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We introduce a new game-theoretic semantics (GTS) for the modal mu-calculus. Our so-
called bounded GTS replaces parity games with alternative evaluation games where only
finite paths arise; infinite paths are not needed even when the considered transition
system is infinite. The novel games offer alternative approaches to various constructions
in the framework of the mu-calculus. While our main focus is introducing the new GTS,
we also consider some applications to demonstrate its uses. For example, we consider a
natural model transformation procedure that reduces model checking games to checking
a single, fixed formula in the constructed models. We also use the GTS to identify new
alternative variants of the mu-calculus, including close variants of the logic with PTime
model checking; variants with iteration limited to finite ordinals; and other systems where
the semantic or syntactic specification of the mu-calculus has been modified in a natural
way suggested by the GTS.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The modal μ-calculus [26] is a well-known formalism that plays a central role in, e.g., program verification. The standard
semantics of the μ-calculus is based on fixed points, but the system has also a well-known game theoretic semantics (GTS) 
that makes use of parity games. The related games generally involve infinite plays, and the parity condition is used for 
determining the winner (see, e.g., [6] for further details and a general introduction to the μ-calculus).

The agenda and contributions of this article. In this article we present an alternative game-theoretic semantics for the modal μ-
calculus. Our so-called bounded GTS is based on games that resemble the standard semantic games for the μ-calculus, but 
there is an extra feature that ensures that the plays within the novel framework always end after a finite number of rounds. 
Thereby only finite paths arise in related evaluation games even when investigating infinite transition systems. Thus there is 
no need to keep track of the parity condition, so in that sense the games we present in this article simplify the standard 
framework. Furthermore, they offer an alternative perspective on the modal μ-calculus, as we show that our semantics is 
equivalent to the standard one.

In the new games, the evaluation of a fixed point formula begins by one of the players declaring an ordinal number; 
the verifying player declares ordinals for μ-formulae and the falsifying player for ν-formulae. The declared ordinal is then 
lowered as the game proceeds. Since ordinals are well-founded, the game will indeed end after a finite number of game 
steps. In general, infinite ordinals are needed in the games, but finite ordinals suffice in finite models.
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While the bounded GTS provides a new perspective on the standard modal μ-calculus, our approach also leads natu-
rally to a range of alternative semantic systems that are not equivalent to the standard semantics. Indeed, we divide the 
framework of bounded semantics into subsystems dubbed �-bounded semantics for different ordinals �. Here � provides a 
strict upper limit for the ordinals that can be used during the game play. For each �-bounded semantics, we define also a 
corresponding bounded compositional semantics and prove the game-theoretic and compositional versions equivalent.

If only finite ordinals are allowed, meaning � = ω, we obtain the finitely bounded GTS, which is an interesting system 
itself. While this semantics is equivalent to the standard case in finite models, the general expressive powers differ. Indeed, 
we will show that the μ-calculus under finitely bounded GTS does not have the finite model property. Furthermore, we 
observe that the set of validities of the μ-calculus under finitely bounded semantics is strictly contained in the set of 
standard validities.

We then study a range of variants of the standard bounded semantics. In our standard bounded semantics, each μ and 
ν-formula is associated with an ordinal of its own, while in simple bounded semantics this scheme is relaxed and only two 
ordinals are used—one for all μ-formulae and another one for all ν-formulae. We identify conditions under which this new 
semantics is equivalent to the standard one when restricting to the ν-free fragment of the μ-calculus. Furthermore, we 
prove PTime-completeness of the model checking problem for a relatively expressive variant of the μ-calculus using this 
new semantics.1 The result concerns both data and combined complexity. We also introduce a system of non-well-founded
modal logic as a canonical extension of modal logic with game-theoretic recursion and also relate the system to the simple 
bounded semantics of the modal μ-calculus. We call this logic modal computation logic MCL and ultimately prove that it has 
PTime-complete model checking.

As a further semantic variant of the μ-calculus, we study a version of the bounded GTS where only one of the two 
players is required to announce and commit to ordinal values in the semantic games. We show that these semi-bounded
systems of semantics are essentially equivalent to the standard bounded semantics. And, in addition to semantic studies, we 
use GTS to identify a canonical reduction of μ-calculus model checking instances to checking a single, uniform formula in 
the model obtained by the reduction. Furthermore, we define a natural hierarchy of variants of the reachability game and 
relate our different semantic games to those variants.

Further motivation of the study. While the formal results listed above are an important part of our study, the focus of our 
article is mainly on the conceptual development of the theory of the modal μ-calculus and related systems, not so much the 
more technical directions. While some of our technical observations have obvious implicit similarities to existing results and 
notions, we believe the systematic, formal and conceptual study initiated in this article is justified.

Indeed, we believe the bounded GTS in general can be a fruitful framework for various further developments. The setting 
provides an alternative perspective to parity games, replacing infinite plays with games based on finitely many rounds only, 
thereby leading to a conceptually interesting territory to be explored further. The fragments with PTime-model checking 
we identify serve as an example of the various possibilities. Furthermore, it is worth noting here, e.g., that the difference 
between the standard and bounded GTS for the modal μ-calculus is analogous to the relationship between while-loops and 
for-loops; while-loops are iterated possibly infinitely long, whereas for-loops run for k ∈ N rounds, where k can generally 
be an input to the loop. Finally—while it can be called into question and of course considered a matter of opinion—we argue 
that the new bounded semantics often makes formulae easier to read. This relates to the semantics pointing to games that 
always end after a finite number of steps; the clocks concretely indicate, step-by-step, how the game approaches the set of 
end positions. We will illustrate the naturalness of the semantics in a concrete way in Examples 4.3 and 4.9. We note that 
the semantics could possibly be beneficial in teaching the modal μ-calculus.

Notes on related work. There already exist several works where simple variants of the bounded semantics have been con-
sidered in the context of temporal logics with a significantly simpler recursion mechanisms than that of the μ-calculus. 
The papers [13], [16] consider a bounded semantics for the Alternating-time temporal logic ATL, and [15], [12] extend the 
related study to the extension ATL+ of ATL. See also [14], [17]. Part of the original motivation behind the studies in [13], 
[16], [15], [12] (as well as the current article) relates to work with the direct aim of understanding variants and fragments 
of the general, expressively Turing-complete logic first presented in [28]. It is also worth mentioning that the work in the 
present article has already been made essential use of in constructing a canonical formula size game for the μ-calculus in 
[20]. The first short draft of the current submission appeared in 2017 as the manuscript [18]. It contained only the bounded 
GTS presented below. That paper was expanded to the conference paper [19], and the current article is the significantly 
extended journal version of [19].

There is a whole range of earlier but closely related logical studies that make use of notions with similar intuitions to 
the ones behind the bounded semantics of this paper. Indeed, for logics with time bounds, see, e.g., the paper [2] on finitary 
fairness and the article [27] relating to promptness in Linear temporal logic LTL. We also mention here the work related 
to bounded model checking, see, e.g., [5], [32] and [36]. The article [8] is one example of an early work that uses explicit 
‘clocking’ of fixed point formulae in (a variant of) the μ-calculus, thereby involving some ideas that bear a similarity to 
some features used also in the present paper. We note that the approach and goals of [8] are different, e.g., the paper limits 

1 It has been show that the model checking of the modal μ-calculus can be done in quasipolynomial time ([9]), but it is a famous open problem whether 
the model checking could be done in PTime. See [7] for more on the model checking of μ-calculus.
2
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to finite models only and does not discuss game-theoretic semantics. However, using clocks for bounding unfolding of fixed 
points goes back to [34], and this idea is used to link alternating parity automata to the μ-calculus in [11].

The notion of clock bounds in our GTS relates naturally to the study of closure ordinals.2 This is demonstrated, e.g., by the 
proof of Theorem 5.2 below. Closure ordinals have of course received a lot of attention within the research of μ-calculus; 
see e.g., [1] and [10] for some relatively recent work on the topic. It is also worth noting here that game theoretic approach 
has also been used for studying the satisfiability of the modal μ-calculus; see e.g. [31].

2. Preliminaries

2.1. Syntax

Let � be a set of proposition symbols and � a set of label symbols. Formulae of the modal μ-calculus are generated by 
the grammar

ϕ ::= p | ¬p | X | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | �ϕ | μXϕ | ν Xϕ,

where p ∈ � and X ∈ �.
Let ϕ be a formula of the μ-calculus. The set of nodes in the syntax tree of ϕ is denoted by Sf(ϕ). All of these nodes 

correspond to some subformula of ϕ , but the same subformula may have several occurrences in the syntax tree of ϕ , as for 
example in the case of p ∨ p. We always distinguish between different occurrences of the same subformula, and thus we 
always assume that the position in the syntax tree of ϕ is known for any given subformula of ϕ . We also use the following 
notation:

Sfμν(ϕ) := {θ ∈ Sf(ϕ) | θ = μXψ or θ = ν Xψ for some ψ ∈ Sf(ϕ) and X ∈ �}.
We write |ϕ| for | Sf(ϕ)|.

2.2. Standard compositional semantics

A Kripke model M is a tuple (W , R, V ), where W is a nonempty set, R a binary relation over W and V : � → P(W ) a 
valuation for proposition symbols in �. An assignment s : � →P(W ) for M maps label symbols X to subsets of W .

Definition 2.1. Let M = (W , R, V ) be a Kripke model, w ∈ W . Let ϕ be a formula of the μ-calculus. Truth of ϕ in M at w
under assignment s, denoted by M, w �s ϕ , is defined as in standard modal logic for p, ¬p, ∨, ∧, �, �. The truth condition 
for label symbols is defined with respect to the assignment s:

• M, w �s X iff w ∈ s(X).

To deal with μ and ν , we define an operator ϕ̂X,s : P(W ) → P(W ) such that ϕ̂X,s(A) = {w ∈ W | M, w �s[A/X] ϕ}, where 
s[A/X] is the assignment that sends X to A and treats other label symbols the same way as s. The operators ϕ̂X,s are always 
monotone and thereby have least and greatest fixed points. The semantics for the operators μX and ν X is as follows:

• M, w �s μXψ iff w is in the least fixed point of the operator ψ̂X,s .
• M, w �s ν Xψ iff w is in the greatest fixed point of the operator ψ̂ X,s .

An occurrence of a label symbol X is said to be free in a formula ϕ if that occurrence of X is a leaf (in the syntax tree 
of ϕ) which is not a descendant of any node corresponding to a formula of the form μXψ or ν Xψ . A formula ϕ is called a 
sentence if it does not contain any free occurrences of label symbols. Truth of a sentence ϕ is independent of assignments 
s, so we may simply write M, w � ϕ instead of M, w �s ϕ .

2.3. Reachability and safety games

All of the games defined below are played on a pointed Kripke model (M, w) whose vocabulary contains proposition 
symbols p A , pB and qB . These games are played by two players, A and B , starting from the state w . In each round, one 
of the players moves (if possible) to some state that can be directly reached in one step from the current state via the 
accessibility relation of M; if qB holds in the current state, then B moves, and otherwise A moves. If a player cannot make 
the required move in some state (meaning the state is a dead end), then the game ends and that player loses and the other 
player wins.

2 The closure ordinal of a formula is the smallest ordinal γ (if such an ordinal exists) such that the function defined by the formula converges in at most 
γ steps in every model.
3
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In a reachability game, if the players reach a state where pB holds, then the game ends and B wins. If the game does 
not end in a finite number of moves, then A wins. Dually, in a safety game, A wins if (s)he reaches a state where p A holds, 
while B wins all the infinite plays. Note that reachability/safety games are considered from the “perspective of player B ,” 
and a reachability game can be seen as a safety game for player A—and vice versa. In a double reachability game we assume 
that the extensions of p A and pB do not intersect.3 B wins (and the game ends) if (s)he reaches pB . Similarly, A wins if 
(s)he reaches p A . Neither of the players win infinite plays. Those double reachability games that always have a winner (by 
infinite plays being impossible) are called strong reachability games.

The alternating reachability problem yields the answer yes on the input (M, w) if and only if B has a winning strategy 
in the corresponding reachability game. This problem is well known to be PTime-complete under LogSpace reductions (see, 
e.g., [21] which shows the result already under reductions expressible in first-order logic with order). We let AR denote the 
class of all positive instances of the alternating reachability problem. The following observation is well known.

Proposition 2.2. Let M be a Kripke model with the propositional vocabulary {pB, qB}, and let w be a state in M. Then (M, w) ∈ AR
if and only if M, w � χ , where χ = μX(pB ∨ (qB ∧ �X) ∨ (¬qB ∧ �X)).

We can define analogous decision problems for safety and double/strong reachability games. For safety games we can 
give a result corresponding to Proposition 2.2 by using the sentence ν X(¬p A ∧ ((qB ∧�X) ∨ (¬qB ∧�X))). For double/strong 
reachability games we can use the sentence

μX(¬p A ∧ (pB ∨ (qB ∧ �X) ∨ (¬qB ∧ �X))).

In strong reachability games we can also replace μX with ν X in this sentence.

3. Technical links to the literature

In this section we link the current paper to the literature, pointing out technical similarities and differences between 
existing work and the current paper. We note that the related links are discussed in more depth in the subsequent sections 
themselves, where our results are developed.

The Sections 4 and 5 define and discuss a game-theoretic semantics (GTS) for the μ-calculus and also its variants 
where fixed-point iteration is truncated to some predetermined ordinal. GTS of the μ-calculus based on parity games is 
well known, but our system is the first explicit game-theoretic semantics that works also for such truncated variants of 
the μ-calculus. The semantics is based on the players choosing ordinals, called clock values, as explicit game moves for the 
operators μX and ν X . The related ordinals are ordered hierarchically in a lexicographic manner—an approach that connects 
very closely to the use of progress measures and related notions in [24], [25], [35]. Progress measures have proved highly 
useful. For example, the paper [22] uses small game progress measures to provide a seminal early improvement on the 
μ-calculus model checking problem. The paper [23] uses progress measures to develop an algorithm for the problem that 
uses quasipolynomial time and also “nearly linear” space only.

However, in contrast to earlier works using such clockings, in our game-theoretic approach (1) the clock values are 
controlled explicitly by the players; (2) clocks are used in a dually symmetric way by both of the players; and (3) when 
clock values are bounded, our approach gives a natural GTS leading to nonequivalent variants of the μ-calculus. Moreover, 
most earlier works have considered only finite models, while our definition covers also the infinite case: by requiring the 
players to lower the ordinals co-inductively, it is still guaranteed that games always have a finite duration.

In Section 6 we study a nonequivalent variant of the μ-calculus semantics, where the ordinals used in the games are 
restricted to finite ones (also in infinite models). Proposition 6.2 shows that this logic has no finite model property, while 
Proposition 6.3 nevertheless establishes that the set of validities of the logic coincide with that of the ordinary μ-calculus. 
These results create an interesting contrast in relation to the classical semantics of the μ-calculus.

In Section 7 we discuss variants of simple semantics, an approach where we remove the lexicographic dependence of 
the ordinals used in the standard bounded semantics of Section 4. In Theorem 7.7 we analyse sufficiently large clock value 
bounds for certain fragments of μ-calculus with the simple GTS. There the case (1) on the (ν, �)-free fragment, and the 
case (3) on the ν-free fragment in finite models, are closely related to folklore results on closure ordinals, but they are here 
given an alternative game-theoretic proof. The case (2) on the ν-free fragment in infinite models uses the new concept of a 
regular branching bound.

In Section 8 we investigate a new direction of modal logic based on game-theoretic semantics. In particular, we define 
the new modal logic MCL (modal computation logic) which is precisely the modal fragment of the logic CL which is shown 
Turing-complete (that is, it captures RE in the sense of descriptive complexity theory) in [28]. The logic MCL is builds on 
the one of the main ideas of the paper, investigating clockings in a general way. While MCL is reasonably expressive, we 
show that it nevertheless has PTime-complete model checking.

3 One could also consider the more general case where there can be states where both p A and pB are true and thus both players win the game 
simultaneously. Moreover, one could also define that neither of the players wins the game if they reach a dead end state where neither p A nor pB is true.
4
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In Section 9 we analyse variants of GTS, where only one of the players is required to set clock values, leading to 
reachability/safety games. We note when only the verifier is using clock values—which are not bounded—and when the 
considered models are finite, the use of such clockings is essentially equivalent to the use progress measures as done, e.g., 
in [22].

Section 10 gives a uniform reduction of the μ-calculus model checking games (for fixed sentences) into reachability and 
safety games. The naturalness of the new notion of a strong reachability game is demonstrated. While such reductions exist 
in the literature, the approach in the section provides a particularly uniform and simple approach, connecting directly to 
our semantic games. The reduction works as such for finite as well as infinite models. Concerning similar, earlier work, the 
paper [4] gave a related treatment for showing that finite parity games can be reduced to safety games by adding an explicit 
memory M to the states. Our reduction also relates to the “Measured Collapse Theorem” in [8], as explained in Section 10
itself.

4. Bounded game-theoretic semantics

The general idea of game-theoretic semantics (GTS) is that truth of a formula ϕ is checked in a model M via playing a 
game where a proponent player (Eloise) attempts to show that ϕ holds in M while an opponent player (Abelard) tries to 
establish the opposite—that ϕ is false. In this section we define a �-bounded game-theoretic semantics for the μ-calculus, or 
�-bounded GTS, with a given ordinal � > 0. The semantics shares some features with a similar GTS for the Alternating-time 
temporal logic (ATL) defined in [13].

4.1. Bounded evaluation games

Let ϕ be a sentence of the μ-calculus and consider an occurrence of a label symbol X in ϕ . The reference formula of X , 
denoted Rf(X), is the unique subformula of ϕ that binds X . That is, Rf(X) is of the form μXψ or ν Xψ and there is no other 
operator μX or ν X in the syntax tree of ϕ on the path from Rf(X) to X . Since ϕ is a sentence, every label symbol has a 
reference formula (and the reference formula is by definition unique for each label symbol).

Example 4.1. Consider the sentence ϕ∗ := ν X�μY
(�Y ∨ (p ∧ X)

)
. Here we have Rf(X) = ϕ∗ and Rf(Y ) = μY (�Y ∨ (p ∧ X)).

Definition 4.2. Let M be a model, w0 ∈ W , ϕ0 a sentence and � > 0 an ordinal. We define the �-bounded evaluation game
G = G(M, w0, ϕ0, �) as follows. The game has two players, Abelard and Eloise. The positions of the game are of the form 
(w, ϕ, c), where w ∈ W , ϕ ∈ Sf(ϕ0) and c : Sfμν(ϕ0) → {γ | γ ≤ �} is a clock mapping. We call the value c(θ) the clock value 
of θ (for θ ∈ Sfμν(ϕ0)).

The game begins from the initial position (w0, ϕ0, c0), where c0(θ) = � for every θ ∈ Sfμν(ϕ0). The game is then played 
according to the following rules:

• In a position (w, p, c) for some p ∈ �, Eloise wins if w ∈ V (p). Otherwise Abelard wins.
• In a position (w, ¬p, c) for some p ∈ �, Eloise wins if w /∈ V (p). Otherwise Abelard wins.
• In a position (w, ψ ∨ θ, c), Eloise selects whether the next position is (w, ψ, c) or (w, θ, c).
• In a position (w, ψ ∧ θ, c), Abelard selects whether the next position is (w, ψ, c) or (w, θ, c).
• In a position (w, �ψ, c), Eloise selects some v ∈ W such that w R v and the next position is (v, ψ, c). If there is no such 

v , then Abelard wins.
• In a position (w, �ψ, c), Abelard selects some v ∈ W such that w R v and the next position is (v, ψ, c). If there is no 

such v , then Eloise wins.
• In a position (w, μXψ, c), Eloise chooses an ordinal γ < �. Then the game continues from (w, ψ, c[γ /μXψ]). Here 

c[γ /μXψ] is the clock mapping that sends μXψ to γ and treats other formulae as c.
• In a position (w, ν Xψ, c), Abelard chooses an ordinal γ < �. Then the game continues from the position

(w, ψ, c[γ /ν Xψ]).
• Suppose that the game is in a position (w, X, c) and let c(Rf(X)) = γ .

1. Suppose that Rf(X) = μXψ for some ψ .
– If γ = 0, then Abelard wins.
– Else, Eloise must select some γ ′ < γ , and then the game continues from the position (w, ψ, c′), where

∗ c′(μXψ) = γ ′ ,
∗ c′(θ) = � for all θ ∈ Sfμν(ϕ0) s.t. θ ∈ Sf(ψ),
∗ c′(θ) = c(θ) for all other θ ∈ Sfμν(ϕ0).

2. Suppose that Rf(X) = ν Xψ for some ψ .
– If γ = 0, then Eloise wins.
– Else, Abelard must select some γ ′ < γ , and then the game continues from the position (w, ψ, c′), where

∗ c′(ν Xψ) = γ ′ ,
∗ c′(θ) = � for all θ ∈ Sfμν(ϕ0) s.t. θ ∈ Sf(ψ),
∗ c′(θ) = c(θ) for all other θ ∈ Sfμν(ϕ0).
5
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The positions where one of the players wins the game are called ending positions. The execution of the rules related to a 
position of the game constitutes one round of the game. The number of rounds in a play of the game is called the length 
of the play. We call the ordinals γ < � clock values and the ordinal � the clock value bound. (We note that only rounds with 
formulae of type μXψ , ν Xψ and X affect clock values.)

We observe that in evaluation games we do not need assignments s. A label symbol in X ∈ � is simply a marker that 
points to a node (that node being the formula Rf(X)) in the syntax tree of the sentence ϕ0. Hence label symbols are 
conceptually quite different in GTS and compositional semantics. Indeed, the operators μX (respectively ν X) can be given 
a natural reading relating to self-reference. In the formula μXψ , the operator μX is naming the formula ψ with the name 
X . The atoms X inside ψ are, in turn, claiming that ψ holds, i.e., referring back to the formula ψ . The difference between 
μ and ν is that μXψ relates to verifying the formula ψ while ν Xψ is associated with preventing the falsification of ψ , i.e., 
defending ψ . Therefore, if N(ψ) denotes a natural language reading of ψ , then the natural language reading of μXψ states 
that “we can verify the claim named X which asserts that N(ψ)”. An analogous reading can be given to ν Xψ . This scheme of 
reading recursive formulae via self-reference is from [28], [29].

Example 4.3. Consider the Kripke model M∗ = (W , R, V ), where we have W = {wi | i ∈ N}, R = {(w0, wi) | i ≥ 1} ∪
{(wi+1, wi) | i ≥ 0} and V (p) = {w0}.

M∗: p

. . .

. . .

w0

w1 w2 w3 w4

Recall the sentence ϕ∗ = ν X�μY (�Y ∨ (p ∧ X)) from Example 4.1 and consider the evaluation game G∗ = G(M∗, w0, ϕ∗,
ω). In G∗ , Abelard first announces a clock value n < ω for Rf(X) and then makes a jump from the initial state w0 (with a �-move). Next Eloise announces some clock value m < ω for Rf(Y ). Then she can, by repeated ∨-moves, jump in the model 
(making a �-move) and loop back to the formula Rf(Y ); each time she loops back, she needs to lower the value of m. If 
Eloise at some point chooses the right disjunct, Abelard can either check if p true in the current state or loop back to Rf(X). 
In the latter case, the value of n is lowered, but the value of m is reset back to ω (allowing Eloise to choose a fresh value m
next time).

The game eventually ends when (1) the clock value of Rf(X) goes to zero, whence Abelard loses; when (2) the clock 
value of Rf(Y ) goes to zero, whence Eloise loses; or when (3) Abelard chooses the left conjunct, whence Eloise wins if and 
only if p is true at the current state. We will return to this game in Example 4.9.

Proposition 4.4. Let G = G(M, w, ϕ, �) be a bounded evaluation game. Every play of G ends in a finite number of rounds.

Proof. For each positive integer k, let ≺k denote the canonical lexicographic order of k-tuples of ordinals, that is, 
(γ1, . . . , γk) ≺k (γ ′

1, . . . , γ
′

k) if and only if there exists some i ≤ k such that γi < γ ′
i and γ j = γ ′

j for all j < i.
Consider a branch in the syntax tree of ϕ . Let ψ1, . . . , ψk ∈ Sfμν(ϕ) be the μν-formulae occurring on this branch in this 

order (starting from the root). In each round of the game, each such sequence (ψ1, . . . , ψk) is associated with the k-tuple 
(c(ψ1), . . . , c(ψk)) of clock values (that are ordinals less or equal to �). It is easy to see that if c and c′ are clock mappings 
such that c′ occurs later than c in the game, then we have (c′(ψ1), . . . , c′(ψk)) �k (c(ψ1), . . . , c(ψk)). Also, every time a 
transition from some label X to the reference formula Rf(X) is made, there is at least one branch where the k-tuple (for 
the relevant k) of clock values becomes strictly lowered (in relation to ≺k). As ordinals are well-founded, it is clear that the 
game ends after finitely many rounds. �

Each evaluation game G can naturally be associated with a game graph T (G) = (PG , EG), where PG is the set of all 
possible positions (v, ψ, c) of G and EG is the successor position relation. That is, (p1, p2) ∈ EG if and only if the position 
p2 can be reached from the position p1 in a single turn of the game. Note that the initial position has in-degree zero, 
the ending positions of the game have out-degree zero and all paths from the initial position to some ending position 
correspond to some play of the game. Due to Proposition 4.4, game graphs of bounded evaluation games contain no infinite 
paths and therefore they are acyclic. However, they are not necessarily trees as several different positions may have a 
common successor.

Remark 4.5. We defined game-theoretic semantics such that ordinals can always be lowered to any smaller ordinal. An 
alternative possibility would be to require that successor ordinals are always lowered by 1. Such a semantics is called 
6
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decremental. Using decremental semantics makes game graphs smaller, and we make this choice, e.g., in [13] when studying 
ATL. Notice that decremental semantics does not involve any choices of clock values when the clock value bound � is finite. 
This can nicely simplify, e.g., games in finite models. We note that in this article, we consider decremental semantics only 
in Section 8.

4.2. Game-theoretic semantics

Definition 4.6. Consider an evaluation game G = G(M, w0, ϕ0, �). A (positional) strategy σ for Eloise in G is a par-
tial mapping on the set of those positions (w, ϕ, c) of G where Eloise needs to make a move such that we have: 
σ(w, ψ ∨ θ, c) ∈ {ψ, θ}, σ(w, �ψ, c) ∈ {v ∈ W | w R v}, σ(w, μXψ, c) ∈ {γ | γ < �}, and σ(w, X, c) ∈ {γ | γ < c(Rf(X))}
where Rf(X) is of the form μXψ . We say that Eloise plays according to σ if she makes all her choices according to σ
and that σ is a winning strategy if Eloise always wins when playing according to σ . Strategies for Abelard are defined 
analogously.

A bounded evaluation game G and any strategy σ of Eloise (or Abelard) can be naturally associated with a graph T (G, σ)

so that T (G, σ) is the smallest subgraph of T (G) which is closed under σ . That is, T (G, σ) is obtained inductively by starting 
from the initial position and proceeding as follows: (i) for positions p of Eloise we add the position σ(p) and the edge to 
it, (ii) for positions p of Abelard we add all successor positions of p and the corresponding edges.

Definition 4.7. Let M = (W , R, V ) be a model, w ∈ W , ϕ a sentence and � > 0 an ordinal. We define truth of ϕ in M and 
w according to �-bounded game theoretic semantics, M, w �� ϕ , as follows:

M, w �� ϕ iff Eloise has a winning strategy in G(M, w,ϕ,�).

Remark 4.8. Note that we define our GTS—and its variants that are studied later on—with respect to positional strategies. 
However, it is easy see that we would obtain equivalent systems semantics by allowing perfect recall strategies, as in our 
logics a player with a perfect recall winning strategy also has a positional winning strategy. For games ending in a finite 
number rounds this can be proven simply via backwards induction. The game variants in Sections 8 and 9 can have infinitely 
long plays, but it is easy to see that they can be reduced to reachability (or safety) games which are know to be positionally 
determined.

Example 4.9. Recall the game G∗ from Example 4.3. We define a strategy for Eloise as follows. After Abelard has made a 
transition to some state w j , Eloise chooses j for the clock value of Rf(Y ) and jumps in the model until reaching again 
w0. She then chooses the right disjunct at w0, whence she either wins (since w0 ∈ V (p)) or Abelard needs to lower the 
clock value of Rf(X) and the clock value of Rf(Y ) gets reset back to ω. Clearly this is a winning strategy for Eloise and thus 
M∗, w0 �ω ϕ∗ .

From the structure of the evaluation games for ϕ∗ we find an interpretation for the meaning of ϕ∗: “we can infinitely 
repeat the process where first (1) an arbitrary transition is made, and then (2) we can reach a state where p is true and 
the process can be continued from (1)”. Thus the clock value chosen for Rf(Y ) is intuitively a “commitment” on how many 
rounds at most it takes to reach a state where p holds. The clock value for Rf(X), on the other hand, is a “challenge” on how 
many times p must be reached. Indeed, in models where p can be reached only finitely many—say n—times from the initial 
state, Abelard can win by choosing n + 1 as the initial clock value for Rf(X).

5. Equivalence of bounded GTS and the standard semantics

5.1. Bounded compositional semantics

In this section we define a compositional semantics based on ordinal approximants of fixed point operators. Let M =
(W , R, V ) be a Kripke model, F : P(W ) → P(W ) an operator and γ an ordinal. We define the sets F γ

μ and F γ
ν recursively 

as follows:

F 0
μ := ∅ and F 0

ν := W .

F γ
μ := F

(
F γ −1
μ

)
and F γ

ν := F
(

F γ −1
ν

)
, if γ is a successor ordinal.

F γ
μ :=

⋃
δ<γ

F δ
μ and F γ

ν :=
⋂
δ<γ

F δ
ν, if γ is a limit ordinal.

Definition 5.1. Consider a model M with a state w and a related assignment s. We obtain �-bounded compositional semantics
for the modal μ-calculus by defining truth of p, ¬p, ∨, ∧, �, � and X recursively as in the standard compositional 
semantics and treating the μ and ν-operators as follows:
7
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• M, w ��
s μXψ iff w ∈ (ψ̂X,s,�)�μ ,

• M, w ��
s ν Xψ iff w ∈ (ψ̂X,s,�)�ν ,

where the operator ϕ̂X,s,� :P(W ) →P(W ) is defined such that

ϕ̂X,s,�(A) = {w ∈ W | M, w ��
s[A/X] ϕ}.

The semantics of the μ and ν-operators can be equivalently given as follows:

• M, w ��
s μXψ iff there exists some γ < � s.t. w ∈ (ψ̂X,s,�)

γ +1
μ .

• M, w ��
s ν Xψ iff w ∈ (ψ̂X,s,�)

γ +1
ν for every γ < �.

(If � is a limit ordinal, we can replace the superscripts γ + 1 above by γ .)

5.2. Equivalence of �-bounded GTS and �-bounded compositional semantics

We say that a formula is in normal form if each label symbol in � occurs in the formula at most once in the μ-ν-
operators (but may occur several times on the atomic level). We let ϕ′ denote a normal form variant of ϕ obtained by 
renaming label symbols where appropriate. It is easy to show that ϕ is equivalent to ϕ′ with respect to both �-bounded 
compositional semantics (��) and �-bounded GTS (��). Thus, when proving the equivalence of these two semantics, it 
suffices to consider sentences that are in normal form.

Theorem 5.2. Let � be an ordinal, M a Kripke model, w0 ∈ W and ϕ0 a sentence of the modal μ-calculus. Now we have

M, w0 �� ϕ0 iff M, w0 �� ϕ0.

Proof. We first present a sketch highlighting the main idea of the proof.4 Any position (w, ϕ, c) in the evaluation game 
G = G(M, w0, ϕ0, �) can be associated with the c-generated assignment s for which the following holds for each X ∈ Sf(ϕ0):

1. s(X) = (ψ̂X,s,�)
γ
μ if Rf(X) = μXψ and c(Rf(X)) = γ ,

2. s(X) = (ψ̂X,s,�)
γ
ν if Rf(X) = ν Xψ and c(Rf(X)) = γ .

Note that c-generated assignments essentially relate the clock values γ of bounded GTS to γ -approximants in the bounded 
compositional semantics. Moreover, note that since we may assume ϕ0 to be in normal form, all occurrences of a label sym-
bol X in ϕ0 have the same reference formula and thus c-generated assignments s are uniquely defined for all X occurring 
in ϕ0. (The values s(Y ) of Y ∈ �\ Sf(ϕ0) may be arbitrary.)

Using the c-generated assignments and the �-bounded compositional semantics, each position (w, ϕ, c) in G satisfies 
one of the following conditions:

E(w, ϕ, c): M, w, ��
s ϕ holds with the c-generated assignment s.

A(w, ϕ, c): M, w ��
s ϕ holds with the c-generated assignment s.

We then prove the following two implications for any position (w, ϕ, c) in G:

1. If E(w, ϕ, c) holds, Eloise either wins or she can guarantee that E(w ′, ϕ′, c′) holds for the next position (w ′, ϕ′, c′).
2. If A(w, ϕ, c) holds, Abelard either wins or he can guarantee that A(w ′, ϕ′, c′) holds for the next position (w ′, ϕ′, c′).

From this it follows that if M, w0 �� ϕ0 holds, then we can formulate a strategy for Eloise which maintains the condition 
E(w, ϕ, c) and eventually leads to winning the game; and thus M, w0 �� ϕ0. Moreover, if M, w0 �

� ϕ0, then we can dually 
formulate a winning strategy for Abelard, whence Eloise cannot have a winning strategy in G and thus M, w0 �

� ϕ0.
Next we present the proof with all technicalities. We first observe that if M, w0 �� ϕ0, then the condition E(w0, ϕ0, c0)

clearly holds for the initial position of G . Since G ends in a finite number of rounds, it thus suffices that we prove the 
claim 1 above to infer one direction of the claim of the theorem: M, w0 �� ϕ0 implies M, w0 �� ϕ0. By also proving the 
claim 2 above, we can dually infer the contraposition: M, w0 �

� ϕ0 implies M, w0 �
� ϕ0.

Consider first a position (w, ϕ, c) with ϕ ∈ {p, ¬p | p ∈ �}. Here the evaluation game ends and clearly Eloise wins if 
E(w, ϕ, c) holds; and Abelard wins if A(w, ϕ, c) holds.

4 See [18] for an alternative proof, using slightly different idea, with all technical details.
8
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Consider the position (w, ψ ∨ θ, c) and let s be the c-generated assignment. Suppose first that E(w, ψ ∨ θ, c) holds. 
Thus M, w ��

s ψ ∨ θ , i.e., M, w ��
s ψ or M, w ��

s θ . Hence Eloise can choose ξ ∈ {ψ, θ} s.t. M, w ��
s ξ and thus E(w, ξ, c)

holds for the next position (w, ξ, c). Suppose then that A(w, ψ ∨ θ, c) holds. Hence M, w ��
s ψ ∨ θ , i.e., M, w ��

s ψ and 
M, w ��

s θ . Thus, regardless of the choice ξ ∈ {ψ, θ} of Eloise, A(w, ξ, c) holds for the next position. The case (w, ψ ∧ θ, c)
is proven dually.5

Consider the position (w, �ψ, c) and let s be the c-generated assignment. Suppose first that M, w ��
s �ψ , i.e., there 

exists v ′ ∈ W s.t. w R v ′ and M, v ′ ��
s ψ . Thus Eloise can choose v ′ and then E(v ′, ψ, c) holds for the next position. Suppose 

then that M, w ��
s �ψ , i.e., M, v ��

s ψ for all v ∈ W for which w R v . Thus, regardless of the choice v ′ ∈ W of Eloise, 
A(v ′, ψ, c) holds for the next position. The case (w, �ψ, c) is proven dually.

Consider the position (w, μXψ, c) and let s′ be the c-generated assignment. Suppose first that M, w ��
s′ μXψ , i.e., there 

is an ordinal γ ′ < � s.t. w ∈ (ψ̂X,s′,�)
γ ′+1
μ . Let A := (ψ̂X,s′,�)

γ ′
μ , whence w ∈ ψ̂X,s′,�(A), i.e., M, w ��

s′[A/X] ψ . Let s := s′[A/X], 
whence s(X) = (ψ̂X,s′,�)

γ ′
μ = (ψ̂X,s,�)

γ ′
μ and s(Y ) = s′(Y ) for all Y ∈ Sf(ϕ0) \ {X}. Now Eloise can choose γ ′ as the clock value 

of Rf(X), whence s is the c[γ ′/μXψ]-generated assignment and E(w, ψ, c[γ ′/μXψ]) holds for the next position. Suppose 
then that M, w ��

s′ μXψ , i.e., w /∈ (ψ̂X,s′,�)
γ +1
μ for any γ < �. Let γ ′ < � be a value for Rf(X), chosen by Eloise. Now by 

defining A and s as above, s is the c[γ ′/μXψ]-generated assignment and A(w, ψ, c[γ ′/μXψ]) holds for the next position. 
The case (w, ν Xψ, c) is proven dually.

Consider the position (w, X, c) and let s′ be the c-generated assignment. Moreover, suppose that c(Rf(X)) = γ and 
Rf(X) = μXψ , whence s′(X) = (ψ̂X,s′,�)

γ
μ . Suppose first that M, w ��

s′ X , i.e., w ∈ s′(X) = (ψ̂X,s′,�)
γ
μ . We first observe 

that thus the clock value γ cannot be 0. Suppose next that γ is a successor ordinal. Let A := (ψ̂X,s′,�)
γ −1
μ , whence 

w ∈ ψ̂X,s′,�(A), i.e., M, w ��
s′[A/X] ψ . Let s := s′[A/X], whence s(X) = (ψ̂X,s′,�)

γ −1
μ = (ψ̂X,s,�)

γ −1
μ and s(Y ) = s′(Y ) for all 

Y ∈ Sf(ϕ0) \ {X}. Now Eloise can lower the clock value of Rf(X) from γ to γ − 1, whence for the next position (w, ψ, c′), 
E(w, ψ, c′) holds and s is the c′-generated assignment. Finally, suppose that γ is a limit ordinal. Now w ∈ ⋃

δ<γ (ψ̂X,s′,�)δμ , 
and thus there is δ < γ s.t. w ∈ (ψ̂X,s′,�)δ+1

μ . Let A := (ψ̂X,s′,�)δμ , whence w ∈ ψ̂X,s′,�(A). Now Eloise can lower the clock 
value of Rf(X) from γ to δ and then E(w, ψ, c′) holds for the next position with the c′-generated assignment s := s′[A/X].

Suppose then that M, w ��
s′ X , i.e., w /∈ (ψ̂X,s′,�)

γ
μ . If γ = 0, then Abelard wins the evaluation game immediately. 

Suppose then that γ �= 0 and let γ ′ < γ be a clock value chosen by Eloise. Suppose that γ is a successor ordinal. 
Since γ ′ ≤ γ − 1 and ψ̂X,s′,� is monotone, we have (ψ̂X,s′,�)

γ ′
μ ⊆ (ψ̂X,s′,�)

γ −1
μ . Let A := (ψ̂X,s′,�)

γ ′
μ , whence ψ̂X,s′,�(A) ⊆

ψ̂X,s′,�((ψ̂X,s′,�)
γ −1
μ ). Hence w /∈ ψ̂X,s′,�(A) and thus M, w ��

s′[A/X] ψ . Let s := s′[A/X], whence s(X) = (ψ̂X,s′,�)
γ ′
μ =

(ψ̂X,s,�)
γ ′
μ . Thus s is the c′-generated assignment and A(w, ψ, c′) holds for the next position. Finally, suppose that γ is 

a limit ordinal, whence γ ′ + 1 < γ . Now w /∈ ⋃
δ<γ (ψ̂X,s′,�)δμ , and thus, in particular, w /∈ (ψ̂X,s′,�)

γ ′+1
μ . Let A := (ψ̂X,s′,�)

γ ′
μ , 

whence w /∈ ψ̂X,s′,�(A) and thus A(w, ψ, c′) holds for the next position with the c′-generated assignment s := s′[A/X]. The 
case when Rf(X) = ν Xψ is proven dually. �

Let M be a model. It is well-known that over M, each operator related to a formula of the μ-calculus reaches a fixed 
point in less than (card(M))+ iterations, where (card(M))+ is the successor cardinal of card(M). Thus it is easy to see 
that the standard compositional semantics and (card(M))+-bounded compositional semantics are equivalent in M. Hence 
we obtain the following corollary.

Corollary 5.3. �-bounded semantics is equivalent with the standard compositional semantics of the modal μ-calculus when � ≥
(card(M))+ .

Also note that, in the special case of finite models, it suffices to use finite clock values that are at most the cardinality of 
the model.

5.3. Stable clock value bounds and f -bounded semantics

Let M be a model, w be a point in M and ϕ be a formula of the modal μ-calculus. We say that a clock value bound �
is stable for the triple (M, w, ϕ) if the following holds for all ordinals �′ ≥ �:

M, w �� ϕ iff M, w ��′
ϕ.

Similarly we say that � is stable for a model M if � is stable for (M, w, ϕ) with any w and ϕ . From Corollary 5.3 it 
follows that there exists a stable clock value bound for each model. Moreover, from the proof of Theorem 5.2, we can see 

5 In the case of conjunction the condition E(w, ϕ, c) is maintained regardless of Abelard’s choice, while Abelard can maintain A(w, ϕ, c) by choosing the 
conjunct that is not true. The proofs for the other dual cases that we omit are similar.
9
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that the question on which clock value bounds are stable can be reduced to the study of ordinals where fixed-points of 
formulae are reached (and vice versa).

Whenever we use a stable clock value bound for a given triple (M, w, ϕ) we obtain semantics that is equivalent to the 
standard semantics of the modal μ-calculus, i.e. M, w �� ϕ if and only if M, w � ϕ . However, using smaller values of �, 
we obtain different semantic systems typically nonequivalent to the standard semantics (see the next section for examples). 
In order to make the �-bounded semantics equivalent to the standard semantics, we cannot use any fixed clock value bound 
�. Instead we need to set � based on the triple (M, w, ϕ). A simple way is to set � := card(M)+ in order obtain stability.6

We refer to the semantics where � is set this way simply as bounded semantics. Corollary 5.3 can then be reformulated as 
follows:

Corollary 5.4. Bounded semantics is equivalent to the standard semantics of the modal mu-calculus.

More generally, we can obtain different variants of bounded semantics by using any function f which maps parameters 
of evaluation games to ordinals. Let us define this formally.

Definition 5.5. Let f be a mapping that takes as input a model M, a point w in the domain W of M and a sentence ϕ , 
outputting an ordinal. Moreover, assume that if g is an isomorphism from M to M′ , then f (M, w, ϕ) = f (M′, g(w), ϕ).7

Such a function f is called a semantic clock function. The related f -bounded GTS is now defined as follows:

M, w � f ϕ iff M, w � f (M,w,ϕ) ϕ.

Some natural variants of f -bounded semantics are examined in Section 8. Note also that an equivalent f -bounded 
compositional semantics can be defined analogously. �-bounded GTS is a special case of f -bounded GTS where f is a 
constant function.

6. Finitely bounded semantics

In this section we consider semantic systems, where a fixed value of � is used for all models and formulae. A particu-
larly interesting case here is the so-called finitely bounded semantics, where we set � = ω for all evaluation games. In the 
corresponding GTS, the players can only announce finite clock values.8 Finitely bounded semantics will be denoted by FBS
which refers to both game-theoretic and compositional semantics with � = ω. In finite models FBS is equivalent to the 
standard semantics, but this equivalence breaks over infinite models; see Example 6.1 below.

In the example and proofs that follow, we will consider the sentence

ϕAFp := μX(p ∨ �X)

which intuitively means that on every path, p can be reached eventually. Note that ϕAFp corresponds to the sentence AFp of 
Computation tree logic CTL.

Example 6.1. Let M† be the model that is otherwise identical to M∗ in Example 4.3, but V (p) = {w1}.

M†:

p . . .

. . .

w0

w1 w2 w3 w4

Since the state w1 is eventually reached on every path starting from w0, it is easy to see that M†, w0 � ϕAFp . However, 
M†, w0 �

ω ϕAFp since from w0 there is no finite upper bound on how many transitions are needed to reach w1. Indeed, 
Abelard has a winning strategy in G(M†, w0, ϕAFp, ω) since he can win by choosing a transition to w j+1 for any clock 
value j < ω for Rf(X)—chosen by Eloise.

6 However, depending on M, w and ϕ , a much smaller � can suffice (cf. Section 7).
7 We note that f is too large to be a set, but this is unproblematic to our study.
8 Note that the correspondence to for-loops is particularly natural with finitely bounded semantics: iterations can be done up to any finite bound that 

has to be declared in advance.
10
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It is worth noting that M†, w0 �ω+1 ϕAFp since if Eloise can choose ω as the initial clock value for Rf(X) and then lower 
it to j − 1 after Abelard has made a transition to a state w j . Moreover, we also have M†, w0 �ω �ϕAFp since Eloise will 
know how many transitions it takes to reach w1 as Abelard has to make the first transition before Eloise must announce a 
clock value.

In the proofs that follow, we will use negations and implications of formulae of the modal μ-calculus. Such formulae 
are in general not included in our official syntax (in the current paper), but it is straightforward to show that they can be 
translated to equivalent formulae in negation normal form.

It is well known that, with standard semantics, the modal μ-calculus has the finite model property, i.e., every satisfiable 
sentence is satisfied in some finite model (see, e.g., [6]). However, with finitely bounded semantics, this property is lost.

Proposition 6.2. The modal μ-calculus with FBS does not have the finite model property.

Proof. It is easy to see that �ϕAFp → ϕAFp is valid with the standard semantics (this follows from the “fixpoint property” 
AFp ↔ p ∨AXAFp of CTL). Therefore �ϕAFp ∧¬ϕAFp is not satisfiable with the standard semantics. As the standard semantics 
is equivalent to FBS in finite models, �ϕAFp ∧ ¬ϕAFp cannot be satisfied under FBS in any finite model. However, �ϕAFp ∧
¬ϕAFp is satisfiable with FBS in an infinite model—as demonstrated by the model M† in Example 6.1. �

Moreover, FBS has the following interesting connection to the standard semantics.

Proposition 6.3. The set of validities of the modal μ-calculus with FBS is strictly included in the set of validities with the standard 
semantics.

Proof. To prove the inclusion, let ϕ be a sentence valid under FBS. Then ¬ϕ cannot be satisfied under FBS in any finite 
model. Since the standard semantics and FBS are equivalent in finite models, it follows that ¬ϕ is not satisfied by the 
standard semantics in any finite model. Due to the finite model property of the standard semantics, ¬ϕ is not satisfied by 
any model and thus ϕ is valid. The inclusion is strict as �ϕAFp → ϕAFp is valid under standard semantics but not under 
FBS (cf. proof of Proposition 6.2). �

We showed in [14], [17] that the claims of Propositions 6.2, 6.3 hold also for the FBS defined for CTL and ATL. There we 
also developed a tableau method for showing that the validity problem of CTL and ATL with FBS is decidable and has the 
same complexity (ExpTime) as with the standard semantics. It remains to be investigated whether the analogous ExpTime 
result holds also for the modal μ-calculus with FBS.

7. Simple semantics and the ν-free fragment

One key point in our �-bounded semantics is the use of clock mappings which utilise several clock values lexicograph-
ically. It is natural to ask if we could present the semantics in a more simple way by using just single ordinals for both 
players. Perhaps the most simple way to formulate such a variant goes as follows.

Definition 7.1. Let M be a Kripke-model, w ∈ W and ϕ a sentence of the μ-calculus. The simple �-bounded evaluation game
Gs(M, w, ϕ, �) is played the same way as the standard �-bounded evaluation game, but with the following differences on 
the way the number of remaining rounds is determined:

• Instead of using clock mappings c, Eloise is controlling an ordinal γ∃ and Abelard an ordinal γ∀ . In the beginning of the 
game, these ordinals are set to be equal to �.

• Every time a transition is made from some label symbol X to the reference formula μXψ , Eloise must lower the current 
value of γ∃ . Similarly, when a transition is made from Y to the reference formula νY ψ ′ , then Abelard must lower γ∀ . 
(Note that the values of γ∃ and γ∀ are never increased.)

If γ∃ = 0 and we enter a position where Eloise should lower γ∃ , then Eloise loses the game, and similarly, if γ∀ = 0
and we enter a position where Abelard should lower γ∀ , Abelard loses. In positions (M, w ′, p) and (M, w ′, ¬p) where p
is a proposition symbol, winning and losing is defined in the same way as in �-bounded games. We define truth of ϕ in 
M at w according to the simple �-bounded GTS such that M, w ��

sim ϕ if and only if Eloise has a winning strategy in the 
evaluation game Gs(M, w, ϕ, �).

In the next example we show that the simple �-bounded semantics is not equivalent to the (standard) �-bounded 
semantics with any clock value bound �. The example thus also implies that the simple �-bounded semantics cannot be 
equivalent the standard semantics of the modal μ-calculus with any choice of �.
11
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Example 7.2. Recall the formula ϕ∗ = ν X�μY (�Y ∨ (p ∧ X)) and the evaluation game G∗ = G(M∗, w0, ϕ∗, ω) from Ex-
ample 4.3. Let � > 0 be any ordinal and consider the simple �-bounded evaluation game G∗

s = Gs(M∗, w0, ϕ∗, �). Even 
though M∗, w0 � ϕ∗ , Abelard can win G∗

s by playing as follows. When evaluating � at w0 he jumps to w1, and then Eloise 
needs to go back to Rf(Y ) and lower her ordinal to some γ < �. We may assume that Eloise then jumps back to w0 and 
selects the disjunct p ∧ X there. Then Abelard goes back to Rf(X) and lowers his ordinal to the same value γ which Eloise 
currently has. By continuing like this, we will always have γ∀ ≥ γ∃ and thus the game will eventually end at Eloise’s loss by 
γ∃ becoming zero.

However, we can show that the simple �-bounded semantics can be made equivalent to the standard semantics when we 
consider the ν-free (or dually the μ-free) fragment of the modal μ-calculus. The ν-free fragment is one of the significant 
fragments of the μ-calculus, interesting also for its own sake. To give one example of its uses, it has been shown to 
correspond to asynchronous distributed automata in [33]. Now, in order to make simple �′-bounded semantics equivalent to 
the standard �-bounded semantics, we typically need to have �′ > �. The following easy result gives a rough estimate on 
the required size of the clock value bound �′ .

Proposition 7.3. For any stable ordinal � and ν-free formula ϕ , we have:

M, w �� ϕ iff M, w ��′
sim ϕ, where �′ = (� + 1)|Sfμν(ϕ)|

Proof. First note that the ordinal (� + 1)k , with k = | Sfμν(ϕ)|, is essentially order-isomorphic9 to the lexicographic order of 
k-tuples (γ1, . . . , γk) of ordinals γi ≤ �. Since the lexicographic order of such tuples corresponds to the order in which clock 
mappings appear in the positions of G(M, w, ϕ, �), it is easy to see that M, w �� ϕ implies M, w ��′

sim ϕ as ϕ is ν-free. 
For the other direction, we observe that M, w ��′

sim ϕ clearly implies M, w ��′
ϕ as ϕ is ν-free, and since � is stable it 

thus follows that M, w �� ϕ . �
Note that when � is infinite, (� + 1)| Sfμν(ϕ)| has the same cardinality as �. By doing a more fine-grained analysis on the 

structure of the evaluation games of the ν-free fragment, we can obtain better estimates for the size of the ordinal bounds 
that Eloise needs. We first make the following observation.

Lemma 7.4. If M, w ��
sim ϕ for some ν-free formula ϕ and ordinal � > 0, then M, w � ϕ .

Proof. Let �′ ≥ � be any ordinal that is stable for M. Since ϕ is ν-free, M, w ��
sim ϕ clearly implies M, w ��′

ϕ . Since �′
is stable, M, w � ϕ . �

Sizes of the ordinal bounds sufficient in the ν-free fragment can be estimated inductively accordingly to the following 
lemma.

Lemma 7.5. Let ϕ be a ν-free formula. Consider positions (w, ψ, γ ) in a simple �-bounded evaluation game Gs for ϕ and M, where 
γ is the current value of the ordinal that Eloise controls (as ϕ is ν-free, the ordinal of Abelard is irrelevant). For brevity, we will write 
M, w �γ

sim ψ below to denote that there exists a winning strategy for Eloise from the position (ψ, w, γ ) in Gs . The claims below hold 
for any subformulae ψ of ϕ and all states w in M.

• If ψ is a literal, then M, w �ψ implies M, w �0
sim ψ .

• If M, w �γ1
sim ψ1 or M, w �γ2

sim ψ2 , then M, w �min{γ1,γ2}
sim ψ1 ∨ ψ2 .

• If M, w �γ2
sim ψ1 and M, w �γ1

sim ψ2 , then M, w �max{γ1,γ2}
sim ψ1 ∧ ψ2 .

• If M, w �γv
sim ψ for some v for which w R v, then M, v �γ

sim �ψ , where γ := min{γv | w R v and M, v �γv
s ψ}

• If M, v �γv
sim ψ for all v such that w R v, then M, w �γ

sim �ψ , where γ := sup{γv | w R v and M, v �γv
sim ψ}

• If M, w �γ
sim ψ and Rf(X) = μXψ , then M, w �γ +1

sim X.

• If M, w �γ
sim ψ , then M, w �γ

sim μXψ .

Proof. The claims follow immediately from the rules of the simple evaluation game by using induction on ϕ . �

9 Recall that finite powers of ordinals are defined based on ordinal multiplication in the natural way such that γ k := γ · ... · γ where γ occurs k times 
on the right hand side. Therefore (� + 1)k is best understood via that definition as the k-fold product (� + 1) · ... · (� + 1).
12
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Before proving which ordinal bounds suffice for the ν-free fragment, we give the following definition. Given a model 
M, the regular branching bound RBB(M) of M is the smallest infinite regular10 cardinal that is strictly larger than all the 
branchings (i.e. out-degrees |{v | w R v}|) in M. (Cf. [13], [15].))

Example 7.6. If all the branchings in M are finite, but there is no upper bound for their size, then RBB(M) = ω. If for each 
i < ω there is a size ℵi branching in M, then RBB(M) = ℵω+1 (since ℵω is a singular cardinal).

The following theorem lists cases where the simple GTS becomes equivalent with the standard semantics. The second 
claim of the theorem is new, but the other claims could be justified via similar known results for closure ordinals. For 
example, consider the fragment of the standard modal μ-calculus without ν and �. Let μXψ be a formula in the fragment, 
s an assignment and ψ̂X,s a related operator in a model M. Now, it is easy to see and well known that if w is in the 
least fixed point of ψ̂X,s , then w ∈ (ψ̂X,s)

γ
μ for some finite γ . This observation is closely related to in the claim (1) of 

the theorem below. Nevertheless, as the simple GTS differs from the standard compositional semantics, we shall give self-
contained proofs of each claim.

Theorem 7.7. Let M be a model and � > 0 an ordinal. The equivalence

M, w ��
sim ϕ iff M, w � ϕ

holds when at least one of the following conditions is satisfied.

(1) ϕ is ν-free and �-free, and � ≥ ω.
(2) ϕ is ν-free and � ≥ RBB(M).
(3) ϕ is ν-free, M is finite and � ≥ card(M) · |ϕ|.

In a particular case of (2), it suffices to have � = ω when ϕ is ν-free and M is image finite.

Proof. As ϕ is ν-free in all three cases, the implication from left to right follows from Lemma 7.4. Suppose then that 
M, w � ϕ . Now Eloise has a winning strategy in a �′-bounded evaluation G for some �′ which is stable for M. Next we 
attach “ordinal labels” to positions in the game graph of G . We first attach 0 to all ending positions which are winning for 
Eloise and then proceed inductively by using Lemma 7.5 for the respective state-subformula pairs (v, ψ)—where possible. 
Note that these ordinal labels are attached independently of clocks c in the positions of G . Since Eloise has a winning 
strategy in G and Abelard does not use any clocks in G , it is easy to see that also the initial position of G will now receive 
a label γ0 such that M, w �γ0

sim ϕ .
(1) By starting from zero and taking successors and (finite) maxima and minima, we cannot construct infinite ordinals. 

Therefore, if ϕ is ν-free and �-free, then γ0 must be finite and thus M, w ��
sim ϕ for all � ≥ ω. (2) By additionally 

taking suprema of such sets of ordinals, whose cardinality correspond to some branching in M, we cannot reach the 
regular branching bound of M due to the definition of regular cardinals. Thus, if ϕ is ν-free, then γ0 < RBB(M) and thus 
M, w ��

sim ϕ for all � ≥ RBB(M).
(3) Finally suppose that M is finite and ϕ is ν-free. Since ordinals are attached to state-subformula pairs (independently 

of clocks), there are at most card(M) · |ϕ| different ordinal labels attached to the positions of G . Since ordinal labels are 
constructed (in the finite model) by taking successors, maxima and minima, it follows that if some ordinal γ is attached to 
a position, then all smaller ordinals must have already been attached too. Hence we must have γ0 ≤ card(M) · |ϕ| and thus 
M, w ��

sim ϕ for all � ≥ card(M) · |ϕ|. �
For all the results presented for the ν-free fragment in this section, the dual results for the μ-free fragment hold as well. 

The proofs are obtained simply by replacing the role of Eloise with Abelard and all the operators with their duals.

8. Variants with PTime model checking

The setting of bounded GTS leads naturally to semantic variants of the μ-calculus that can quite directly be shown to 
have PTime complete model checking. A key idea is to make use of the intimate relationship between alternating Turing 
machines and semantic games. The novel systems of semantics we shall consider in this section resemble the �-bounded 
semantics but utilize a simplified way to control how many times μ and ν-formulae can be repeated in evaluation games. 
Indeed, recall the f -bounded and simple semantics from Definitions 5.5 and 7.1, respectively. The next definition combines 
these two ideas.

10 A regular cardinal κ is equal to its own cofinality. This means that, for any family (Si )i∈I of sets, we have card
(⋃

i∈I Si
)
< κ whenever card(I) < κ and 

card(Si) < κ for each i ∈ I .
13
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Definition 8.1. Let f be a semantic clock function (recall Definition 5.5). The simple f -bounded GTS is the generalization of 
the simple �-bounded GTS of Definition 7.1 that uses, in the game for checking whether ϕ holds in M at w , the ordinal 
bound f (M, w, ϕ) (instead of the constant bound �).

The naturalness and general properties of simple f -bounded semantics of course depend heavily on the properties of 
f . One of the first choices that naturally suggests itself is f

(
M, w, ϕ

) = card(M) · |ϕ|, i.e., the model domain size times 
formula size. We recall that this choice of f gives precisely the semantics shown sufficient for the ν-free fragment in 
Theorem 7.7. Below we shall further motivate the naturalness of using the semantic clock function f

(
M, w, ϕ

) = card(M) ·
|ϕ|, but let us first prove the following result.

Proposition 8.2. The μ-calculus model checking problem under simple f -bounded semantics with f (M, w, ϕ) = card(M) · |ϕ| is 
PTime-complete.

Proof. To establish the upper bound, we define a Turing machine running in alternating logarithmic space that directly 
simulates the model checking game (i.e., the semantic evaluation game) with any input M, w, ϕ . The game positions where 
Eloise makes a move correspond to existential machine states while Abelard’s positions correspond to universal ones. We 
need some kind of a pointer indicating the current world of the Kripke structure and another pointer for the current 
subformula (i.e., node in the syntax tree). Furthermore, we keep binary representations of the clock values γ∃ and γ∀ in the 
memory. These binary strings are necessarily logarithmic in the input due to the choice of f . Thus it is easy to see how the 
required alternating Turing machine is constructed.

We obtain the lower bound via a reduction from the alternating reachability problem. Recall Proposition 2.2 and the 
formula χ there. Now, it follows directly from Proposition 2.2 and the third part of Theorem 7.7 that χ defines the winning 
set of the alternating reachability game also under simple f -bounded semantics, i.e., χ is true in M at w under that 
semantics if and only if the player B has a winning strategy in the corresponding reachability game. Note that the reduction 
from the alternating reachability game to the model checking problem is easy because the input to the game can also act 
(without modification) as an input model to the model checking problem. Putting all the above together, we now see that 
already with the fixed input formula χ , model checking is PTime-hard. �

We note that combining the above argument with the third part of Theorem 7.7 gives a proof, based on game-theoretic 
semantics, of the (known) fact that the model checking problem of the ν-free fragment of the μ-calculus is PTime-complete.

We next discuss a natural generalization of modal logic. We call this logic (propositional) modal computation logic (MCL), 
as it is a fragment of the expressively Turing-complete logic defined in [28] which is studied also in, e.g., [29,30] and 
dubbed computation logic CL in [30]. The Turing-completeness of the logic means that it captures RE in the exact sense of 
descriptive complexity theory. This is proved in [28]. The logic CL extends the syntax of first-order logic by operators that 
modify the underlying structure and further operators that enable formulae to refer to themselves. Formally, self-reference 
is imposed simply by atoms X from where the semantic game can jump back to a formula where X occurs as a subformula.

A particular feature of MCL and CL is that their syntax allows free use of negation. The semantics of negation is precisely 
as in the GTS of first-order logic, i.e., the swap of roles between the verifier and falsifier (see below). In CL, this approach 
via GTS is actually a crucial feature, since the classical negation (of compositional semantics) would lead to CL being closed 
under complement and thereby not equivalent to Turing machines. This is due to the simple fact that there exist recursively 
enumerable classes whose complement is not recursively enumerable. Nevertheless, CL is a conservative extension of first-
order logic, i.e., on first-order formulae, its semantics agrees with first-order logic. Similarly, MCL is a conservative extension 
of modal logic. The logic MCL can also be called non-well-founded modal logic, since its formulae can be regarded as non-
well-founded, as we shall see.

We will later on below relate MCL to an f -bounded semantics with f (M, w, ϕ) = card(M) · |ϕ|. Similarly to the μ-
calculus with simple f -bounded semantics with f (M, w, ϕ) = card(M) · |ϕ|, also MCL will prove to have PTime-complete 
model checking.

Definition 8.3. The syntax of MCL is given by the grammar

ϕ ::= p | X | ¬ϕ | ϕ ∨ ϕ | �ϕ | Xϕ

where, as in the modal μ-calculus, we have p ∈ � and X ∈ �. To help separate the atomic instances of X from the instances 
of type Xϕ , it is also possible to write ((X))ϕ instead of just Xϕ . A leaf node X in the syntax tree of a formula χ is said 
have ((X))ψ as the referent formula if ((X))ψ is the first formula of type ((X))ϕ on the path from the leaf X to the root χ
of the tree.

The semantic evaluation game for MCL does not involve any time bounds or ordinals, so the game could be described as 
clock-free. The game is played as follows in a model M.

• The positions are of type (w, ϕ, Q ) where the symbol Q ∈ {∃, ∀} indicates whether Eloise (∃) or Abelard (∀) is currently 
the verifier of the game. Here w is of course just a world of M.
14
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• In a position (w, ¬ϕ, ∃), the game moves to the position (w, ϕ, ∀), and similarly, (w, ¬ϕ, ∀) moves to (w, ϕ, ∃).
• In a position (w, �ϕ, Q ) (respectively, (w, ϕ ∨ ψ, Q )), the currently verifying player (indicated by Q ) chooses the next 

position which corresponds (in the usual way) to picking a v ∈ W such that w R v (respectively, picking one of the 
disjuncts from ϕ ∨ ψ ). In the case for �ϕ , if there is no v such that w R v , the game play ends and the current verifier 
loses.

• In a position (w, Xϕ, Q ), the game moves to the position (w, ϕ, Q ).
• In a position (w, X, Q ), the game moves back up to the position (w, Xϕ, Q ) corresponding to the referent formula of 

X . If there is no such referent formula, then the game play ends and neither player wins.11

• The game ends in positions of type (w, p, Q ), and the current verifier wins if w satisfies p. Else the other player wins.

Note indeed that no clocks are used in the game play. We write M, w �MCL ϕ if Eloise has a positional winning strategy in 
the game beginning from (w, ϕ, ∃).

Recalling Remark 4.8, note that positional strategies suffice also for the case of MCL even though the respective evalua-
tion games are not determined. This is because the winning condition of the game is a reachability condition.

Note that neither player wins game plays that continue for infinitely many rounds; consider, for example, the formula 
X X , that is, the formula ((X))X . On the other hand, no limitations are put on the use of negation in the syntax. It is also 
worth noting that the semantic games of MCL are double reachability games (cf. Section 2.3). Furthermore, concerning the 
characterization of MCL as non-well-founded modal logic, note that the syntax trees of formulae of MCL could be replaced 
by non-well-founded structures where each node pointing to a leaf X would instead point directly to the corresponding 
formula ((X))ϕ . In fact, we could even remove the operator ((X)) (in addition to X) and point directly to the node corre-
sponding to ϕ .

Let us next define a simple f -bounded semantics for MCL with the semantic clock function f (M, w, ϕ) = card(M) · |ϕ|. 
For simplicity, we consider finite models only, so f (M, w, ϕ) is a finite number. The game for checking whether ϕ holds 
in M at w is defined in the obvious way by extending the game for MCL by two ordinal clocks—one for each of the 
two players—set to f (M, w, ϕ) in the beginning. The currently verifying player’s ordinal is lowered when jumping from 
an atomic position with X to the position X ϕ of the referent formula. Neither ordinal is raised at any stage of the game. 
Ordinals are always lowered by 1, so this is a decremental semantics; recall Remark 4.5. Note that thus the players do not 
have to make any choices relating to clock values as they always simply get decremented by 1. In a position where a clock 
value is already 0 but it would have to be lowered even further, the game play ends and neither of the players wins. Other 
ending positions determine the winner of the game play in the same way as in the standard, clock-free semantics of MCL. 
We write M, w �MCL

sim ϕ if Eloise has a positional winning strategy in this game for simple f -bounded semantics12 with 
f (M, w, ϕ) = card(M) · |ϕ|.

Proposition 8.4. Let M be finite. Then M, w �MCL ϕ iff M, w �MCL
sim ϕ .

Proof. Suppose first that M, w �MCL ϕ , i.e. Eloise has a winning strategy σ in the clock-free game. We will use σ to find 
a winning strategy σ ′ for Eloise in the simple f -bounded game with f (M, w, ϕ) = card(M) · |ϕ|.

Now, since σ is positional, there exists no play of the clock-free game respecting σ where a position becomes repeated 
(for otherwise σ would not be winning). On the other hand, the clock-free game has at most card(M) · |ϕ| states where 
Eloise is the current verifier. The same holds also for Abelard. We thus claim that Eloise can use the same strategy σ to also 
win the simple f -bounded game. To see why this holds, note first that Eloise’s (respectively, Abelard’s) clock can be lowered 
only in those positions where Eloise (respectively, Abelard) is the current verifier, and since there are at most card(M) · |ϕ|
such positions, the clock value never needs to drop below 0. As σ is a winning strategy, the claim holds.

The direction from M, w �MCL
sim ϕ to M, w �MCL ϕ is immediate. �

Notice that the simple f -bounded semantics of MCL forces games to be of finite duration. As a final remark, we note 
the following.

Proposition 8.5. The model checking problem of MCL is PTime-complete.

Proof. The lower bound follows similarly to that of Proposition 8.2. Also the upper bound is similar (based on an alternating 
LogSpace machine). We simply keep a pointer to the current subformula and another pointer to the model point. We remark 
that we can even explicitly limit the model checking game duration to card(M) · |ϕ| (by Proposition 8.4) which can of course 
be encoded in binary. �
11 We mention here a natural alternative semantics where the verifier can freely jump from (w, X, Q ) to any position of type (w, Xϕ, Q ), and the game 

ends with neither player winning if no such positions exist.
12 This game essentially corresponds to a reachability game from Eloise’s point of view, so having a positional winning strategy is equivalent to having a 

general winning strategy.
15
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9. Semi-bounded GTS

Here we introduce and discuss semi-bounded GTS of the μ-calculus. In this semantics, only Eloise must announce clock 
values while Abelard can play without setting any clocks. Thereby evaluation games can possibly take infinitely many 
rounds, in which case Abelard loses infinite plays. The semantics has also a dual variant where only Abelard sets clocks and 
Eloise plays freely, and Eloise loses infinite plays. For simplicity, we first explicitly discuss only the semi-bounded semantics 
where Eloise sets clock values. We let �-semi-bounded GTS (��

sb) refer to the system where the time limit bound of Eloise’s 
clock values is � (and Abelard indeed uses no clocks). We note that the general idea of using clockings that concern only 
one player is closely related to use of progress measures in, e.g., [22].

Given a �-semi-bounded evaluation game G and a strategy σ , we can define the game graph T (G) and its σ -closed 
subgraph T (G, σ) analogously to the case of �-bounded evaluation games. Note that T (G) may now contain infinite paths 
(and cycles). However, if σ is a winning strategy of the player who does not set clock values, then T (G, σ) will not contain 
any infinite paths.

Theorem 9.1. �-semi-bounded GTS and �-bounded GTS are equivalent when � is stable.

Proof. Now, if Eloise has a winning strategy in a �-semi-bounded evaluation game, then she trivially also wins the cor-
responding �-bounded evaluation game by essentially using the same strategy—just ignoring the clock values of Abelard. 
Thus one direction of the equivalence is clear.

To prove the other direction, we first note that the �-semi-bounded games are safety games for Eloise, as in order to 
win, she only has to avoid those ending positions where Abelard wins. As safety games are well-known to be determined 
(even on infinite game arenas), we conclude that the �-semi-bounded games are determined.

Now, assume that Eloise has a winning strategy σ in the �-bounded evaluation game G . Suppose, for the sake of 
contradiction, that she does not have a winning strategy in the �-semi-bounded evaluation game G′ . Since �-semi-bounded 
evaluation games are determined, Abelard now has a winning strategy σ ′ in G′ .

Consider the σ ′-closed game graph T (G′, σ ′). Since σ ′ is a winning strategy, T (G′, σ ′) does not contain any infinite 
paths. We map the positions p in T (G′, σ ′) to ordinals γp inductively as follows:

• All ending positions in T (G′, σ ′) are mapped to 0.
• All the other positions p in T (G′, σ ′) are mapped to the supremum of the ordinals corresponding to the successor 

positions of p in T (G′, σ ′).

Let �∗ be the ordinal which is a maximum of � and the ordinal γp0 which corresponds to initial position p0 of G′ . 
Consider then the �∗-bounded evaluation game G∗ which is otherwise identical to G but it uses �∗ as the clock value 
bound. Let σ be the strategy of Abelard which is otherwise identical to σ ′ , but it chooses clock values according to γp

whenever Abelard needs to select (or lower) some clock value. Since σ ′ is a winning strategy in G′ , it follows from the 
inductive definition of ordinals γp that σ is a winning strategy in G∗ . Since �∗ ≥ � and we assumed that � is stable, it 
follows that Abelard has a winning strategy in G . This is a contradiction since Eloise has a winning strategy in G . �
Theorem 9.2. The variant of �-semi-bounded GTS, where only Abelard announces clock values, is equivalent to �-bounded GTS
when � is stable.

Proof. If Eloise has a winning strategy in a �-bounded evaluation game G , then she can use the same strategy (without 
setting clocks) in the corresponding �-semi-bounded evaluation game G′ where only Abelard needs to announce clock 
values. For the other direction, suppose that she has a winning strategy in G′ . Then, proceeding exactly as in the proof 
above, we can first attach ordinals γp to positions in G′ and then we ultimately obtain a winning strategy for Eloise in 
G . �
Remark 9.3. In the proofs of the theorems above we add a “clocking” to a strategy which initially does not use any clock 
values. Since this clocking can be described by attaching single ordinals γp (instead of ordinal tuples) to positions p, it 
may seem as if this method gives a way to replace clock mappings c with ordinals γ∃ and γ∀ as in the simple �-bounded 
semantics. However, note that the ordinals γp can depend on the clock value bound � (which the opponent player uses) and 
thus typically the ordinals γp become larger than �—even if � is stable. Because of this we cannot replace the clockings 
of both players with just single ordinals (as observed in Example 7.2). Instead the use of ordinals γp can be seen as a 
“meta-clocking” which only works properly when a player knows which clock values the other player is allowed to use.

Related to the remark above, we note that one could also replace clock mappings in the �-semi-bounded GTS with 
a single ordinals to obtain “simple �-semi-bounded GTS”. However, such semantics cannot be equivalent to the standard 
semantics—regardless how large ordinals are used. This can be seen by looking at the game G∗ in Example 4.3 one more 
16
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time. Suppose that Eloise has a single ordinal γ∃ which she needs to lower every time when a transition from Y to Rf(Y ) is 
made. Now Abelard can win the game simply by repeating �-moves and transitions from X to Rf(X) until Eloise loses.

Finally, recalling Section 2.3, we note that the GTS where only Eloise (resp. Abelard) announces clock values, is essentially 
a safety (resp. reachability) game, while our standard bounded GTS is a essentially a strong reachability game. See also the 
next section and Remark 10.2 for elaboration.

10. Reducing model checking to alternating reachability

In this section we study model checking of the μ-calculus for fixed sentences.13 We investigate model checking separately 
with respect to the standard semantics and with respect to �-bounded semantics. The main observations link to alternating 
reachability in a way that has some similarities with the approach in Section 8. However, here we consider the standard 
semantics and reductions relating to direct model constructions, concentrating on data complexity only.

Given a sentence ϕ of the μ-calculus, we use the following notation for the corresponding model checking and bounded 
model checking problems:

• MC(ϕ) := {(M, w) |M is finite and M, w � ϕ}, and
• BMC(ϕ) := {(M, w, �) |M is finite and M, w �� ϕ}.

Recalling the relevant notations from Section 2.3, including the formula χ given in Proposition 2.2, we note, in particular, 
that the alternating reachability problem AR is equal to MC(χ). Our aim is to show that AR is a complete problem for 
model checking and bounded model checking:

Proposition 10.1. For each formula ϕ of the modal μ-calculus there are LogSpace-computable model transformations Jϕ and Iϕ such 
that for any finite Kripke model M, state w and ordinal � we have

(1) (M, w, �) ∈ BMC(ϕ) iff Jϕ(M, w, �) ∈ AR, and
(2) (M, w) ∈ MC(ϕ) iff Iϕ(M, w) ∈ AR.

Furthermore, neither Jϕ(M, w, �) nor Iϕ(M, w) contain infinite paths.

Proof. Recall that the game graph of an evaluation game G = G(M, w0, ϕ, �) is the graph T (G) = (PG , EG), where PG is 
the set of positions (v, ψ, c) of G , and EG is the successor position relation. We consider the following Kripke model that 
is obtained from T (G) by adding proposition symbols encoding winning end positions of Eloise and positions in which it is 
Eloise’s turn to move: MG = (PG , EG , VG), where VG : {pB , qB} →P(PG) is the valuation

• VG(pB) = {(v, ψ, c) ∈ PG | ψ is a literal and M, v � ψ},
• VG(qB) = {(v, ψ, c) ∈ PG | ψ is of the form θ ∨ η, �θ, μXθ , or X with Rf(ψ) = μXθ , or ψ is a literal and M, v � ψ}.

Let rG = (w0, ϕ, c0) be the initial position of G . Observe now that, letting Eloise play in the role of B and Abelard in 
the role of A, the reachability game on the Kripke-model MG with starting state rG is essentially identical with the 
game G: the positions and the rules for moves are the same, and the winning conditions are equivalent.14 Thus, defin-
ing Jϕ(M, w0, �) := (MG , rG), and using Theorem 5.2, we obtain the first equivalence (1). Clearly Jϕ(M, w0, �) can be 
computed from the input (M, w0, �) in LogSpace.

The transformation Iϕ can now be defined as follows: we let Iϕ(M, w0) := Jϕ(M, w0, (card(M))+). Denote �∗ :=
(card(M))+ below. By Corollary 5.3 and (1) we have

(M, w0) ∈ MC(ϕ) iff (M, w0,�
∗) ∈ BMC(ϕ) iff Jϕ(M, w0,�

∗) ∈ AR,

whence (2) holds. Clearly Iϕ is LogSpace-computable.
Since game graphs of �-bounded evaluation games do not contain infinite paths, the same holds also for Jϕ(M, w, �)

and Iϕ(M, w). �
Remark 10.2. Note that the transformation Jϕ in the proof above actually turns a given bounded evaluation game into an 
strong reachability game (recall Section 2.3).15 Moreover, we can use exactly the same transformation for turning those 

13 The complexities of the related problems are commonly referred to as data complexity as opposed to the combined complexity of the standard problem 
where the sentence is not fixed.
14 For example, in a position p = (v, ψ, c) with ψ a literal such that M, v � ψ , B loses the alternating reachability game since p does not have any 
EG -successors.
15 Strictly speaking we should also give an interpretation for p A , but here e.g. VG(p A) = ∅ works as those position in which Abelard wins the evaluation 

game correspond to states where B loses by not being able to move in the strong reachability game. However, perhaps the most natural choice would be 
to define VG(p A) as the set of those positions (v, ψ, c), where ψ is a literal and M, v �ψ .
17
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semi-bounded evaluation games, where only Eloise uses clocks, into safety games. Dually we can formulate an analogous 
transformation which turns those semi-bounded evaluation games, where only Abelard uses clocks, into reachability games 
(which may contain infinite paths).

Thus, checking the truth of an arbitrary sentence of the modal μ-calculus can be reduced via Iϕ to checking the truth of 
the simple alternation free sentence χ . A related idea was used in [4] for showing that finite parity games can be reduced 
to safety games by adding an explicit memory M to the states. Proposition 10.1 resembles also the “Measured Collapse 
Theorem” in [8], which states that checking the truth of any sentence ϕ of the μ-calculus can be reduced to checking the 
truth of an alternation free sentence ϕ′ . However, unlike in Proposition 10.1, the result of [8] is not a reduction to MC(ψ)

for a fixed sentence ψ , as ϕ′ depends on ϕ . Moreover, the sentence ϕ′ is actually a translation of ϕ to a different logic, 
called μ�-calculus, whose semantics is based on an additional domain of tuples that can be related to our clock values.

It should be noted that the existence of LogSpace-computable reductions from the model checking problems BMC and 
MC to AR follows directly from the well-known fact that alternating reachability is a PTime-complete problem. However, the 
main point here is that our reductions Jϕ and Iϕ arise in a natural and straightforward way from the bounded evaluation 
game. Moreover, except for LogSpace-computability, the proof above does not rely on any point on the assumption that the 
Kripke models are finite. Thus we see that the reductions Jϕ and Iϕ work on infinite Kripke models as well as on finite 
ones: for any Kripke model M, state w and ordinal � we have

• M, w �� ϕ iff Jϕ(M, w, �) � χ , and
• M, w � ϕ iff Iϕ(M, w) � χ .

11. Conclusion and future directions

Our study has focused on conceptual developments relating to the modal μ-calculus, the main result being the new 
GTS and its variants. There are many relevant future research directions; we mention here some of them. Firstly, it would 
be interesting to understand new clocking patterns in general, in addition to the finitely bounded, the simple bounded, 
the semi-bounded and the clock-free semantics discussed above. These investigations could naturally be pushed to involve 
more general logics beyond modal logic, possibly containing, e.g., operators that modify the underlying models, and thereby 
directly linking to the research on the general logical framework of [28] and the research program of [28] and [29].

More concretely, pinpointing the complexity of the satisfiability problem of the modal μ-calculus under finitely bounded 
semantics remains to be done. Finally, using ordinals to reduce arbitrary game arenas to well-founded trees is in general an 
interesting research direction.16 Relating to this and the work in Section 10, it would be particularly interesting to better 
understand reductions of general games to strong reachability games.
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