

model’s accuracy with the person class. This shows that more training instances are 

needed when fine-tuning for smaller sized classes. Some categories like rain had an 

unexpectedly good score for the person class considering the number of training in-

stances which is mostly due to highly optimized pretrained weights. Table 7 shows pre-

trained scores and fine-tuned score averages over 5 runs for person, bus and truck clas-

ses in the rain category.  

 Fine-tuned and pretrained person, bus and truck class AP scores for the DAWN 
dataset’s rain category. Fine-tuned scores are averages over 5 runs. 

 Person Bus Truck 

Fine-tuned AP 0.612 0.373 0.680 

Pretrained AP 0.735 0.221 0.457 

Instance count 
in training set 

13 8 109 
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4.6.6 Experiment 6 

All of DAWN dataset’s categories (fog, rain, sand and snow) were tested together in 

Experiment 6. For this final experiment the runs were again repeated 5 times for statisti-

cal relevance. The resulting scores are compiled into Figure 24 which shows the average 

car class AP scores over the 5 runs with minimums and maximums.  

 

 DAWN all categories fine-tuning results with varying number of training 
images and the pretrained result from Experiment 6 featuring AP scores for the 
car class. The scores are an average over 5 runs where the error bars show the 

minimum and maximum. 

The scores are similar to Experiment 4, but the results are not identical. The fine-tuned 

results achieve a higher score than the pretrained one with 40 images in total while in 

Experiment 4 25 images were enough. The accuracy gain seems to stop after 60 images 

which is in line with earlier results, but the improvement compared to the pretrained 

model is lower than with AAU RainSnow dataset. This difference is mostly caused by 

differences in the data as the pretrained model had a lot of errors with some cameras in 

AAU RainSnow, but performed quite well with the DAWN data. The selection algorithm 

produced slightly better results than random selection and had a bit less deviation in its 

results with higher number of training images, which is similar to Experiment 4. Figure 

25 shows example detections from the pretrained model and from the model fine-tuned 

with 15 images from all categories. 
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 Ground truth, pretrained and fine-tuned detections on an image from 
DAWN dataset’s snow category. The fine-tuning was done with 15 images from 

every DAWN weather category. 

4.7 Summary 

The conducted experiments show that fine-tuning can be used to improve the detection 

accuracy of the YOLOv5 detector. This result was obtained with two dataset both of 

which produced similar results. In the experiments it was noticed that there is a limit to 

how much the detectors accuracy can be improved by fine-tuning. This limit was rea-

soned to be caused by limitations in the detector architecture and the challenges in the 

data. With real data there are always cases where objects are too obstructed or other-

wise too ambiguous for detection. In most of the experiments the limit was already 

reached before using all the data in fine-tune training. There is no perfect object detector, 

so a limit has to exist for each detector. Additionally, both used datasets had errors in 

the ground truth which also lowers the maximum achievable score.  

The results show that 50 or 75 fine-tuning images from one camera or weather category 

can be enough to reach the detector’s accuracy limit. The same accuracy limit can be 

reached with around 15 images per camera or weather category when fine-tuning the 

detector for multiple cameras or categories. Adding more images in both cases can fur-

ther improve the accuracy, but the gains are clearly smaller. Also, having less than 30 

images for fine-tuning in total is shown to result in large deviation between models trained 

with the same data. Having too few fine-tuning images can result in a model that is worse 

than the original pretrained model. These results would mean that the optimal number of 

fine-tuning images is around 70 for 1 camera or 15 per camera for several cameras. 

However, the experiments conducted in this thesis only covered fine-tuning with a small 

number of images and complete retraining with thousands of images was not experi-

mented.  

The results also showed that successful fine-tuning with a small number of images re-

quires sufficient number of object instances in the training data. When fine-tuning with a 
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small data batch, such as 50 images, the detection accuracy for classes with a low num-

ber of instances in training data was significantly lower compared to classes with high 

number of instances. This is caused by the model overlearning the features of the scarce 

example instances resulting in a lowered score with the testing data. It was seen that for 

car sized objects an average of 2 or more instances per image was enough to get good 

results. For larger objects like trucks even less could be enough, but more instances 

always produced a better overall score. However, the same number of instances was 

not sufficient for small objects like persons which shows that learning smaller sized ob-

jects requires more example class instances.  

Automatic fine-tuning image selection was tested in the experiments. It was shown that 

the proposed selection algorithm with the pretrained model could slightly improve fine-

tuning results when compared to random image selection. This improvement was not 

present in all test cases but Experiments 4 and 6 showed a slight improvement in accu-

racy with the selection algorithm. Additionally, with larger number of fine-tuning images 

the selection algorithm seemed to reduce the deviation of the results when compared to 

random selection. These results are not enough to statistically prove that the algorithmic 

selection produces better results than random image selection. Nevertheless, it is shown 

that the proposed selection method does not lower the results, so using it would not 

impair fine-tuning.  

The algorithmic selection could also be used to collect data from real life camera 

streams. The selection algorithm could be set do selection on a camera’s live video 

stream to automatically collect fine-tuning images. A benefit of the algorithmic selection 

is that it could be modified to suit the needs of the specific case. The algorithm could be 

modified to only collect images with some rare class or to focus on small or big detec-

tions. However, the downside of algorithmic selection is that it does not work as well on 

data that is unevenly challenging to the pretrained model. The algorithm could select 

mostly simple images and discard many images that would be beneficial for learning, as 

was seen in Experiment 2 with the AAU-Hjo camera. Though this problem can be allevi-

ated by modifying the algorithm to prioritise low confidence images or by changing to a 

different detector. 
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5. CONCLUSIONS 

This thesis studied the number of images that are needed to produce improved fine-

tuning results in object detection. The research was motivated by the need for precise 

object detectors in various real-life applications where pretrained models are not good 

enough. The goal was to find out an optimal number of fine-tuning images to use, as 

labelling images can be time-consuming and costly if crowdsourcing is not possible. To 

reach this goal, fine-tuning experiments were conducted on publicly available data using 

the YOLOv5 object detector. Data was chosen to represent surveillance camera view 

angles or adverse conditions, both of which could be present in a real scenario. In the 

experiments fine-tuning image constraints were also surveyed and an algorithmic image 

selector was proposed to further facilitate fine-tuning.   

For the experiments, publicly available datasets were examined and reviewed. Two of 

the reviewed sets were used in the experimentation: traffic surveillance dataset AAU 

RainSnow and various weather conditions dataset DAWN. The experiments on the da-

tasets tested overall fine-tuning benefits on single traffic cameras and weather catego-

ries with different image quantities. Also, experiments were made to fine-tune a model 

for several cameras or weather categories. The results showed that there is a limit on 

how much fine-tuning can improve the accuracy and 50 to 75 images were enough to 

produce results that are close to this limit for a single camera or category. Adding more 

images would only marginally improve the results and having less than 30 images would 

result in overlearning and worse accuracy than with the pretrained model. Similar results 

were obtained by fine-tuning with 15 images per camera or weather category when using 

multiple sources. 

The experimental results also showed that to produce good results with only 75 images, 

the data needs to contain a sufficient number of object instances. Good results were 

achieved with car-sized objects when there were 2 or more instances on average. Larger 

objects could be learned with fewer instances but having more would improve the accu-

racy. It was also noted that smaller objects require notably more example instances than 

larger objects. 

Algorithmic fine-tuning image selection was also tested. The proposed selector used the 

pretrained model to make predictions and selected images with high object count or low 

average confidence. This algorithm was tested against random selection and the exper-
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iments showed that the algorithmic selection can improve the results slightly and de-

crease deviation between models fine-tuned with the same dataset. However, the im-

provement was mostly marginal and was not the case in all experiments, as some con-

ditions in the data impaired the selector’s performance. Overall, the selector produced 

results that were at least as good as with random selection though, and so can be helpful 

in gathering fine-tuning images from a real camera stream, in which it is hard to say when 

random selection should be done. 

From the experimental results it was concluded that fine-tuning a pretrained object de-

tector with a small number of images is a viable option in scenarios where improved 

accuracy is required, but data sensitivity prevents crowdsourcing. The needed number 

of images for improved results is low enough to be carried out as self-annotation. This 

need is further reduced if there are multiple similar image sources, and a single model 

can be fine-tuned with a small number of images from all of them. The self-annotation 

process can be expedited with algorithmic image selection which can lower the time 

spent on selecting good images for annotation. 

All of the results in this thesis’ experimentation point to a similar number of required fine-

tuning images for cost optimal accuracy improvement. This makes the result credible, 

but the experimentation was done with only two datasets and one object detector. Also 

because of public data limitations the experiments could provide reliable results only on 

the car class as other classes were underrepresented in the chosen datasets. To make 

the results statistically more relevant, further research with different datasets and other 

object classes is required.  

Another interesting future research topic is to find out the how many images is required 

to learn a new classes with fine-tuning. New classes that are similar to the ones known 

by the pretrained model could be learned through fine-tuning. Information on require-

ments for learning a new class could be very useful, as real applications often need 

detections from classes other than pretrained ones. Future work could also include fur-

ther testing with the image selection algorithm. Experiments conducted in this thesis only 

used one type of configuration for the algorithm and already found out that it could be 

beneficial. Additional testing with different configuration and focus points could yield bet-

ter results and so could further improve the cost efficiency of fine-tuning with self-anno-

tated data. 
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APPENDIX A: SELECTION ALGORITHM PYTHON 
CLASS 

import torch 
class Selector: 
 
    def __init__(self, selected_labels, selection_size,  
                 label_multipliers=[]): 
        """ 
        PARAMS: 
            selected_labels: List of COCO label strings representing 
                             the object classes that will be counted 
                             for the selection. 
            selection_size: Number of images to select 
            label_multipliers: List of multipliers for object classes 
        """ 
 
        # Initialize YOLOv5 detection model 
        self.model = torch.hub.load('ultralytics/yolov5', 'yolov5m') 
        self.model.conf = 0.15 
        self.model.iou = 0.45 
 
        self.selected_labels = selected_labels 
        self.reset(selection_size) 
     
 
    def reset(self, selection_size, label_multipliers=[]): 
        """ 
        PARAMS: 
            selection_size: Number of images to select 
            label_multipliers: List of multipliers for rare classes 
        """ 
 
        count_selection_size = int(selection_size/2) 
        if selection_size % 2: 
            count_selection_size += 1 
 
        # Reset lists for image infromation saving 
        self.selected_image_counts = [0] * count_selection_size 
        self.count_image_scores = [2.0] * count_selection_size 
        self.count_selected_images = [None] * count_selection_size 
        self.lowest_count = 0 
        self.lowest_count_index = 0 
 
        self.selected_image_scores = [2.0] * int(selection_size/2) 
        self.score_selected_images = [None] * int(selection_size/2) 
        self.highest_score = 2.0 
        self.highest_score_index = 0 
 
        # Generate dummy label multipliers if not given 
        if not label_multipliers: 
            label_multipliers = [1] * len(self.selected_labels) 
         
        self.multipliers = {} 
        for i, label in enumerate(self.selected_labels): 
            self.multipliers[label] = label_multipliers[i] 
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    def get_selected(self): 
        """ 
            RETURNS: 
                List of selected image identifiers 
        """ 
        return list(self.count_selected_images +  
                    self.score_selected_images)[:] 
 
    def do_selection(self, image, image_name): 
        """ 
            This method is used to do selection on images. The method  
            saves selected image identifiers to class members. The  
            selected images can be queried with get_selected() method.  
            The reset() method canbe used to restart the selection  
            done by this method. 
 
            PARAMS: 
                image: Next image to process as numpy array in RBG format 
                image_name: Image identifier as string 
        """ 
        # Do inference with YOLOv5 
        results = self.model([image], size=640) 
 
        total_count = 0 
        average_score = 0 
 
        names = results.names 
        # Loop through detections and calculate count and score 
        for i in range(results.n): 
            for j in range(len(results.xyxy[i])): 
 
                label = names[int(results.xyxy[i][j][-1])] 
                score = results.xyxy[i][j][-2].item() 
 
                if label in self.selected_labels: 
                    total_count += 1 * self.multipliers[label] 
                    average_score += score 
 
        # Calculate average score 
        if total_count > 0: 
            average_score /= total_count 
        else: 
            average_score = 1.0 
 
        if total_count > self.lowest_count: 
            # Copy the score and name of the now replaced image 
            replaced_image_name =  

self.count_selected_images[self.lowest_count_index] 
            replaced_image_score = 

self.count_image_scores[self.lowest_count_index] 
 
            # Save the new images information 
            self.selected_image_counts[self.lowest_count_index] = total_count 
            self.count_selected_images[self.lowest_count_index] = image_name 
            self.count_image_scores[self.lowest_count_index] = average_score 
 
            # Get new lowest count and list index 
            self.lowest_count_index =  

self.count_selected.index(min(self.count_selected)) 
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            self.lowest_count = self.count_selected[self.lowest_count_index] 
 
            # Set the replaced image's score and name for score  
            # selection check 
            average_score = replaced_image_score 
            image_name = replaced_image_name 
 
        if average_score < self.highest_score: 
            # Save the new images information 
            self.selected_image_scores[self.highest_score_index] =  

average_score 
            self.score_selected_images[self.highest_score_index] = image_name 
 
            # Get new highest score and list index 
            self.highest_score_index =  

self.selected_image_scores.index(max(self.selected_image_scores)) 
            self.highest_score =  

self.selected_image_scores[self.highest_score_index] 
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APPENDIX B: EXPERIMENTATION RESULTS 

Preliminary Experiment 
 

Person AP Bicycle AP Car AP Bus AP Truck AP 

Had fine-tuned 0.024 0.347 0.878 0.047 0.172 

Had pretrained 0.018 0.096 0.782 0.756 0.273 

Has fine-tuned 0.137 0.440 0.911 0.033 0.738 

Has pretrained 0.054 0.091 0.816 0.262 0.691 

Hjo fine-tuned 0.203 0.077 0.889 0.841 0.427 

Hjo pretrained 0.314 0.000 0.492 0.127 0.081 

Ost fine-tuned 0.399 0.543 0.814 0.391 0.062 

Ost pretrained 0.001 0.160 0.510 0.570 0.015 

Rin fine-tuned 0.102 0.002 0.534 0.132 
 

Rin pretrained 0.343 0.000 0.282 0.097 
 

Experiment 1 Second Run with Modified Data 
 

Car AP Bus AP Truck AP 

Had fine-tuned 0.895 0.082 0.117 

Had pretrained 0.798 0.757 0.279 

Has fine-tuned 0.923 0.084 0.751 

Has pretrained 0.827 0.262 0.691 

Hjo fine-tuned 0.924 0.743 0.439 

Hjo pretrained 0.549 0.127 0.100 

Ost fine-tuned 0.902 0.470 0.081 

Ost pretrained 0.703 0.570 0.015 

Rin fine-tuned 0.662 0.102 
 

Rin pretrained 0.327 0.097 
 

Experiment 1 Rerun with Fewer Images 

AAU RainSnow, Has camera average results from 5 runs. 

Random Car AP Bus AP Truck AP Selected Car AP Bus AP Truck AP 

10 0.743 0.008 0.146 
 

0.723 0.013 0.193 

30 0.869 0.017 0.624 
 

0.874 0.047 0.656 

50 0.900 0.097 0.611 
 

0.903 0.047 0.718 

75 0.918 0.046 0.720 
 

0.917 0.078 0.765 

100 0.928 0.074 0.805 
 

0.925 0.215 0.756 
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AAU RainSnow, Hjo camera average results from 5 runs. 

Random Car AP Bus AP Truck AP Selected Car AP Bus AP Truck AP 

10 0.614 0.029 0.009 
 

0.279 0.001 0.010 

30 0.824 0.025 0.072 
 

0.776 0.293 0.029 

50 0.853 0.585 0.028 
 

0.823 0.307 0.019 

75 0.867 0.720 0.130 
 

0.858 0.626 0.094 

100 0.886 0.702 0.132 
 

0.890 0.702 0.068 

AAU RainSnow, Had camera results. 

Random Car AP Bus AP Truck AP Selected Car AP Bus AP Truck AP 

10 0.629 0.039 0.019 
 

0.706 0.038 0.029 

30 0.791 0.038 0.056 
 

0.849 0.187 0.109 

50 0.866 0.277 0.198 
 

0.872 0.185 0.073 

75 0.870 0.198 0.135  
 

0.903 0.064 0.125 

100 0.895 0.056 0.064 
    

AAU RainSnow, Ost camera results. 

Random Car AP Bus AP Truck AP Selected Car AP Bus AP Truck AP 

10 0.690 0.157 0.027 
 

0.654 0.256 0.023 

30 0.810 0.176 0.043 
 

0.847 0.450 0.057 

50 0.896 0.838 0.082 
 

0.909 0.621 0.060 

75 0.920 0.625 0.053 
 

0.892 0.614 0.067 

100 0.874 0.730 0.129 
    

AAU RainSnow, Rin camera results. 

Random Car AP Bus AP Selected Car AP Bus AP 

10 0.041 0.000 
 

0.170 0 

30 0.390 0.095 
 

0.501 0.025 

50 0.473 0.096 
 

0.503 0.070 

75 0.543 0.013 
 

0.479 0.096  

100 0.551 0.054 
   

Experiment 2 

AAU RainSnow, car AP results with 1 to 4 camera training set. 
 

Had Has Hjo Ost Rin 

1 camera 0.875 0.864 0.695 0.495 0.600 

2 cameras 0.875 0.872 0.780 0.783 0.637 

3 cameras 0.907 0.881 0.807 0.795 0.737 

4 cameras 0.904 0.912 0.780 0.836 0.748 
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AAU RainSnow, bus AP results with 1 to 4 camera training set. 
 

Had Has Hjo Ost Rin 

1 camera 0.525 0.301 0.222 0.054 0.005 

2 cameras 0.680 0.209 0.288 0.162 0.001 

3 cameras 0.743 0.188  0.340 0.254 0.033 

4 cameras 0.748 0.227 0.454 0.439 0.081 

AAU RainSnow, truck AP results with 1 to 4 camera training set. 
 

Had Has Hjo Ost Rin 

1 camera 0.169 0.496 0.199 0.051 0.036 

2 cameras 0.257 0.511 0.248 0.242 0.116 

3 cameras 0.543 0.517 0.269 0.298 0.141 

4 cameras 0.502 0.687 0.397 0.374 0.186 

Experiment 3 

AAU RainSnow, average results from all 5 runs with all cameras. 

Random Car AP Bus AP Truck AP Selected Car AP Bus AP Truck AP 

25 0.724 0.069 0.142 
 

0.737 0.052 0.093 

50 0.833 0.326 0.355 
 

0.833 0.435 0.221 

75 0.856 0.342 0.295 
 

0.861 0.524 0.342 

100 0.813 0.538 0.383 
 

0.870 0.565 0.421 

125 0.867 0.516 0.408 
 

0.879 0.541 0.541 

Pretrained 0.705 0.528 0.464 
    

Experiment 4 

DAWN dataset, rain category average results from all 5 runs. 
 

Person AP Car AP Bus AP Truck AP 

Random 10 0.004 0.659 0.034 0.107 

Random 30 0.113 0.838 0.219 0.514 

Random 50 0.403 0.875 0.093 0.686 

Random 75 0.449 0.857 0.312 0.616 

Random 100 0.602 0.899 0.425 0.647 

Pretrained 0.735 0.735 0.221 0.457 

Selected 10 0.001 0.696 0.113 0.261 

Selected 30 0.005 0.826 0.136 0.514 

Selected 50 0.205 0.872 0.177 0.674 

Selected 75 0.549 0.895 0.231 0.688 

Selected 100 0.616 0.895 0.318 0.671 
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DAWN dataset, fog category results. 
 

Person AP Car AP Bus AP Truck AP 

Random 10 0.010 0.628 0.254 0.018 

Random 30 0.495 0.796 0.382 0.196 

Random 50 0.609 0.882 0.527 0.381 

Random 75 0.582 0.888 0.583 0.375 

Random 100 0.761 0.902 0.662 0.430 

Pretrained 0.784 0.806 0.754 0.291 

Selected 10 0.002 0.685 0.251 0.107 

Selected 30 0.028 0.851 0.441 0.246 

Selected 50 0.705 0.898 0.428 0.387 

Selected 75 0.724 0.893 0.646 0.504 

Selected 100 0.805 0.911 0.712 0.512 

DAWN dataset, sand category results. 
 

Person AP Car AP Bus AP Truck AP 

Random 10 0.011 0.676 0.014 0.025 

Random 30 0.489 0.809 0.134 0.250 

Random 50 0.678 0.842 0.199 0.257 

Random 75 0.710 0.864 0.313 0.364 

Random 100 0.696 0.880 0.380 0.486 

Pretrained 0.738 0.738 0.674 0.365 

Selected 10 0.007 0.567 0.033 0.017 

Selected 30 0.225 0.799 0.327 0.190 

Selected 50 0.553 0.848 0.366 0.301 

Selected 75 0.773 0.867 0.349 0.395 

Selected 100 0.740 0.888 0.371 0.437 

DAWN dataset, snow category results. 
 

Person AP Car AP Bus AP Truck AP 

Random 10 0.203 0.497 0.047 0.036 

Random 30 0.416 0.757 0.042 0.057 

Random 50 0.590 0.814 0.513 0.239 

Random 75 0.737 0.811 0.277 0.447 

Random 100 0.711 0.827 0.712 0.546 

Pretrained 0.760 0.767 0.572 0.446 

Selected 10 0.111 0.603 0.023 0.062 

Selected 30 0.523 0.778 0.086 0.310 

Selected 50 0.641 0.828 0.268 0.384 

Selected 75 0.644 0.820 0.223 0.465 

Selected 100 0.692 0.807 0.446 0.495 

 

 

 



51 
 

Experiment 5 

DAWN dataset, average results from all 5 runs with all categories. 
 

Person AP Car AP Bus AP Truck AP 

Random 20 0.088 0.695 0.072 0.128 

Random 40 0.541 0.808 0.222 0.258 

Random 60 0.597 0.830 0.245 0.391 

Random 80 0.646 0.851 0.416 0.407 

Random 100 0.678 0.852 0.442 0.468 

Pretrained 0.740 0.796 0.631 0.382 

Selected 20 0.048 0.693 0.097 0.199 

Selected 40 0.438 0.822 0.320 0.339 

Selected 60 0.631 0.844 0.257 0.422 

Selected 80 0.642 0.848 0.495 0.473 

Selected 100 0.666 0.860 0.532 0.461 

 

 

 

 

 

 

 

 

 


