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I. INTRODUCTION

Data from the Sentinel satellites are intensively used for
various applications such as land use and vegetation map-
ping or crop monitoring, for example. Depending on climate
conditions in the region of interest, the main obstacle in
using the data for practical monitoring purposes may be cloud
coverage. This is especially restricting if the data should
be acquired from a narrow time window corresponding, for
example, to a certain growth phase of crops. The problem
could be alleviated by more accurate and higher resolution
cloud coverage assessment compared to that available by the
product of the Sentinel data.

Currently the cloud mask of the Sentinel data is available
in the form of the Level 1C product containing vector layers
of dense and cirrus clouds. Also, the percentage of cloudy
pixels (dense and cirrus) in the mask are provided. The
Level 2A product further processes the Level 1C data to
obtain the Scene Classification layer with cloud and cirrus
probability values at 60 m spatial resolution. Calouzzi et.al. [1]
assessed these products concluding that caution has to be taken
when using the provided cloud masks and improved cloud
detection algorithms are welcome. Recently, Baetens et.al.
[2] compared three cloud mask calculation algorithms: MAJA
(used in the Level 2A product), Sen2Cor (used by ESA) and
FMask (used by USGS), using their Active Learning Cloud
Detection (ALCD) method for producing reference cloud
masks. Classification accuracy of about 90 % was obtained
by MAJA and FMask while SenCor gave 84 % accuracy.

In this paper we train the random forest classifier to assess
cloud cover in Sentinel-2 data. Our primary usage of the data
is crop monitoring and yield prediction for decision support for
farmers. Therefore, the classifier is trained using data acquired
from crop fields by UAVs: as UAVs fly below the clouds
and the data they produce is not affected by cloud cover (if
properly corrected for changes in irradiance), the difference
between the UAV and Sentinel data can be used as ground
truth for cloud cover.

II. DATA

A. Drone Images

For cloudless multispectral ground truth data, ten crop fields
were selected for imaging in the vicinity of Pori, Finland

(61◦29’N, 21◦48’E) and were imaged as a part of the MIKA
DATA project [3], [4]. The total area of the selected fields
was approximately 93 ha. Half of the fields had wheat (Ze-
bra/Mistral), three had barley (Harbringer/RGT Planet) and
two remaining had oats (Ringsaker) as the cultivated crop. The
fields were imaged during the growing season for years 2018
and 2019 from the time of sowing to the time of harvest. All
fields were imaged weekly. Due to varying weather conditions
and the proximity of an airport, the temporal allocation of
imaging flights to within a fixed daily time range was not
possible. The images were thus taken during day time.

The fields were imaged with two distinct drones, using
3DR Solo for the year 2018 and Parrot Disco-Pro AG for
2019. The drones were equipped with similar Parrot Sequioa
multispectral cameras. Distinct images were collated for each
field to build a complete image of a field using the Pix4D
software. During the process of building the image mosaics,
the band data were also automatically normalized in terms
of radiance utilizing the information provided by the multi-
spectral camera’s irradiance sensor. Using the red and near-
infrared (NIR) channels, the normalized difference vegetation
index (NDVI) was then calculated from each field’s multi-
band mosaic. To use the drone data in conjunction with the
Sentinel-2 data, the collated drone images were downsampled
to match the highest resolution available in Sentinel-2 images,
10 m/px. The downsampling was done using cubicspline
interpolation algorithm in the gdalwarp utility. Lastly, the
images for each field were cut to proper shape with field
block border data provided by Ruokavirasto (Finnish Food
Authority) [5]. This resulted in a total of 288 distinct crop
field images. The field-wise sizes, crop varieties, yearly image
counts and average valid pixel counts per image are given in
Table I

The use of NDVI images calculated from drone data is
discussed in Sec. II-C. Next we will discuss the acquisition
and processing of the Sentinel-2 satellite data.

B. Sentinel-2 Data

Sentinel-2 satellite images were selected as the source data
for the study. The data provided by the dual satellite system
are widely used in agriculture and is freely available. The
satellite images processed to the Sentinel product Level-2A [6]
were downloaded from Copernicus Open Access Hub [7].



TABLE I
SIZES, CROPS, IMAGE COUNTS AND AVERAGE PIXEL COUNTS OF FIELDS

SELECTED FOR DRONE IMAGING.

Field Size, ha Crop Image Counts Avg. Valid
Px Per Image2018 2019

1 11.08 Wheat 13 16 1065.5
2 8.24 Wheat 15 14 759.1
3 11.77 Wheat 13 16 1120.9
4 11.12 Wheat 15 16 1051.9
5 7.59 Wheat 15 16 705.2
6 7.61 Oats 12 15 739.8
7 7.24 Oats 13 15 681.9
8 7.77 Barley 13 15 1016.6
9 13.05 Barley 12 16 1251.3
10 7.95 Barley 12 16 715.5

The satellite data products were downloaded for the growing
seasons of 2018 and 2019.

The satellite data were selected with no limits on the
estimated cloud coverage. The goal was to be able to find
week-matching pairs for the drone data. The data was used
as the training data for which information about the cloudless
ground truth was available via drone data. The gathered data
spanned initially the growing seasons of years 2018 and 2019.
Part of the downloaded data was omitted during the process
of week-matching Sentinel-2 data to Drone data. The satellite
image data were cut to shape using field block borders already
utilized with the drone data to ultimately generate image
pairs of drone and satellite data aligned both temporally and
geographically for distinct fields.

C. Target Data

Supervised machine learning requires the existence of a pri-
ori labeled data, the ground truth. With the aim of estimating
cloud coverage in Sentinel-2 data in the spatial scale of crop
fields, NDVI images gathered with drones at the altitudes well
below clouds are considered as cloudless ground truth. This
consideration is in relation to satellites flying at atmospheric
altitudes. Comparing absolute values across bands for two
different sensors and imaging platforms has proven to be
difficult, as the data would require scaling to an unkown global
maximum for Sentinel-2. However, the use of NDVI alleviates
this problem by providing normalized and thus comparable
data between distinct imaging systems.

Target data needs thus to be generated using the week-
aligned NDVI data from both sources, the drone and the
Sentinel-2 systems. Each spatially and temporally aligned
satellite and drone NDVI image pair is compared pixel by
pixel to determine whether the images are similar on the level
of distinct pixels. A pixel correponds to an area of 10 × 10
meters. The similarity for a single pixel-corresponding area is
determined by

sim(s,d) =

{
1, |s− d| ≤ threshold

0, otherwise
(1)

where s and d are spatially and temporally aligned pixels for
a field from the satellite and drone sources respectively. The

mean absolute errors (MAEs) of all week-aligned image pairs
are depicted in Fig. 1. The determination of the threshold is
discussed next.

To determine a proper absolute NDVI difference threshold
for labeling Sentinel-2 pixels either similar or dissimilar to the
drone pixels (see Eq. 1), the two data sources were compared
using the Student t-test. The test was applied over the pixels in
the images to compare whether the NDVI values in the images
were statistically similar or not. A total of 15 statistically
similar (p = 0.01) week-aligned image pairs were found. It
is to be noted though, that the number of image pairs having
MAE in close proximity to the similarity threshold was higher
than just 15 (see Fig. 1).

Fig. 1. The mean absolute errors (MAE) and mean absolute deviations (MAD)
of week-aligned NDVI pairs in ascending order. The statistics are calculated
over the pixels in the paired Sentinel-2 and drone NDVI images.

The statistically similar data (15 image pairs) were then used
to empirically determine the proper threshold for classifying
NDVI differences in terms of pixel-wise similarity. The tested
thresholds were selected from the proximity of upper end of
the MAE for the statistically similar data samples as shown
in Table II. In more general terms, the task of determining
the threshold for labeling is a task of balancing between (1)
capturing as much similarities while (2) still excluding as
many dissimilarities as possible. To elaborate, labeling every
pixel in the statistically similar images as similar would require
increasing the absolute NDVI threshold to levels possibly
having some pixels incorrectly labeled as similar. The ratios
of pixels labelled as similar for each similar image pair with
different thresholds is given in Table III. In combination with
visual evaluation, a threshold of 0.075 absolute NDVI differ-
ence was selected. A single image pair with the calculated
similarity map is shown in Fig. 2.

TABLE II
NDVI DIFFERENCE METRICS

FOR SIMILAR IMAGE PAIRS

Image pairs 15

Avg. Diff. 0.001 ±0.046
MAE 0.026 ±0.022
MSE 0.003 ±0.010
RMSE 0.046 ±0.092

TABLE III
SIMILARITY RATIOS WITH

VARIOUS THRESHOLDS

Threshold Similarity

0.025 89.13%
0.050 94.40%
0.075 96.14%
0.100 97.13%

D. Building the Modeling Data Sets

After the generation of field and week specific similarity
label maps, the data required only minor preprocessing. As



Fig. 2. A visualization of a single week-aligned Sentinel-2 and drone NDVI image pair with the absolute difference and the similarity map. The first two
figures depict the NDVI maps from corresponding sources. The third figure shows the absolute difference between the aligned Sentinel-2 and drone NDVI
values. The fourth figure shows the thresholded absolute difference, indicating areas where the NDVI images are similar enough.

the Sentinel-2 data products are delivered as separate files
for distinct bands and layers, the satellite data were merged
to construct multi-band images instead of multiple images of
distinct bands. The following Sentinel-2 data were merged:

• Sensor bands: 1 to 8, 8A, 9, 11 and 12
• Level-2A layers: AOT, SCL, TCI, WVP and CLDPRB

The separately calculated NDVI data were also merged
in conjunction with the alpha-channel generated during the
processing of the data. As per machine learning best-pactices,
the categorical values from the scene classification layer
(SCL) needed to be separated to distinct binary raster layers
according to the SCL classification labels, which is also known
as transforming a multi-class representation to class-wise one-
hot representation [8].

Thus, the final processed input data constituted 30 distinct
layers of data for each pixel. The dataset was then created by
extracting multi-band Sentinel-2 pixels as input samples and
their spatially and temporally corresponding binary similarity
label map pixels as target values. In other words, a single input
sample was a [1 × 30] and its corresponding target sample a
binary-valued [1 × 1] vector. A total of 381972 input-target
samples (pixels) were extracted from the source data. The
samples were then shuffled and split into training and test
data sets with 190986 and 63661 samples, correspondingly.
No scaling was applied due to the selected decision tree based
model.

III. MODEL

Data based modeling with machine learning methods is in
practice a tradeoff between model explainability and increased
performance. While training an accurate model for classifying
distinct Sentinel-2 pixels as similar or dissimilar to the cloud-
less ground truth data from drones is the primary goal while
the explainability was deemed as an important objective to
pursue as well. This is why an ensemble model called Random
Forest from the decision tree algorithm family was selected.
The ensemble model is able to model non-linear relationships,
work with unscaled data and provide easily understandable ex-
planations of decisions’ causes [9]. The model implementation
was part of the Python’s scikit-learn framework [10].

TABLE IV
THE CONFUSION MATRIX OF SIMILARITY LABEL PREDICTIONS.

Pred/True 0 1

0 TP
23237

FP
2580

1 FN
1807

TN
36037

IV. RESULTS

The model was allowed to train 500 sub-trees, varying
the tree structure and features used for each tree, using the
training data set only. The performance of the model was then
evaluated with the hold out test data set. The confusion matrix
of model predictions against true labels is shown in Table IV.
The precision of the model is

PPV =
TP

TP + FP
= 0.900, (2)

where PPV stands for positive prediction value. The model’s
true positive rate, i.e., recall, is then

TPR =
TP

TP + FN
= 0.923. (3)

The F1-score, a statistical test accuracy measure for binary
classification analysis is then calculated using Eqs. 2 and 3 by

F1 = 2 ∗ PPV ∗ TPR

PPV + TPR
= 0.911. (4)

Another interesting metric is the negative prediction value

NPV =
TN

TN + FN
= 0.952, (5)

which shows the model’s precision in predicting dissimilari-
ties. In conjunction with test data set result analysis, the model
was also evaluated with distinct images from the original
source data.

Due to Sentinel-2 satellite data being sensitive to changes
and disturbances in atmospehric conditions, the cloud estima-
tion information from the scene classification layer (SCL) and
cloud probablity mask (CLDPRB) calculated in the Level-2A
processing of the Sentinel-2 data can not be taken as definitive



truth. They, however, form a proper baseline to which compare
the trained model’s performance against.

The model predictions are based on the similarities of
Sentinel-2 and drone NDVI images, i.e. label 1 indicates
predicted similarity. Taking a mean of a set of predicted values
describes the mean predicted similarity for that set. The two
cloudiness estimation masks in the Sentinel-2 data product are
formulated differently.

As the name indicates, the CLDPRB mask contains pixel-
wise probability values for the estimated degree of cloud
coverage. The model-equivalent similarity measure would thus
be

CLDPRBSIM = 1− CLDPRB, (6)

where larger values imply increased degree of estimated
similarity.

On the other hand, the SCL layer contains pixel-wise labels,
with some labels indicating cloudiness (see [6]). To gain
information about the SCL layer’s model-equivalent similarity
measure, the cloud-related label ratio

pcl =
count(SCLcl)

count(SCL)
(7)

is first counted with the cl being a set of cloud-related class
labels. The inverse

SCLSIM = 1− pcl (8)

can then be seen as the implied cloudless ratio for a set of
samples. The comparison of sample-wise similarity estima-
tions between the trained model and Sentinel-2 data products
are given in Table V. The estimates are given both for when
the true target value was 0 (satellite differed from drone) and
when it was 1 (satellite similar to drone).

TABLE V
SIMILARITY ESTIMATES WITH HOLD OUT TEST DATA.

y = 0 y = 1
Mean Std Median Mean Std Median

Model 0.067 0.250 0.000 0.928 0.259 1.000
CLDPRBSIM 0.446 0.454 0.260 0.970 0.138 1.000
SCLSIM 0.282 0.450 0.000 0.949 0.220 1.000

Samples 38617 25044

V. DISCUSSION AND CONCLUSIONS

Our study indicates that the Random Forest model outper-
forms the Sentinel-2 CLDPRB and SCL data layers in detect-
ing cloudy areas (y = 0). For non-cloudy areas the detection
accuracy was slightly higher for the Sentinel products (see
Table V). Several issues should be considered, however, when
comparing these results. Firstly, when training the Random
Forest classifier, the thresholded absolute difference between
the Sentinel-2 and drone data was used as the ground truth.
While it can be argued that the main cause of this difference
is cloudiness, there may also be other factors involved such as
shadows or differences in irradiance. The satellite and drone

imagery were not necessarily acquired during the same time of
the day or same day of the week, although best time-matching
pairs were looked for when selecting the data. In some cases
a couple of days may cause significant changes in the crop
development. Another limitation comes from using the NDVI
data layers for ground truth assessment. While the NDVI index
contains significant information for vegetation monitoring and
is probably a good choice when assessing cloud cover in crop
fields, its use reduces the generalizability of the results to other
land cover types.

Despite the mentioned limitations, the developed method
was found to improve the usability of Sentinel data in crop
monitoring. By visual inspection it was observed that in many
cases when the Sentinel-2 products indicated the whole crop
field to be cloud-covered, there were still significant areas of
almost clear skies. The proposed algorithm proved capable in
detecting these areas with considerable accuracy.
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