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ABSTRACT:
In this article, the application of spatial covariance matching is investigated for the task of producing spatially

enhanced binaural signals using head-worn microphone arrays. A two-step processing paradigm is followed,

whereby an initial estimate of the binaural signals is first produced using one of three suggested binaural rendering

approaches. The proposed spatial covariance matching enhancement is then applied to these estimated binaural sig-

nals with the intention of producing refined binaural signals that more closely exhibit the correct spatial cues as dic-

tated by the employed sound-field model and associated spatial parameters. It is demonstrated, through objective and

subjective evaluations, that the proposed enhancements in the majority of cases produce binaural signals that more

closely resemble the spatial characteristics of simulated reference signals when the enhancement is applied to and

compared against the three suggested starting binaural rendering approaches. Furthermore, it is shown that the

enhancement produces spatially similar output binaural signals when using these three different approaches, thus

indicating that the enhancement is general in nature and could, therefore, be employed to enhance the outputs of

other similar binaural rendering algorithms. VC 2022 Author(s). All article content, except where otherwise noted, is
licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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I. INTRODUCTION

The binaural reproduction of sound scenes captured

using wearable microphone arrays has gained renewed inter-

est in recent years with such arrays now being integrated

into head-worn devices and used for augmented and virtual

reality (AR/VR) applications.1–5 In the context of hearing

assistive devices, such as hearing aids, the relatively recent

trend of including a data-link between devices has also

prompted new proposals that take advantage of this freedom

to share signals.5–7 While there are similarities between the

binaural rendering algorithms intended for AR/VR devices

and those intended for binaural hearing aids, it should be

acknowledged that there are some differing requirements.

However, it should be emphasized that one important design

criteria, which is relevant to all modern head-worn devices

and considered in recent related research,4–9 is the preserva-

tion of sound source localization cues. Furthermore,

although such wearable devices have historically been lim-

ited in terms of hardware, it may be argued that with the

introduction of a data-link in binaural hearing aids and as

more sensors are integrated into future models, such devices

are converging toward the high-sensor count microphone

arrays used for high resolution spatial audio applications.

Traditionally, spherical microphone arrays (SMAs)

with uniform sensor distributions have been popular for

spatial audio capturing and reproduction due to their consistent

spatial resolution for all directions. SMAs also allow for con-

venient conversions of the microphone array signals into

spherical harmonic signals with numerous signal-independent

proposals available for mapping these signals to the binaural

channels.10–13 Other linear methods include binaural beam-

forming approaches.2,14 As a result of the linear mapping of

signals, these methods retain high signal fidelity. However, the

spatial accuracy of the reproduction is inherently limited by

the number of microphones in the array. Signal-dependent bin-

aural rendering alternatives, on the other hand, have been dem-

onstrated to surpass linear rendering methods in terms of the

perceived spatial accuracy15–18 when using the same number

or fewer input channels. These methods are often built on per-

ceptually motivated sound-field models and estimate the spa-

tial parameters over time and frequency, subsequently using

this information to map the input signals to the binaural chan-

nels in an adaptive and more informed manner. However, due

to the nature of time-frequency processing, the signal fidelity

of the output signals may be degraded. Furthermore, in prac-

tice, such processing is not always guaranteed to produce out-

put signals that have the intended interchannel relationships

dictated by the employed sound-field model. Acknowledging

these issues, the concept of employing spatial covariance

matching was proposed by Vilkamo et al.,19 which may be

considered as a general framework that can be used to enhance

spatial audio algorithms by posing them as optimal mixing

problems. This alternative approach relies on specifying thea)Electronic mail: janani.fernandez@aalto.fi
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interchannel relationships that the output signals should exhibit

and working backward to determine the suitable mixing matri-

ces to apply to binaural signals that are produced by an existing

binaural rendering method. Such spatial covariance matching

based solutions have been shown to attain both high spatial

accuracy and signal fidelity.20–22 However, these previous

works only considered the use of SMAs as input, with the appli-

cation of spatial covariance matching yet to be explored in the

context of microphone arrays affixed to wearable devices.

With the integration of microphone arrays becoming

increasingly common in AR/VR devices and the adoption of

a data-link in binaural hearing aids, there is a growing need

for robust and general algorithms that can render binaural

signals of high spatial accuracy for application within future

devices. Given the benefits of spatial covariance matching

based enhancements, as demonstrated for the capture and

reproduction of sound-fields using SMAs,20–22 it is postu-

lated that similar processing may be used for head-worn

arrays, which have sensors nonuniformly arranged over

irregular and comparatively larger geometries and, thus,

existing spherical harmonic domain solutions would be lim-

ited by a narrow operating bandwidth.

Therefore, in this article, spatial covariance matching19

is explored for the task of enhancing the binaural rendering

of head-worn microphone arrays. A sound-field model com-

prising a single source and an isotropic diffuse component

per time-frequency tile, as used previously in Refs. 15, 18,

and 23, serves as the foundation for this study. Three start-

ing binaural rendering methods, which are inspired by hear-

ing aid related literature,24–27 are formulated and used to

produce initial estimates of the binaural signals. These

methods are based solely on signal-domain operations and

may, therefore, not be able to produce binaural signals that

fully conform to the employed sound-field model; due to,

for example, frequency-dependent variations of the

employed beamformers and/or their handling of diffuse

components in the captured sound scene. It is then upon

these initial estimates of the binaural signals that the pro-

posed covariance domain enhancements are applied to

obtain refined estimates of the binaural signals. These

refined binaural signals aim to more closely match the

employed sound-field model and should, therefore, better

reproduce the intended spatial cues.

The evaluation of the proposed enhancement involved

the construction of an eight-sensor microphone array, which

was affixed to the temples of a pair of eyeglasses. The array

was then mounted on a dummy head and subsequently mea-

sured in a free-field environment. This permitted the simula-

tion of reference binaural signals using the head related

transfer functions (HRTFs) of the dummy head, along with

the array transfer functions used to simulate the correspond-

ing array recordings to be passed through the rendering

algorithms under test. Next, objective evaluations were

performed based on a single source in a diffuse-field with

varying ratios, followed by subjective listening tests of mul-

tisource scenarios with and without simulated room reflec-

tions. The results for both of the evaluations indicate that,

when applied to and compared with the initial binaural ren-

ders, the proposed enhancements produce binaural signals

that more closely resemble the reference binaural signals in

the majority of cases.

This article is organized as follows. Section II provides

background literature regarding binaural rendering methods

intended for hearing assistive and AR/VR devices. Section

III details the sound-field model employed for this study.

Section IV describes the proposed spatial covariance match-

ing based enhancements, which may be applied to the output

signals of the three suggested rendering approaches detailed

in Sec. V. Information pertaining to the constructed eight-

sensor microphone array is provided in Sec. VI, which is

used for the evaluations described in Sec. VII. The evalua-

tion results and discussions are given in Sec. VIII, and the

article is concluded in Sec. IX.

II. BACKGROUND

A. Binaural rendering in hearing assistive devices

Within the long-established and vast body of literature

surrounding hearing aid processing,6,28 there are references

to a number of proposals for rendering the signals of head-

worn microphone arrays. Many of the approaches cited tend

to focus only on enhancing the signal-to-noise ratio (SNR)

with the primary requirements being to improve speech

intelligibility29 and reduce cognitive listening effort.30 Blind

source separation31 and multichannel Wiener filtering32 are

examples of SNR enhancing algorithms that are well estab-

lished in practice for monaural or bilateral hearing aid devi-

ces. These algorithms, however, have also been shown to

lead to degradations in signal quality28 and often do not

seek to preserve the spatial attributes of the original sound

scene.33 In the context of monaural and bilateral hearing

aids, however, the benefits arising due to the improved SNR

are generally deemed to outweigh these drawbacks.

However, owing to the introduction of a data-link

between a pair of modern hearing aid devices, collectively

referred to as a binaural hearing aid, the primary design

goals for newer devices have gravitated more toward

enhancing the SNR and preserving the localization

cues.7,8,24,34,35 Many of the algorithms employed are based

on the use of relative-transfer functions (RTFs),36 which, in

the free-field case, refer to the array steering vectors aligned

to two reference sensor positions located near the left and

right ears. Spatial filters (also known as beamformers) may

be steered toward sound sources from the perspective of

each reference sensor and routed to the respective ear canals

of the listener. The binaural minimum variance distortion-

less response (MVDR) algorithm25 is one example of an

applicable beamformer for this task. Not only is the SNR

enhanced by such processing, but the interaural time differ-

ence (ITD) cues are inherently preserved due to the physical

location of the two reference sensors. Additionally, many of

the interaural level difference (ILD) cues that arise as a

result of head-shadowing effects are preserved. The applica-

tion of binaural linearly constrained minimum variance
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(LCMV) beamformers may then extend this cue preserva-

tion to also encompass interfering sound sources,5,37 which

can lead to improved speech intelligibility in multi-speaker

scenarios due to the spatial release from masking.38–41 Other

localization cue preserving proposals include those based on

multichannel Wiener filtering.9

Many of these aforementioned approaches, however, do

not preserve the monaural localization cues unless the refer-

ence sensors are located near the entrance of the listener’s

ear canals or HRTFs are included as gain constraints during

beamforming.42 In practice, the preservation of monaural

cues may be considered less important in the context of

assistive hearing devices since meaningful pinna interac-

tions occur above 6 kHz,43 which may be above the detec-

tion threshold of the hearing impaired listener. The spatial

attributes of other components in the sound scene, such as

reverberation and weakly directional sounds, are also rarely

addressed as they directly conflict with the SNR enhance-

ment requirement. Furthermore, when rendering the output

binaural signals, retaining a high sound quality is still con-

sidered to be less important in the hearing aid processing

context when compared to improving speech intelligibility.

Although, the addition of more microphones, and/or of

higher quality, can help alleviate such issues. The impor-

tance of producing spatially accurate auralisations of sound

scenes with hearing aid devices was highlighted by Best

et al.,44 who drew specific attention to the fact that sound

externalization has been overlooked in the hearing aid

research literature. This study aims to contribute to this dis-

cussion by offering a formal computational framework for

rendering sound scenes for hearing aid users, which is easily

augmentable for future perceptual studies.

B. Binaural rendering in AR/VR devices

Another area that has received little scientific attention

is the binaural rendering of sound scenes captured by micro-

phone arrays integrated within AR/VR devices; this is likely

because commercial devices45 have only become widely

available in recent years. Nonetheless, the recent release of

datasets intended for developing algorithms for such devi-

ces46 does highlight that there is growing interest in this

area. Contrary to the requirements of binaural hearing aids,

the retention of high signal quality is often an important

requirement in the AR/VR context along with the preserva-

tion of localization cues. Additionally, appropriately repro-

ducing the spatial attributes of reverberation present in the

sound scene may be favored over increased SNR. Therefore,

while binaural hearing aid algorithms could conceivably be

used in the context of AR/VR systems, most proposals have

relied on linear signal-independent processing2,3,14 to forgo

the need for source separation and retain high signal quality.

However, the spatial accuracy attained through purely linear

processing is inherently limited by the number of micro-

phones in the array.

Considering other options, one may look to parametric

signal-dependent alternatives,15–18,47–49 which have been

demonstrated to yield higher perceived spatial accuracy

compared to their linear counterparts when using either

the same number, or fewer microphones. It is noted, how-

ever, that such time-varying processing can introduce sig-

nal fidelity degradations. Parametric methods based on

the use of spatial covariance matching,20–22 on the other

hand, have been shown to largely address such problems.

These solutions rely on computing mixing matrices,

which, when applied to an initial estimate of the binaural

signals, aim to optimally produce output signals that con-

form to the specified spatial characteristics while constrain-

ing the solutions to retain high signal fidelity.19 Therefore,

contrary to SNR enhancements, which are often sought

after in the field of hearing processing, these spatial covari-

ance matching solutions aim, instead, to spatially enhance
the existing binaural signals. In Ref. 20, a modelless

approach was proposed predicated on rendering loose

approximations of binaural beamformers derived from

SMAs such that they resemble, instead, the spatial selectiv-

ity of much sharper but also noisier binaural beamformers

while retaining much of the original signal fidelity. The

spherical harmonic domain proposals outlined in Refs. 21

and 22 instead used the approach to spatially enhance bin-

aural Ambisonic decoders based on the use of parametric

sound-field models. In Ref. 21, the model involved apply-

ing sector based processing to softly mix between multiple

source estimates and an anisotropic diffuse-field. Whereas,

in Ref. 22, the focus was on the application of post-filters to

improve the spatial segregation achieved through source

and ambient beamforming, which without a constrained

spatial covariance matching solution would, otherwise, lead

to a reduction in signal fidelity.

Spatial covariance matching based enhancements, how-

ever, have not yet been explored within the context of head-

worn devices, where the microphones are typically mounted

on nonspherical geometries with nonuniform sensor place-

ments. Given additional practical limitations regarding the

number of available sensors, which are also spaced more

widely apart relative to compact SMAs sensor arrange-

ments, existing spherical harmonic domain solutions would

be heavily bandwidth limited, and the patterns of space-

domain beamformers may vary greatly with the direction.

Therefore, this article differentiates from the aforemen-

tioned past works through the formulation of a spatial

enhancement that is specifically intended for head-worn

devices. Three binaural rendering methods are devised,

which are inspired by hearing aid related literature,24–27 and

used to acquire initial estimates of binaural signals based on

head-worn microphone array signals. It is demonstrated how

space-domain spatial parameter analysis may be conducted

to construct target binaural covariance matrices correspond-

ing to a sound-field model comprising a single source mixed

with an isotropic diffuse-field. The study also involves an

in-depth objective and subjective evaluation of the approach

in the context of using a makeshift head-mounted micro-

phone array comprising eight sensors, which represents a

potential configuration for future devices.
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III. SOUND-FIELD MODEL

It is assumed that the sound-field is captured via a head-

mounted array of M microphones worn by the listener.

The array signals are then transformed into the time-

frequency domain xðt; f Þ 2 C
M�1, where f denotes the fre-

quency and t is the down sampled time index. In practice, a

short-time Fourier transform (STFT) or a perfect/near-per-

fect reconstruction filterbank may be employed for this task.

For each time-frequency tile, it is assumed that the sound-

field may comprise a single dominant source component, s,

an ambient component encapsulating isotropic diffuse

noise and reverberation dðt; f Þ 2 C
M�1

, or a combination of

the two. The array signal vector may, therefore, be

expressed as

xðt; f Þ ¼ aðc; f Þsðt; f Þ þ dðt; f Þ; (1)

where a 2 C
M�1

is the array steering vector for a sound

source incident from the direction c. Note that the array

steering vectors may be obtained through free-field mea-

surements or simulations of the array while it is worn by the

listener/manikin or modeled analytically by approximating

the listener’s head as a sphere.50,51 It is, henceforth, assumed

that array steering vectors, A ¼ ½aðc1Þ;…; aðcKÞ� 2 C
M�K

,

are available for a dense grid of K directions CK

¼ ½C1;…;CK�.
Assuming that the source signals are uncorrelated with the

diffuse noise and reverberation, the array signal statistics may

be expressed via their spatial covariance matrix (SCM) as

Cxðf Þ ¼ E xðt; f ÞxHðt; f Þ
� �

¼ aðc; f ÞaHðc; f ÞE jsðt; f Þj2
h i

þE dðt; f ÞdHðt; f Þ
� �

; (2)

where E denotes the expectation operator.

Note that this assumption of a single source mixed with

diffuse sound, although simplistic, is often met during practical

scenarios provided that the frequency resolution of the trans-

form is sufficiently high and the sound sources present in the

scene are sufficiently sparse in frequency and/or over time.

IV. PROPOSED SPATIAL COVARIANCE MATCHING
BASED ENHANCEMENT

In this section, the spatial covariance matching frame-

work under consideration is formulated and applied for the

task of enhancing an initial estimate of binaural signals,

henceforth referred to as baseline binaural signals, which

are obtained with

yblðt; f Þ ¼ Qð f Þxðt; f Þ; (3)

where Q 2 C
2�M

is the baseline mixing matrix. Suitable

candidates for this matrix will be introduced in Sec. V and

evaluated later (both with and without the proposed

enhancement) in Sec. VII. A block diagram of the overall

method is also provided in Fig. 1.

The proposed enhancement is based on the idea that the

narrow-band SCMs of the output binaural signals should ide-

ally match those of the target SCMs, which are derived directly

through the employed sound-field model. Continuing from the

assumptions laid down thus far and by describing the balance

between direct and diffuse components using a diffuseness

term w 2 ½0; 1�, the target narrow-band binaural SCMs are

given as

Cyðf Þ ¼ ð1� wðt; f ÞÞPtotalðf Þhðc; f Þhðc; f ÞH

þ wðt; f ÞPtotalðf ÞDbinðf Þ; (4)

where Ptotal ¼ tr½Cx� is the total input signal power;

h 2 C
2�1 is the HRTF corresponding to the source direc-

tion; Dbin 2 C
2�2 ¼ HWHH is a binaural diffuse coherence

matrix (DCM), which is derived from a dense grid of

HRTF measurements H ¼ ½hðc1Þ;…; hðcKÞ� 2 C
2�K; and

W 2 RK�K is an optional diagonal matrix of integration

weights to account for a nonuniform measurement grid.

Note that the inclusion of the binaural DCM serves to enforce

the diffuse isotropic properties of the nondirect sounds by

imposing the appropriate interaural coherence (IC) cues that

would be experienced by the listener while under such condi-

tions.52 Furthermore, it is noted that the direct-to-diffuse ratio

(DDR), which is more commonly used in the signal enhance-

ment literature, is directly related to the employed diffuseness

measure as w ¼ ð1þ 10DDR=20Þ�1
. The time and frequency

indices are also omitted henceforth for the brevity of

notation.

Depending on the choice of the baseline mixing matrix,

the narrow-band SCMs of the baseline binaural signals

Cbl ¼ E½ybly
H
bl� 2 C

2�2 may deviate from their respective

target narrow-band SCMs. For example, such scenarios may

arise due to beamformers encapsulating not only direct

FIG. 1. (Color online) A block diagram of the proposed processing.
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sounds but also other sound components (such as reflec-

tions) or by rendering the residual components of the scene

in a manner that deviates from the isotropic and diffuse

characteristics dictated by the employed model. The pro-

posed enhancement approach is, therefore, principally

tasked with determining the mixing matrices M 2 C
2�2

to

apply to the baseline binaural signals such that the resulting

signals directly match the target SCMs and, consequently,

also match the employed model

yenh ¼Mybl ¼MQx; (5)

where

E yenhyH
enh

� �
¼MCblM

H ¼MQCxQHMH

� Cy: (6)

One option for solving this problem is to first decompose

the target and baseline covariance matrices as Cy ¼ KyKH
y

and Cbl ¼ KblK
H
bl using, for example, the eigenvalue or

Cholesky decomposition, and computing

M ¼ KyK�1
bl : (7)

However, although the solution described by Eq. (7)

will produce signals that conform to the employed sound-

field model, it will not necessarily do so with any consistency

across frequency. Therefore, the time-domain representation

of this matrix of filters may be ill-conditioned, which would

subsequently result in signal fidelity degradations. However,

it is also highlighted that these decompositions are not

unique, since

Cbl ¼ KblPblP
H
blK

H
bl;

Cy ¼ KyPyPH
y KH

y (8)

hold true for any unitary matrixes Py and Pbl. Therefore, it

is clear that additional degrees of freedom exist, which may

be used to optimize the solution, and it is upon this principle

that the covariance domain framework proposed in Ref. 19

aims to fulfill the SCM matching task while also optimally

constraining the solution to preserve the high signal fidelity.

In this study, this optimized solution was employed as

Mopt ¼ KyVUHK�1
bl ; (9)

where U;V are obtained from the singular value decomposi-

tion USVH ¼ KH
blGKy, where

G ¼ ðDiag Cy½ �Diag Cbl½ ��1Þ�1=2
(10)

is a nonnegative diagonal matrix, which is used to normalize

the channel energies.

V. BASELINE BINAURAL RENDERING APPROACHES

With the target sound-field model and SCM matching

framework now outlined, three suitable candidate

approaches for the baseline mixing matrix, Q, which will be

later employed for the evaluations in Sec. VII, are now

described.

A. Using reference sensor signals as baseline signals

The simplest baseline approach applicable to this study

is to select two reference microphone signals, which are ide-

ally located nearest to the left, xl, and right, xr, ear canals of

the listener, and route the signals directly as ybl ¼ ½xl; xr�.
Note that this represents bilateral or binaural hearing aids

set to low-power/pass-through modes.24 Here, the elements

of the baseline mixing matrix should be zero, except for the

indices mapping the left and right reference sensors to the

respective binaural channels, which should be one. For

example, if M¼ 8 and the reference sensors are index one

for the left ear and index five for the right ear, the baseline

mixing matrix is expressed as

QðbasicÞ ¼
1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

 !
: (11)

Note that if these reference microphone sensors are

located inside the ear canals of the listener, then their signals

will capture both the binaural and monaural localization

cues and, thus, the computed spatial enhancement mixing

matrix will tend toward an identity matrix provided that the

captured sound-field conforms to the assumed sound-field

model. However, in practice, the reference sensors will

likely be situated away from the ear canals. For example,

binaural hearing aids will often indicate the top forwardmost

sensors as the reference sensors; in which case, the ITD and

much of the head-shadowing related ILD cues will be pre-

served by the baseline signals, and the SCM matching will

mainly seek to introduce the missing monaural cues at

higher frequencies where pinna interactions are more preva-

lent. Whereas for an augmented reality device, which may

have the sensors located much further away from the listen-

er’s ears, the SCM matching solution may require more

severe mapping of the input signals to fulfill the target inter-

channel dependencies.

B. Baseline signals using spatial analysis
and beamforming

Alternative suitable baseline candidates include those

based on beamformers informed by direction-of-arrival

(DoA) estimates, which may provide a starting point that is

closer to the assumed model. In this work, the filter-and-sum

(FaS) beamformer53 and the binaural MVDR beam-

former25,54 are explored for obtaining the source signal esti-

mates. Then, by assuming that the reference microphones

selected by Eq. (11) may be used to approximate diffuse

binaural signals when the listener is under such conditions,

the source signals and these assumed diffuse signals can be

mixed based on the diffuseness parameter. Therefore, the

baseline mixing matrix in the case of FaS beamformers is

obtained as
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QðFaSÞ ¼ ð1� wÞhðcÞ aðcÞH

aHðcÞaðcÞ þ c wQðbasicÞ; (12)

where, because it is assumed that the reference sensor sig-

nals correspond to diffuse components, an equalization term

is also included:

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr Dbin½ �

tr Darray½ �

s
; (13)

where Darray ¼ AWAH is the DCM of the array, which

serves to bring the diffuse-field spectral response of the

microphone array to reflect, instead, that of the diffuse-field

response of the employed HRTFs. Note that balancing

between the binaural beamformer and reference signals has

been formulated previously in Refs. 27 and 28, through a

user-controllable parameter as opposed to the time-fre-

quency-dependent diffuseness term employed in this study.

The third baseline mixing approach explored in this

study alternatively involves the use of binaural MVDR

beamformers, which are popularly employed in binaural

hearing aid device studies,5,8,24 and is given as

QðMVDRÞ ¼ ð1� wÞhðcÞ aHðcÞC�1
x

aðcÞHC�1
x aðcÞ

þ c wQðbasicÞ; (14)

where it is noted that Cx should, in theory, be replaced with

an estimate of the array noise covariance matrix to achieve

higher noise suppression. However, Cx was selected for this

study to eliminate problems that may arise due to erroneous

source-activity detection.

Note that FaS and binaural MVDR should be able to bet-

ter capture and represent the source components, provided

that the DoA estimates are correct, as both beamformers have

the unity gain constraint, and the HRTF directivities are then

imposed onto the signals they capture. The target of the SCM

matching, therefore, is to bring the interaural cues delivered

by the diffuse/reference signals to be more in line with the bin-

aural DCM. However, overall, it is expected that these beam-

forming based baseline alternatives will produce signals that

are closer to the assumed model than those in the basic case

represented by Eq. (11) and, thus, will require less severe

corrections to match the SCMs. To illustrate this, a metric

describing the deviation of the calculated mixing matrix from

an identity matrix was derived as tr½ðI�MÞðI�MÞH�: This

metric was then computed for two different source directions

under diffuse conditions, averaged over time, and plotted over

frequency for all three baseline cases, as depicted in Fig. 2.

Here, it is evident that both of the beamforming based base-

lines require less drastic modification to produce output sig-

nals with the target interchannel dependencies, especially for

high frequencies, although the effect of having a baseline that

is closer to the assumed model is shown to be minimal in the

later evaluations.

VI. IMPLEMENTATION

To investigate the performance of the proposed SCM

matching based enhancement for the binaural rendering of wear-

able microphone arrays, eight DPA IMK4060 microphones

(DPA Microphones, Denmark) were first affixed to a pair of

safety glasses, as depicted in Fig. 3. The safety glasses were

mounted onto a KEMAR 45 BC dummy head (GRAS,

Denmark), which was placed in an anechoic chamber, with the

array directional responses subsequently measured for every 1�

on the horizontal plane using the swept-sine technique.55 An

omnidirectional microphone in the same location as the dummy

head was used to create a compensation equalization curve to

mitigate colorations incurred by the measurement loudspeaker.

For processing the signals, the alias-free STFT design, as

described in Ref. 57, was selected and configured to employ a

window size of 256 samples (sample rate 48 kHz) with 90% win-

dow overlap. The three baseline binaural rendering approaches

were implemented as described in Sec. V and subjected to the

SCM matching based enhancement as detailed in Sec. IV.

To offer further insights into the practical application of

the proposed SCM matching solution, the objective evalua-

tion described in Sec. VII A was conducted both with

known/Oracle spatial parameters and estimated spatial

parameters. Additionally, since the subjective evaluation

described in Sec. VII B involved multiple simultaneous

sound sources, and due to the single-source assumption of

the employed sound-field model, processing based on

known parameters would not be meaningful. Therefore, the

spatial parameter estimators, which are used to inform the

FIG. 2. (Color online) A measure that indicates how much the spatial covariance matrix (SCM) matching mixing matrix deviates from an identity matrix,

which is plotted over the frequency for a single-source scenario when using all three of the tested baseline approaches. The lower the deviation, the closer

the baseline signals are to the target binaural SCM and, thus, less drastic changes are conducted by Mopt.
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processing of the adaptive binaural rendering algorithms

explored in this study, are now described.

A. Spatial parameter estimation

The input SCM is first spatially whitened to ensure that

it exhibits an identity-like structure when the microphone

array is placed under isotropic diffuse-field conditions. The

whitened input SCM, thus, conforms to

CðwÞx ¼ TCxTH; (15)

where T ¼ K�1=2RH given the eigenvalue decomposition of

the array DCM, Darray ¼ RKRH with TDarrayTH ¼ IM. The

subspace decomposition with the employed single-source

assumption is then applied as

CðwÞx ¼ VRVH ¼ r1v1vH
1 þ

XM

m¼2

rmvmvH
m; (16)

where the eigenvalues r are given in descending order and

correspond to their respective eigenvectors v. The eigenvec-

tors corresponding to the M – 1 smallest eigenvalues make

up the noise subspace Vn 2 C
M�ðM�1Þ.

The employed diffuseness parameter estimation, which

is based on the COMEDIE algorithm,57 is then determined

through observing the variance of the eigenvalues

w ¼ 1� b
b0

; (17)

where the normalization b0 ¼ 2ðM � 1Þ, the deviation

b ¼ ð1=hriÞ
PM

m¼1 jrm � hrij, and the mean hri ¼ ð1=
MÞ
PM

m¼1 rm.

For the DoA estimation, the mutiple-signal classifica-

tion (MUSIC) approach58 was used, which, given the single-

source assumption, is formulated as

PMUSICðcÞ ¼
1

jjVH
n TaðcÞjj2

for c 2 CK: (18)

A peak-finding exercise is then conducted to numerically

extract the DoA estimate from the resulting pseudospectrum

per frequency.

VII. EVALUATION

A. Objective evaluation

The proposed SCM solution was first evaluated objectively

in the context of binaural cue preservation. Here, 360 single-

source reference binaural signals (1 for each degree on the azi-

muthal plane) were simulated using whitenoise stimuli and then

mixed with cylindrically isotropic diffuse noise to obtain the

following DDRs: [�60, �6, 0, 6, 12, Inf] dB. Note that the

gains required to attain these DDRs were determined based

on an omnidirectional receiver, i.e., without the presence of

the array. Next, the binaural reference signals and micro-

phone array recordings of these simulated scenarios were

obtained by convolving incident plane-waves with either

HRTFs or the measured array steering vectors, respec-

tively. The array recordings were then rendered to the bin-

aural channels using the three baseline approaches

formulated in Sec. V, QðbasicÞ; QðFaSÞ, and QðMVDRÞ, with

and without the proposed SCM matching (CM) enabled, as

described in Sec. IV.

The binaural covariance matrix, based on the estimated

binaural signals ŷ, is then given by

Ĉyðf Þ ¼
cy1;1
ðf Þ cy1;2

ðf Þ
cy2;1
ðf Þ cy2;2

ðf Þ

 !
¼ E ŷðt; f Þ ŷHðt; f Þ

� �
; (19)

and the ILD, interaural phase difference (IPD), IC, and bin-

aural coloration metrics may be computed as11,56

ILDðf Þ ¼ 10 log10 cy1;1
ðf Þ=cy2;2

ðf Þ
� �

; (20)

Colorationðf Þ ¼ 10 log10 cy1;1
ðf Þ þ cy2;2

ðf Þ
� �

; (21)

ICðf Þ ¼
real cy1;2

ðf Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cy1;1
ðf Þcy2;2

ðf Þ
p ; (22)

IPDðf Þ ¼ arg cy1;2
ðf Þ

� �
: (23)

Since past studies have demonstrated that binaural

hearing aid algorithms may perform differently with

known or estimated DoAs,7,59 the above objective percep-

tual metrics were computed for all three baselines with and

without CM using both known/Oracle parameters and

those estimated through the parameter analysis described

in Sec. VI A.

B. Subjective evaluation

A multiple stimulus test was conducted to evaluate the

proposed SCM matching solution for the task of binaurally

reproducing the microphone signals in more realistic multi-

source scenarios. To create the listening test scenes, three

source stimuli were placed on the horizontal plane at posi-

tions directly to the left, in front, and to the right of the

FIG. 3. (Color online) The wearable microphone array employed for the

study, viewed from the right side, which is approximately mirrored for the

other side of the head. The sensor locations have been highlighted with red

circles and had an approximate separation of 2.5 cm between adjacent sen-

sors on each temple and a distance of 14 cm between the respective sensors

on each temple.

2630 J. Acoust. Soc. Am. 151 (4), April 2022 Fernandez et al.

https://doi.org/10.1121/10.0010109

https://doi.org/10.1121/10.0010109


listener in the simulation. Three different sets of simulta-

neously played source stimuli were selected, which repre-

sent a diverse range of different time-frequency content, (1)

a shaker, bass guitar, and strings; (2) a male English

speaker, a female English speaker, and a male Danish

speaker; and (3) cicadas, a dog barking, and birds tweeting.

The stimuli durations were between 13 and 16 s. Two differ-

ent acoustic settings were selected: anechoic (dry) and a

moderately reverberant medium sized class room (rev). The

reference scenarios for the anechoic cases were created by

directly convolving the source stimuli with HRIRs in the

directions [-90 0 90] degrees on the horizontal plane. The

eight-channel array responses for these same directions

were also convolved with the same stimuli to create a syn-

thetic microphone array recording of the same anechoic

scene. To reduce the number of test cases for the listening

test, and because it is later shown in Sec. VIII that the FaS

and MVDR produced similar results in terms of the objec-

tive evaluations, only the QðbasicÞ and QðMVDRÞ baselines

were selected. These array recordings were then rendered

using these two baseline methods with the CM enhancement

either enabled or disabled.

Reverberant counterparts for the above scenarios were

then created using a shoebox room simulator based on the

image-source method. The simulator60 was configured for

room dimensions 10� 7 � 4 m and had the wall absorption

coefficients tuned to resemble a moderately reverberant

environment (a broadband T60 of approximately 0.5 s). The

listener position was situated directly in the center of the

room with the source positions set to 1 m away from the lis-

tener position. The simulated direct path and image-source

reflections were then convolved with the nearest HRTFs to

create the reference reverberant test cases, whereas the near-

est microphone array steering vectors were convolved to

create synthetic microphone array recordings of the same

reverberant scene. These were rendered using the same two

baselines, and the CM enhancement was either enabled and

disabled, as with the anechoic cases.

In total, there were six test scenes, as summarized in

Table I, and five test cases, as summarized in Table II. The

listening test was conducted in three parts:

• Spatial: In this part of the evaluation, all of the test cases

were equalized to the reference case. This was conducted

by passing the reference case through the same STFT that

was used by the methods under test and determining the

reference, Eref , and test case, Etc, energies, which were

averaged over the whole stimuli duration, followed by

computing the equalization gains as cspatial ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eref=Etc

p
separately for each bin. This served to mitigate the timbral

differences while still retaining the spatial differences

between the renderings. The participants were instructed

to assess the test cases on a scale from 0 to 100 based on

their spatial similarity to the reference (with respect to the

source localization, externalization, and reverberation

characteristics) and ignore any timbral differences that

remained.

• Timbre: Here, the reference case was instead duplicated

and equalized by each test case, ctimbre ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Etc=Eref

p
, to

obtain spatial equivalence across all of the test cases

while retaining any timbral colorations that may be intro-

duced by the processing operations associated with the

methods under test. The listening subjects were instructed

to rate the cases on a scale of 0 to 100 based on their tim-

bral similarity with the reference. It was emphasized that

any spatial differences that the listeners perceived should

be ignored as equalization can change one’s perception of

the spatial cues.43,61

• Overall: For this part of the listening test, the test cases

were simply normalized to the reference based on the

broadband root mean squares of the signals, which were

averaged across the whole stimuli duration and the binau-

ral channels. The listening subjects were asked to rate the

test cases based on their personal preference on a scale of

0 to 100.

In total, 15 test subjects participated in the study, all of

whom reported having normal hearing and were naive as to

the hypothesis of the study.

VIII. RESULTS AND DISCUSSION

The results of the objective evaluations are depicted in

Fig. 4. The root mean square error (RMSE), computed with

respect to the reference binaural cues and averaged over the

frequency and following the perceptually motivated equiva-

lent rectangular bandwidths (ERB) scale, is plotted along

the y axis with the error bars denoting the standard devia-

tions. The plots given in Fig. 4(a) were calculated based on

the known spatial parameters, whereas Fig. 4(b) used the esti-

mated parameters. It can be seen that the results of the IC and

IPD evaluations show significant improvements in the RMSE

when CM is enabled with known and estimated spatial

parameters. On the other hand, while the application of CM

reduces the RMSE of the ILD cue when using a known DoA,

TABLE I. The listening test scenes.

Name Room Source stimuli

Band_dry Anechoic Shaker, bass guitar, strings

Band_rev Reverberant Shaker, bass guitar, strings

Speech_dry Anechoic Two male and one female speakers

Speech_rev Reverberant Two male and one female speakers

Mix_dry Anechoic Cicadas, a dog barking, bird calls

Mix_rev Reverberant Cicadas, a dog barking, bird calls

TABLE II. The listening test cases.

Name Rendering

Hidden ref Ideal binaural receiver

MVDR CM QðMVDRÞ baseline with SCM matching

Basic CM QðbasicÞ baseline with SCM matching

MVDR QðMVDRÞ baseline without SCM matching

Basic QðbasicÞ baseline without SCM matching
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this reduction in error is not as prevalent when using the esti-

mated DoA. It follows that in this respect, CM is sensitive to

errors in the DoA estimation but no more so than the FaS and

MVDR baselines. Finally, the RMSE for the coloration does

not show significant improvement for the FaS and MVDR

baseline methods but does show some improvement for the

basic baseline method, although it is noted that colorations of

2 dB are not easily perceptible. Furthermore, this metric does

not appear to be affected by the DoA estimation errors.

The results of the subjective evaluation are provided in

Fig. 5. It can be observed that, in the majority of cases, the

test cases where CM was enabled were rated higher and

closer to the reference than when CM was disabled. To pro-

vide further insight, statistical analyses were also performed

on the data with the exception of the results for the reference

stimuli. The analyses were performed using functions from

MATLAB’s Statistics and Machine learning toolbox, version

12.1 (The MathWorks, Natick, MA) with the alpha-error

significance level set to 0.05 for all of the tests. The

Friedman tests (MATLAB function Friedman) were performed

separately for each stimulus on both the spatial and timbral

ratings. The v square results are listed in Table III, wherein

the analyses resulting in p-values lower than 0.01 are

denoted by the symbol “**.” It can be seen that the Friedman

tests revealed statistically significant differences between the

processing methods in terms of the spatial and timbral sub-

jective evaluation outcomes for all of the test scenes.

Subsequently, ad hoc multiple comparison tests (MATLAB

function multcompare) were performed with a Tukey honest

significance difference (HSD) criterion to establish which

methods differed significantly from the others.

Statistically significant differences in the spatial ratings

were found between the basic and basic CM conditions for

the band_rev (p< 0.01), band_dry (p< 0.01), mix_rev

(p< 0.01), and mix_dry test scenes (p< 0.01) but did not

reach significance for the speech_rev (p> 0.05) and speech_

dry test scenes (p> 0.05). Similarly, a statistically significant

difference was found between the MVDR and MVDR CM

methods for the band_rev (p¼ 0.05), band_dry (p< 0.01),

mix_rev (p< 0.01), and mix_dry test scenes (p< 0.01) but

did not reach significance for the speech_rev (p> 0.05) and

speech_dry test scenes (p> 0.05). Between the basic CM and

MVDR CM methods, only the speech-dry stimulus (p< 0.04)

spatial ratings case achieved statistical significance. For the tim-

bre section of the tests, the ad hoc multiple comparison test

with a Tukey HSD criterion applied showed significant differ-

ences in the comparison of the ratings for the basic and basic

CM methods for all of the test scenes (i.e., band_rev, p< 0.01;

band_dry, p< 0.01; mix_rev, p< 0.01; mix_dry, p< 0.01;

speech_rev, p¼ 0.017; and speech_dry, p¼ 0.032). Meanwhile

the comparison of the MVDR and MVDR CM methods only

reached statistical significance for the speech-rev scene

(p< 0.01). There were no statistically significant differences

between the ratings for the basic CM and MVDR CM methods.

It should be noted that statistical analyses were not

applied to the overall section of the subjective evaluation as

the results were considered to be highly subjective, with the

ratings of the listener dependent on whether they valued spa-

tial accuracy over timbral fidelity or vice versa. However, a

positive trend can be seen in Fig. 5 wherein the majority of

the subjects preferred spatial covariance matching solutions

over the baseline methods.

FIG. 4. (Color online) The perceptual metrics results for different DDRs when using either known (a) or estimated (b) spatial parameters.
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The objective and subjective evaluations imply that the

application of spatial covariance matching leads to a greater

preservation of the spatial cues in comparison to the use of

only the baseline techniques. The objective metrics are

clearly improved with the application of spatial covariance

matching, while the ratings in the subjective evaluation also

indicate the improvement is perceptually meaningful given

more practical multisource input scenes. The participants in

the listening test reported that the spatial accuracy improved

with respect to the reference for both the basic and MVDR

baseline conditions in the case of the band and mix stimuli.

Additionally, whereas the improvement for the speech stim-

uli was not found to be statistically significant, it can be

seen in Fig. 5 that the subjects in the listening test rated the

basic and MVDR baseline methods to already be more spa-

tially accurate with respect to the reference for the speech

stimuli than for the band and mix stimuli. It follows that,

while the application of spatial covariance matching may

have improved the spatial accuracy, the improvement was

not sufficiently large enough to be statistically significant.

The results of the timbral part of the subjective evalua-

tion show that the use of the spatial covariance matching

together with the baseline method reproduces the scene

spectral information more faithfully than using the baseline

techniques alone. The subjective timbral fidelity appears to

be better than that achieved during the objective evaluation.

This may be because the objective metrics were calculated

using single-source white noise scenarios, whereas the sub-

jective evaluations used three more spectrally diverse sound

sources. In the objective evaluation, the beamformers used

to generate the baseline prototype signals should have

encapsulated the single source with minimal colorations as

there were no interferers overlapped by the sidelobes of the

beamformers. Additionally, the DoA error rate was presum-

ably lower in the case of a single sound source scene. It fol-

lows, therefore, that the coloration for the baseline

technique was not noticeably lower in comparison to the

coloration for the proposed spatial covariance matching

method. On the other hand, during the generation of the lis-

tening test stimuli, it is expected that the beamformers will

encapsulate some of the signals of the interferers due to a

combination of the beamformer sidelobes and DoA estima-

tion errors during periods where the single-source assump-

tion for each time-frequency tile was not met. The spatial

covariance matching solution mitigates some of these tim-

bral coloration issues as the target powers Ptotal are not

affected by the DoA estimation errors. Hence, although it is

not made clear in the single-source objective evaluation, it

is expected that the CM will introduce less timbral colora-

tion, which is apparent in the multiple source subjective

evaluation.

Aside from the improved spatial and timbral accuracy

of the binaural rendering, it is highlighted that the proposed

CM method is still based on the parameterization of the

sound scene from the point of view of the listener.

Therefore, sound-field modifications may be realized in a

computationally efficient way by simply manipulating the

spatial parameters prior to reproducing the scene. The

sound-field modifications may include rotations, direction-

dependent loudness manipulations, and exaggeration of the

direct components located in front of the device wearer.

Spatial audio effects may also be realized through simple

parameter manipulations,62 which may be desirable for AR/

VR applications. Potential avenues to explore in future

work, therefore, include an investigation into the effect of

manipulating the parameters involved, such as the diffuse-

ness parameter (which has a directly proportional impact on

the DDR), or the application of different signal manipula-

tion techniques, such as dynamic range compression, inde-

pendently applied to the direct and diffuse streams of audio.

FIG. 5. (Color online) The listening test results, based on 15 test subjects,

display the medians and 95% confidence intervals.

TABLE III. The Friedman test results. (**, p < 0.01).

v2
Fð3Þ

Stimulus Spatial Timbre

Band_dry 39.36** 21.02**

Band_rev 28.53** 29.03**

Speech_dry 18.81** 11.56**

Speech_rev 12.94** 34.63**

Mix_dry 33.50** 29.30**

Mix_rev 28.00** 25.06**
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IX. CONCLUSION

This article investigated the application of spatial

covariance matching applied to head-worn microphone

arrays as a means of enhancing the spatial accuracy when

binaurally reproducing the sound scenes that they capture.

The sound-field model employed for this study assumes a

single sound source per time-frequency index accompanied

by an isotropic diffuse component with the proposed

enhancements imposed via the spatial covariance matching

framework established in Ref. 20. During the study, an

eight-sensor microphone array was attached to the temples

of a pair of eyeglasses, which was then placed on a dummy

head to enable measurements to be taken in a free-field envi-

ronment to obtain array steering vectors for many directions.

These vectors, in conjunction with the HRTFs of the dummy

head, were used by the rendering algorithms to produce out-

put binaural signals that may be directly compared with the

reference binaural signals. This provided a robust frame-

work for the evaluation of different binaural rendering

approaches both with and without the proposed spatial

enhancements applied.

In the objective evaluation, the ILDs, IPD, IC, and bin-

aural coloration errors were calculated for renderings of the

simulated array recordings in which three baseline techni-

ques were used in isolation and in conjunction with the pro-

posed spatial covariance matching technique. It was found

that the application of spatial covariance matching greatly

reduced the RMSE for the IC and IPD metrics. The ILD

error was also minimized with the application of the pro-

posed enhancement when using known spatial parameters,

although this improvement diminished when using the esti-

mated spatial parameters. In the subjective evaluation, a lis-

tening test was conducted wherein 15 participants rated

multisource sound scenes based on the spatial and timbral

similarity with a reference sound scene, as well as overall

preference. The results for the listening test indicated that

the spatial accuracy of the stimuli significantly improved

with the application of spatial covariance matching for the

majority of the sound scenes simulated for the test. The tim-

bral attributes were found to be significantly improved over

the basic baseline method for all of the stimuli, whereas the

improvement for the baseline method that incorporated the

MVDR beamforming was found to be statistically signifi-

cant for only the reverberant speech scenario.

In conclusion, this study demonstrates that spatial

covariance matching can be efficiently formulated for appli-

cation in sound reproduction using head-worn microphone

arrays and, on application, produces binaural signals that

more closely match those that would, otherwise, have been

captured at the ear canals of the listener. In addition, spatial

covariance matching improved the spatial attributes and tim-

bral quality of the resultant sound scenes for the basic base-

line technique as well as the more complex baseline

techniques considered for this study. Although it is noted

that the processing does not seek to enhance the SNR and

speech intelligibility, with such enhancements, instead,

required to be applied by the baseline method prior to apply-

ing the spatial enhancements of the proposed approach.

Finally, because the proposed spatial enhancements are still

based on the parameterization of the captured sound scene,

it is noted that aspects of the rendering may be easily aug-

mented, such as manipulating the direct-to-diffuse balance

or applying direction-dependent gains to only the sound

sources in the scene.
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