

Samuli Pohjola

OBJECT DETECTOR FINE-TUNING FOR
COMPUTER VISION APPLICATIONS

In surveillance and adverse condition data domains

Master of Science Thesis
Faculty of Information Technology and Communication Sciences

Examiners: Joni Kämäräinen
Esa Rahtu
May 2022

i

ABSTRACT

Samuli Pohjola: Object Detector Fine-tuning for Computer Vision Applications

Master of Science Thesis

Tampere University

Master’s Degree Programme in Information Technology

May 2022

The advancements of CNNs have made object detection increasingly popular and now it is
used in a wide range of applications. There are many pretrained object detector implementations
available, but these models do not always fulfil the needs of real applications. That is why retrain-
ing for application needs is often required although it can be expensive. One efficient way of
retraining is fine-tuning a pretrained model with a small number of images.

In this thesis object detection fine-tuning is studied to estimate the detection accuracy improve-
ments gained by fine-tuning with different data quantities. Experimentation is done on publicly
available data from surveillance and adverse conditions data domains with the YOLOv5 object
detector. The experimental results show that 50 to 75 fine-tuning images are enough to produce
distinctively improved results for a single data source. Having more images would only increase
the accuracy to a small extent, but also having less than 30 would produce worse results than the
pretrained model. Similar results are obtained when fine-tuning a more general model with 15
images from each source. The experiments also show that the training data needs to have enough
object instances for successful learning.

Additionally, an automatic fine-tuning image selection algorithm is proposed in the thesis. It
uses the pretrained detection model to algorithmically select fine-tuning images. In the experi-
ments the algorithmic selection is seen to produce slightly better accuracy and less deviation in
results when compared to random selection. The accuracy improvements are marginal, but the
algorithm is useful with real-life camera streams where a suitable time for random selection is
hard to estimate. In these cases, the algorithm could speed up data selection for fine-tuning and
that way reduce expenses.

Keywords: Deep learning, Object detection, fine-tuning, CNN, YOLOv5

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Samuli Pohjola: Kohteentunnistimen hienosäätö konenäkösovelluksissa

Diplomityö

Tampereen yliopisto

Tietotekniikan diplomi-insinöörin tutkinto-ohjelma

Toukokuu 2022

Konvoluutioon perustuvien neuroverkkojen kehitys on tehnyt kohteen tunnistuksesta suosittua
ja nykyään sitä hyödynnetään monissa erilaisissa sovelluksissa. Kohteen tunnistukseen on tar-
jolla monia valmiiksi koulutettuja malleja, mutta nämä mallit eivät aina vastaa oikeiden sovellus-
kohteiden vaatimuksia. Sen vuoksi tunnistin täytyy usein kouluttaa uudelleen vastaamaan sovel-
luskohteen tarpeita, vaikka uudelleenkouluttaminen on hidas ja työläs prosessi. Yksi tapa tehdä
uudelleenkoulutus tehokkaasti on hienosäätää valmista mallia pienellä määrällä kuvia.

Tässä työssä tutkitaan kohteentunnistimen hienosäätöä, jotta saataisiin arvio kuvamäärästä,
joka tarvitaan paremman tarkkuuden saavuttamiseksi. Työssä tehdään hienosäätökokeita
YOLOv5-kohteentunnistimella. Kohteentunnistimen kouluttamiseen testeissä käytetään julkisia
kuvasarjoja valvontakameroista ja tunnistukselle haitallisista sääolosuhteista. Kokeiden tulokset
osoittavat, että 50–75 kuvaa on riittävä määrä tuottamaan hyviä tuloksia yhden kameran tai olo-
suhteen kuvia käytettäessä. Kuvien lisääminen parantaa tarkkuutta vain vähän ja kuvien vähen-
täminen alle 30:n tuottaa huonompia tuloksia kuin valmiiksi koulutettu malli. Kun haetaan ylei-
sempää mallia, samanlaisia tuloksia saadaan käyttämällä 15 kuvaa jokaisesta kamerasta tai olo-
suhteesta, jossa mallin halutaan toimivan. Kokeissa myös selviää, että koulutusdatassa tulee olla
riittävä määrä tunnistettavia kohteita, jotta niiden oppiminen onnistuu.

Lisäksi työssä esitellään algoritmi, jolla voidaan automaattisesti valita kuvia kohteen tunnisti-
men hienosäätöä varten. Algoritmi perustuu valmiiksi koulutetun kohteentunnistimen tekemiin
tunnistuksiin, joiden pohjalta algoritminen valinta tehdään. Kokeissa algoritminen valinta tuottaa
hieman paremman tarkkuuden ja vähemmän hajontaa tuloksissa kuin satunnainen valinta. Algo-
ritmilla saavutettu parannus on kuitenkin marginaalista, mutta algoritmi nähdään hyödylliseksi
käytettäessä oikeiden kameroiden kuvavirtoja, joissa on vaikea arvioida sopivaa aikaa satunnai-
selle valinnalle. Näissä tapauksissa algoritmi nopeuttaa hienosäätökuvien keräämistä ja siten vä-
hentää siitä koituvia kustannuksia.

Avainsanat: Syväoppiminen, Kohteen tunnistus, hienosäätö, konvolutiivinen neuroverkko,
YOLOv5

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla.

iii

PREFACE

When I first started my studies on the information technology field of study in 2017, I did

not know programming at all. At that time, I was more interested in the structure of com-

puter components, and I thought I would study more digital and computer technology.

But as it happens, I ended up studying all kinds of programming, embedded and digital

systems, signal processing and machine learning and eventually found my calling on the

field of computer vision. It has been an eventful 5-year journey, but it is finally coming to

an end with the completion of this thesis.

Before the end of this journey they call student life I would like thank Tampere University

and especially the former Tampere University of Technology for the interesting and high-

quality teaching. Special thanks go to Joni Kämäräinen whose advice and suggestions

tremendously helped me to complete this thesis. I will long remember our fruitful and

interesting discussions which always helped to push the work onwards.

I would also like to thank Wapice for support and a possibility to conduct this thesis work

for them. I want to thank Mickey Shroff for giving me this opportunity and for interesting

ideas and possibilities for this thesis work. I also want to express my thanks to my col-

leagues for their help and expert advice on computer vision research.

Additionally, I want to show my gratitude to my friends and fellow students who helped

me to get through this process by giving me peer support and by helping me to relax in

my free time. Special thanks go to Vili Kautto and Heikki Lahtinen for giving improvement

suggestions and for proof-reading the thesis.

Last but definitely not the least I want to express my deepest gratitude for my family who

helped and supported me through this thesis and through the whole university studies. I

want to thank my sister for her invaluable help during this process’ most difficult times.

Also, thanks to my parents for their gentle but determined support which helped me to

push through this thesis to graduate in time and to get a good start for my future life.

Tampere, 8 May 2022

Samuli Pohjola

iv

CONTENTS

1. INTRODUCTION .. 1

2. RELATED WORK ... 4

2.1 Object Detection .. 4

2.2 Datasets ... 5

2.2.1 VIRAT ... 5

2.2.2 AU-DETRAC ... 6

2.2.3 CADCD ... 7

2.2.4 DAWN ... 8

2.2.5 AAU RainSnow ... 9

2.2.6 MOTChallenge .. 10

2.3 Summary ... 11

3. METHODS .. 12

3.1 YOLOv5 ... 12

3.2 Performance Metrics .. 14

3.2.1 Precision ... 16

3.2.2 Recall .. 16

3.2.3 Precision-Recall Curve.. 17

3.2.4 Mean Average Precision ... 18

4. EXPERIMENTS .. 19

4.1 Datasets ... 19

4.2 Object Detector .. 21

4.3 Selection Algorithm for Fine-tuning Images .. 22

4.4 Preliminary Experiment .. 22

4.5 Conducted Experiments ... 24

4.6 Results ... 25

4.6.1 Experiment 1 ... 25

4.6.2 Experiment 2 ... 27

4.6.3 Experiment 3 ... 30

4.6.4 Experiment 4 ... 30

4.6.5 Experiment 5 ... 32

4.6.6 Experiment 6 ... 34

4.7 Summary ... 35

5. CONCLUSIONS .. 37

REFERENCES... 39

v

LIST OF FIGURES

 Neural network fine-tuning uses pretrained model weights as a
basis for new model training [11]. ... 2

 Images showing benefits of small-scale fine-tuning. The leftmost
images depict ground truth. The images in the middle and on the
right show predictions from a pretrained model but for the
rightmost images the model has been fine-tuned with 50 images. 3

 An example image from VIRAT video dataset that shows the view
angle and that annotations are only given for some objects in the
videos. ... 6

 Example images from AU-DETRAC dataset with annotations
showing scene variety and problems with ignored areas. The
ignored areas are marked with black rectangles. 7

 Image and LiDAR scene from CADCD. The image shows multiple
bounding boxes in the nearby building’s wall. This is because the
annotation data does not mention object visibility in camera
images. Adapted from [28]. .. 8

 Example images from DAWN dataset showing the 4 different
weather condition categories: fog, rain, snow and sand. The
images also show missing and oversized bounding box errors. 9

 Example images form AAU RainSnow dataset showing variation
and challenging detection tasks but also some mistakes. Black
areas in the images represent the masks for unlabelled areas. 10

 Image extracted from a MOTChallenge video with given
annotations. The annotation data does not include class labels
which makes the data unsuitable for object detector training. 11

 YOLOv5 architecture including CSPDarknet53 backbone, PANet
neck and YOLO head. Adapted from [47]. .. 13

 YOLOv5’s Mosaic enhanced training images created by mixing
randomly scaled and clipped base images. .. 14

 The upper left image depicts a true positive detection and the
upper right images a false positive one. The lower left image
shows a false negative as the car in the image is not detected. The
lower right is completely true negative as there are no objects or
detections. ... 15

 Images with red detection and green ground truth bounding boxes
and their IoU scores. The left image depicts a true positive and the
right image depicts a false positive and a false negative. 16

 A precision-recall curve generated by YOLOv5 framework. The
numbers in the legend show the AUC scores of the curves
representing different classes. ... 17

 Example images from AAU RainSnow cameras selected for
experiments. The used abbreviation names for the cameras are
AAU-Had, AAU-Has, AAU-Hjo, AAU-Ost and AAU-Rin. 21

 Example images from AAU RainSnow showing the size of person
and bicycle class objects. ... 23

 Images from AAU-Rin camera showing the effects of glare on
detection. Images from left show ground truth, pretrained and fine-
tuned detections. .. 26

 Experiment 2 average car class AP scores over 5 fine-tuning runs
with varying number of training images from the AAU-Has camera
training set. .. 27

vi

 Experiment 2 average car class AP scores over 5 fine-tuning runs
with varying number of training images from the AAU-Hjo camera
training set. .. 28

 Images from AAU RainSnow AAU-Has and AAU-Hjo test sets with
ground truth, pretrained and fine-tuned detections. The AAU-Has
model fine-tuning used 50 images while the AAU-Hjo model used
75. .. 29

 Experiment 4 AP scores for the car class when fine-tuned with
varying number of images from all 5 of the AAU RainSnow
cameras. The scores are an average over 5 runs where the error
bars show the minimum and maximum. ... 31

 An image from AAU RainSnow Had camera showing ground truth
on the left and pretrained detections in the middle. The rightmost
image’s detections are from a model that was fine-tuned with 15
images from every AAU RainSnow camera. .. 31

 Average car class AP scores over 5 runs for DAWN dataset’s rain
category in Experiment 5. The error bars show minimum and
maximum from the 5 runs... 32

 Ground truth, pretrained and 50-image fine-tuned detections on
DAWN dataset’s rain category. .. 33

 DAWN all categories fine-tuning results with varying number of
training images and the pretrained result from Experiment 6
featuring AP scores for the car class. The scores are an average
over 5 runs where the error bars show the minimum and
maximum. .. 34

 Ground truth, pretrained and fine-tuned detections on an image
from DAWN dataset’s snow category. The fine-tuning was done
with 15 images from every DAWN weather category............................ 35

vii

LIST OF SYMBOLS AND ABBREVIATIONS

AAU Aalborg University
AUC Area under curve
AP Average precision
CADCD Canadian Adverse Driving Conditions dataset
CNN Convolutional neural network
COCO Common Objects in Context
CSPDarknet53 Cross stage partial Darknet53
DAWN Detection in Adverse Weather Nature
DETR Detection Transformer
DNN Deep neural network
DPM Deformable part-based model
GDPR General Data Protection Regulation
HD High-definition
HOG Histogram of oriented gradients
IoU Intersection over union
mAP Mean average precision
NLP Natural language processing
NMS Non-maximum suppression
ONNX Open Neural Network Exchange
PAN Path aggregation network
RCNN Region-based Convolutional Neural Network
RGB Red green blue color model
SPP Spatial pyramid pooling
SSD Single shot detector
YOLO You only look once

Fn number of false negatives
Fp number of false positives
Tn number of true negatives
Tp number of true positives

1

1. INTRODUCTION

CNNs (Convolutional neural networks) have dominated the object detection field for

some time now [1]. They first rose to prominence in 2012 with the introduction of AlexNet

and have continued to develop since then [2]. The evolution of CNNs has hugely im-

proved the performance of computer vision with various architectures like R-CNN (Re-

gion-based Convolutional Neural Network), Fast R-CNN and YOLO (You only look once)

[3]. Nowadays they still hold a significant role in object detection, although there are also

other prominent technologies like Transformer based object detectors. Although trans-

former-based architectures have been shown to produce good results in computer

vision [4] their deployment options are still limited and they are not as easy to use as

competing deep CNN architectures.

The development of CNN based object detection has resulted in architectures that can

provide accurate predictions with short inference times. There are premade and pre-

trained implementations of such CNN detectors that are fast enough to be used in real-

time object detection even with modest hardware [5, 6]. The possibility of real-time object

detection has opened many new increasingly interesting real-life applications for com-

puter vision. Real-time object detection enables the usage of object trackers or real-time

event detection, which can be used in, for example, security or smart city data analytics.

Unfortunately, these use cases often have different view angles, detection needs and

background conditions compared to what the pretrained models offer, which raises the

need for detection model retraining.

The need to retrain emphasizes the central issue of CNN-based object detection. Train-

ing CNN detectors often needs large amounts of accurately labeled data to produce good

results [7, 8]. To accomplish this, data needs to be collected and annotated which can

be time-consuming and expensive. To lower these expenses, crowdsourcing can be

used to annotate the data and it has been shown that this can even yield accurate results

in some scenarios [9]. However, in security and smart city applications the used data

often includes private or confidential information and crowdsourcing the data could be a

violation of regulations like the GDPR (General Data Protection Regulation).

Another solution is using a pretrained detection model as a basis and fine-tune it to cor-

respond to the needs of the specific task. The process of fine-tuning makes use of an

2

existing network by starting the training process with weights that have been pretrained

with a large-scale dataset and continues to fine-tune these weights with the new

data [10]. This process is depicted in Figure 1. The features learned by the weights op-

timized by thousands of training images will remain during fine-tuning, but their relation

to new or old classes can be fine-tuned. In fine-tuning some layers of the model can also

be randomly initialized or frozen to the pretrained values. Random initialization is needed

for the output layer of the network if new classes are added in fine-tune training. It can

still be useful even when the detected classes stay the same.

 Neural network fine-tuning uses pretrained model weights as a basis for
new model training [11].

It has been shown that fine-tuning requires less data than complete retraining [12]. Fine-

tuning even with a small amount of data can produce significant accuracy gains. An ex-

ample is presented in Figure 2, where ground truth and predictions with a pretrained

model and a fine-tuned detector are shown. Because of the costs and data limitations,

fine-tuning a pretrained model with self-annotated data is usually the best solution for

scenarios with sensitive data. However, the question of how much data and what quality

is needed to produce good fine-tuning results remains open.

3

 Images showing benefits of small-scale fine-tuning. The leftmost images
depict ground truth. The images in the middle and on the right show predictions
from a pretrained model but for the rightmost images the model has been fine-

tuned with 50 images.

The research objective of this thesis is to find out what amount of data is needed for fine-

tuning a pretrained object detection model to achieve improved accuracy. This objective

is considered with real-life smart city analytics or other surveillance applications in mind.

Answers to this question are searched by running fine-tuning experiments with real data

and state-of-the-art CNN object detector YOLOv5. The data domains of this work’s ex-

periments are surveillance camera and adverse weather conditions, which could be both

present in a smart city data analytics scenario. Publicly available data is studied and

reviewed to find out the best matches for the chosen data domains.

Extensive fine-tuning experiments are conducted on the data to find out how fine-tuning

data quantity effects the accuracy of the results. The goal is to find out the accuracy

gains of adding more data and to deduce estimates on optimized amounts of fine-tuning

data required to produce improved accuracy. Also, an automatic fine-tuning image se-

lection algorithm is proposed and tested for easing the selection of fine-tuning data. The

effects of fine-tuning data quality are also observed in the experiments. Additionally,

experimentation is done with the generalization ability of the fine-tuned detection models

inside the trained data domain.

The rest of the thesis’ structure is as follows. Chapter 2 goes through related work on

object detectors and examines datasets that depict surveillance or adverse condition

data domains. Chapter 3 describes the methods and metrics used in the work’s experi-

ments and their theoretical background. Chapter 4 presents the experiments and their

results in detail. Discussion on results and conclusions are also presented in Chapter 4.

All results and conclusions are gathered in chapter 5 at the end of the thesis.

4

2. RELATED WORK

This chapter goes through research in the field of object detection and a number of public

datasets that can be used for object detector training. Section 2.1 introduces the current

state of object detection and technologies used in the research field. Section 2.2 exam-

ines publicly available datasets with surveillance camera view angles or adverse weather

conditions. Also, the suitability of these datasets for object detector training is assessed.

2.1 Object Detection

One of the most interesting and highly studied topics in computer vision is object detec-

tion [13]. The idea of object detection is to separate interesting objects from the image

background and then assign these objects a predefined class label [13–15]. The objects

are often marked by drawing bounding boxes around them in the image to show their

size. Object detection has been done with different methods like HOG (histogram of ori-

ented gradients) or DPM (deformable part-based model), but the most prominent method

used today is deep learning [16]. Deep learning mostly refers to DNNs (deep neural

networks), which have complex architectures and many layers, and therefore capacity

to learn more complex features [15].

In the present, the area of object detection can be divided into three prevalent algorithm

categories: two-stage algorithms, one-stage algorithms and transformers [2]. Two-stage

algorithms divide the detection task into two phases. The first phase generates region

proposals on possibly interesting objects and the second phase classifies these

regions [17]. Examples of two-stage detectors are R-CNN [18], SPP-Net [19], Fast R-

CNN [20] and Faster R-CNN [21]. The advantage of two-stage detectors is usually ac-

curacy at the cost of speed.

One-stage algorithms on the other hand do not use region proposals, but instead extract

direct features from input images and then perform classification and localization predic-

tions according to those features [22]. This makes the detection process faster but also

lowers the accuracy when comparing to the two-stage algorithms. Popular one-stage

detectors are YOLO [23], SSD (single shot detector) [24], Retina-Net [25] and

CenterNet [26].

An emerging topic in computer vision is the use of transformers in visual tasks [27].

Transformers were adapted from NLP (natural language processing) to reduce structural

5

complexity for increased training efficiency and scalability [2]. The benefits of transform-

ers are self-attention layers which can aggregate information from whole input se-

quences allowing the creation of structures with less need for hand-designed compo-

nents [28]. The most well-known object detection transformer is DETR (Detection Trans-

former), which uses a CNN backbone with a transformer head [29]. Another popular

transformer structure in object detection is the Swin Transformer that has been shown

to produce state-of-the-art level detection accuracy [30–32].

2.2 Datasets

Nowadays there are a lot of publicly available datasets that can be used to train and test

object detectors. These datasets often have different characteristics. They differ in data

quantity and annotation quality. Choosing the right datasets to be used in research can

be a difficult and time-consuming task [33]. For object detection in surveillance or ad-

verse weather condition data domains there exist a few representative datasets, which

are introduced here.

2.2.1 VIRAT

The VIRAT video dataset contains 8.5 hours of HD (high-definition) quality video clips

that have been taken from cameras placed in surveillance camera angles. The dataset

contains diverse scenes from mostly urban areas where human activity occurs. The vid-

eos have been shot mostly during daytime and the weather conditions differ from clear

skies to light rain. [34]

The VIRAT dataset is designed to be used in action or event detection with video data,

and therefore it offers localized annotations for frames that include these actions or

events. In addition, bounding boxes and classes are given for objects participating in

these actions. Unfortunately, the bounding boxes do not cover all objects of the de-

scribed classes. This makes the dataset unsuitable for object detector training or fine-

tuning, as missing class labels for clearly visible objects hamper the learning of an object

detection model. An example image from the dataset is shown in Figure 3.

6

 An example image from VIRAT video dataset that shows the view angle
and that annotations are only given for some objects in the videos.

2.2.2 AU-DETRAC

The AU-DETRAC dataset is created from 10 hours of video data from multiple locations

depicting traffic in urban settings or on highways from a surveillance camera view. The

dataset is meant to be used as an object detection and tracking benchmark. The data is

presented as annotated frames with 960x540 resolution that have been taken from the

original videos. The weather conditions in the frames feature sunshine, clouds and some

rain. Most of the frames are from daytime videos but some show a night-time

scenery. [35]

The dataset’s annotations are provided as bounding boxes, object identifiers and class

labels for large and medium-sized vehicles including passenger cars, buses, trucks and

vans. The annotations are only given for vehicles that are on the central roads of the

camera view and not far away. For other parts of the frames the dataset provides static

rectangular areas where objects are ignored and therefore not labelled. By hiding these

ignored areas, the frames can be used in object detection training. However, the ignored

areas are not perfect and in some frames partially visible vehicles do not have annota-

tions or their bounding boxes extend far into the ignored areas. Additionally, the cameras

used to take the videos are unstable and they wobble slightly which moves the ignored

areas and sometimes reveals unlabelled vehicles. Example images from the dataset are

presented in Figure 4.

7

 Example images from AU-DETRAC dataset with annotations showing
scene variety and problems with ignored areas. The ignored areas are marked

with black rectangles.

2.2.3 CADCD

CADCD or Canadian Adverse Driving Conditions dataset is an autonomous driving da-

taset with images, LiDAR sweeps and other driving related data from snowy weather

conditions. The data has been gathered by driving around urban areas with an autono-

mous vehicle platform which has produced videos, LiDAR sweeps and other information.

The weather in the data varies from light snowfall to heavy snowfall and all of the data

has been collected during daytime. [36]

The published dataset contains labelled traffic scenes that feature camera images and

LiDAR points from the data gathering vehicle’s sensors and 3D-bounding boxes for ob-

jects in the images. The annotation data has been given in a format that allows recon-

struction of these scenes in 3D, showing the locations and orientations of other objects

near the data gathering vehicle. This allows for in-depth analysis of the driving scenes,

but unfortunately is not as useful for object detection. The bounding boxes are given in

3D coordinates and can be projected to the provided camera images as 2D bounding

boxes, but this transition causes some errors in the box precision. The main problem for

object detector training is that the annotations do not specify if an object is visible in the

camera image or not. This leads to a large number of bounding boxes without visible

objects. An example of these empty bounding boxes and a reconstructed LiDAR scene

is shown in Figure 5.

8

 Image and LiDAR scene from CADCD. The image shows multiple bound-
ing boxes in the nearby building’s wall. This is because the annotation data does

not mention object visibility in camera images. Adapted from [28].

2.2.4 DAWN

Detection in Adverse Weather Nature or DAWN is an object detection dataset that de-

picts traffic in various adverse weather conditions in urban and highway scenery. The

data is presented as a collection of around 1000 images with a wide range of different

resolutions and varying view angles. The images have been divided into 4 different

weather condition categories: fog, rain, snow and sand. The weather in these categories

varies between light mist, heavy fog, light rain, rainstorm, light snowfall, blizzard and

sandstorm. Most of the images are taken during daytime but some also feature night-

time. [37]

Annotations in the DAWN dataset are given for all road users in a format that can be

easily used with many object detectors. There are some mistakes in the annotations

such as wrong class labels for some objects, missing labels for visible objects or wrong

sized bounding boxes, but the overall data quality is good. Figure 6 shows example im-

ages from the dataset but overrepresents the portion of mistakes in the data. This makes

the dataset suitable for object detector fine-tuning, but it is too limited to be used in com-

plete retraining. An object detection model fine-tuned with image data that represents

various view angles and has more object variation will produce a more generalized model

9

as a result [38], but it is questionable if this dataset’s 1000 images are enough to produce

a good generalization.

 Example images from DAWN dataset showing the 4 different weather
condition categories: fog, rain, snow and sand. The images also show missing

and oversized bounding box errors.

2.2.5 AAU RainSnow

AAU (Aalborg University) RainSnow Traffic Surveillance Dataset provides video data

from 7 different traffic surveillance cameras with RGB and thermal infrared capabilities.

The original use for the dataset is rain removal algorithm evaluation with segmentation

and feature tracking. There are 22 short videoclips and each of them have been split into

100 randomly selected and labelled RBG and thermal image pairs with a 640x480 reso-

lution. Time of day in the labelled image pairs is split quite evenly between daytime and

night-time. Weather conditions in the images feature varying amounts of rainfall and

snowfall and also some fog and haze. [39]

The AAU RainSnow dataset’s annotations are given as bounding boxes and segmenta-

tion masks for all road users that are not too far away from the camera. This means that,

for example, cars parked beside the road are not annotated. To prevent these unlabelled

areas from affecting training or evaluation, the dataset offers image masks that can be

used to hide the areas where annotations are not provided. Unfortunately, some of the

image masks do not completely cover all stationary objects on the side of the roads and

some annotations are overlapping or completely inside the masked area. The cameras

also wobble a bit in windy conditions, which moves the masked areas. In addition to

10

masking errors the dataset contains a few frames that are missing annotations for some

road users or have wrong class labels on some objects. Nevertheless, these mistakes

only cover a small percentage of the dataset’s images and rest of the data is suitable for

object detection training and fine-tuning. Figure 7 shows example images from the da-

taset.

 Example images form AAU RainSnow dataset showing variation and
challenging detection tasks but also some mistakes. Black areas in the images

represent the masks for unlabelled areas.

2.2.6 MOTChallenge

MOTChallenge is a multiple object tracking benchmark meant to be used to evaluate the

performance on object trackers. It provides multiple videos with varying length and res-

olution from urban areas with multiple objects, but mostly people moving around. Some

of the videos have a surveillance camera view angle and some have been taken from

ground level. The videos are taken both during daytime and night-time and the weather

in the videos is always clear or sunny. [40]

Annotations in the MOTChallenge are given as tracking information and bounding boxes

for the tracked objects. This tracking information is given for all moving objects in the

videos and to some stationary ones. In some videos tracking annotations are given for

uninteresting objects like vending machines or poles. The annotations however do not

11

include class labels for the tracked objects, even though they are not all of the same

object class. Training an object detector model with this kind of data could hamper the

models training process and result in a model that produces uninteresting data. This

makes the data unsuitable for object detector training. Figure 8 shows example frames

from the MOTChallenge with the given annotations.

 Image extracted from a MOTChallenge video with given annotations. The
annotation data does not include class labels which makes the data unsuitable

for object detector training.

2.3 Summary

There are many prominent object detectors in the field of computer vision as was dis-

cussed in section 2.1. The famous YOLO algorithm is one of them as it is one of the

fastest and most accurate single-stage detector structures. As detection speed is often

a crucial element in real-life applications the object detector used in this thesis’ experi-

ments was chosen to be based on the YOLO algorithm.

There are many publicly available datasets that depict surveillance or adverse weather

condition data domains but not all of them can be used to train or fine-tune object detec-

tors. The AAU RainSnow and DAWN datasets were chosen to be used for the purposes

of this theses’ experiments as they offered usable annotations for data that represented

the selected data domains. The dataset choices are discussed more in depth in

section 4.1.

12

3. METHODS

The object detection technologies and performance metrics used in this thesis are pre-

sented in this chapter. Section 3.1 introduces the YOLOv5 object detector and goes

through the methods used in its structure. Section 3.2 discusses common object detec-

tion performance metrics.

3.1 YOLOv5

Released in 2020 YOLOv5 is one of the latest iterations of the YOLO-based object de-

tectors [41]. YOLO detector is a single-stage detector built on the CNN based YOLO

algorithm. The YOLO algorithm was first introduced in 2016 as YOLOv1 [42]. It was a

fast detector that performed object detection through a regression problem [43]. The in-

put was divided into regions where preliminary bounding boxes and class categories

were predicted and the most unlike ones were removed according to thresholds and the

NMS (non-maximum suppression) algorithm [44]. The NMS algorithm removes overlap-

ping bounding boxes based on a predefined IoU (intersection over union) score.

The later YOLO versions continued from this basis and introduced new features in every

iteration. YOLOv2 added a new backbone with the introduction of Darknet-19. It also

changed the bounding box predictions to use anchor boxes which are initial sizes for

predicted boxes. YOLOv3 then updated the structure with Darknet-53 backbone and

modified and increased the number of YOLOv2 anchor boxes to improve small object

detection. YOLOv4 further improved the performance and accuracy of YOLOv3 by

changing to CSPDarknet53 (cross stage partial Darknet53) backbone and adding spe-

cialized improvements like Mosaic data enhancement, SPP (spatial pyramid pooling),

PANet (path aggregation network) and Mish activation function. [43, 44]

YOLOv5 is a continuation of the previous YOLO version and is structurally quite closely

related to YOLOv4, but with some new features and changes. YOLOv5 relies on the

same backbone as YOLOv4: the CSPDarknet53 with SPP but with an added Focus layer

that reduces memory usage and increases forward and backward propagation [45]. The

neck of YOLOv5 is also built on the basis of YOLOv4 and uses an adapted version of

PANet structure with a new FPN (feature pyramid network) that helps with propagation

of low-level features [46]. As the last part of the network YOLOv5 uses the same YOLO

13

layer head as YOLOv3 and YOLOv4, and as with all earlier versions of YOLO the result-

ing output is finished with the NMS algorithm. The architectural structure of YOLOv5 is

shown in Figure 9.

 YOLOv5 architecture including CSPDarknet53 backbone, PANet neck
and YOLO head. Adapted from [47].

For training and fine-tuning purposes YOLOv5 uses the same kind of Mosaic data en-

hancement as YOLOv4. The Mosaic data enhancement mixes four images into one by

random scaling and clipping to enrich the training dataset and to enhance small object

learning [48]. Sometimes the clipping results in images that do not show all of the base

images. Examples of Mosaic enhanced training images are shown in Figure 10. Training

new datasets is further helped with YOLOv5’s adaptive anchor box calculation [49]. The

adaptive anchor boxes feature is used to calculate suitable bounding box anchors using

the training dataset allowing the detector to learn different sized objects more

effectively [50]. Additionally, the loss function of YOLOv5 is based on GIOU (generalized

intersection over union), which in training helps to preserve the error distance even if

predictions and ground truth do not intersect [51].

14

 YOLOv5’s Mosaic enhanced training images created by mixing randomly
scaled and clipped base images.

As premade deployment options YOLOv5 offers multiple pretrained model checkpoints

that have been trained with the COCO (Common Objects in Context) dataset. There are

5 different pretrained structures, n, s, m, l and x, that determine the depth of the back-

bone network and 2 resolution choices, 640x640 and 1280x1280, for each of these struc-

tures [52]. A deeper backbone can obtain more features from input images and increase

accuracy, but it will also make running the network computationally slower. These pre-

trained weights can also be used as a basis for fine-tuning and YOLOv5 provides easy

interfaces to use them.

YOLOv5 offers a wide variety of different deployment options. It is based on a PyTorch

implementation but also provides easy conversions to other formats like TensorFlow,

ONNX (Open Neural Network Exchange), CoreML, TensorRT and OpenVINO [52]. This

makes it easy to deploy fine-tuned or pretrained YOLOv5 on almost any platform. The

shallowest network structures can efficiently be used on mobile devices while the deeper

options can be deployed on computation servers to provide simultaneous real-time ob-

ject detection for multiple video streams.

3.2 Performance Metrics

Many different metrics are used in machine learning to compare the results of various

methods and algorithms. These metrics are often based on 4 basic values: true positives,

false negatives, false positives and true negatives [53]. In object detection true positives

mean detections that correctly localizes and classifies a ground truth object. True nega-

tives, on the other hand, mean areas of an image without objects or detections. False

15

positives mean falsely localized or classified detections while false negatives mean

ground truth objects that were not detected. Example detections depicting these values

are shown in Figure 11.

 The upper left image depicts a true positive detection and the upper right
images a false positive one. The lower left image shows a false negative as the
car in the image is not detected. The lower right is completely true negative as

there are no objects or detections.

These basic values are often used for metrics in object detection, but they are calculated

using IoU. Object bounding box prediction is treated as a true positive if the predicted

class label is the same as in ground truth and if the predicted bounding box IoU ratio with

the ground truth box is higher than a predefined threshold [54]. All bounding boxes that

do not fill these criteria are treated as false positives. Ground truth bounding boxes that

are not matched by any predictions are regarded as false negatives. The IoU calculation

is not used for true negatives as they often are not an interesting result and metrics

relying on them are seldom used. Figure 12 demonstrates the IoU calculation’s effect on

true positives, false positives and false negatives with example detection and ground

truth bounding boxes. In the figure green bounding boxes depict ground truth and red

bounding boxes depict detections. The figure has 2 images: one on the left and one on

the right. With a 0.5 IoU threshold the left image’s detection would be counted as a true

positive and the right image’s detection as a false positive. Additionally, the right image’s

ground truth object would be counted as false negative as the detection for it was a false

positive.

16

 Images with red detection and green ground truth bounding boxes and
their IoU scores. The left image depicts a true positive and the right image de-

picts a false positive and a false negative.

3.2.1 Precision

Precision is a metric that shows what percentage of model’s positive predictions were

correct [55]. It can be calculated with the following formula

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑝

where 𝑇𝑝 is the number of true positives and 𝐹𝑝 is the number of false positives [56]. In

object detection the precision score is good at measuring the accuracy of predictions a

model is making, but it alone is not enough to make assumptions about the model’s true

accuracy. False negatives are not accounted for in precision which means that the model

can miss almost every object in the input images but still have a precision score of 1.0.

Nevertheless, in cases where the most important factor is minimization of false positives,

precision can be a very useful metric for evaluating model performance.

3.2.2 Recall

Recall is a metric that indicates the percentage of ground truth that a model has correctly

predicted [57]. It is calculated as follows

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑛

where 𝐹𝑛 is the number of false negatives [58]. In object detection recall can be used to

easily check a model’s ability to find all the interesting objects from an input image. But

as with precision, recall alone does not give a complete measure of model’s accuracy.

17

The model can achieve a high recall score just by predicting bounding boxes everywhere

in an image, which as an output does not convey much information.

3.2.3 Precision-Recall Curve

The precision-recall curve is a plot that links two metrics: precision on the y-axis and

recall on the x-axis [59]. The plot can be used to calculate a new metric AUC (area under

curve) which represents the area left under the precision-recall curve. This new metric is

a combination of precision and recall and can mostly overcome the view limitations of its

components. The AUC score considers 𝑇𝑝, 𝐹𝑝 and 𝐹𝑛 which are the meaningful numbers

for object detection. Therefore, it can be used as a complete metric for a model’s detec-

tion accuracy. However, the AUC score alone does not show the ratio between precision

and recall which makes the precision-recall curve also important in a model’s accuracy

analysis. The AUC also does not consider which IoU threshold is used to calculate 𝑇𝑝,

𝐹𝑝 and 𝐹𝑛. An example precision-recall curve with AUC scores created by YOLOv5 frame-

work is show in Figure 13.

 A precision-recall curve generated by YOLOv5 framework. The numbers
in the legend show the AUC scores of the curves representing different classes.

18

3.2.4 Mean Average Precision

The mAP (mean average precision) metric is widely used for accuracy and regression

performance evaluation in object detection [60]. It is defined as the mean of class specific

AP (average precision) scores. AP represents the AUC score of an individual class in a

precision-recall curve. In object detection research mAP is often presented with a

decimal number added to it in some format like mAP@0.5 [61-64]. The @0.5 notation

represents the IoU threshold value used to calculate 𝑇𝑝, 𝐹𝑝 and 𝐹𝑛 [65]. The threshold

value can also be given as a range mAP@.5:.95 which represents the average of mAP

scores with threshold values from the given range [66]. The AUC scores in Figure 13

represent AP@0.5 scores for their corresponding classes and all classes score repre-

sents mAP@0.5.

With the IoU threshold value mAP offers an informatic performance metric for evaluating

object detector accuracy. The metric might still not be optimal for specific tasks as it does

not show the exact relation of precision and recall, but generally a higher mAP result with

the same IoU threshold is better. In some research AP is used to refer to the same metric

as precision and mAP is used to describe the average of the precision metric over all

predicted classes [67]. In this thesis AP and mAP are always used to describe the AUC

scores of a precision-recall curve.

19

4. EXPERIMENTS

This chapter goes through experimental setup and the results obtained in the experi-

ments. In section 4.1 the datasets are further reviewed and suitable ones are selected

for the experiments. Section 4.2 explains the parameters of the YOLOv5 object detector

used in the experiments. Then the algorithmic fine-tuning image selector is proposed in

section 4.3. Section 4.4 describes the preliminary experiment used to test the experi-

mental setup and datasets while section 4.5 presents the order and contents of the actual

experiments. Section 4.6 shows the experiment results. The final section 4.7 has a sum-

mary of the results with observations.

4.1 Datasets

Surveillance and adverse weather object detection datasets were examined and re-

viewed for use in this thesis’ experiments. The examined datasets were chosen from

publicly available data for their correspondence with the selected data domain. These

datasets were introduced in section 2.3. The datasets were then closely reviewed and

two of them were chosen to be used in the experiments: the AAU RainSnow dataset and

the DAWN dataset.

Many of the reviewed datasets had some major flaws that made them unsuitable for fine-

tuning experiments. The Virat dataset was left out because it only offered bounding

boxes and class labels for some objects in its data, which would not be a good basis for

fine-tuning. The CADC dataset, on the other hand, had too many objects labelled and

many of them were not visible in the images. As there was no easy way to remove the

annotations for objects that were not visible, the dataset was also discarded. The

MOTChallenge set was also left out as it had many uninteresting objects annotated and

did not offer class labels that could be used to sort them out. Also, object class labels

were considered crucial for real-life object detection cases and therefore data without

object classes could not be accepted.

A more promising dataset was the AU-DETRAC, which provided well labelled data that

had surveillance camera view angles. The ignored areas provided by the dataset were

insufficient and did not take into account the shaking of the cameras which caused some

unlabelled objects to show up in the images. Even with the flaws the data was still usable

for fine-tuning but was not chosen for the experiments because of its overall simplicity.

The scenes in the data had surveillance view angles, but were quite similar in terms of

20

weather conditions and surroundings. Additionally, with the ignored areas most of the

annotated objects would be in the middle of the image and quite easily recognizable.

This of course would be very convenient for computer vision based real-life applications

and probably would not need fine-tuning, which made the data less interesting for this

research.

The most suitable datasets were chosen to be used in the experiments. The AAU

RainSnow dataset was chosen as the main experiment dataset because its data repre-

sented both selected data domains and because it could be regarded as data from an

actual traffic surveillance application. The dataset contains different weather conditions

and has a surveillance view angle. It offers good annotations for all road users, which is

good enough for traffic surveillance applications. The set has some flaws in the data, but

not too much to prevent its usage. The biggest problem with the data is its size. The

dataset has enough data for fine-tuning but not for complete retraining, which removes

one possible comparison from the experiments. Nevertheless, it was seen as the best

matching public dataset for this research.

The second dataset chosen for the experiments was the DAWN dataset, which contained

four different adverse weather condition categories. It had some images with the surveil-

lance view angle mixed with other type of viewpoints. Although the data could not be

regarded as real-life application data, it was chosen for its wide variety of different

weather conditions that could be present in computer vision solutions. Studying the

amount of data needed for adapting to these conditions was seen as an important part

of this research. The dataset had similar flaws as the other reviewed sets, but again they

were not too prevalent. The number of images in the set was similar to that of AAU

RainSnow and would be sufficient for fine-tuning but not enough for complete retraining.

The data in AAU RainSnow was originally split into images from 7 different cameras.

This was pruned down to 5 cameras for the experimentation. The annotated images from

the cameras were from 2 to 4 different video clips. The images of one clip per camera

were chosen as test sets for the corresponding camera while the others were kept as

training images. The images were quickly scanned and the ones that had erroneous

annotations were removed. The cameras were named with abbreviations of their name

in the dataset. The used abbreviations for the cameras were: AAU-Had, AAU-Has, AAU-

Hjo, AAU-Ost and AAU-Rin. Figure 14 shows example images from these cameras.

21

 Example images from AAU RainSnow cameras selected for experiments.
The used abbreviation names for the cameras are AAU-Had, AAU-Has, AAU-Hjo,

AAU-Ost and AAU-Rin.

The Dawn dataset was also divided into training and testing images. It did not have spe-

cific cameras or video clips but was instead divided by 4 weather condition categories:

fog, rain, snow and sand. All these categories held 200 to 300 images, which were evenly

split into test and training sets for every category. Table 1 summarizes the numerical

features of the 2 selected datasets.

 AAU RainSnow and DAWN datasets’ numerical features.

 AAU RainSnow DAWN

Number of
cameras/categories

7 4

Number of images in total 2200 1027

Number of images per
camera/category

100-500 200-323

Number of annotated
classes

5 6

Average number of
annotated instances
per image

Around 5 Around 4

4.2 Object Detector

From the group of YOLO based detectors the YOLOv5 object detector was selected to

be used in the experiments because of its speed and accuracy combined with a good

framework that allows easy usage and versatile deployment options. The selected

YOLOv5 network structure was the midway YOLOv5m, as it has adequate depth for

feature extraction but is still quite fast to run. The network input resolution was chosen

to be 640x640 because images in AAU RainSnow and DAWN were mostly in low reso-

lution. All fine-tuning experiments conducted with the detector used a batch size of 28

and were run for 300 epochs.

22

4.3 Selection Algorithm for Fine-tuning Images

Fine-tuning experiments were conducted with full training sets and with various number

of selected fine-tuning images. The experiments with fewer images than full training sets

were conducted with both randomly selected images and images selected algorithmically

using the pretrained detection model. The idea in the algorithmic selection was to auto-

matically select good images for fine-tuning training. In applications where object detec-

tion is done on camera streams this kind of algorithm could be beneficial as it could

automate the process of selecting images for annotation and fine-tuning.

The selection algorithm used the pretrained YOLOv5 object detector to evaluate the im-

ages. It selected images based on the number of detected objects and the confidence

scores of these detections. The algorithm only uses detections with confidence over 0.15

in the selection. Detections with a confidence score of less than 0.15 were discarded as

they were too unreliable to be used in the image selection.

Half of the selected images had the largest number of detected object instances. The

number of detected objects was used as the first parameter to ensure that the resulting

image batch would have many example instances for feature learning. Large number of

example instances would also reduce the risk of overfitting. The second half of the se-

lected images had the lowest average detection confidence. Low detection confidence

was a good parameter because low confidence detections show that the pretrained

model is not performing well and would require further learning.

The selection algorithm did not take into account the differences in class instance counts

which could lead to underrepresentation of some classes in the selected images. Also

modifying the selection parameters and the confidence threshold would affect the selec-

tion results. This could affect the results of fine-tuning with the selected images but im-

proving and further testing the selection algorithm’s parameters and confidence thresh-

old was confined outside of this thesis’ scope. A Python class for running this algorithm

is presented in appendix A and is also available in Github1.

4.4 Preliminary Experiment

Before the actual experimentation the datasets and the setup for the experiments were

tested with a preliminary experiment. The preliminary experiment was conducted by run-

ning individual fine-tuning runs for each of AAU RainSnow’s cameras using their respec-

tive training sets. Afterwards the results were generated with validation runs of the test

1 https://github.com/Romeroxx/Object_Detection_Fine-tuning

23

sets using the pretrained default model and the newly fine-tuned one. The results

showed that the AAU RainSnow dataset’s person and bicycle classes were difficult to

detect. The pretrained model scores were very low and in some cameras the fine-tuning

had made improvements, but in others it had decreased the accuracy. The results of the

preliminary experiment is presented in appendix B.

The weak performance can mostly be explained with the small size of these objects in

the dataset’s images and the low amount of object instances. Small objects are harder

to detect due to their low resolution and noisiness [68]. The low number of object in-

stances in training data makes fine-tuning harder as there are fewer examples to learn

from. This also means that more examples are needed in training and fine-tuning to pro-

duce effective results. Additionally, people riding bicycles in the images were only la-

belled as bicycles and not as a bicycle and a person, unlike in the COCO dataset which

is the basis for the pretrained model. Examples of person and bicycle objects in AAU

RainSnow dataset are shown in Figure 15.

 Example images from AAU RainSnow showing the size of person and bi-
cycle class objects.

The person and bicycle object classes were decided to be left out of further experiments

because of their combination of small size and low object instance count. Using the bi-

cycle and person classes in the experiments would require data with more object in-

stances. The truck and bus classes also had low object instance count in the data, but

they were decided to be left in as they were larger in size and would affect the learning

of the car class. The DAWN dataset was also checked, and it also had a low object

instance count for these classes. For the DAWN dataset bicycles and motorcycles were

removed because of their low instance count, but the person class was retained because

in DAWN the person object sizes were larger than in AAU RainSnow.

It was also noted during the preliminary experiment that the AAU RainSnow data had

several annotations inside the masked areas or annotations for objects that were barely

visible. These annotations were mostly on the edges of the images where the masks

start or where cars were leaving the image area. These annotations were programmati-

cally removed from the data to reduce the number of annotations inside the masked

24

areas. Also, the number of marginally visible cars that were about to leave or enter the

image area was thus reduced because they were seen as uninteresting. The number of

images, remaining classes and their number of object instances for the 5 AAU RainSnow

and the 4 DAWN training sets after the modifications done in the preliminary experiment

are summarized in Table 2.

 The number of images and the number of class instances in AAU RainSnow and
DAWN training sets after modification.

 Number of
images

Number of
cars

Number of
trucks

Number of
buses

Number of
 persons

AAU-Had 89 453 25 0

AAU-Has 200 823 82 4

AAU-Hjo 296 1565 195 102

AAU-Ost 297 1199 107 20

AAU-Rin 199 385 37 5

DAWN fog 150 873 97 39 63

DAWN Rain 100 670 109 8 13

DAWN sand 162 936 127 33 84

DAWN snow 102 809 56 12 85

4.5 Conducted Experiments

Fine-tuning experiments were conducted on the selected datasets AAU RainSnow and

DAWN with the YOLOv5 object detector. The purpose of the experimentation was to find

out how many images are needed for good fine-tuning results with the selected data.

Additionally, the proposed data selection algorithm’s performance was to be tested. Re-

sults from all the experiment runs are presented in categorized tables in appendix B. The

results are also more thoroughly analysed in section 4.6.

The experimentation was conducted as 6 separate experiments. Experiment 1 used

each of AAU RainSnow’s cameras for individual fine-tuning runs. Results were obtained

with validation runs on the cameras’ test sets. Experiment 2 continued with fine-tuning

on the individual cameras with varying number of training images. Fine-tuning runs were

made for each camera with 10, 30, 50, 75 and 100 images selected using the selection

algorithm and random selection. Experiment 3 used images from 1, 2, 3 or 4 randomly

selected AAU RainSnow cameras for fine-tuning while results were gained by validation

with a camera that was not in the training set. The last experiment with the AAU

RainSnow dataset was Experiment 4. It used 5, 10, 15, 20, and 25 images from every

AAU RainSnow camera for fine-tuning with random and algorithmic selection. Validation

for these runs was done with all test sets.

25

After experimenting with AAU RainSnow, the DAWN dataset was used for similar exper-

iments. Experiment 5 used DAWN to fine-tune for individual weather condition categories

with 10, 30, 50, 75 and 100 randomly and algorithmically selected images. In Experiment

6 fine-tuning was also run for all weather categories with 5, 10, 15, 20 and 25 images

from every category. The resulting models of these runs were tested with the individual

categories and with all the categories respectively.

4.6 Results

The results from all 6 Experiments can be found in appendix B under individual experi-

ment headings. The main results were brought up in summarized format in the following

sections. In the sections the experiments are gone through in order. The main findings

are analysed in the summary chapter.

4.6.1 Experiment 1

The first experiment with the AAU RainSnow data showed the possible accuracy gains

of fine-tune training. The results shown in Table 3 present the AP scores for the car class

when validation was run with the pretrained model and the fine-tuned one. The results

show that fine-tuning with the camera’s own image data always improves the accuracy

of the predictions.

 The first experiment’s number of fine-tuning images and AP scores for the car
class with the pretrained and the fine-tuned model.

 AAU-Had AAU-Has AAU-Hjo AAU-Ost AAU-Rin Average

Number of
fine-tuning
images

89 200 296 297 199 216

Fine-tuned
car AP

0.895 0.923 0.924 0.902 0.662 0.861

Pretrained
car AP

0.798 0.827 0.549 0.703 0.327 0.641

The extent of the improvement seems to vary between the cameras. Some cameras like

AAU-Hjo get a large improvement while others like AAU-Had and AAU-Has get a smaller

improvement though this difference can probably be attributed to the differences in data.

The images of AAU-Had and AAU-Has feature daytime while AAU-Hjo has mostly night-

time scenery in its images. The pretrained model is trained on mostly daytime images so

it performs better on the AAU-Had and AAU-Has cameras. The fact that all the cameras

except AAU-Rin have around 0.9 AP after fine-tuning shows that the model can learn

new features given the data for that, but it also shows the possible learning limit of the

26

detector. Conclusions about the learning limit of the detector cannot be made with this

amount of data as only 100 to 300 images were used for training per camera. The AAU-

Rin camera’s low scores are probably due to its angle and the glare caused by the wet

road surface as is shown in Figure 16.

 Images from AAU-Rin camera showing the effects of glare on detection.
Images from left show ground truth, pretrained and fine-tuned detections.

The improvement on bus and truck class AP scores is quite different. On some cameras,

such as AAU-Hjo, there is major improvement in the scores but other cameras like AAU-

Had have a worse score than the pretrained model. These results can be explained with

the class instance counts of the training and test sets. Overall, the AAU RainSnow da-

taset has a small and varying number of truck and bus class instances while it has about

2 or more car instances per image. Table 4 shows class instance counts and fine-tuned

AP scores for these classes on AAU-Had and AAU-Hjo cameras. The other cameras

also had similar results.

 The first experiment’s fine-tuned AP scores and class instance counts for bus
and truck classes on AAU-Had and AAU-Hjo cameras.

 AAU-Had bus AAU-Had truck AAU-Hjo bus AAU-Hjo truck

Class AP 0.082 0.117 0.743 0.439

Training set
instances

0 25 102 195

Test set
instances

50 49 13 4

From the class instance counts it is easy to see the reason for the fine-tuned model’s

bad performance with AAU-Had as there are no buses and only a few trucks in AAU-

Had’s training set. AAU-Hjo on the other hand has a lot more class instances in its train-

ing set and is able to produce much better results. Although AAU-Hjo has more training

instances for the truck class it produces worse AP score than the bus class. This is due

to the small instance count of the test set as the truck class has only 4 test instances

which might not represent the class properly. Another contributing factor is the variety of

27

the truck and bus classes. Although these objects are often large in size, their appear-

ance varies and a model would need examples of many variants to effectively learn their

features.

4.6.2 Experiment 2

Fine-tuning with varying number of images in Experiment 2 showed that boosting the

performance of the model does not require all the training images. The runs with varying

number of images were repeated 5 times for AAU-Has and AAU-Hjo cameras to produce

statistically more relevant results. The results of these runs are presented in Figure 17

and Figure 18 where the charts’ bars are showing the average car class AP score over

the 5 separate runs. The error bars also show the minimum and maximum AP scores

produced in the experiment runs.

 Experiment 2 average car class AP scores over 5 fine-tuning runs with
varying number of training images from the AAU-Has camera training set.

Pretrained

A
v
e
ra
g
e
 c
a
r
c
la
s
s
 A
P

 ine-tuning image count

Random

Selected

28

 Experiment 2 average car class AP scores over 5 fine-tuning runs with
varying number of training images from the AAU-Hjo camera training set.

Both figures show that fine-tuning with 30 images is enough to produce a better AP score

than what the pretrained model could provide. It can also be seen that the accuracy

improves more significantly from 10 to 50 images than from 50 to 100. The AAU-Has

model achieves its best score at 75 images and seems to saturate after that while AAU-

Hjo is still further improved by fine-tuning with more than 100 images as can be seen

from comparing the fine-tuning run with 100 images to the results for AAU-Hjo in Exper-

iment 1. The AP score improvements could be seen on the actual detection level, as is

shown in Figure 19, which presents an image from AAU-Has and AAU-Hjo test sets with

ground truth, pretrained and fine-tuned detections. The AAU-Has camera model used

for the Figure 19 was fine-tuned with 50 images and the AAU-Hjo camera model with 75.

Pretrained

A
v
e
ra
g
e
 c
a
r
c
la
s
s
 A
P

 ine-tuning image count

Random

Selected

29

 Images from AAU RainSnow AAU-Has and AAU-Hjo test sets with
ground truth, pretrained and fine-tuned detections. The AAU-Has model fine-tun-

ing used 50 images while the AAU-Hjo model used 75.

In AAU-Has the differences between runs with randomly and algorithmically selected

images seem to be very small. Both selection practices seem to produce very even re-

sults which suggests that all images in AAU-Has training set are of good quality and

equally effective as fine-tuning images. AAU-Hjo on the other hand produces better re-

sults with randomly selected data when the fine-tuning image count is low. This is prob-

ably due to the fact that the AAU-Hjo camera has mostly night-time images, but the se-

lection algorithm uses the pretrained model which makes better detections from daytime

images. At a low fine-tuning image count this could lead the selection algorithm to prefer

the few daytime images preventing the model from learning night-time features properly.

This hypothesis is affirmed by the selection algorithm’s good performance with higher

image quantities.

The other cameras produced similar results as AAU-Has and AAU-Hjo except for AAU-

Rin which got a larger improvement by having more than 100 training images. Also, the

selection algorithm seemed to perform better with low image quantities than with higher

ones. This was again contributed to the glare effect which completely hides some of the

objects in AAU-Rin’s images. The selection algorithm probably does not detect anything

in the glare and prioritises images without it, which helps to a certain extent but has its

limit. If images with the glare effect are not selected for the training set, then the model

cannot learn the objects distorted by it.

30

4.6.3 Experiment 3

The Experiment 3 tested the generalization ability of the fine-tuned models inside the

AAU RainSnow dataset. The results of Experiment 3 showed that the similarity of the

training images and test images had a larger influence on the results than having more

training cameras. If the first camera used as a training set was similar to the test set,

then the resulting scores would be almost as high as with 4 training cameras and a larger

training set. Still, having more cameras usually resulted in better results as is seen from

Table 5 and Table 6, which show results for AAU-Had and AAU-Ost cameras. The train-

ing set cameras were selected randomly and the results of the random selections are

shown in the tables.

 Experiment 3 fine-tuned car class AP scores for AAU-Had camera.

Training
sets

AAU-Has AAU-Has,
AAU-Rin

AAU-Has, AAU-
Rin, AAU-Hjo

AAU-Has, AAU-Rin,
AAU-Hjo, AAU-Ost

AAU-Had
car AP

0.875 0.875 0.907 0.904

 Experiment 3 fine-tuned car class AP scores for AAU-Ost camera.

Training
sets

AAU-Rin AAU-Had,
AAU-Hjo

AAU-Had, AAU-
Hjo, AAU-Rin

AAU-Had, AAU-Hjo,
AAU-Rin, AAU-Has

AAU-Ost
car AP

0.495 0.783 0.795 0.836

The results for AAU-Had show that fine-tuning with just 1 camera resulted in the same

level of accuracy as training with 4 cameras. On the other hand, testing AAU-Ost with a

model fine-tuned with 4 cameras resulted in a much higher score than fine-tuning with 1

camera. Both test sets also show slightly stagnant states, where adding training images

from a new camera has little effect on the results. This shows that the similarity of the

fine-tuning images and the test images is more important than the quantity of the training

images.

4.6.4 Experiment 4

Experiment 4 tested fine-tuning for all 5 AAU RainSnow cameras (AAU-Had, AAU-Has,

AAU-Hjo, AAU-Ost and AAU-Rin) at the same time. The test was repeated 5 times as in

Experiment 2 to further validate the results. Figure 20 shows the resulting car class AP

scores over the 5 runs with error bars showing minimum and maximum results.

31

 Experiment 4 AP scores for the car class when fine-tuned with varying
number of images from all 5 of the AAU RainSnow cameras. The scores are an

average over 5 runs where the error bars show the minimum and maximum.

The results indicate that fine-tuning with 5 images from every camera is enough to pro-

duce a model that performs better overall than the pretrained one. The scores are im-

proved by adding more images but seem to somewhat saturate after using more than 75

images in total for fine-tuning. The AP score at the saturation point is very close to the

average of the individual camera scores obtained in Experiment 1. Figure 21 shows the

effects of fine-tuning with 15 images from all 5 cameras with the AAU-Had test set.

 An image from AAU RainSnow Had camera showing ground truth on the
left and pretrained detections in the middle. The rightmost image’s detections are

from a model that was fine-tuned with 15 images from every AAU RainSnow
camera.

The results show that randomly and algorithmically selected fine-tuning images produce

similar results. The selection algorithm seems to get slightly better results, but this is

mostly just a marginal difference. The biggest difference is in the run with 100 fine-tuning

images where one of the 5 runs with random images has resulted in a noticeably lower

Pretrained

A
v
e
ra
g
e
 c
a
r
c
la
s
s
 A
P

 ine-tuning image count

Random

Selected

32

score. This shift could be caused to the random selection of the fine-tuning images, but

in that case, there should be more deviation in the other tests as well. For that reason, it

is more likely that the stochasticity of the DNN training process caused it to end up with

less optimal weights on that single run. Nevertheless, the minimum and maximum scores

for the runs would suggest that the algorithmic selection produces less deviation in the

results, although the differences are not major. An exception to this is the run with 25

images where both selection criteria have a large deviation in the results. The deviation

in those runs is caused by the low number of training images. With a small training set it

is more likely that the model does not learn all the important features. A small learning

set also increases the possibility of overfitting.

4.6.5 Experiment 5

The DAWN dataset was tested in Experiment 5 with individual weather category runs.

The results on these categories were similar to results in Experiment 1. Fine-tuning with

30 images in all categories was enough to produce a better score than what the pre-

trained model could achieve. Almost top-level accuracy was achieved with 50 or 75 im-

ages. Figure 22 shows the average AP scores for 5 runs on every image count with the

rain weather category. One of the runs with 75 fine-tuning images produced almost 0 AP

scores with all classes. As no other run behaved similarly this result was dismissed as a

by-product of stochasticity in the DNN training process.

 Average car class AP scores over 5 runs for DAWN dataset’s rain cate-
gory in Experiment 5. The error bars show minimum and maximum from the 5

runs.

Pretrained

A
v
e
ra
g
e
 c
a
r
c
la
s
s
 A
P

 ine-tuning image count

Random

Selected

33

Results in Figure 22 show that randomly and algorithmically selected images produce

scores of the same level. Both have some deviation in the results with lower number of

images but get more stable with larger training image batches. The runs with fog, snow

and sand weather categories produced slightly better results with the selection algorithm,

but again these differences were mostly marginal. Figure 23 shows the detection accu-

racy improvements produced by the 50-image fine-tuning with the rain category.

 Ground truth, pretrained and 50-image fine-tuned detections on DAWN
dataset’s rain category.

Similar to the AAU RainSnow the DAWN dataset also has a varying number of object

instances in other classes than the car class which has around 4 instances per image.

The AP scores for the truck class were similar to the scores in Experiment 1. Having

more truck instances in the training set improved the resulting accuracy and with suffi-

cient number of instances the resulting model could surpass the pretrained model. The

AP scores for the bus class were similar to the truck class as the scores increased with

more training samples but they would not surpass the pretrained model in every weather

category. Additionally, none of the fine-tuned models were able to surpass the pretrained

model’s accuracy with the person class. This shows that more training instances are

needed when fine-tuning for smaller sized classes. Some categories like rain had an

unexpectedly good score for the person class considering the number of training in-

stances which is mostly due to highly optimized pretrained weights. Table 7 shows pre-

trained scores and fine-tuned score averages over 5 runs for person, bus and truck clas-

ses in the rain category.

 Fine-tuned and pretrained person, bus and truck class AP scores for the DAWN
dataset’s rain category. Fine-tuned scores are averages over 5 runs.

 Person Bus Truck

Fine-tuned AP 0.612 0.373 0.680

Pretrained AP 0.735 0.221 0.457

Instance count
in training set

13 8 109

34

4.6.6 Experiment 6

All of DAWN dataset’s categories (fog, rain, sand and snow) were tested together in

Experiment 6. For this final experiment the runs were again repeated 5 times for statisti-

cal relevance. The resulting scores are compiled into Figure 24 which shows the average

car class AP scores over the 5 runs with minimums and maximums.

 DAWN all categories fine-tuning results with varying number of training
images and the pretrained result from Experiment 6 featuring AP scores for the
car class. The scores are an average over 5 runs where the error bars show the

minimum and maximum.

The scores are similar to Experiment 4, but the results are not identical. The fine-tuned

results achieve a higher score than the pretrained one with 40 images in total while in

Experiment 4 25 images were enough. The accuracy gain seems to stop after 60 images

which is in line with earlier results, but the improvement compared to the pretrained

model is lower than with AAU RainSnow dataset. This difference is mostly caused by

differences in the data as the pretrained model had a lot of errors with some cameras in

AAU RainSnow, but performed quite well with the DAWN data. The selection algorithm

produced slightly better results than random selection and had a bit less deviation in its

results with higher number of training images, which is similar to Experiment 4. Figure

25 shows example detections from the pretrained model and from the model fine-tuned

with 15 images from all categories.

Pretrained

A
v
e
ra
g
e
 c
a
r
c
la
s
s
 A
P

 ine-tuning image count

Random

Selected

35

 Ground truth, pretrained and fine-tuned detections on an image from
DAWN dataset’s snow category. The fine-tuning was done with 15 images from

every DAWN weather category.

4.7 Summary

The conducted experiments show that fine-tuning can be used to improve the detection

accuracy of the YOLOv5 detector. This result was obtained with two dataset both of

which produced similar results. In the experiments it was noticed that there is a limit to

how much the detectors accuracy can be improved by fine-tuning. This limit was rea-

soned to be caused by limitations in the detector architecture and the challenges in the

data. With real data there are always cases where objects are too obstructed or other-

wise too ambiguous for detection. In most of the experiments the limit was already

reached before using all the data in fine-tune training. There is no perfect object detector,

so a limit has to exist for each detector. Additionally, both used datasets had errors in

the ground truth which also lowers the maximum achievable score.

The results show that 50 or 75 fine-tuning images from one camera or weather category

can be enough to reach the detector’s accuracy limit. The same accuracy limit can be

reached with around 15 images per camera or weather category when fine-tuning the

detector for multiple cameras or categories. Adding more images in both cases can fur-

ther improve the accuracy, but the gains are clearly smaller. Also, having less than 30

images for fine-tuning in total is shown to result in large deviation between models trained

with the same data. Having too few fine-tuning images can result in a model that is worse

than the original pretrained model. These results would mean that the optimal number of

fine-tuning images is around 70 for 1 camera or 15 per camera for several cameras.

However, the experiments conducted in this thesis only covered fine-tuning with a small

number of images and complete retraining with thousands of images was not experi-

mented.

The results also showed that successful fine-tuning with a small number of images re-

quires sufficient number of object instances in the training data. When fine-tuning with a

36

small data batch, such as 50 images, the detection accuracy for classes with a low num-

ber of instances in training data was significantly lower compared to classes with high

number of instances. This is caused by the model overlearning the features of the scarce

example instances resulting in a lowered score with the testing data. It was seen that for

car sized objects an average of 2 or more instances per image was enough to get good

results. For larger objects like trucks even less could be enough, but more instances

always produced a better overall score. However, the same number of instances was

not sufficient for small objects like persons which shows that learning smaller sized ob-

jects requires more example class instances.

Automatic fine-tuning image selection was tested in the experiments. It was shown that

the proposed selection algorithm with the pretrained model could slightly improve fine-

tuning results when compared to random image selection. This improvement was not

present in all test cases but Experiments 4 and 6 showed a slight improvement in accu-

racy with the selection algorithm. Additionally, with larger number of fine-tuning images

the selection algorithm seemed to reduce the deviation of the results when compared to

random selection. These results are not enough to statistically prove that the algorithmic

selection produces better results than random image selection. Nevertheless, it is shown

that the proposed selection method does not lower the results, so using it would not

impair fine-tuning.

The algorithmic selection could also be used to collect data from real life camera

streams. The selection algorithm could be set do selection on a camera’s live video

stream to automatically collect fine-tuning images. A benefit of the algorithmic selection

is that it could be modified to suit the needs of the specific case. The algorithm could be

modified to only collect images with some rare class or to focus on small or big detec-

tions. However, the downside of algorithmic selection is that it does not work as well on

data that is unevenly challenging to the pretrained model. The algorithm could select

mostly simple images and discard many images that would be beneficial for learning, as

was seen in Experiment 2 with the AAU-Hjo camera. Though this problem can be allevi-

ated by modifying the algorithm to prioritise low confidence images or by changing to a

different detector.

37

5. CONCLUSIONS

This thesis studied the number of images that are needed to produce improved fine-

tuning results in object detection. The research was motivated by the need for precise

object detectors in various real-life applications where pretrained models are not good

enough. The goal was to find out an optimal number of fine-tuning images to use, as

labelling images can be time-consuming and costly if crowdsourcing is not possible. To

reach this goal, fine-tuning experiments were conducted on publicly available data using

the YOLOv5 object detector. Data was chosen to represent surveillance camera view

angles or adverse conditions, both of which could be present in a real scenario. In the

experiments fine-tuning image constraints were also surveyed and an algorithmic image

selector was proposed to further facilitate fine-tuning.

For the experiments, publicly available datasets were examined and reviewed. Two of

the reviewed sets were used in the experimentation: traffic surveillance dataset AAU

RainSnow and various weather conditions dataset DAWN. The experiments on the da-

tasets tested overall fine-tuning benefits on single traffic cameras and weather catego-

ries with different image quantities. Also, experiments were made to fine-tune a model

for several cameras or weather categories. The results showed that there is a limit on

how much fine-tuning can improve the accuracy and 50 to 75 images were enough to

produce results that are close to this limit for a single camera or category. Adding more

images would only marginally improve the results and having less than 30 images would

result in overlearning and worse accuracy than with the pretrained model. Similar results

were obtained by fine-tuning with 15 images per camera or weather category when using

multiple sources.

The experimental results also showed that to produce good results with only 75 images,

the data needs to contain a sufficient number of object instances. Good results were

achieved with car-sized objects when there were 2 or more instances on average. Larger

objects could be learned with fewer instances but having more would improve the accu-

racy. It was also noted that smaller objects require notably more example instances than

larger objects.

Algorithmic fine-tuning image selection was also tested. The proposed selector used the

pretrained model to make predictions and selected images with high object count or low

average confidence. This algorithm was tested against random selection and the exper-

38

iments showed that the algorithmic selection can improve the results slightly and de-

crease deviation between models fine-tuned with the same dataset. However, the im-

provement was mostly marginal and was not the case in all experiments, as some con-

ditions in the data impaired the selector’s performance. Overall, the selector produced

results that were at least as good as with random selection though, and so can be helpful

in gathering fine-tuning images from a real camera stream, in which it is hard to say when

random selection should be done.

From the experimental results it was concluded that fine-tuning a pretrained object de-

tector with a small number of images is a viable option in scenarios where improved

accuracy is required, but data sensitivity prevents crowdsourcing. The needed number

of images for improved results is low enough to be carried out as self-annotation. This

need is further reduced if there are multiple similar image sources, and a single model

can be fine-tuned with a small number of images from all of them. The self-annotation

process can be expedited with algorithmic image selection which can lower the time

spent on selecting good images for annotation.

All of the results in this thesis’ experimentation point to a similar number of required fine-

tuning images for cost optimal accuracy improvement. This makes the result credible,

but the experimentation was done with only two datasets and one object detector. Also

because of public data limitations the experiments could provide reliable results only on

the car class as other classes were underrepresented in the chosen datasets. To make

the results statistically more relevant, further research with different datasets and other

object classes is required.

Another interesting future research topic is to find out the how many images is required

to learn a new classes with fine-tuning. New classes that are similar to the ones known

by the pretrained model could be learned through fine-tuning. Information on require-

ments for learning a new class could be very useful, as real applications often need

detections from classes other than pretrained ones. Future work could also include fur-

ther testing with the image selection algorithm. Experiments conducted in this thesis only

used one type of configuration for the algorithm and already found out that it could be

beneficial. Additional testing with different configuration and focus points could yield bet-

ter results and so could further improve the cost efficiency of fine-tuning with self-anno-

tated data.

39

REFERENCES

[1] P. Chen, Y. Shi, Q. Zheng, Q. Wu, State-of-the-art of Object Detection Model
Based on YOLO. 2020 International Conference on Computer Network, Elec-
tronic and Automation (ICCNEA), 2020, pp. 101–105.

[2] E. Arkin, N. Yadikar, Y. Muhtar, K. Ubul, A Survey of Object Detection Based on
CNN and Transformer, 2021 IEEE 2nd International Conference on Pattern
Recognition and Machine Learning (PRML), 2021, pp. 99–108.

[3] H. Vaidwan, N. Seth, AS. Parihar, K. Singh, A study on transformer-based Object
Detection. 2021 International Conference on Intelligent Technologies (CONIT),
2021, pp. 1–6.

[4] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at
Scale, 2021 International Conference on Learning Representations (ICLR), 2021.

[5] Model Zoo, PyTorch, Available (referenced 04.03.2022):
https://pytorch.org/serve/model_zoo.html

[6] TensorFlow 2 Detection Model Zoo, GitHub, Available (referenced 04.03.2022):
https://github.com/tensorflow/models/blob/master/research/
object_detection/g3doc/tf2_detection_zoo.md

[7] I. Elezi, Z. Yu, A. Anandkumar, L. Leal-Taixe, JM. Alvarez, Not All Labels Are
Equal: Rationalizing The Labeling Costs for Training Object Detection, ArXiv.Org,
2021, Available: https://arxiv.org/abs/2106.11921

[8] M. Xu, Y. Bai, B. Ghanem, Missing Labels in Object Detection, Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, 2019, pp. 1-10.

[9] H. Su, J. Deng, L. Fei-Fei, Crowdsourcing annotations for visual object detection,
AAAI Workshop - Technical Report, 2012, pp. 40–46.

[10] X. Zhang, F. Yan, Y. Zhuang, H. Hu, C. Bu, Using an Ensemble of Incrementally
Fine-Tuned CNNs for Cross-Domain Object Category Recognition, IEEE access,
2019, Vol 7, pp. 33822–33833.

[11] A. Zhang, ZC. Lipton, M. Li, AJ. Smola, Dive into Deep Learning, ArXiv.Org,
2021, Available: https://arxiv.org/abs/2106.11342

[12] S. Arif, F. Shafait, Table Detection in Document Images using Foreground and
Background Features, 2018 Digital Image Computing: Techniques and Applica-
tions (DICTA), 2018, pp. 1–8.

[13] JU. Kim, Y. Man Ro, Attentive Layer Separation for Object Classification and Ob-
ject Localization in Object Detection, 2019 IEEE International Conference on Im-
age Processing (ICIP), 2019, pp. 3995–3999.

40

[14] J. Fan, J. Lee, I. Jung, Y. Lee, Improvement of Object Detection Based on Faster
R-CNN and YOLO, 2021 36th International Technical Conference on Cir-
cuits/Systems, Computers and Communications (ITC-CSCC), 2021, pp. 1–4.

[15] C-C. Wang, H. Samani, C-Y. Yang, Object Detection with Deep Learning for Un-
derwater Environment, 2019 4th International Conference on Information Tech-
nology Research (ICITR), 2019, pp. 1–6.

[16] Z. Zou, Z. Shi, Y. Guo, J. Ye, Object Detection in 20 Years: A Survey, ArXiv.Org,
2019, Available: https://arxiv.org/pdf/1905.05055.pdf

[17] X. Long, Z. Zheng, Y. Chi, R. Liu, A Mixed Two-stage Object Detector for Image
Processing of Power System Applications, 2020 IEEE 20th International Confer-
ence on Communication Technology (ICCT), 2020, pp. 1352–1355.

[18] R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich Feature Hierarchies for Accu-
rate Object Detection and Semantic Segmentation, 2014 IEEE Conference on
Computer Vision and Pattern Recognition, 2014, pp. 580–587.

[19] K. He, X. Zhang, S. Ren, J. Sun, Spatial Pyramid Pooling in Deep Convolutional
Networks for Visual Recognition, IEEE transactions on pattern analysis and ma-
chine intelligence, 2015, Vol. 37, Iss. 9, pp. 1904–1916.

[20] R. Girshick, Fast R-CNN, 2015 IEEE International Conference on Computer Vi-
sion (ICCV), 2015, pp. 1440–1448.

[21] S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: Towards real-time object de-
tection with region proposal network, Advances in Neural Information Processing
Systems, 2015, pp. 91–99.

[22] W. Hongtao, Y. Xi, Object Detection Method Based On Improved One-Stage De-
tector, 2020 5th International Conference on Smart Grid and Electrical Automa-
tion (ICSGEA), 2020, pp. 209–212.

[23] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You Only Look Once: Unified,
Real-Time Object Detection, 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016, pp. 779–788.

[24] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C-Y. Fu, A. Berg, SSD: Sin-
gle Shot MultiBox Detector, Computer Vision – ECCV, 2016, pp. 21–37.

[25] T-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollar, Focal Loss for Dense Object De-
tection, IEEE transactions on pattern analysis and machine intelligence, 2020,
Vol. 42, Iss. 2, pp. 318–327.

[26] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, Q. Tian, CenterNet: Keypoint Triplets for
Object Detection, 2019 IEEE/CVF International Conference on Computer Vision
(ICCV), 2019, pp. 6568–6577.

[27] J. Bi, Z. Zhu, Q. Meng, Transformer in Computer Vision, 2021 IEEE International
Conference on Computer Science, Electronic Information Engineering and Intelli-
gent Control Technology (CEI), 2021, pp. 178–188.

[28] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, S. Zagoruyko, End-to-
End Object Detection with Transformers, Computer Vision – ECCV 2020, Cham:
Springer International Publishing, 2020, pp. 213–229.

41

[29] X. Dai, Y. Chen, J. Yang, P. Zhang, L. Yuan, L. Zhang, Dynamic DETR: End-to-
End Object Detection with Dynamic Attention, 2021 IEEE/CVF International Con-
ference on Computer Vision (ICCV), 2021, pp. 2968–2977.

[30] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, et al. Swin Transformer: Hierar-
chical Vision Transformer using Shifted Windows, 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), 2021, pp. 9992–10002.

[31] H. Zhang, F. Li, S. Liu, L. Zhang, H. Su, J. Zhu, et al. DINO: DETR with Improved
DeNoising Anchor Boxes for End-to-End Object Detection, ArXiv.Org, 2022,
Available: https://arxiv.org/pdf/2203.03605v1.pdf

[32] Z. Liu, H. Hu, Y. Lin, Z. Yao, Z. Xie, Y. Wei, et al. Swin Transformer V2: Scaling
Up Capacity and Resolution, ArXiv.Org, 2021, Available:
https://arxiv.org/pdf/2111.09883v1.pdf

[33] Y. Wei, S. Liu, J. Sun, L. Cui, L. Pan, L. Wu, Big Datasets for Research: A Survey
on Flagship Conferences, 2016 IEEE International Congress on Big Data (Big-
Data Congress), 2016, pp. 394–401.

[34] The VIRAT Video Dataset, Kitware, Available (referenced 08.03.2022): https://vi-
ratdata.org/

[35] UA-DETRAC Benchmark Suite, University at Albany, Available (referenced
07.03.2022): https://detrac-db.rit.albany.edu/

[36] Canadian Adverse Driving Conditions Dataset, University of Waterloo, Available
(referenced 09.03.2022): http://cadcd.uwaterloo.ca/

[37] DAWN, Mendeley Data, Available (referenced 09.03.2022): https://data. men-
deley.com/datasets/766ygrbt8y/3

[38] H. Hedayati, BJ. McGuinness, MJ. Cree, JA. Perrone, Generalization Approach
for CNN-based Object Detection in Unconstrained Outdoor Environments. Inter-
national Conference Image and Vision Computing New Zealand, 2019.

[39] AAU RainSnow Traffic Surveillance Dataset, Kaggle, Available (referenced
10.03.2022): https://www.kaggle.com/aalborguniversity/aau-rainsnow

[40] Multiple Object Tracking Benchmark, MOTChallenge, Available (referenced
11.03.2022): https://motchallenge.net/

[41] G. Chen, X. Bai, G. Wang, L. Wang, X. Luo, M. Ji, et al. Subsurface Voids Detec-
tion from Limited Ground Penetrating Radar Data Using Generative Adversarial
Network and YOLOV5, The Institute of Electrical and Electronics Engineers, Inc
(IEEE) Conference Proceedings, 2021.

[42] Z. Feng, L. Guo, D. Huang, R. Li, Electrical Insulator Defects Detection Method
Based on YOLOv5, Proceedings of 2021 IEEE 10th Data Driven Control and
Learning Systems Conference, DDCLS, 2021, pp. 979–984.

[43] AK. Shetty, I. Saha, RM. Sanghvi, SA. Save, YJ. Patel, A Review: Object Detec-
tion Models, 2021 6th International Conference for Convergence in Technology
(I2CT), 2021, pp. 1–8.

42

[44] Y. Kun, H. Man, L. Yanling, Multi-target Detection in Airport Scene Based on
Yolov5, 2021 IEEE 3rd International Conference on Civil Aviation Safety and In-
formation Technology (ICCASIT), 2021, pp. 1175–7.

[45] U. Nepal, H. Eslamiat, Comparing YOLOv3, YOLOv4 and YOLOv5 for Autono-
mous Landing Spot Detection in Faulty UAVs, Sensors (Basel, Switzerland),
2022, Vol. 22, Iss. 2

[46] E. Cengil, A. Cinar, M. Yildirim, A Case Study: Cat-Dog Face Detector Based on
YOLOv5, 2021 International Conference on Innovation and Intelligence for Infor-
matics, Computing, and Technologies (3ICT), 2021, pp. 149–153.

[47] R. Xu, H. Lin, K. Lu, L. Cao, Y. Liu, A forest fire detection system based on en-
semble learning, MDPI Forests, 2021, Vol. 12, Iss. 2, pp. 1–17.

[48] H. Wang, S. Sun, X. Wu, L. Li, H. Zhang, M. Li, et al. A YOLOv5 Baseline for Un-
derwater Object Detection, OCEANS 2021: San Diego – Porto, 2021, pp. 1–4.

[49] X. Song, W. Gu, Multi-objective real-time vehicle detection method based on
yolov5, Proceedings - 2021 International Symposium on Artificial Intelligence and
its Application on Media, ISAIAM 2021, 2021, pp. 142–145.

[50] S. Li, Y. Li, Y. Li, M. Li, X. Xu, YOLO-FIRI: Improved YOLOv5 for Infrared Image
Object Detection, IEEE access, 2021, Vol. 9, 141861–141875.

[51] J. Tang, S. Liu, B. Zheng, J. Zhang, B. Wang, M. Yang, Smoking Behavior Detec-
tion Based on Improved YOLOv5s Algorithm, 2021 9th International Symposium
on Next Generation Electronics, ISNE 2021, 2021.

[52] G. Jocher, Yolov5, GitHub, Available (referenced 15.03.2022):
https://github.com/ultralytics/yolov5

[53] D. Julian, S. Raschka, J. Hearty, Python: Deeper Insights into Machine Learning,
Module 1, Chapter 6, Looking at different performance evaluation metrics, Packt
Publishing, 2016.

[54] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, et al. Deep Learning for
Generic Object Detection: A Survey, International journal of computer vision,
2019, Vol. 128, Iss. 2, pp. 261–318.

[55] SA. Khan, Z. Ali Rana, Evaluating Performance of Software Defect Prediction
Models Using Area Under Precision-Recall Curve (AUC-PR), 2019 2nd Interna-
tional Conference on Advancements in Computational Sciences (ICACS), The
University of Lahore, 2019, pp. 1–6.

[56] I. Cherepanov, A. Mikhailov, A. Shigarov, V. Paramonov, On automated workflow
for fine-tuning deepneural network models for table detection in document im-
ages, 2020 43rd International Convention on Information, Communication and
Electronic Technology (MIPRO), Croatian Society MIPRO, 2020, pp. 1130–1133.

[57] A. Bradley, RP. Duin, P. Paclik, TC. Landgrebe, Precision-recall operating char-
acteristic (P-ROC) curves in imprecise environments, 18th International Confer-
ence on Pattern Recognition (ICPR’06), 2006, pp. 123–127.

43

[58] MR. Prabowo, N. Hudayani, S. Purwiyanti, SR. Sulistiyanti, FXA. Setyawan, A
moving objects detection in underwater video using subtraction of the back-
ground model, 2017 4th International Conference on Electrical Engineering,
Computer Science and Informatics (EECSI), 2017, pp. 1–4.

[59] J. Keilwagen, I. Grosse, J. Grau, Area under precision-recall curves for weighted
and unweighted data, PloS one, 2014, Vol. 9, Iss. 3.

[60] H. Zhu, H. Wei, B. Li, X. Yuan, N. Kehtarnavaz, A review of video object detec-
tion: Datasets, metrics and methods, Applied sciences, 2020, Vol. 10, Iss. 21, pp.
1–24

[61] A. Tejada-Mesias, I. Dongo, Y. Cardinale, J. Diaz-Amado, ODROM: Object De-
tection and Recognition supported by Ontologies and applied to Museums, 2021
XLVII Latin American Computing Conference (CLEI), 2021, pp. 1–10.

[62] M-C. Le, M-H. Le, Human Detection and Tracking for Autonomous Human-follow-
ing Quadcopter, Proceedings of 2019 International Conference on System Sci-
ence and Engineering, ICSSE, 2019, pp. 6–11.

[63] J. Huang, M. Yang, H. Zhi, L. Xiang, H. Zhang, Y. Wu, Small Object Detection of
Non-standard THT Solder Joints Based on Improved YOLOv3, 2021 17th Inter-
national Conference on Computational Intelligence and Security (CIS), 2021, pp.
608–611.

[64] T, Zhang, L. Li, An Improved Object Detection Algorithm Based on M2Det, 2020
IEEE International Conference on Artificial Intelligence and Computer Applica-
tions (ICAICA), 2020, pp. 582–585

[65] D. Patel, F. Patel, S. Patel, N. Patel, D. Shah, V. Patel, Garbage Detection using
Advanced Object Detection Techniques, 2021 International Conference on Artifi-
cial Intelligence and Smart Systems (ICAIS), 2021, pp. 526–531.

[66] S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks, IEEE transactions on pattern analysis
and machine intelligence, 2017, Vol. 39, Iss. 6, pp. 1137–1149.

[67] F. Joy, V. Vijayakumar, Multiple object detection in surveillance video with do-
main adaptive incremental fast rcnn algorithm, Indian journal of computer science
and engineering, 2021, Vol. 12, Iss. 4, pp. 1018–1026.

[68] P. Fang, Y. Shi, Small Object Detection Using Context Information Fusion in
Faster R-CNN, 2018 IEEE 4th International Conference on Computer and Com-
munications (ICCC), 2018, pp. 1537–1540.

44

APPENDIX A: SELECTION ALGORITHM PYTHON
CLASS

import torch
class Selector:

 def __init__(self, selected_labels, selection_size,
 label_multipliers=[]):
 """
 PARAMS:
 selected_labels: List of COCO label strings representing
 the object classes that will be counted
 for the selection.
 selection_size: Number of images to select
 label_multipliers: List of multipliers for object classes
 """

 # Initialize YOLOv5 detection model
 self.model = torch.hub.load('ultralytics/yolov5', 'yolov5m')
 self.model.conf = 0.15
 self.model.iou = 0.45

 self.selected_labels = selected_labels
 self.reset(selection_size)

 def reset(self, selection_size, label_multipliers=[]):
 """
 PARAMS:
 selection_size: Number of images to select
 label_multipliers: List of multipliers for rare classes
 """

 count_selection_size = int(selection_size/2)
 if selection_size % 2:
 count_selection_size += 1

 # Reset lists for image infromation saving
 self.selected_image_counts = [0] * count_selection_size
 self.count_image_scores = [2.0] * count_selection_size
 self.count_selected_images = [None] * count_selection_size
 self.lowest_count = 0
 self.lowest_count_index = 0

 self.selected_image_scores = [2.0] * int(selection_size/2)
 self.score_selected_images = [None] * int(selection_size/2)
 self.highest_score = 2.0
 self.highest_score_index = 0

 # Generate dummy label multipliers if not given
 if not label_multipliers:
 label_multipliers = [1] * len(self.selected_labels)

 self.multipliers = {}
 for i, label in enumerate(self.selected_labels):
 self.multipliers[label] = label_multipliers[i]

45

 def get_selected(self):
 """
 RETURNS:
 List of selected image identifiers
 """
 return list(self.count_selected_images +
 self.score_selected_images)[:]

 def do_selection(self, image, image_name):
 """
 This method is used to do selection on images. The method
 saves selected image identifiers to class members. The
 selected images can be queried with get_selected() method.
 The reset() method canbe used to restart the selection
 done by this method.

 PARAMS:
 image: Next image to process as numpy array in RBG format
 image_name: Image identifier as string
 """
 # Do inference with YOLOv5
 results = self.model([image], size=640)

 total_count = 0
 average_score = 0

 names = results.names
 # Loop through detections and calculate count and score
 for i in range(results.n):
 for j in range(len(results.xyxy[i])):

 label = names[int(results.xyxy[i][j][-1])]
 score = results.xyxy[i][j][-2].item()

 if label in self.selected_labels:
 total_count += 1 * self.multipliers[label]
 average_score += score

 # Calculate average score
 if total_count > 0:
 average_score /= total_count
 else:
 average_score = 1.0

 if total_count > self.lowest_count:
 # Copy the score and name of the now replaced image
 replaced_image_name =

self.count_selected_images[self.lowest_count_index]
 replaced_image_score =

self.count_image_scores[self.lowest_count_index]

 # Save the new images information
 self.selected_image_counts[self.lowest_count_index] = total_count
 self.count_selected_images[self.lowest_count_index] = image_name
 self.count_image_scores[self.lowest_count_index] = average_score

 # Get new lowest count and list index
 self.lowest_count_index =

self.count_selected.index(min(self.count_selected))

46

 self.lowest_count = self.count_selected[self.lowest_count_index]

 # Set the replaced image's score and name for score
 # selection check
 average_score = replaced_image_score
 image_name = replaced_image_name

 if average_score < self.highest_score:
 # Save the new images information
 self.selected_image_scores[self.highest_score_index] =

average_score
 self.score_selected_images[self.highest_score_index] = image_name

 # Get new highest score and list index
 self.highest_score_index =

self.selected_image_scores.index(max(self.selected_image_scores))
 self.highest_score =

self.selected_image_scores[self.highest_score_index]

47

APPENDIX B: EXPERIMENTATION RESULTS

Preliminary Experiment

Person AP Bicycle AP Car AP Bus AP Truck AP

Had fine-tuned 0.024 0.347 0.878 0.047 0.172

Had pretrained 0.018 0.096 0.782 0.756 0.273

Has fine-tuned 0.137 0.440 0.911 0.033 0.738

Has pretrained 0.054 0.091 0.816 0.262 0.691

Hjo fine-tuned 0.203 0.077 0.889 0.841 0.427

Hjo pretrained 0.314 0.000 0.492 0.127 0.081

Ost fine-tuned 0.399 0.543 0.814 0.391 0.062

Ost pretrained 0.001 0.160 0.510 0.570 0.015

Rin fine-tuned 0.102 0.002 0.534 0.132

Rin pretrained 0.343 0.000 0.282 0.097

Experiment 1 Second Run with Modified Data

Car AP Bus AP Truck AP

Had fine-tuned 0.895 0.082 0.117

Had pretrained 0.798 0.757 0.279

Has fine-tuned 0.923 0.084 0.751

Has pretrained 0.827 0.262 0.691

Hjo fine-tuned 0.924 0.743 0.439

Hjo pretrained 0.549 0.127 0.100

Ost fine-tuned 0.902 0.470 0.081

Ost pretrained 0.703 0.570 0.015

Rin fine-tuned 0.662 0.102

Rin pretrained 0.327 0.097

Experiment 1 Rerun with Fewer Images

AAU RainSnow, Has camera average results from 5 runs.

Random Car AP Bus AP Truck AP Selected Car AP Bus AP Truck AP

10 0.743 0.008 0.146

0.723 0.013 0.193

30 0.869 0.017 0.624

0.874 0.047 0.656

50 0.900 0.097 0.611

0.903 0.047 0.718

75 0.918 0.046 0.720

0.917 0.078 0.765

100 0.928 0.074 0.805

0.925 0.215 0.756

48

AAU RainSnow, Hjo camera average results from 5 runs.

Random Car AP Bus AP Truck AP Selected Car AP Bus AP Truck AP

10 0.614 0.029 0.009

0.279 0.001 0.010

30 0.824 0.025 0.072

0.776 0.293 0.029

50 0.853 0.585 0.028

0.823 0.307 0.019

75 0.867 0.720 0.130

0.858 0.626 0.094

100 0.886 0.702 0.132

0.890 0.702 0.068

AAU RainSnow, Had camera results.

Random Car AP Bus AP Truck AP Selected Car AP Bus AP Truck AP

10 0.629 0.039 0.019

0.706 0.038 0.029

30 0.791 0.038 0.056

0.849 0.187 0.109

50 0.866 0.277 0.198

0.872 0.185 0.073

75 0.870 0.198 0.135

0.903 0.064 0.125

100 0.895 0.056 0.064

AAU RainSnow, Ost camera results.

Random Car AP Bus AP Truck AP Selected Car AP Bus AP Truck AP

10 0.690 0.157 0.027

0.654 0.256 0.023

30 0.810 0.176 0.043

0.847 0.450 0.057

50 0.896 0.838 0.082

0.909 0.621 0.060

75 0.920 0.625 0.053

0.892 0.614 0.067

100 0.874 0.730 0.129

AAU RainSnow, Rin camera results.

Random Car AP Bus AP Selected Car AP Bus AP

10 0.041 0.000

0.170 0

30 0.390 0.095

0.501 0.025

50 0.473 0.096

0.503 0.070

75 0.543 0.013

0.479 0.096

100 0.551 0.054

Experiment 2

AAU RainSnow, car AP results with 1 to 4 camera training set.

Had Has Hjo Ost Rin

1 camera 0.875 0.864 0.695 0.495 0.600

2 cameras 0.875 0.872 0.780 0.783 0.637

3 cameras 0.907 0.881 0.807 0.795 0.737

4 cameras 0.904 0.912 0.780 0.836 0.748

49

AAU RainSnow, bus AP results with 1 to 4 camera training set.

Had Has Hjo Ost Rin

1 camera 0.525 0.301 0.222 0.054 0.005

2 cameras 0.680 0.209 0.288 0.162 0.001

3 cameras 0.743 0.188 0.340 0.254 0.033

4 cameras 0.748 0.227 0.454 0.439 0.081

AAU RainSnow, truck AP results with 1 to 4 camera training set.

Had Has Hjo Ost Rin

1 camera 0.169 0.496 0.199 0.051 0.036

2 cameras 0.257 0.511 0.248 0.242 0.116

3 cameras 0.543 0.517 0.269 0.298 0.141

4 cameras 0.502 0.687 0.397 0.374 0.186

Experiment 3

AAU RainSnow, average results from all 5 runs with all cameras.

Random Car AP Bus AP Truck AP Selected Car AP Bus AP Truck AP

25 0.724 0.069 0.142

0.737 0.052 0.093

50 0.833 0.326 0.355

0.833 0.435 0.221

75 0.856 0.342 0.295

0.861 0.524 0.342

100 0.813 0.538 0.383

0.870 0.565 0.421

125 0.867 0.516 0.408

0.879 0.541 0.541

Pretrained 0.705 0.528 0.464

Experiment 4

DAWN dataset, rain category average results from all 5 runs.

Person AP Car AP Bus AP Truck AP

Random 10 0.004 0.659 0.034 0.107

Random 30 0.113 0.838 0.219 0.514

Random 50 0.403 0.875 0.093 0.686

Random 75 0.449 0.857 0.312 0.616

Random 100 0.602 0.899 0.425 0.647

Pretrained 0.735 0.735 0.221 0.457

Selected 10 0.001 0.696 0.113 0.261

Selected 30 0.005 0.826 0.136 0.514

Selected 50 0.205 0.872 0.177 0.674

Selected 75 0.549 0.895 0.231 0.688

Selected 100 0.616 0.895 0.318 0.671

50

DAWN dataset, fog category results.

Person AP Car AP Bus AP Truck AP

Random 10 0.010 0.628 0.254 0.018

Random 30 0.495 0.796 0.382 0.196

Random 50 0.609 0.882 0.527 0.381

Random 75 0.582 0.888 0.583 0.375

Random 100 0.761 0.902 0.662 0.430

Pretrained 0.784 0.806 0.754 0.291

Selected 10 0.002 0.685 0.251 0.107

Selected 30 0.028 0.851 0.441 0.246

Selected 50 0.705 0.898 0.428 0.387

Selected 75 0.724 0.893 0.646 0.504

Selected 100 0.805 0.911 0.712 0.512

DAWN dataset, sand category results.

Person AP Car AP Bus AP Truck AP

Random 10 0.011 0.676 0.014 0.025

Random 30 0.489 0.809 0.134 0.250

Random 50 0.678 0.842 0.199 0.257

Random 75 0.710 0.864 0.313 0.364

Random 100 0.696 0.880 0.380 0.486

Pretrained 0.738 0.738 0.674 0.365

Selected 10 0.007 0.567 0.033 0.017

Selected 30 0.225 0.799 0.327 0.190

Selected 50 0.553 0.848 0.366 0.301

Selected 75 0.773 0.867 0.349 0.395

Selected 100 0.740 0.888 0.371 0.437

DAWN dataset, snow category results.

Person AP Car AP Bus AP Truck AP

Random 10 0.203 0.497 0.047 0.036

Random 30 0.416 0.757 0.042 0.057

Random 50 0.590 0.814 0.513 0.239

Random 75 0.737 0.811 0.277 0.447

Random 100 0.711 0.827 0.712 0.546

Pretrained 0.760 0.767 0.572 0.446

Selected 10 0.111 0.603 0.023 0.062

Selected 30 0.523 0.778 0.086 0.310

Selected 50 0.641 0.828 0.268 0.384

Selected 75 0.644 0.820 0.223 0.465

Selected 100 0.692 0.807 0.446 0.495

51

Experiment 5

DAWN dataset, average results from all 5 runs with all categories.

Person AP Car AP Bus AP Truck AP

Random 20 0.088 0.695 0.072 0.128

Random 40 0.541 0.808 0.222 0.258

Random 60 0.597 0.830 0.245 0.391

Random 80 0.646 0.851 0.416 0.407

Random 100 0.678 0.852 0.442 0.468

Pretrained 0.740 0.796 0.631 0.382

Selected 20 0.048 0.693 0.097 0.199

Selected 40 0.438 0.822 0.320 0.339

Selected 60 0.631 0.844 0.257 0.422

Selected 80 0.642 0.848 0.495 0.473

Selected 100 0.666 0.860 0.532 0.461

