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ABSTRACT The contactless estimation of the weight of a container and the amount of its content
manipulated by a person are key pre-requisites for safe human-to-robot handovers. However, opaqueness
and transparencies of the container and the content, and variability of materials, shapes, and sizes, make this
estimation difficult. In this paper, we present a range of methods and an open framework to benchmark
acoustic and visual perception for the estimation of the capacity of a container, and the type, mass,
and amount of its content. The framework includes a dataset, specific tasks and performance measures.
We conduct an in-depth comparative analysis of methods that used this framework and audio-only or vision-
only baselines designed from related works. Based on this analysis, we can conclude that audio-only and
audio-visual classifiers are suitable for the estimation of the type and amount of the content using different
types of convolutional neural networks, combined with either recurrent neural networks or a majority voting
strategy, whereas computer vision methods are suitable to determine the capacity of the container using
regression and geometric approaches. Classifying the content type and level using only audio achieves
a weighted average F1-score up to 81% and 97%, respectively. Estimating the container capacity with
vision-only approaches and estimating the filling mass with audio-visual multi-stage approaches reach
up to 65% weighted average capacity and mass scores. These results show that there is still room for
improvement on the design of new methods. These new methods can be ranked and compared on the
individual leaderboards provided by our open framework.

INDEX TERMS Acoustic signal processing, image and video signal processing, audio-visual classification,
object properties recognition.

I. INTRODUCTION
People interact daily with household containers, such as cups,
drinking glasses, mugs, bottles, and food boxes. Methods

The associate editor coordinating the review of this manuscript and
approving it for publication was Gangyi Jiang.

to estimate the physical properties (e.g., weight and shape)
of these containers could support human-robot cooperation
[1]–[5], video annotation and captioning. Methods should
generalize to unknown container instances and operate with
only limited prior knowledge, such as generic categories of
containers and contents [1], [6], [7]. However, the material,
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texture, transparency, and shape vary considerably across
containers and may change with the content. Furthermore,
the content may not be visible due to the opaqueness of the
container or because of hand occlusions. For these reasons,
predicting the physical properties of containers is a chal-
lenging task. The combination of sensing modalities, namely
RGB images, depth, and audio, may help to overcome chal-
lenges such as noisy scenarios, already filled containers with
absence of sound, occlusions, or transparent objects whose
depth data may be highly inaccurate [8].

The contributions of this paper include:

• A novel framework for the comparison of methods
that estimate the physical properties of containers and
their content, when a person manipulates the container
(see Fig. 1);

• The definition of three tasks, such as the classification
of the content amount, the classification of the content
type, and the estimation of the container capacity, and
related performances measures, including the indirect
filling mass estimation based on the three tasks, for the
framework;

• The design of 12 audio-only baselines and one
vision-only baseline for the tasks of classifying the
content level and the content type based on related
approaches from the literature;

• A formal review, a comparative analysis, and an in-depth
discussion of methods that used the framework to
address this problem;

• The results of an international benchmarking challenge.1

FIGURE 1. The multi-modal, multi-sensor system used to record a person
manipulating a container and its content. The system includes two
third-person view cameras (at the two sides of the robot), a first-person
view camera mounted on the robot, a first-person view from the
body-worn camera on the person and a 8-microphone circular array
(placed next to the robot arm).

The paper is organized as follows. Section II dis-
cusses related works. Section III presents the benchmarking
framework, including a multi-modal dataset, tasks for the

1https://corsmal.eecs.qmul.ac.uk/challenge2020.
html

estimation of the container and content properties, and cor-
responding performance measures. Section IV reviews the
methods that used the framework for the tasks of filling
type and level classification. Section V reviews the methods
that used the framework for the task of container capacity
estimation. Section VI discusses and compares the results of
the methods under analysis. Section VII concludes the paper
and discusses future research direction.

II. RELATED WORK
In this section, we discuss the object properties that are com-
monly estimated in the literature. We then review methods
that recognize the content type, estimate the amount of con-
tent in a container, or estimate the container capacity, based
on their approaches and input modalities.

Most of the works in the literature focus on object recog-
nition, object shape and size reconstruction in 3D, as well
as pose estimation of a variety of objects using visual
data and objects standing on a surface [9]–[16]. Object
properties, such as transparency, are often tackled indepen-
dently with ad-hoc designed approaches for 3D shape recon-
struction, object localization in 3D, or 6D pose estimation
[8], [17]–[19]. Recognizing different high-level properties,
such as the type and amount of multiple filling materials,
the capacity of the container, and the overall weight of
the object (i.e., the container with its content) is not yet
well-investigated.

Recognizing the content type within a container is
addressed only for general food recognition using visual
information [20]–[22]. Audio modality is commonly used
for the recognition of general environmental sounds using
the combination of traditional features and machine learning
classifiers – e.g., k-Nearest Neighbour kNN [23], Support
Vector Machine (SVM) [24], and Random Forest (RF) [25]–,
or deep learning approaches – e.g., convolutional neural net-
works (CNNs) [26]. Examples of traditional acoustic features
are spectrograms, zero-crossing rate (ZCR), Mel-frequency
Cepstrum Coefficients (MFCCs), chromogram, Mel-scaled
spectrogram, spectral contrast, and tonal centroid features
(tonnetz) [27]–[30]. However, there are no unimodal or
audio-visual approaches that recognize the content type dur-
ing the manipulation of different containers held by person
and together with other physical properties.

For content level estimation, some methods regress or
classify the property using CNNs and a single image
[7], [31], or use temporal information from sequences of
RGB or RGB-D data to track the change in the amount
during a mechanical action [32]–[34]. Other methods use the
sound signals generated by the contact of the content with
a container during a manipulation [35]–[38]. For example,
the level of unknown liquids within containers standing on
a surface is regressed or classified by using approaches such
as Kalman Filter and recurrent neural networks with edge
features or spectrograms [33], [34], [38]. For the estimation
of the capacity of a container, one work trained a CNN using
an RGB image of one or more containers standing on a
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TABLE 1. Methods that used the CORSMAL framework for filling level, filling type, and container capacity estimation. Methods are evaluated on the
CORSMAL Container Manipulation dataset.

surface [31]. However, all of these approaches are often
designed and evaluated on scenarios with only standing con-
tainers, and with limited variability in the data.

Unlike previous works, in the next sections we present
an open framework for the estimation of multiple physical
properties of containers and contents as they are manipu-
lated by a person. We also discuss methods that used this
framework based on the modalities used as input, the features
extracted, and the type of approach (regression, classification,
or geometry-based) [39]–[43] (see Table 1).

III. BENCHMARKING FRAMEWORK
A. CONTAINERS, FILLINGS, SCENARIOS
The dataset includes audio-visual-inertial recordings of peo-
ple manipulating a range of containers that vary in shape,
size, material, transparency, and deformability, and a set of
contents under different scenarios with increasing level of
difficulty due to the type of occlusions.

CORSMALContainersManipulation [45] is a dataset con-
sisting of 1,140 audio-visual recordings with 12 human sub-
jects manipulating 15 containers, split into 5 cups, 5 drinking
glasses, and 5 food boxes. These containers are made of
different materials, such as plastic, glass, and cardboard. Each
container can be empty or filled with water, rice or pasta at
two different levels of fullness: 50% and 90% with respect to
the capacity of the container. The combination of containers
and contents results in a total of 95 configurations acquired
for three scenarios with an increasing level of difficulty
caused by occlusions or subject motions.

In the first scenario, the subject sits in front of the robot,
while a container is on a table. The subject either pours the
content into the empty container, while avoiding touching the

container, or shakes an already filled food box. Afterwards,
the subject initiates the handover of the container to the robot.
In the second scenario, the subject sits in front of the robot,
while holding a container before starting the manipulation.
In the third scenario, a container is held by the subject while
standing to the side of the robot, potentially visible only on
the third-person camera view. After the manipulation, the
subject takes a few steps and initiates the handover of the
container in front of the robot. Each scenario is recorded with
two different backgrounds and under two different lighting
conditions. The first background condition involves a plain
tabletop with the subject wearing a texture-less t-shirt, while
the second background condition involves the table covered
with a graphics-printed tablecloth and the subject wearing
a patterned shirt. The first lighting condition is based on
artificial illumination as provided by lights mounted on the
ceiling of the room. The second lighting condition uses two
controlled artificial lights placed at the sides of the robot and
illuminating the area where the manipulation is happening.
Each subject executed the 95 configurations for each scenario
and for each background/illumination condition.2

B. SENSOR DATA AND ANNOTATION
The dataset was acquired with 4 multi-sensor devices, Intel
RealSense D435i, and an 8-element circular microphone
array. EachD435i device has 3 cameras and provides spatially
aligned RGB, narrow-baseline stereo infrared, and depth
images at 30 Hz with 1280 × 720 pixels resolution. One
D435i is mounted on a robot arm that does not move during
the acquisition and provides a more realistic view of the

2Ethical approval (QMREC2344a) obtained at Queen Mary University of
London. Consent from the subjects was collected before data collection.
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FIGURE 2. The mass of objects (container and content) in the training set of the CORSMAL Containers Manipulation dataset. The class empty
corresponds to the mass of the container, which is known. Legend: Empty, P5, P9, R5, W5, R9, W9.

operating area from the robot perspective. Another D435i is
chest mount by the person to provide a first-person view,
while the remaining two devices are placed at the sides of
the robot arm as third-person views that look at the operating
area. The microphone array is placed on a table and consists
of 8 Boya BY-M1 omnidirectional Lavelier microphones
arranged in a circular shape of radius 15 cm. Audio signals
are sampled synchronously at 44.1 kHz with a multi-channel
audio recorder. All signals are software-synchronized with
a rate of 30 Hz. The calibration information (intrinsic and
extrinsic parameters) for each D435i and the inertial mea-
surements of the D435i used as a body-worn camera are also
provided.

The annotation of the data includes the capacity of the
container, the content type, the content level, the mass of the
container, the mass of the content, the maximum width and
height (and depth for boxes) of each object. Fig. 2 shows the
total object mass across containers and their contents.

The dataset is split into training set (684 recordings of
9 containers), public test set (228 recordings of 3 containers),
and private test set (228 recordings of 3 containers). The
containers for each set are evenly distributed among the three
categories. The annotations of the container capacity, content
type and level, and the masses of the container and content
are provided publicly only for the training set.

C. TASKS AND PERFORMANCE SCORES
We define three tasks for the framework, namely the classifi-
cation of the amount of content (Task 1), the classification of
the content type (Task 2), and the estimation of the capacity
of the container (Task 3). We refer to the amount of content
as filling level and to the type of content as filling type.
In Task 1, a container is either empty or filled with an

unknown content at 50% or 90% of its capacity. There are
three classes: empty, half-full, full. For each configuration
j, the goal is to classify the filling level (λj). In Task 2,

containers are either empty or filledwith an unknown content.
There are four filling type classes: none, pasta, rice, water.
For each configuration j, the goal is to classify the type of
filling, if any (τ j). For these two tasks, we compute precision,
recall, and F1-score for each class k across all the config-
urations belonging to class k , Jk . Precision is the number
of true positives over the total number of true positives and
false positives for each class k (Pk ). Recall is the number
of true positives over the total number of true positives and
false negatives for each class k (Rk ). F1-score is the harmonic
mean of precision and recall for each class k and defined as

Fk = 2
PkRk

Pk + Rk
. (1)

We then compute the weighted average F1-score, F̄1, across
the K classes,

F̄1 =
K∑
k=1

JkFk
J
, (2)

where J =
∑K

k=1 Jk is the total number of configuration.
Note that K = 3 for filling level classification, whereas
K = 4 for filling type classification.

In Task 3, containers vary in shape and size. For each
configuration j, the goal is to estimate the capacity of the
container (γ j ∈ R>0, in milliliters). For capacity estima-
tion, we compute the relative absolute error between the
estimated capacity, γ̃ j, and the annotated capacity, γ j, for
each configuration, j,

εj =
|γ̃ j − γ j|

γ j
. (3)

We then compute the average capacity score, C̄ , as

C̄ =
1
J

J∑
j=1

1e−ε
j
, (4)
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where the value of the indicator function 1 ∈ {0, 1} is 0 only
when the capacity (mass) of the container in configuration j
is not estimated.

The weight of the object, ω ∈ R>0 (in Newtons), is the
sum of the mass of the (empty) container, mc ∈ R>0 (in
grams), and the mass of the (unknown) filling, mf ∈ R>0
(in grams), multiplied by the gravitational earth acceleration,
g = 9.81 m/s−2,

ω = (mc + mf )g. (5)

While we do not require the mass of the empty container to
be estimated, we expect methods to estimate the capacity of
the container and to determine the type and amount of filling
to estimate the mass of the filling. For each configuration j,
we then compute the filling mass as

mjf = λ
jγ jD(τ j), (6)

where D(·) selects a pre-computed density based on the
classified filling type. The density of pasta and rice is com-
puted from the annotation of the filling mass, capacity of
the container, and filling level for each container. Density
of water is 1 g/mL. For filling mass estimation, we compute
the relative absolute error between the estimated, m̃jf , and the

annotated filling mass, mjf , for each configuration, j, unless
the annotated mass is zero (empty filling level),

εj =


0, if mjf = 0 ∧ m̃jf = 0,

m̃jf , if mjf = 0 ∧ m̃jf 6= 0,
|m̃jf−m

j
f |

mjf
, otherwise.

(7)

Similarly to the average capacity score, we compute the
average filling mass score, M̄ .
Note that we will present the scores as percentages when

discussing the results in the comparative analysis.

D. BASELINES
CORSMAL provides along with the framework 12 audio-
only baselines and one video-only baseline for the tasks of
filling level and filling type classification.

The audio-only baselines3 jointly classify filling type
and level using traditional acoustic features, such as ZCR,
MFCCs, tonnetz, or spectrograms, combined with either of
three machine learning classifiers (kNN, SVM, RF). Note
that for MFCCs, the 1st to 13th coefficients are used, whereas
the 0th coefficient is discarded. Three baselines use as input
the mean and standard deviation of the MFCCs and ZCR
features across multiple audio frames [46]. Three other base-
lines extract a feature vector consisting of 193 coefficients
from the mean and standard deviation of the MFCCs, chro-
mogram, Mel-scaled spectrogram, spectral contrast, and ton-
netz across multiple audio frames [27]–[30]. For simplicity,

3Baselines for audio-based classification of the content properties
are available at: https://github.com/CORSMAL/CCM_ML_
baselines

we refer to this set of acoustic features as AF193 in the
rest of the paper. Three other baselines use spectrograms,
which are cropped, resized and reshaped into a vector of
dimension 9,216, as input to the classifiers [43]. To remove
redundant information, three additional baselines perform
dimensionality reduction with Principal Component Analy-
sis (PCA) on the reshaped spectrograms, retaining only the
first 128 components.

The vision-only baseline uses two CNNs to perform an
independent classification of filling level and filling type
from a single RGB image. We re-trained ResNet-18 architec-
tures [47] using a subset of frames4 selected within the video
recordings of the training set of the CORSMAL Containers
Manipulation and cropped to a rectangular area around the
container [7]. On the test sets, the baseline is applied to each
camera view independently: an image crop is extracted from
the last frame using Mask R-CNN [9] and the segmentation
mask with the most confident class between cup and wine
glass is selected. The output classes of the two CNNs include
an additional class, opaque, to handle cases where containers
are not transparent and vision alone fails to determine the
content type and level [7], [31].

IV. FILLING LEVEL AND TYPE CLASSIFICATION
Sixmethods used the framework to address the tasks of filling
level classification (Task 1) and filling type classification
(Task 2) either independently, e.g., when only one of the two
properties is necessary for the target application, or jointly,
e.g., when both properties are necessary for accurately esti-
mating the total object weight. For simplicity, we refer to the
6 methods as M1, M2 [39], M3 [42], M4 [41], M5 [40] and
M6 [43] for the rest of the paper.

For filling type classification, audio is preferred as input
modality and methods used either only CNNs, CNN with
RNN, or CNN followed by majority voting as classifica-
tion approaches [39]–[41]. For filling level classification,
some methods used visual data in combination with audio
data [40], [42]. Hand-crafted and/or learned acoustic fea-
tures are used by the methods. Traditional acoustic fea-
tures, such as MFCCs, spectral characteristics, ZCR, chroma
vector and deviation, are computed from short-term win-
dows. Long-term features can be obtained by summarizing
the short-term features from longer windows of the input
audio signal and by including additional statistics, such as
mean and standard deviation. Learned features are extracted
by CNNs from multi-channel or mono-channel audio sig-
nals that are post-processed into spectrograms or log-Mel
spectrograms [40], [41]. To handle audio signals of dif-
ferent duration, long audio signals can be truncated to a
pre-defined duration and zero-padding is added to shorter
signals [39], [41].

The fully connected neural network of M1 has 5 layers and
uses STFT features as input. The network is trained with the

4Data available at: https://corsmal.eecs.qmul.ac.uk/
filling.html
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Adamoptimizer [48] and dropout [49] on the last hidden layer
to reduce overfitting.

The filling type classifier of M2 uses 40 normalized and
concatenated MFCCs features that are extracted with 20 ms
windows at 22 kHz, with a maximum duration of 30 s [39].
The CNN has 2 convolutional layers and 1 fully connected
layer (86,876 trainable parameters).

M4 [41] used all the 8 audio signals from the microphone
array to compute log Mel-scaled spectrograms with STFT
and 64 filter banks for filling type and filling level clas-
sification. A sliding window over the cropped spectrogram
with 75% overlap forms overlapping audio frames consisting
of 3D tensors, where the third dimension is given by the
8 audio channels. Each window is provided as input to a CNN
consisting of 5 blocks, each with 2 convolutional and 1 batch
normalization layers followed by a max-pooling layer. The
CNN is complemented by 3 fully connected layers for the
filling type classification of each audio frame and followed
by the majority voting. The CNN has a total of 13 layers with
4,472,580 trainable parameters. The same extracted features
are also used as input to the three stacked Long Short-Term
Memory (LSTM) [50] units for the filling level classification.
The three stacked LSTMs are trained with a set of 100 audio
frames and contain 256 hidden states, resulting in 2,366,211
trainable parameters.

The multi-layer perceptrons (MLPs) of M3 [42] are trained
for either filling level or filling type classification, and specif-
ically only for each object category (cup, drinking glass,
food box). Each MLP has 3 layers with 3,096 nodes in the
first hidden layer and 512 in the last hidden layer. The total
number of trainable parameters is 20,762,288. The MLPs
takes as input a spectrogram computed from a multi-channel
sound signal re-sampled at 16,600 Hz and converted into
mono-channel by averaging the samples across channels.
Only the last 32,000 samples are retained and converted into a
spectrogram via Discrete Fourier Transform. To select which
MLP to use at inference time, regions of interest (ROIs) are
detected in all frames of the image sequences of all four views
in the CORSMAL Containers Manipulation dataset by using
YOLOv4 [51] pre-trained on MS COCO [52]. The category
(cup, drinking glass, food box) is determined by a majority
voting of randomly sampled frames (65% of all frames).

Both traditional and learned acoustic features are used
by M5 [40] for filling type classification, whereas visual
features are extracted in addition to the acoustic features
for filling level classification. Multiple classifiers, each
associated with each feature, are used to output the class
probabilities. Then, the probabilities are averaged across the
classifiers to determine the final class. For the acoustic fea-
tures, the multi-channel input audio signal is converted into
a mono-channel by averaging the samples across channels.
MFCCs, energy, spectral characteristics, and their statistics
(mean and standard deviation) are computed from 50 ms
windows of the input signal as short-term traditional fea-
tures. The features are concatenated in a 136-dimensional
vector used as input to a RF classifier. The number of trees

of the RF classifier is automatically set during training by
selecting the value between (10, 25, 50, 100, 200, 500) that
achieves the highest accuracy in validation. For the learned
features, themono-channel signal is re-sampled at 16 kHz and
converted into log-Mel spectrograms from 960 ms windows
of the re-sampled signal. Each spectrogram is provided as
input to a VGG-basedmodel [53] that is pre-trained on a large
dataset (e.g., AudioSet [54]) and computes a 128-dimensional
feature vector. The learned features are then provided as
input to a GRU model [55] that has 5 layers and a hidden
layer of size 512 to handle the intrinsic temporal relations
of the signals. The model has a total of 7,291,395 trainable
parameters. Visual features are extracted from the image
sequences of all camera views by using R(2+1)D [56],
a spatio-temporal CNN that is based on residual connec-
tions [47] and 18 (2+1)D convolutional layers that approx-
imate 3D convolution by a 2D convolution (spatial) followed
by a 1D convolution (temporal). R(2+1)D is pre-trained for
action recognition on Kinetics 400 [57], takes as input a fixed
window of 16 RGB frames of 112 × 112 pixel resolution,
and outputs a 512-dimensional feature vector. Long temporal
relations between the features of each window are estimated
by using a RNNwith a GRUmodel that has 3 layers and a hid-
den dimension of size 512 (4,729,347 trainable parameters).
The GRU models from each camera view are jointly trained
and their logits are summed together before applying the final
softmax to obtain the class probabilities from the visual input.
For filling type classification, the probabilities resulting from
the last hidden state of the GRU network and those resulting
from the RF are averaged. For filling level classification, the
probabilities resulting from the RF classifier and the GRU
models for both the audio and visual features are averaged
together to compute the final class. The RF classifier and all
the GRU models are trained independently for filling type
classification and filling level classification by using 3-fold
validation strategy.

Jointly estimating the filling type and level can avoid
infeasible cases, such as an empty water or half-full none.
Different traditional classifiers and existing CNNs that use
spectrograms as input have been analyzed and compared in
Donaher et al.’s work [43], especially when different contain-
ers are manipulated by a person with different content types,
such as both liquids and granular materials.

Because of the different container types and correspond-
ing manipulation, the authors of M6 [43] decomposed the
problem into two steps, namely action recognition and con-
tent classification and devised three independent CNNs. The
first CNN (action classifier) identifies the manipulation per-
formed by the human, i.e., shaking or pouring, and the other
two CNNs are task-specific and determine the filling type
and level. The CNN for action recognition (pouring, shaking,
unknown) has 4 convolutional, 2 max-pooling, and 3 fully
connected layers; the CNN for the specific action of pouring
has 6 convolutional, 3 max-pooling, and 3 fully connected
layers; and the CNN for the specific action of shaking has
4 convolutional, 2 max-pooling, and 2 fully connected layers.
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The choice of which task-specific network should be used is
conditioned by the decision of the first CNN.When the action
classifier does not distinguish between pouring or shaking,
the approach associates the unknown case to the class empty.

V. CAPACITY ESTIMATION
We categorize the methods as regression [39], [42] and
geometric-based approaches [40], [41]. These methods use
either RGB, RGB and depth data, or multiple RGB
images from the CORSMAL Containers Manipulation
dataset.

Regression approaches use CNNs [39] or distribution fit-
ting via Gaussian processes [42]. The CNN architecture
of M2 has 4 convolutional layers, each followed by batch
normalization [58], and 3 fully connected layers (532,175
trainable parameters) [39]. The CNN takes as input a ROI and
its normalized relative size, and then regresses the capacity of
the container limited to 4,000 mL, accordingly to the range
of capacities in the dataset. The ROI is computed from the
contour features of a depth image selected from the frame
with the most visible pixels of the frontal, fixed view and
assuming a maximum depth of 700 mm. M4 [42] used Gaus-
sian processes to regress the container capacity, depending
on the container category. To model multiple multi-variate
Gaussian functions for each container category, the container
type is recognized by detecting multiple ROIs in all frames
of all image sequences as done for filling type and level
classification.

Geometric-based approaches approximate the container to
a primitive shape in 3D, such as cuboid or cylinder [8], [40],
[41]. The shape is represented as a point cloud obtained
directly from RGB-D data or computed via energy-based
minimization to fit the points to the real shape of the object as
observed in the RGB images of a wide-baseline stereo camera
and constrained by the object masks [8], [40]. The capacity is
then computed as a by-product, e.g., by finding the minimum
and maximum values for each coordinate in 3D [41] or using
volume formulas specific for the primitive shape [40]. The
approximated primitives can lead to inaccurate capacities: a
cuboid representation could result in an overestimated capac-
ity and hence re-scaling would be necessary [41]; a cylinder
representation may not generalize to different shapes than
rotationally symmetric objects. To handle occlusions caused
by the human hand manipulating a container, M5 [41] selects
the RGB-D frame with a single silhouette having the largest
number of pixels and post-processes the point cloud to deal
with inaccuracies in the segmentation. Capacity estimations
computed at different frames of the image sequences in the
stereo views are then averaged, assuming that the container
is fully visible.

VI. EXPERIMENT RESULTS AND DISCUSSION
We compare and analyze the performance of the 6 methods
and the 13 baselines on the public test set, the private test
set, and their combination on the CORSMAL Containers
Manipulation dataset [45].

A. IMPLEMENTATION DETAILS
The CNN of M2 for filling type classification is trained with
the SGD optimizer, a fixed learning rate of 0.00025 and
momentum of 0.9, and a batch size of 16. M4 sets the frame
length to 25 ms, the hop-length to 10 ms, and the number of
samples for the Fast Fourier Transform to 512 for computing
the STFT. During training, M4 crops audio signals based
on manual annotations of the starting and ending of the
manipulation. The network for filling level classification of
M4 is trained by using cross-entropy loss and the Adam opti-
mizer [48] with a learning rate of 0.00001 and a mini-batch
size of 32 for 200 epochs.

B. FILLING LEVEL CLASSIFICATION
Table 2 compares the performance of all baselines and meth-
ods except M2. M4, M5 andM6 achieve the highest accuracy
with 80.84, 79.65, and 78.65 F̄1 on the combined test set,
respectively. This performance is almost twice higher than
M1 andM3 and shows that using only audio as input modality
is sufficient to achieve an accuracy higher than 75 F̄1. M5
uses both audio and visual data, but the similar performance
to M4 and M6 suggests that audio features are dominant in
determining the classification decision. M6 is the best per-
forming in the private test set (81.46 F̄1), whereas M4 is the
best performing in the public test set (82.63 F̄1). Interestingly,
both methods selected a fixed portion of the audio signal,
transformed into a spectrogram, where the manipulation of

TABLE 2. Filling level classification results (Task 1). Baselines and
state-of-the-art methods (MX with X ranges from 1 to 6) are ranked by
their score in the combined test set.
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FIGURE 3. Illustrative comparison of M6 [43] (left) and M4 [41] (right) for filling type (τ j ) and level classification (λj ). The
two methods take as input only an audio signal that is converted into a spectrogram representation. During training, the
initial and final part of the audio signal (gray areas) are removed based on the manual annotations and to focus only on
the action. Note that M4 [41] (right) computes MFCC features from overlapping audio frames (shadow gray areas on the
spectrogram). KEY – CNN: convolutional neural network, FC: fully connected layer, LSTM: Long-Short Term Memory,
MFCC: Mel Frequency Cepstral Coefficients.

FIGURE 4. Confusion matrices of filling level classification for all methods across all the containers of the public and private testing splits of the
CORSMAL Container Manipulation dataset [45]. Note that the counting for each cell is normalized by the total number of true labels for each class
(gray-scale bar). KEY – E: empty; H: half-full; F: full, Mask + RN: Mask R-CNN + ResNet-18.

the container by the human subject was more likely to occur
(see Fig. 3). However, the three CNNs of M6 use the full
trimmed spectrograms as input, whereas the CNN+LSTM
of M4 uses portions of the log-Mel spectrogram, which are
obtained with a temporal sliding window. Both are shown
to be valid methods assuming that the whole audio signal is
available and the manipulation is completed.

The confusion matrices in Fig. 4 show that M4 and M6 do
not confuse the class empty, whereas M5 mis-classifies some
empty configurations as half-full. Not surprisingly, most of
the confusions occur between the classes half-full and full
for all methods. M4 and M5 are more accurate than M6 in
recognizing the class half-full, but M6 is more accurate in
recognizing the class full. M3 mis-classifies the true class
empty as half-full for 40% of the times and as full for 33%
of the times, and the class full is confused with half-full
for 75% of the times. M3 recognizes the container cate-
gories cup, drinking glass and food box with 92%, 73%,

and 88% accuracy, respectively, in the training set. Errors
in the category recognition may lead to wrong classifica-
tions by the selected category-specific MLP-based classifier,
which is also trained with limited and selected data. The
CNN of M1 made erroneous predictions across all classes,
except for empty that was never predicted as half-full but
only confused with full. The vision-only baseline (using the
first camera view, on the left side of the robot arm) confused
81% of the times the class empty with half-full in addition
to mis-classification between half-full and full, making the
performance of the baseline only 10 F̄1 points higher than a
random classifier (37.62 F̄1).

C. FILLING TYPE CLASSIFICATION
Table 3 shows that M4, M6, and M5 are the best performing
methodswith 96.95 F̄1, 94.50 F̄1, 94.26 F̄1 scores on the com-
bined test set (as for filling level classification). Audio is the
used modality by all the methods except M3 that conditions
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FIGURE 5. Confusion matrices of filling type classification for all methods across all the containers of the public and private testing splits of the
CORSMAL Containers Manipulation dataset [45]. Note that each cell is normalized by the total number of true labels for each class (gray-scale
bar). KEY – E: empty; P: pasta; R: rice; W: water.

TABLE 3. Filling type classification results (Task 2). Baselines and
state-of-the-art methods (MX with X ranges from 1 to 6) are ranked by
their score in the combined test set.

the selection of the audio-based classifier to the recognition
of the container category from visual data. As for filling level
classification (43.53 F̄1), selecting which classifier to use is
likely to be the main source of error for the classifications
of M3 (41.83 F̄1), whereas using only audio is sufficient
to achieve performance close to 100 F̄1 score. If the audio
modality was not available, both filling level and filling type
classifications would be very challenging using only visual
data.M1 andM2 achieve 75.24 F̄1 and 86.89 F̄1, respectively,
but about 20 and 10 percentage points (pp) lower than M4,
respectively. The table also shows that the performance of
the baselines varies from random results to almost the same
performance as the best performing M4. Using the spectro-
gram as an input feature (either after reshaping the spectro-
gram into a vector or after applying PCA to select the first
128 components) to any of the three classifiers, namely kNN,

SVM, or RF, is the worst choice. On the combined test set, the
lowest performance is obtained by Spectrogram + PCA +
SVM with 24.20 F̄1, whereas the highest performance is
obtained by Spectrogram+ kNNwith 64.55 F̄1. Classic audio
features, such as MFCCs and ZCR, are more discriminative
and sufficient to achieve performance higher than 78 F̄1 for
the three classifiers. Simply using ZCR and MFCCs with RF
can achieve 91.31 F̄1, which is close to the performance of the
three top methods (M5, M6, M4) that are using CNNs and
LSTMs. On the contrary, the performance decreases when
using a larger set of features, such as tonal centroid, spectral
contrast, chromogram,Mel-scaled spectrogram, andMFCCs.
Fig. 5 shows the confusion matrices of the methods. M4

made a few mis-classifications for the class rice with none
and pasta, and for the class water with none. M6 confused
4% pasta with rice, 4% rice with pasta, 7% pasta with
water, and 2% water with none. The confusion between
water and none could be expected due to the low volume of
the sound produced by the water, whereas the confusion of
water with rice might be caused by the glass material of the
container and background noise. The largest confusion for
M5 is given by the erroneous prediction of rice with pasta
(13%). As for filling level classification, M1 and M3 have
largemis-classifications across different classes, withM3 that
could not predict water for any audio input.

D. CAPACITY ESTIMATION
We compare the results of M2, M3, M4, and M5, in terms
of the average capacity score. We also report the results of a
pseudo-random generator (Random) that samples the predic-
tions from a uniform distribution in the interval [50, 4000]
based on the Mersenne Twister algorithm [59]. We then
analyze and discuss the statistics of the absolute error in
predicting the container capacity for each testing container
as well as for each filling type and level.

Table 4 shows that M2 achieves the best score with
66.92 C̄ , 67.67 C̄ , and 67.30 C̄ for the public test set, private
test set, and the combined test set, respectively, when using
only depth data from the fixed frontal view. All methods
achieve a performance score that is twice higher than the
random solution (24.58 C̄ for the combined test set): M4
has the lowest score (54.79 C̄), whereas M5 and M3 obtain
60.57 C̄ and 62.57 C̄ , respectively. Fig. 6 shows the statistics
(median, 25th and 75th quartiles, and the lower and upper
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TABLE 4. Container capacity estimation results (Task 3). Methods ranked
by the average capacity score on the combined test set.

FIGURE 6. Comparison of statistics of the absolute error in estimating the
container capacity for each testing container between M2 [39], M3 [42],
M4 [41], and M5 [40]. Statistics of the box plot includes the median (red
line), the 25th and 75th quartile, and the lower and upper whiskers. Note
that outliers in the data are not shown. Note also the different scale for
the y-axis. KEY – CX: container (C) index (X), where X is in the range
[10,15].

whiskers5) of the relative absolute errors for each container
in the test sets of the dataset. M2 has the lowest median
error for all containers, except for the private containers C14
and C15. The variation of the error across configurations
is either smaller than the variation of the other methods or
lower than the median value of the other methods. M5 is
more consistent in estimating the same container shape and
capacity for most of the configurations related to containers

5The lower whisker is the smallest data value which is larger
than 0.25-quartile −1.51, where 1 is the difference between
0.75-quartile and 0.25-quartile. The upper whisker is the largest data
value which is smaller than 0.25-quartile+1.51. See documentation at:
https://anorien.csc.warwick.ac.uk/mirrors/CTAN/
graphics/pgf/contrib/pgfplots/doc/pgfplots.pdf.

C12 and C15. M5 also have the largest variations for C10 and
C14; M3 for C12 and C15; and M4 for C11. Interestingly,
M3 have a median error lower than M4 and M5 for C13 and
achieve the lowest median error with a small variation across
configurations for C14. However, we can observe that in
general the relative absolute error across containers is around
or higher than 0.5.

In addition to the comparison across containers, Fig. 7
shows the relative absolute errors grouped by filling type
and level for each method. Most of the errors are in the
interval [0.3,0.8], and the methods have similar amount of
variations between the 25th and 75th quartiles, but differences
are in themedian error and the upper whisker error (excluding
outliers). M2 achieves the lowest median error (always lower
than half of the real container capacity) and smaller variations
(25th-75th quartiles), whereas M3 have similar results for rice
full. M4 has the largest errors for empty, pasta half-full, pasta
full, rice half-full, and rice full. M5 has the largest errors for
water half-full and water full.

E. ANALYSIS PER SCENARIO AND CONTAINER
Table 5 analyzes and compares the performance scores of the
methods grouped by scenario and containers for all the three
tasks. For filling level classification on the testing containers,
the F̄1 of M4, M5, and M6 increases from scenario 1 to
scenario 3, showing how audio information is robust despite
the increasing difficulty due to the in-handmanipulation (sce-
nario 2 and 3) and larger distance (scenario 3). However, the
performance of M6 decreases by almost 2 pp from scenario 1
(78.52 F̄1) to scenario 2 (76.92 F̄1). The performance of
M1 is affected by the in-hand manipulation and distance,
decreasing from 52.90 F̄1 in scenario 1 to 45.46 F̄1 in scenario
3.M3 achieves the highest accuracy for scenario 2 (51.34 F̄1),
increasing by 11.51 pp compared to scenario 1 (39.83 F̄1),
but decreasing to 35.92 F̄1 in scenario 3 (likely caused by
the errors in recognizing the container category). For filling
type classification, the performance of M4, M5, and M6 is
higher than 90 F̄1 across the scenarios, but the trend is the
opposite of filling level classification. M5 and M6 decrease
in F̄1 from scenario 1 to scenario 3, whereas M4 achieves the
highest accuracy in scenario 2 (98.07 F̄1). M3 and M1 show
the same behavior for filling level and type classification
with a large decrease in scenario 3 by 15.31 pp and 22.16 pp
compared to scenario 1, respectively. For capacity estimation,
M3 and M4 are less affected by the variations across the
scenarios, whereas M2 is the best performing in scenario 1
(68.81 C̄) and scenario 2 (73.70 C̄) but decreases by 9.42 pp
in scenario 3 compared to scenario 1. M2 is based only on
the frontal depth view, where the subject is not visible for
most of the time. This challenges the method to detect the
object in the pre-defined depth range. M5 is affected by
the increasing challenges across scenarios, decreasing from
66.51 C̄ in scenario 1 to 55.68 C̄ in scenario 3. This shows the
limitations of the underline approach [8] that was designed for
objects free of occlusions and standing upright on a surface.
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FIGURE 7. Comparison of the absolute error in estimating the container capacity between M2 [39], M3 [42], M4 [41], and M5 [40] for the different
combinations of filling type and level in the combined public and private test set of the CORSMAL Containers Manipulation dataset. Statistics of the
box plot includes the median (red line), the 25th and 75th quartile, and the lower and upper whiskers. Note that outliers in the data are not shown.

TABLE 5. Comparison of the task performance scores between methods
for each scenario and for each testing container.

The performance across containers varies between the
methods. Testing containers 12 and 15 are the most chal-
lenging for M3, M4, M5, M6, when classifying the filling
level, whereas M1 achieves its best performance on both
containers. M4 and M5 have the largest decrease with the
score in the interval [40,50] F̄1 compared to the interval
[75-93] F̄1 for the other containers. M6 outperforms all the
other methods with 64.98 F̄1 and 74.99 F̄1 for contain-
ers 12 and 15. For filling type classification, M3 obtains
86.98 F̄1 and 79.45 F̄1 for containers 12 and 15, respectively,
and less than 30 F̄1 on the other containers. Because of
the dataset structure, M3 can recognize the box class and
the filling type for that class, but the method cannot easily
distinguish filling type and level for drinking glasses and
cups. Overall, other methods achieve a score higher than
70 F̄1 across containers. M4 achieves 100 F̄1 on container
13 and M6 on container 15. M4 is the best performing for
containers 10 and 11, whereasM5 is the best for container 14.
Containers 12 and 15 are the most challenging for M5; con-
tainer 14 for M6; container 15 for M4; containers 10, 11, and
15 for M2. M1 ranges between 55.60 F̄1 and 87.38 F̄1 across
containers, with the drinking glasses being the most challeng-
ing and obtaining 69.33 F̄1 for container 11 and 55.60 F̄1 for
container 14. For capacity estimation, M2 achieves the best
performance on containers 10 (66.02 C̄), 11 (69.14 C̄),

TABLE 6. Comparison of the filling mass estimation results. Methods are
ranked by their score on the combined test sets of the CORSMAL
Containers Manipulation dataset. Note that scores are weighed by the
number of tasks addressed by the methods.

12 (65.02 C̄), and 13 (79.75 C̄), M3 on container 14
(76.75 C̄), and M5 on container 15 (78.82 C̄). M3 achieves
higher average capacity score on the private cup and drink-
ing glass than the public containers, but the score drops to
28.02 C̄ for the container 15. M4 performs worse on the
private testing containers than the public testing containers,
with the lowest scores on the boxes (containers 12 and 15).
M5 also performs worse for the drinking glass and cups in the
private test set than the public test set. Surprisingly, the best
score of M5 is on the box container 15 (78.82 C̄) despite the
modeled shape is a 3D cylinder.

F. FILLING MASS ESTIMATION
We discuss the overall performance of the methods based
on their results on estimating the filling mass. Methods that
estimated either of the physical properties in our framework
(e.g., M1, M2, and M6) are complemented by the random
estimation of the missing physical properties to compute the
filling mass.6 Table 6 shows that methods addressing only
filling type and level classification achieve a lower score
than a random guess for each task. Given the multiplicative
formula of the filling mass estimation (see Eq. 6), even a few
errors in these classification tasks can lead to a low score in
the filling mass estimation, especially when combined with
the random estimation of the container capacity. However,
improving the capacity estimation is an important aspect to
achievemore accurate results (and higher score) for the filling
mass estimation (see M2). M3, M4, and M5 addressed all

6Note that for the organized challenge, the score is weighted by the number
of completed tasks. We report the results in the same manner.
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three tasks and achieved 53.47 M̄ , 62.16 M̄ , and 65.06 M̄ ,
respectively. Overall, methods perform better on the public
test set than the private test set, except for M2 and M5 that
achieve similar performance in the two test sets. We can
observe that the more accurate predictions in the container
capacity help M3 to obtain 53.47 M̄ despite the classifica-
tion errors for filling level and type. The high classification
accuracy on filling level and type, combined with a similar
score for the capacity estimations with respect to M3, makes
M4 and M5 the best performing in filling mass estimation.
The similar scores for container capacity and filling mass
estimation shows how important it is to accurately predict the
capacity in order to correctly estimate the filling mass.

VII. CONCLUSION
We presented the open CORSMAL framework to benchmark
methods for estimating the physical properties of different
containers while they are manipulated by a person with dif-
ferent content types. The framework includes a dataset, a set
of tasks and performance measures, and several baselines
that use either audio or visual input. The framework supports
the contactless estimation of the weight of the container,
including its content (if any), despite variations in the physical
properties across containers and occlusions caused by the
hand manipulation.

We performed an in-depth comparative analysis of the
baselines and state-of-the-art methods that used the frame-
work. The analysis showed that using only audio as input
is sufficient to achieve a weighted average F1-score above
80% for filling type and level classification, but the high
performance could be limited to the sensor types and setup
of the CORSMAL Container Manipulation dataset. Methods
that use audio alone are robust to changes in the container
type, size, and shape, as well as pose during the manipula-
tion. Moreover, filling type and level estimation can benefit
from each other to avoid unfeasible solutions [43]. Container
capacity is the most challenging physical property to estimate
with all methods affected by large errors and a maximum
score of 65%. Performance on this task also affects the
successive estimation of the filling mass. The design of a
method that can generalize across the different containers and
scenarios, especially for container capacity estimation and
partially for filling level classification, is still challenging.

Future directions involve the exploration of fusion and
learning methods with both acoustic and visual modalities to
support the contactless estimation of the physical properties
of containers and their content. The CORSMAL framework
is open for further submissions and support the research in
this upcoming area.7
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