

Linnea Viitanen

SECURITY PROPERTIES OF HTTP/3

Bachelor’s thesis

Faculty of Information Technology and Communication Sciences

Examiner: Matti Monnonen

May 2022

 2

ABSTRACT

Linnea Viitanen: Security properties of HTTP/3
Bachelor’s thesis
Tampere University
Bachelor’s Programme in Information Technology
May 2022

As cyber-attacks become more prevalent, the importance of security in protocols today

is much more prominent than ever before. As the Internet of Things brings society

even closer to a more virtualized world, security must be the priority of today's

protocols. Vulnerabilities and privacy-intrusive features in the protocols put their users

at risk from hackers. HTTP/3 is an ambitious project that strives to achieve both strong

security features and a solid framework for fast connection speed. Inevitably, the

question arises, is it capable of achieving both?

 The topic of this bachelor's thesis is to study how security has been invested in the

developing HTTP/3 protocol, and how its defensive capabilities add up to the whole.

By comparing it to its predecessor, HTTP/2, the work seeks to give its reader an

overview of how the security of HTTP/3 is built.

The work is divided into two parts: theory and practical experiment. In theory, the

security features of HTTP/3 are largely determined by following the IETF (Internet

Engineering Task Force) draft standards (RFC). Such drafts are documents published

by the IETF, in which the current technical characteristics and descriptions of the

protocol are reported during its development.

According to the study, the biggest difference between the protocols brings the

transport layer protocol change in HTTP/3. The application layer protocol builds on the

QUIC protocol originally designed by Google. QUIC enables encryption of the

connection at each step, thus minimizing the risk of side channel attacks. This switch

also allows for the speed promised by the protocol, as it finally frees HTTP from the

HOL shackles caused by TCP, which grants it the freedom to multiplex its connections.

The practical part of the work studied the data leakage caused by the side channels.

HTTP/3 traffic was captured using Wireshark and compared to the corresponding

HTTP/2 traffic. Based on the results, the practice supports the theory: HTTP/3

encryption has been built to withstand more than that of HTTP/2, and therefore does

not allow a beneficial traffic analysis.

Keywords: HTTP/3, HTTP/2, QUIC, TCP, protocol comparison, side channel attack

The originality of this thesis has been checked using the Turnitin OriginalityCheck
service.

 3

TIIVISTELMÄ

Linnea Viitanen: HTTP/3:n turvaominaisuudet
Kandidaatintyö
Tampereen Yliopisto
Tietotekniikan tutkinto-ohjelma
Toukokuu 2022

Kyberhyökkäysten yleistyessä turvallisuuden merkitys korostuu protokollissa

nykypäivänä huomattavasti enemmän mitä aikaisemmin. Esineiden internetin

tuodessa yhteiskuntaa yhä lähemmäs virtualisoitua maailmaa tulee turvallisuuden olla

nykypäivän protokollien ensimmäinen prioriteetti. Haavoittuvuudet sekä yksityisyyttä

laiminlyövät ominaisuudet protokollissa asettavat niiden käyttäjät riskialttiiksi

hakkereille. HTTP/3 on ominaisuuksiltaan kunnianhimoinen kokonaisuus, joka pyrkii

saavuttamaan sekä vahvat turvaominaisuudet että parhaimmat lähtökohdat yhteyden

nopeudelle. Välttämättäkin nousee esille kysymys: pystyykö se molempiin?

Tämän kandidaatintyön aiheena on tutkia, kuinka turvallisuuteen on panostettu

kehitteillä olevassa HTTP/3-protokollassa ja miten sen puolustuskykyä on parannettu

sitten HTTP/2:sen. Vertailemalla protokollia keskenään työ pyrkii luomaan lukijalleen

kokonaiskuvan siitä, kuinka HTTP/3:sen turvallisuus rakentuu.

 Työ jakaantuu kahteen osaan: teoriaan ja käytännön kokeeseen. Teoriaosuudessa

HTTP/3:sen turvalliset ominaisuudet selviävät pitkälti IETF (Internet Engineering Task

Force) standardiluonnoksia (eng. RFC) seuraamalla. Nämä luonnokset ovat IETF:n

julkaisemia asiakirjoja, joihin protokollien ajankohtaiset tekniset ominaisuudet sekä

kuvaukset raportoidaan niiden kehityksen aikana.

 Tutkimuksen perusteella protokollien välille tuo eniten eroavaisuutta

kuljetuskerroksen protokollan vaihdos HTTP/3:ssa. Uusi protokolla rakentuu Googlen

alun perin suunnitteleman QUIC protokollan päälle. QUIC mahdollistaa yhteyden

salauksen sen jokaisessa vaiheessa, ja täten minimoi HTTP/2:sen

sivukanavahyökkäysten riskin pois. Tämä vaihdos mahdollistaa myös protokollan

lupaaman nopeuden, sillä sen avulla HTTP vapautuu vihdoinkin TCP:n aiheuttamista

HOL-kahleista, ja pystyy vapaasti multipleksaamaan yhteyksiään.

 Työn käytännönosuudessa tutkittiin sivukanavien aiheuttamaa tietovuotoa. HTTP/3

liikennettä kuunneltiin Wiresharkin avulla, ja vertailtiin vastaavaan HTTP/2

liikenteeseen. Tulosten perusteella käytäntö tukee teoriaa: HTTP/3:n salaus on

vahvempi kuin HTTP/2:n, eikä se mahdollista hyödyttävää verkkoliikenneanalyysiä.

Avainsanat: HTTP/3, HTTP/2, QUIC, TCP, protokollavertailu, sivukanavahyökkäys

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.

 4

LIST OF SYMBOLS AND ABBREVIATIONS

TCP Transmission control protocol

HOL Head of line (blocking)

UDP User datagram protocol

QUIC Quick UDP Internet Connections

HTTP Hypertext transfer protocol

HTTPS Hypertext transfer protocol secure

HTML Hypertext markup language

TLS Transport layer security

SSL Secure sockets layer

DoS Denial of service attack

DDoS Distributed denial of service attack

IETF Internet engineering taskforce

 5

CONTENTS

ABSTRACT .. 2

TIIVISTELMÄ ... 3

LIST OF SYMBOLS AND ABBREVIATIONS ... 4

1. INTRODUCTION ... 6

2. BACKGROUND ... 7

2.1 Hypertext Transfer Protocol .. 7

2.1.1 HTTPS .. 8

2.1.2 HTTP/2 ... 9

2.2 QUIC ... 11

3. SECURITY PROPERTIES OF HTTP/3 ... 14

3.1 HTTP properties implemented in HTTP/3 ... 14

3.2 HTTP/3 session establishment and lifecycle .. 15

3.3 Connection security with QUIC ... 16

3.4 Defensive capabilities and protocol vulnerabilities .. 17

4. TESTING AND RESULTS ... 20

4.1 Testbed and setup .. 20

4.2 HTTP/2 and TCP .. 20

4.3 HTTP/3 and QUIC .. 24

4.4 Overview of the results... 27

5. EVALUATION AND CONCLUSION ... 28

6. REFERENCES .. 29

 6

1. INTRODUCTION

Throughout its development, Hypertext Transfer Protocol, or HTTP, has been

used to establish the web we know today. It is a request-response protocol

necessary for clients and servers, typically browsers and webpages, to be able

to communicate with each other. Initially, it was a simple protocol with no

security features, but as time went on and the web developed, the lack of

security became a problem. Before moving to HTTP/2, the protocol relied on

an additional cryptographic layer for security, forming HTTPS. This worked

quite well, despite its security flaws, until web traffic and content size started

growing. HTTP/2 was developed as a binary protocol in response to this, as

well as to further enforce the payload security. Even with proper encryption, the

transferred packets would bleed sensitive information through side channels.

To this point, the protocol had used TCP for payload transportation, but it turned

out to be a limiting factor for the protocols multiplexing features, resulting in

non-ideal connection speeds. These security flaws combined with the

increasing demand for capacity in network connections inspired the initial idea

of HTTP/3. The protocol would utilize a new transport layer protocol, QUIC,

which would not only give the protocol a robust encryption, but also enable

proper multiplexing.

The objective of this thesis is to generally address the security features of

HTTP/3, without providing a deeper analysis. The thesis observes how HTTP

properties have been implemented in this version, and what has been added

to the security side since HTTP/2. Chapter 2 lays the groundwork for

understanding the differences HTTP/2 security and the basics of the

transportation layer protocol QUIC, and chapter 3 addresses them. Chapter 4

goes into a practical analysis of the visible differences, by dissecting both

protocols in Wireshark. The analysis is done in a laboratory client-server

environment, where dissecting and analyzing the network traffic is transparent.

 7

2. BACKGROUND

Before going into the secure properties of HTTP/3, it is important to

comprehend the building blocks of HTTP-security. This chapter will go through

the basic properties of HTTP, as well as the concept of HTTP/2. The security

and vulnerabilities of the latter are discussed in the end of the chapter. Since

QUIC is a major part of HTTP/3, the chapter will also explain its concept without

going into many technical details.

2.1 Hypertext Transfer Protocol

Hypertext Transfer Protocol, or HTTP, is an application layer protocol,

developed for transferring messages between two machines over a transport

layer protocol. The protocol is based on request-respond operations, which

allow back and forth hypertext communication between clients and servers. A

client sends a request to a web server, and the server sends a response back.

The following figure 1 shows an HTTP/1.1-request to an Apache server.

A client request is a message sent to the server, and its type is specified with

an HTTP method. These methods are labeled as GET, POST and PUT. Using

Figure 1: A basic request-response operation in HTTP/1.1. The message body has been left out.

 8

these labels determine, how the request will be processed. GET request will

return a resource, POST transfers resource to the server and PUT generally

replaces a resource. Server response, correspondingly, is a message sent from

server to the client as a reply to the request they have sent. The response tells

the client how the request has been handled by using HTTP status codes. The

most common status code is 200, which means that the request succeeded. [1]

 Although the protocol is commonly associated with HTML, it does not mean

that the transferred content is only hypertext. In fact, the protocol can transfer

all kinds of data, e.g., images, videos, or audio files. The data type is defined in

each response header with the tag “content-type”. [2] In figure 1, the type has

been assigned “text/html”.

HTTP is also responsible for transferring cookies to the browser during a client-

server connection. Cookies are small fragments of user data, that are stored in

the browser for connection state management. They can be used for tracking,

identifying, and saving user data when visiting a website.

 Another feature of HTTP are response caches, which aim to speed up the

connection. Caches are storages filled with previously requested content and

they have a goal of reducing network roundtrips during connections.

Connections may exploit them either fully or partly. Loading content from cache

does not require network connection. They contain only static components of a

website, like index page content: text and images. Caches are stored same way

as cookies: in the web browser. Both cache and cookies can be deleted by the

browser client, when necessary.

2.1.1 HTTPS

In the earlier versions of HTTP, the transferred payload was a series of plain

hypertext packets with no encryption in place. While this made it a human-

friendly protocol to interpret, it also left the protocol vulnerable to different cyber

threats [2]. This was later solved by adding a cryptographic layer TLS on top of

TCP, creating a secure version of HTTP, called Hyper Text Transfer Protocol

Secure, or HTTPS for short. It is not another version of HTTP, but rather a

protocol stack, which encrypt the connection requests and responses. The

transferred data is encrypted bi-directionally by using asymmetric encryption

 9

with the use of public-private keypairs. Encryption makes the communication

impossible to decipher without the proper keys. [3] This allows the client-server

communication to be authenticated and properly secured, and it prevents or

mitigates most of the vulnerabilities HTTP has. In the past, HTTPS was mainly

used to secure confidentiality in transactions like banking, but today, as it is

compatible with all versions of HTTP, it has become a mandatory practice for

reliable connection in both HTTP/1.1 and HTTP/2.

Although it makes things far more secure, it does not participate in securing the

connection side channels. This means that information like transferred data

sizes, or clients time spent on a website can be interpreted from the traffic [3],

creating an exposure to a side-channel attack. Side-channel attacks are

basically attacks based on the information patterns that a protocol may use.

Chen et al. studied in their paper [4] the severity of side-channel leaks. Their

study found multiple different applications that were leaking exploitable private

data despite using a HTTPS encryption. This data included health information,

search queries, family income and investment secrets.

2.1.2 HTTP/2

As the websites developed into dynamic, complex structures, HTTP/1.1

became unsuitable for content-heavy websites that were still using its single

response/request connection. HTTP/2 was developed as a binary protocol [5],

and it introduced two major features: multiplexing and header compression.

Multiplexing is a mechanism, that enables concurrent requests in the same

connection, and it was used to counter the slowing connection speed of

HTTP/1.1. By using multiplexing, the session establishment including a

cryptographic handshake became faster, because more phases could be

transferred in a single stream, as seen in figure 2.

The header compression was managed with a unique feature of HTTP/2 called

HPACK [6]. It is an algorithm built to help the protocol reduce the size of the

transmitted data. HPACK does this by compressing the otherwise repetitive

headers of HTTP/2 messages. HTTP had previously allowed only the message

body to be compressed, but since the traffic has increased, the uncompressed

 10

headers would affect the transfer speed. This can be seen in content-heavy

websites, that need to send more requests to load the page.

In HTTP/2, multiplexing grants the freedom of out-of-order packet receiving,

which means that the protocol allows the client to send multiple requests in a

single connection without needing to wait for the responses. The effect on the

speed was tested in a realistic network environment by Griffin, who concluded

that multiplexing feature increases the protocol speed by 14% compared to

HTTP/1.1 [7].

A lot of these listed properties create a good foundation for the protocol and

makes it still relevant today. The connection speed, however, will become a

problem for it in the future. Since its transportation level protocol TCP suffers

from head-of-line blocking, multiplexing cannot be utilized ideally. This

drawback comes up, when there are multiple connections for TCP to handle:

one lost or out-of-order packet will stall the protocol, until the packet has been

retransmitted successfully. TCP cannot distinguish multiple streams and crams

them all into one. Since this problem remains outside of the structure of

Figure 2: HTTP/2 session establishment

 11

HTTP/2, it cannot be solved without making modifications to the transport layer

protocol.

The security aspect of HTTP/2 was a huge improvement from the previous

version, and it still holds up. It was achieved mainly by forcing HTTP/2

implementations to use TLS version 1.2 or higher [5]. This denied the usage of

TLS 1.0 and 1.1, which had both suffered from vulnerabilities such as

Heartbleed and BEAST [8]. Additionally, the binary form creates another

security layer to the protocol. The use of binary reduces errors and makes the

protocol more complex.

What is to consider, though, is that not all websites communicate with HTTP/2.

This leads to a downgrade vulnerability, where a front-end server uses HTTP/2

with the clients but rewrites the requests to back-end using HTTP/1.1 [5].

Interestingly, this can be exploited in numerous ways, as James Kettle has

done in his research. Kettle describes closed bug-bounty case studies, in which

he exploits this vulnerability and gains access to different websites. One of the

studies includes him inserting harmless JavaScript code into the requests. By

replacing the code with a malicious script, an attacker could gain an access to

user accounts. Another study involves a case, where he includes a redirection

prefix to the request, which would lead the victim to a malicious version of the

website. All the described cases can be redone by using the tools from Burp

Suite, which has implemented native support for manipulating HTTP/2 requests

from versions 2021.8 upwards. [9]

2.2 QUIC

QUIC stands for quick UDP internet connections, and it is a standalone secure

transport protocol first introduced by Google in 2012. After years in

development, it was officially standardized in May 2021 by the IETF. The

protocol aims to provide security to transport connections by increasing network

traffic performance. It serves as an encrypted tunnel for different application

layer protocols, such as HTTP/3. Features that originally make TCP more

reliable than UDP, for example loss recovery and congestion control, have

 12

been migrated over to QUIC. It has also been developed with security in mind,

namely encrypting even the side-channel data. QUIC has migrated features

from TLS, so it has also an extra layer of encryption. [10] This encryption allows

QUIC packets to be encrypted at every stage of a connection. The comparison

of QUICs role in HTTP/3 stack to HTTP/2 can be seen in figure 3.

QUIC has increased network traffic performance due to its UDP features, and

it provides considerably reduced latency compared to TCP [11]. This is

achieved by the connection establishment mechanism of QUIC, as well as the

obvious absence of head-of-line blocking. By using features from UDP, the

protocol eliminates the issue of head-of-line blocking that is slowing TCP down.

This allows it to establish several multiplexed connections between two

endpoints without high chance of interruption. The side of UDP allows

uncontrolled dataflow, with no latency coming from retransmissions or packet

loss recovery. Any retransmissions are done on the level of QUIC, which allows

the UDP streams to keep going while a single multiplexed stream is being

repaired. Each stream is delivered independently, so that packet loss in one

case will not affect others. This also allows QUIC to be flexible regarding the

network environment. A feature called connection migration allows a QUIC

connection to adapt to the change in endpoint addresses, for example when

switching from cellular data to Wi-Fi, without breaking. Each of the connections

have a specific ID, which is carried by the QUIC packets, to prevent any

collisions between migrating sessions. [12]

Figure 3: The role of QUIC in the stack

 13

The connection establishment mechanism in QUIC incorporates the handshake

of TLS 1.3 [13], by merging it with the transport handshake and replacing the

TLS record layer with QUICs own framing format. This version of TLS is

currently the newest version of the protocol with added features and has

patched all the vulnerable ciphers and algorithm from past versions. With the

key-exchange and selection of supported protocols embedded into the initial

handshake, QUIC is seemingly twice more efficient in network roundtrips

compared to the regular TCP/TLS stack. Typical TCP/TLS round-trip time, or

RTT, of a session establishment is 300 milliseconds, whereas QUIC evidently

achieves the same in 100 milliseconds [14].

QUIC has an additional feature for re-establishing a connection labeled 0-RTT.

It minimizes the round-trip time to zero, which allows a re-established

connection to pick up where it left off, without the need of redoing the

handshakes. This allows the connection to resume sending encrypted

application data right away. If the feature is enabled, QUIC will cache the

parameters from the client-server negotiation and use them in a new session.

[12]

 14

3. SECURITY PROPERTIES OF HTTP/3

This chapter will go through the added security properties of HTTP/3. The text

contains references to cryptography and transport layer security TLS, so the

reader is advised to have a prior understanding of these topics. The chapter

breaks down the session establishment of HTTP/3 and observes each part of

it from the security aspect, as well as analyzes how the protocol has been

modified from its prior version, HTTP/2. Additionally, the chapter goes through

the security of QUIC from point of HTTP/3, and the defensive capabilities of

them as a protocol stack.

3.1 HTTP properties implemented in HTTP/3

HTTP/3 is the upcoming version of HTTP and at the time of writing it remains

an RFC draft. Originally, it was intended to be an extension of HTTP/2, but the

use of TCP would not enable the wanted features. Therefore HTTP/3 properties

are very similar to its previous version, with the biggest difference being the

replacement of the TCP with the new transport protocol QUIC. As discussed in

chapter 2.2, the change speeds up the client-server session by eliminating the

head-of-line blocking of TCP. This means that using QUIC, HTTP/3 is fully

capable of multiplexing its streams.

Since the protocol is heavily tied to the transportation layer protocol, its security

also relies strongly on it. In HTTP/3, some of the previously HTTP responsible

features have been delegated to QUIC. For example, while the header

compression works similarly to the HPACKs in HTTP/2, it has now been

readdressed to QUIC. This reworked version is not much different to the

previous one other than it is now called QPACK. The reason for the rework was

the compatibility issues: HPACK was built with TCP’s total ordering of the

packets in mind, whereas QUIC being a protocol built on UDP enables out-of-

order packet transfer. Aside from this, QPACK reuses much of the features of

HPACK.

 15

 Some of the most basic HTTP protocol properties were discussed in chapter

2.1, like caches and cookies. In HTTP/3, caches and storing user data are

implemented much like in the other versions. However, cacheability of pushed

responses have been discussed in the draft section 10.4 under security

considerations. This section briefly considers the situation, that a server has

more than one tenant, in which case the server provider must be cautious about

the authority of the tenants. The failure of proper authentication on the server

could lead to the tenants requesting caches they would not have permission to.

Similarly, using cookies has not changed. Only their transferring has been

tweaked along with the hop from HPACK to QPACK. In QPACK, the cookie-

field in HTTP messages may be split into separate lines for better compression

efficiency, as described in the draft. [15]

3.2 HTTP/3 session establishment and lifecycle

When opening a new connection, the session establishment in HTTP/3 begins

with QUIC initializing and encrypting the traffic, as seen in figure 4. The

encryption happens by doing a cryptographic handshake, during which the use

of HTTP/3 is indicated by selecting an Application-Layer Protocol Negotiation,

or ALPN, token “h3”. The handshake lifecycle is the same as with TLS 1.3,

where both client and server exchange their certificates and authenticate one

another. The handshake has been built within QUIC, so the connection will

always be secure with no possible configuration mishaps.

Figure 4: Using QUIC to establish 1-RTT connection

 16

Each HTTP/3 packet, or stream, is built from HTTP framing layers. The protocol

has three different stream types: control, request, and push stream. The frames

of a packet can consist of DATA, HEADERS, CANCEL_PUSH, SETTINGS,

PUSH_PROMISE, GOAWAY, MAX_PUSH_ID or Reserved. Once setting up

the QUIC connection has finished, the first HTTP/3 message will send a

SETTINGS frame with it, which contains the details regarding how the

endpoints of the HTTP/3 session will communicate. The chosen settings will be

used for the rest of the connection. After the control stream has been received,

the application data stream will open, and remains so until one of the endpoints

close the connection by either an idle timeout or a graceful shutdown.

 Establishing a new connection, as described above, goes by the name of “1-

RTT”, which illustrates the time spent on the cryptographic handshake. When

re-establishing a connection, HTTP/3 can use the “0-RTT” feature of QUIC, that

allows it to restore the previous connection state. In practice, this means that

on client-side, there is no need to go through the handshake again. QUIC needs

to send only an initial message, and HTTP/3 application data stream will open.

The first incoming HTTP/3 message will contain the same SETTINGS frame

that was used in the previous connection. When resuming the connection using

0-RTT, the parameters from the previous connections come from the QUIC

server’s cache. The server is responsible of storing the parameters for a certain

period, before terminating the connection with idle timeout.

The connection shutdown happens, when one of the endpoints send a

GOAWAY frame within a control stream. If at any point of the connection an

erroneous frame is sent, a corresponding error code will be sent in a control

stream, and the connection will be terminated. [15], [12]

3.3 Connection security with QUIC

This subsection goes through the very basics, only scratching the cryptographic

side of QUIC. To support end-to-end encryption in a HTTP/3 connection, most

of the cryptographic primitives QUIC uses come specifically from TLS v1.3 [16].

QUIC relies on these v1.3 features for authentication, security parameter

negotiation, forward secrecy, and many other security properties. The TLS

 17

version is non-negotiable in HTTP/3, meaning that TLS downgrading and

exposing the protocol to a vulnerable version is prevented [17].

 QUIC intends to achieve a complete security for the transferred payload and

implements several encryption keys to do so: the initial keys, early data keys,

handshake keys, application data keys and packet protection keys. In session

establishment, a client and server both send each other an initial packet, which

contain the cryptographic messages. Initial keys, which are connection- and

version specific, are used to encrypt these packets. After receiving the initial

packets, both parties must discard the keys, to prevent an attacker from

spoofing an initial packet. During the handshake, the parties agree on a set of

handshake keys, that the connection will use to complete the cryptographic

handshake. These will be discarded as well when the handshake is complete.

After a handshake is ready, application data keys are used to encrypt and send

a 1-RTT packet, which finalizes the connection establishment. With the session

ongoing, after encrypting a packet with TLS handshake, QUIC re-encrypts its

payload and header separately using its packet-header protection keys [14].

The two parts will be combined once re-encrypted, forming the actual payload.

This creates a heightened security, as it also secures the payload metadata.

[18], [19]

The early data keys are used, when a 0-RTT connection is established, only to

protect acknowledgements of 0-RTT packets. These keys, however, are not

used to protect the packet content in anyway.

3.4 Defensive capabilities and protocol vulnerabilities

The transport protocol QUIC, which is heavily tied to HTTP/3, has both

advantages and vulnerabilities deriving from TLS and UDP. TLS 1.3 is

designed so that the handshake process generates a key hash specific for it,

which both parties need to confirm for the connection to continue. If a

connection detects a faulty hash, the handshake will terminate. In QUIC itself,

the initial packet includes a CertificateVerify message, which itself contains

another hash. To verify the TLS version, the hashes can be checksummed.

With using the ALPN extension in TLS as discussed in chapter 3.2, HTTP/3

 18

connection endpoints will always use the same protocol versions, protecting

the connection from a cross-protocol attack [15].

UDP based protocols often suffer from the vulnerability to a reflection attack. In

reflection attack, an attacker spoofs the packet source IP and sends a request

to the receiver. If the receiver replies with a response, the attacker can use this

behavior to cause a denial-of-service, making the service slow or completely

inaccessible to the clients. QUIC, and therefore HTTP/3, is strong against this

when using 1-RTT, but vulnerable when using 0-RTT. The initial handshake

process includes an address validation by using a source-address token. It is

an authentication key containing the IP address of the user-agent and a server

timestamp. This key is read by the server each time, and without the token, the

server will not respond. The source-address changes only when there are

changes in connectivity. The time-window between the change is minimal, so it

is practically impossible to do an IP spoofing in-between. [12]

 In a 0-RTT attack scenario, the adversary sends a 0-RTT reply to the server

using the IP address originally used to generate the 0-RTT token. If the server

replies, it can be instructed to forward traffic to the victim, resulting in a DDoS.

This vulnerability is addressed from both HTTP/3 and QUIC: HTTP/3 mitigates

this attack by its packet rate limits and validation tokens, whereas QUIC

assesses this vulnerability in three ways. Firstly, it has constrained the data

packet sizes the server can send at the beginning of a session. Secondly, it

allows the server to validate the client address by using the built-in anti-

amplification mechanism. The mechanism verifies the client’s capability of

receiving packets from the address it has validated before. If an unknown

address sends in a packet, the client must then send a data packet with a size

exactly three-times the size of the received packet. Thirdly, a server can

validate a client by sending a cryptographic token inside a packet, which the

client then needs to echo back for the connection to resume. [16] By only

mitigating the attack though, it cannot be completely brushed off: In a session,

where 0-RTT feature is enabled, an attacker can still cause havoc by replaying

a request repeatedly [20]. While the 0-RTT feature gives the protocol its fast

connection resumption ability, it suffers from different vulnerabilities, which is

why the feature is not currently enabled by default in web browsers.

 19

 Both HTTP/3 and QUIC have implemented a replay attack protection. In a

replay attack, an adversary eavesdrops a request made by a client, and

resends it to the server, causing the server to send the respond back to both

the adversary and the client. HTTP/3 uses the anti-replay mitigations when 0-

RTT is enabled, as described in [21]. From the QUIC side, prevention happens

by discarding requests performed repeatedly using the same key. This does

not apply to the connection’s initial steps though, and it leaves the protocol

momentarily vulnerable.

 Due to the novelty of the protocol, it is important to consider the outlook as

well. Since the protocol uses UDP port 443, it will most likely have complications

with network middleboxes, like firewalls, for a while. Firewalls are usually

designed with TCP in mind and are configured to limit UDP port traffic, since

those ports often get amplification attacks. Opening UDP ports will most likely

cause a high rise in UDP port scanning in the future. This is a configuration

issue that is beyond HTTP/3 or QUIC to handle. QUIC has only prepared for

the future case of version-unaware middleboxes, which means that when

middleboxes do know the QUIC protocol, they cannot be exploited into

downgrade attacks since the initial keys are version- and connection specific.

 20

4. TESTING AND RESULTS

This testing aims to analyze in practice, how HTTP/3 on QUIC compares to

HTTP/2 on TCP, considering the packet information security. The tests will

provide an understanding of how both protocols stand up against a side-

channel analysis. This is achieved by analyzing both encrypted and decrypted

traffic using Wireshark, the network traffic analyzing tool.

Overall, the chapter will go through the testbed and setup, the results

evaluation, and the discussion of the connection between theory and the

testing.

4.1 Testbed and setup

Protocol dissecting and packet analyzing was performed in a local test

environment, where both client and the server were hosted on Linux (4.19.0-

17-amd64 #1 SMP Debian 4.19.194-3 x86_64 Ubuntu 20.10) machines. The

server was built by using Openlitespeed, with locally trusted certificates created

by Mkcert [22]. The content of the server is limited, consisting of a title “HTTP/3

server” and a textbox of lorem-ipsum. When decrypting both protocols, these

details will become visible in the progress.

The tests were performed by having the client send a request to the server by

using a HTTP/2 and HTTP/3 compliant version of the command-line tool curl.

Packet capturing was done by using a source-built Wireshark version 3.7,

which supports the decryption of the QUIC protocol. Decryption requires the

private key of the server, which can be obtained by telling a browser to log the

keys to a file called SSLKEYLOGFILE. This file is given to Wireshark, which

uses it to decrypt packets, which have been encrypted by TLS. [23]

4.2 HTTP/2 and TCP

Capturing encrypted HTTP/2 data from the network will result what is displayed

in figure 5. This is due to HTTP/2 encryption, as well as its compression. TCP

handshake, as well as the TLS handshake are both encrypted but visible

without further probing. The only thing that is not straight visible in the traffic is

 21

the encrypted HTTP/2 payload, which is being carried by TLS with the label

“Application Data”.

The displayed traffic content is human readable, in a sense. It shows when a

connection is being initiated, ciphers negotiated, and the data stream opened.

Furthermore, when looking into these data containing TLS packets, the

application data can be seen in its encrypted format, but with a packet length

visible. Figure 6 is going into packet number 26, which has the data size of

4416. This sizeable packet appears in the traffic amidst much smaller packets,

which can tell a keen observer that it is the one containing the actual payload.

The packet also tells that the protocol used is http-over-tls. These sorts of side-

channel information leaks are also note-worthy when considering protocol

security.

Figure 5: HTTP/2 + TCP encrypted traffic

Figure 6: Encrypted packet information

 22

After decrypting and decompressing the traffic, the traffic feed becomes

transparent. In figure 7 is displayed the exact same data stream from figure 5,

but this time, the HTTP/2 protocol title has been exposed to the observer, and

a lot of important headers are visible. The figure also shows a clear request-

response architecture, with packet number 20 being GET, and packet number

26 the POST.

Figure 8 shows the decrypted packet number 20, the GET-request. Application

data protocol has now been specified to HTTP/2 and shows its frame structure.

The pseudo-headers of the packet include method, path, scheme, authority,

and user-agent. Method being being obviously GET, the scheme part tells that

it is using https. Authority part tells the target URI authority, which is, in this

case, the test server IP address 130.230.84.31. Finally, the user-agent header

Figure 7: HTTP/2 + TCP decrypted traffic

Figure 8: GET-request sent to the server

 23

tells, that the client has used curl/7.68.0 to access this server. In figure 9, the

same TLS packet that was in figure 6 has been decrypted and exposed as

HTTP/2 packet now. This is the response from the server to the GET-request,

with the status code 200 OK. The packet content tells the whole story: The

Litespeed server has sent 4131 bytes of text/html content on 8th of April 2022.

Line-based text data tab has the plain-text data included in the response, as

seen in figure 10. The content has been cut short in the figure since it was not

necessary to display it in whole. The text data here is the server’s HTML/CSS.

Figure 9: The server response

Figure 10: Decrypted plain-text payload

 24

4.3 HTTP/3 and QUIC

As expected in theory, capturing encrypted HTTP/3 and QUIC results in

minimal traffic details. In figure 11, a new 1-RTT connection has been

established with the same server, this time using HTTP/3 as a protocol. The

whole stream is just labeled QUIC. Unlike in encrypted HTTP/2, It is not easy

to spot from the feed, where the actual data stream is opened, since the stream

content size remains seemingly the same. The different phases of QUIC are

visible, though: the initial packets and the handshake. The initial packets have

visible packet numbers: by the multiplexing feature of QUIC, the packet order

differs. “Protected payload” label is used for everything after the connection

establishment.

It is intriguing to see in practice, how the encryption and compression has been

implemented. Examining packet number 39, which is later revealed to be a

HTTP/3 data packet, has a similar emptiness to a plain TLS packet, as seen in

figure 12. Everything in the QUIC tab is encrypted and it does not list all the

Figure 11: HTTP/3 + QUIC encrypted traffic

Figure 12: Encrypted packet information

 25

frames in QUIC structure. The protocol does not even tell the application-level

protocol which it is delivering, unlike in plain TLS, which was seen in figure 6.

Decrypting the captured traffic does not reveal much more. The QUIC packet

contents are a bit more detailed, and the HTTP/3 protocol is now visible, as

seen in figure 13. By analyzing the feed there is not a clear conversation going

on, unlike in HTTP/2. Looking through the traffic to identify a possible GET-

request, an observer can only find encrypted SETTINGS in packet 33. This

frame, which is seen in figure 14 tells nothing to its reader since it is also still

partly encrypted. The reason behind the remaining encryption was discussed

in chapter 3.3 in the security in QUIC: the initial keys of the protocol are used

to encrypt the payload before the actual handshake. The TLS decryption does

not affect the QUIC encryption at that level, so it is able to keep most of the

data secret.

Figure 13: HTTP/3 + QUIC decrypted traffic

Figure 14: The SETTINGS frame of packet number 33

 26

Selecting packet number 39 again, now revealed as HTTP/3 packet, results in

an information window as seen in figure 15. The packet itself is labeled DATA-

type, meaning it would logically be the server response. Nothing is shown in

the packet, other than the actual content length. It has a singular HTTP/3 tab

after QUIC, and the frame payload of it appears to be still encrypted. QUIC

frame structure instead has everything displayed but seeing its content does

not help an eavesdropper. Looking through Wireshark decryption tabs, which

summarizes the packet data in hexadecimal and plain-text, results in finding

the plain-text payload. In figure 16, under “Reassembled QUIC” label, is the

Figure 15: Decrypted packet number 39

Figure 16: Frame payload, reassembled from QUIC

 27

server response which has the same server content as seen in figure 9 of

HTTP/2 decryption. Interestingly, this content is not included in the HTTP/3

tabs, as it was in figure 10 under “line-based text data” of HTTP/2.

4.4 Overview of the results

Comparing the two protocols gave an insight on how different HTTP/3 really is

security-wise. In the case of HTTP/2, using the keylog method in Wireshark

provides a way to strip the TLS encryption, as well as the decompression layer

of the protocol. Doing so, the HTTP conversation becomes clearly visible. In

the GET-request, headers exposed include the used method, path, scheme,

authority, and the user-agent. In this test, this packet states that the client used

curl/7.68.0 to form a GET request to a https-version of the server

130.230.84.31. The response from the server gave out the server type,

Litespeed, a date on which the server has been last modified, and a plain-text

version of the server content. In a similar test, the keylog method used on

HTTP/3 traffic did not wield as informative results. Decryption gives some

information on the details of QUIC, but nothing useful exploit-wise. The analysis

of HTTP/3 packets resulted in getting the page content as a server response,

with all the important details left out. The QUIC initial decryption does not wear

down after a TLS decryption, so the traffic remains partly encrypted.

In conclusion, an attacker possessing a keylog file can easily find out everything

they need about a HTTP/2 client-server conversation, by going through some

extra steps. HTTP/3, on the other hand stands strong against an eavesdropper.

Even though possessing a keylog file, an attacker can only get the page

content, as one would with a curl request. While this would also be a poor

scenario, it leaves out certain server details, which could in a long run cause a

side-channel attack. This short comparison tells that HTTP/3 has achieved

what it promised. In traffic analysis it is indeed more secure than HTTP/2, by

having heightened encryption.

 28

5. EVALUATION AND CONCLUSION

The research made for this thesis makes a promise of a fast but reliable

protocol. The secure properties of the new protocol have been enforced

significantly from the previous version, HTTP/2. Suffering from side-channel

leaks and the downgrade vulnerabilities, HTTP/2 does not ensure a connection

to achieve the security standards of today. HTTP/3 patches these flaws by

having multiple layers of encryption by default, and an assurance that the

protocol cannot be downgraded.

The security in HTTP/3 is mainly provided by QUIC, as supported by the

practical test in the thesis. The initial keys which QUIC uses to encrypt a

payload in the start eliminate the possibility of side-channel analysis. Although

HTTP/3 is now built on UDP-like features, the protocol provides

countermeasure like packet rate limiting, and QUIC uses an anti-amplification

mechanism.

Regardless of the state of security now, the protocol is still in development. The

changes it could still go through can affect it. After its release it should be

treated with caution, since it still has vulnerabilities in features like 0-RTT. As

time goes by, and more people start testing it, we will see if there are any

underlying security flaws. Additionally, the future versions of QUIC may not be

compatible with HTTP/3 and could enable cross-protocol vulnerabilities. The

potential vulnerabilities may rise even after years of the initial release, in which

case the security of it must be re-evaluated. In future, Wireshark will possibly

support full QUIC decryption as well. It means QUIC and HTTP/3 could be

analyzed in more detail, and if so, there could be similar results to traffic

analysis as there is now to HTTP/2.

 29

6. REFERENCES

[1] MDN contributors, "Evolution of HTTP," 2021. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP.

[2] R. T. Fielding, J. Gettys, J. C. Mogul, H. F. Nielsen, L. Masinter, P. J. Leach and T. Berners-
Lee, "Hypertext Transfer Protocol -- HTTP/1.1," June 1999. [Online]. Available:
https://www.ietf.org/rfc/rfc2616.txt.

[3] "Introduction to HTTPS," [Online]. Available: https://https.cio.gov/faq/.

[4] Microsoft, "Side-Channel Leaks in Web Applications: a Reality Today, a Challenge Tomorrow,"
2016. [Online]. Available: https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/02/WebAppSideChannel-final.pdf .

[5] M. Belshe, R. Peon and M. Thomson, "Hypertext Transfer Protocol Version 2 (HTTP/2)," 2015.
[Online]. Available: https://tools.ietf.org/html/rfc7540.

[6] R. Peon and H. Ruellan, "HPACK: Header Compression for HTTP/2," May 2015. [Online].
Available: https://datatracker.ietf.org/doc/html/rfc7541.

[7] J. Griffin, "HTTP/2 vs HTTP/1," February 2019. [Online]. Available:
https://www.thewebmaster.com/hosting/articles/what-is-http2-and-how-does-it-compare-to-
http1-1/.

[8] "Heartbleed bug," June 2020. [Online]. Available: https://heartbleed.com/.

[9] J. Kettle, "HTTP/2: The Sequel is Always Worse," August 2021. [Online]. Available:
https://portswigger.net/research/http2.

[10] J. Iyengar, "QUIC is now RFC 9000," May 2021. [Online]. Available:
https://www.fastly.com/blog/quic-is-now-rfc-9000.

[11] A. Kyratis and P. Cottis, "QUIC vs TCP: A Performance Evaluation over LTE with NS-3,"
Communications and Network, vol. 14, pp. 12-22, February 2022.

[12] R. -. P. Standard, "QUIC: A UDP-Based Multiplexed and Secure Transport," 2021. [Online].
Available: https://datatracker.ietf.org/doc/rfc9000/.

[13] E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.3," August 2018. [Online].
Available: https://tools.ietf.org/html/rfc8446.

[14] J. Zhang, L. Yang, X. Gao, G. Tang, J. Zhang and Q. Wang, "Formal Analysis of QUIC
Handshake Protocol Using Symbolic Model Checking," IEEE Access, vol. 9, pp. 14836-14848,
2021.

[15] M. Bishop, "Hypertext Transfer Protocol Version 3 (HTTP/3)," 2021. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-quic-http-34.

[16] M. Thomson and S. Turner, May 2021. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc9001.html.

[17] E. Gagliardi and O. Levillain, "Analysis of QUIC session establishment and its implementations,"
2019. [Online]. Available: https://hal.archives-ouvertes.fr/hal-02468596/document.

[18] R. Seal, "Looking Into QUIC Packets in your Network," 7 2021. [Online]. Available:
https://blogs.keysight.com/blogs/tech/nwvs.entry.html/2021/07/17/looking_into_quicpa-
pUtF.html.

[19] IEEE, "How Secure and Quick is QUIC? Provable Security and Performance Analyses," 2015.
[Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163028.

[20] A. Ghedini, "Even faster connection establishment with QUIC 0-RTT resumption," 2019.
[Online]. Available: https://blog.cloudflare.com/even-faster-connection-establishment-with-quic-
0-rtt-resumption/.

[21] M. Thomson, M. Nottingham and W. Tarreau, "Using Early Data in HTTP," September 2018.
[Online].

 30

[22] Koromicha, "Create Locally Trusted SSL Certificates with mkcert on Ubuntu 18.04," October
2018. [Online]. Available: https://kifarunix.com/how-to-create-self-signed-ssl-certificate-with-
mkcert-on-ubuntu-18-04/.

[23] "SSLKEYLOGFILE - Everything curl," [Online]. Available:
https://everything.curl.dev/usingcurl/tls/sslkeylogfile.

