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ABSTRACT 
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Date: April 2022 
 

 
This thesis evaluates whether a Long Short-Term Memory (LSTM) neural net-
work perform better than the Black-Scholes model in pricing European-type op-
tions. The S&P 500 index daily calls and puts option data from January 2018 to 
October 2018 is used in this thesis to train, validate and test the model. The same 
test data is also used on the Black-Scholes model to form a comparison.  
. 
Since early literature on option pricing using neural networks has already tested 
extensively the capabilities of MLP-type neural networks, the study opts to apply 
an LSTM network architecture instead. LTSM is a recurrent neural network (RNN) 
structure suited to learn from sequential data while not suffering from the vanish-
ing gradient problem faced by other RNN structures. 
 
The thesis will first introduce basic concepts of neural networks to the readers, 
as well as explaining the advantage of the neural network structure used in the 
study. Chapter 3 of the thesis provides a brief survey of related literature on the 
topic of option pricing using neural network. The final chapters of the thesis will 
explain the methodology behind the study and discuss the empirical results. 
 
The study behind the thesis tests the performance of an option pricing model 
learned by Long Short-Term Memory architecture against the Black-Scholes pric-
ing model. Three different performance metrics are used to test the performance 
of both models using a set of test data. The performance metrics are calculated 
by putting the price predictions by the neural network and the Black-Scholes 
model against the actual prices of the option. 
 
The results are consistent with previous literature in terms of performance in pric-
ing options and show that an LSTM-type neural network is superior in all perfor-
mance metrics to the Black-Scholes model.  
 
Keywords: Neural Networks, Black-Scholes, Option pricing, Long Short-Term 
Memory. 
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1 INTRODUCTION 

The first supervised neural networks date back to the early 19th century in the 

form of linear regression variants (Gauss, 1809, 1821). Nearing the latter half of 

the 20th century ideas of unsupervised learning were published (Hebb, 1949). 

The following decades brought forth frequent and drastic improvements to NN 

architectures: the invention of the perceptron (Rosenblatt, 1958), convolutional 

NNs and subsampling (Fukushima, 1980), popularisation of backpropagation 

(Rumelhart et al., 1986), ... The applications of neural networks during the late 

20th century saw limited success due to hardware limitations resulting in inade-

quately trained neural networks. Furthermore, many modern deep learning ad-

vancements are still being researched and developed during this period, explain-

ing the poor optimization of early neural networks. 

 

In the modern world, the average person possesses exponentially greater com-

puting power and data than any 20th century researchers did while having unlim-

ited access to relevant academic discussions and materials. Tools such as Ten-

sorFlow, Keras and Torch supported by programming languages like Python and 

R allow any person, regardless of academic background, to learn and implement 

deep learning solutions to any problems definable in deep learning terms. 

 

Option pricing is among the most studied topics in finance and a primary target 

for deep learning applications in the field. Options are contracts that represent 

the right to buy or sell a security on (European type) or before (American type) 

the expiration date. Arguably the most famous option pricing formula is the Black-

Scholes model (Black & Scholes, 1973) 

                                                      𝑐 = 𝑆𝑁(𝑑1) − 𝑋𝑒−𝑟𝑇𝑁(𝑑2)                                               (1)  

                                                     𝑝 = 𝑋𝑒−𝑟𝑇𝑁(𝑑1) − 𝑆𝑁(𝑑2)                                               (2) 

where 𝑑1 =  
ln(

𝑆

𝑋
)+(𝑟+

𝜎2

2
)𝑇

𝜎√𝑇
; 𝑑2 =  𝑑1 −  𝜎√𝑇; 𝑁() is the cumulative density function 

of the standard normal distribution; 𝑐 is the call price; 𝑝 the put price; 𝑋 the exer-

cise price; 𝑆 the underlying price; 𝑇 the annualized fraction of time until maturity; 

𝑟 the risk-free rate; and 𝜎 the volatility of the underlying asset, which cannot be 
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observed directly. The model is based on the assumptions that stock price move-

ments are continuous and follow geometric Brownian motion, 𝑟 and 𝜎 are con-

stant and the market is frictionless, i.e., there are no transaction costs. However, 

many of these assumptions are often violated in practice. For example, the mod-

el's prices may show a volatility smile, implying the model's prices are lower for 

deep out-of-the-money and deep in-the-money options, a result of the money-

ness bias. The model also suffers from other biases such as the term-structure 

bias and the put-skew bias.  

 

Many modifications and approaches were made with the limitations of the Black-

Scholes model in mind such as the Heston model (Heston, 1993) and jump-dif-

fusion processes (Merton, 1976). An alternative solution is to consider an option's 

price a function of 𝑋, 𝑇, 𝑆, 𝑟 and 𝜎. This serves as a foundation upon which a 

computational model can be built such that there’s no reliance on assumptions 

concerning financial mechanics but instead on dynamics behind historical data. 

Inspired by the success of deep learning in fields such as medical, automation 

and visual recognition, the thesis aims to build a neural network model and test 

its performance against the Black-Scholes model. The inputs of the model are 

the terms of the option and the price of the underlying at transaction time and the 

output would be the price of the option. The thesis explores a neural network 

structure that take into consideration previous state information known as Long 

Short-Term Memory. 
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2 ARTIFICIAL NEURAL NETWORKS 

This chapter provide an overview of the different types of neural network, their 

basic architecture, their shortcomings, and the solutions to these shortcomings. 

Section 2.3 will briefly discuss the main type of neural network used in the thesis, 

the Long Short-Term Memory architecture. 

2.1 Artificial Neural Networks 

The first artificial neural networks (ANNs) were modelled after the neural network 

of a biological brain. A neural network is a collection of simple processing blocks, 

called nodes, connected by weighted connections. Biologically, the nodes of a 

neural network represent neurons, while the weights of the connections are the 

strength of the synapses connecting the neurons. The activation of a neural net-

work, when an input is provided to some or all nodes, emulates the electrical 

activity of a neuron.  

 

The typical form of a neural network consists of layers of neurons, connections, 

a propagation function, and a learning rule. Input data is first fed to neurons in 

the input layer. The size, i.e., the number of neurons in the input layer, is depend-

ent on the dimension of the learning problem's input. The input layer will then 

transfer data to hidden layers of the neural network. In each hidden layer the input 

data will be computed by the propagation function and output to the next layer. 

Connections, including weights and biases dictate the rules by which outputs of 

a layer is transferred to the next. The learning rule modifies the weights and 

thresholds of the variables in the network. The process is repeated for each hid-

den layer until the output reach the output layer.  
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Figure 1. Example of a one-hidden-layer neural network. 

 

We can partition neural networks into two types based on the connections be-

tween nodes, neural networks which with acyclic connections, called feedforward 

neural networks (FNNs), and neural networks with cyclical connections, called 

recurrent neural networks (RNNs). Famous examples of FNNs include percep-

tron (Rosenblatt, 1958), Kohonen maps (Kohonen, 1989) and the multilayer per-

ceptron (MLP; Rumelhart et al., 1986) ... Varieties of RNNs include Elman net-

works (Elman, 1990), Jordan networks (Jordan, 1990) and Long Short-Term 

Memory (LTSM; Hochreiter and Schmidhuber, 1997), which will be the primary 

type of neural network used in the thesis. 

2.2 Recurrent Neural Networks 

Recurrent neural networks (RNNs) are obtained when the connections between 

nodes are extended to allow cycles. Despite the seemingly trivial extension from 

MLPs to RNNs, there are significant implications for the sequence learning ability 

of neural networks. FNNs such as the multilayer perceptron map only from input 

vectors to output vectors, while a RNN may theoretically map every past state of 

earlier inputs to every output. In other words, recurrent connections allow the his-

tory of earlier inputs to persist through the network’s hidden layers, which in turn 

influence the entire network output. 
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Similar to FNNs, the basic structure of a RNN consists of three types of layers: 

input layer, recurrent hidden layer and output layer. Like FNNs, the most used 

activation functions of RNNs are sigmoid, tanh, ReLU and leaky ReLU. Figure 2 

below shows the basic structure of an RNN. 

 

Due to the sequential nature of the learning problem, RNNs hold great ad-

vantages over other forms of neural networks such as MLPs and convolutional 

neural networks (CNNs) in terms of predicting option prices while CNNs in par-

ticular are better suited for feature detection. 

 

 

 

Figure 2. Structure of a simple recurrent neural network. 

 

2.3 Long Short-Term Memory 

2.3.1 The vanishing gradient problem. 

While recurrent neural networks has an advantage by using contextual infor-

mation as additional input in their hidden layers, simple RNN architectures suffer 
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from a limited range on this context. The main drawback is that the effect of an 

input on the output hidden layers, and by extension on the the entire network’ 

output, either increases or decreases exponentially as it goes through the net-

work’s cyclical connections. This shortcoming, termed the vanishing gradient 

problem (Hochreiter, 1991) poses a difficulty for an RNN to learn from problems 

with more than 10 timesteps delay between input and output (Hochreiter et al., 

2001). Figure 3 shown below illustrates schematically the vanishing gradient 

problem. Various solutions were proposed in the 1990s as an attempt to address 

the vanishing gradient problem. Among these are non-gradient based training 

algorithms like simulated annealing and discrete error propagation (Bengio et al., 

1994), explicitly introduced time delays (Lang et al., 1990; Lin et al., 1996; Plate, 

1993), and hierarchical sequence compression (Schmidhuber, 1992). One of the 

most effective solution, however, is the Long Short-Term Memory (LSTM) archi-

tecture (Hochreiter and Schmidhuber, 1997). 

 

Figure 3. Vanishing gradient problem for RNNs. The shading denotes the sensi-

tivity of the nodes to an input over a period (darker shade means greater sensi-

tivity).  
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2.3.2 LSTM Architecture 

The LSTM architecture is built upon a collection of recurrently connected subnets 

called memory blocks. The basic structure of an LSTM network is nearly identical 

to a simple RNN, except that the nonlinear units in the hidden layer are replaced 

by memory blocks. Each block contains one or more self-connecting memory 

cells and three multiplicative units: the input gate, the output gate and the forget 

gate. Each gates provide continuous analogues of write, read, and reset opera-

tions for the cells. 

 

The LSTM architecture avoid the vanishing gradient problem by using multiplica-

tive gates of its memory cells for storage and use information for an extended 

period. For instance, when the input gate stays closed, the cell activation will not 

be overwritten by the arriving inputs, thereby allowing the information to be avail-

able to the network at a later time in the sequence, whenever the output gate is 

opened. 

 

Figure 4 illustrates the structure of an LSTM memory block with one cell. Activa-

tions from inside and outside the block are collected by the three gates and the 

cell is controlled by multiplicative units (small circles in the figure). The input and 

output of the cell is scaled by the input and output gate, respectively, while the 

internal state is scaled by the forget gate. The input activation function g() and 

output activation function h() of the cell are applied at the designated places. 
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Figure 4: A memory block of LSTM containing a single cell. Recurrent connection 

maintains the cell’ state.  
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3 BRIEF OVERVIEW OF DEEP LEARNING AS AN OPTION 

FORECASTING METHOD 

Among the first to examine the capabilities of neural networks to price option and 

perhaps one of the most cited was the paper by Hutchinson et al. (1994). The 

paper examined the results of three non-parametric approaches to price call op-

tions and compared them to the results of the Black-Scholes model. Hutchinson 

et al. (1994) studied and compared the performance between a multilayer per-

ceptron, a radial basis function (Powell, 1987) and a projection pursuit approach 

(Huber, 1985) to determine whether the models were able to learn the dynamics 

between the underlying and the price of an option. Hutchinson et al. (1994) initi-

ated several papers with similar topics in the following years and until now. 

 

While numerous papers on the capabilities of neural networks in pricing options 

have been published since the paper by Hutchinson et al. (1994), the majority of 

these studies only provided additional insights and improved upon the approach 

that was already taken in the original paper. These papers, due to a combination 

of hardware limitation and relative infancy of deep learning techniques, rely on 

simple feed-forward networks that have already been used and studied exten-

sively. Among the insights provided and the improvements made were the intro-

duction of statistical inference in choosing networks (Anders et al. 1996), using 

statistical inference techniques in the results of the models (Garcia & Gencay 

2000), ability to estimate underlying volatility of neural networks (Yao et al. 2000) 

and different regularization techniques of neural networks (Gencay & Salih 2003). 

 

Nonetheless, these papers inspired future academia to examine the performance 

of more modern inventions of neural works such as recurrent neural networks in 

option pricing and to compare the performance between themselves and with 

other known models. 
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4 DATASET AND METHODOLOGY 

4.1 Dataset 

The data used in this thesis are the transaction data of S&P 500 stock index 

options. Over 600,000 The data is supplemented with treasury yields obtained 

from the US Treasury Resource Center, which informs the risk-free rate 𝑟 for the 

model. 

 

The dataset provides information on the contract terms 𝑋 and 𝑇, as well as the 

underlying price 𝑆. The yield on the US Treasury instrument having maturity clos-

est is matched to the time until expiration of each option to find the risk-free rate, 

a widely accepted options trading practice. 

  

To find the volatility σ for the Black-Scholes model, historical volatility from the 

previous 20 trading days (approximately one trading month) is assumed to rep-

resent of the volatility over the life of the option. We can then feed this new feature 

into the Black-Scholes model. The thesis uses equilibrium price, which is the av-

erage of bid and ask prices. 

 

Anders et al. (1996) suggested using exclusion criteria to remove non-repre-

sentative data that represent illiquid or extraordinary options occurrences. The 

criteria exclude options that are too deep in-the-money or out-of-the-money, op-

tions with over 2 years to expiration, or options that are traded at such low prices 

that the discrete nature of security prices becomes a consideration. While this 

suggestion has been widely adopted among previous literature, this thesis will 

not follow such practice in the hope that a neural network model is able to learn 

using these rare circumstances to better predict the behaviour of options. 

 

The research studied a total of 685,196 data points of roughly half calls and half 

puts. 98% of the data is used as a training set while the last 2% of the data are 

split between validation set and test set. 
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4.2 Neural network architecture 

LSTM is used in this paper to capture state information in the hope that the archi-

tecture can learn the implied volatility from historic observational data for an im-

proved pricing performance. An LSTM consisting of eight units are inputted with 

the daily closing price at every timestep over 20 timesteps. The number of 

timesteps were chosen since we assumed the historical volatility to be from the 

previous 20 days. The output sequence is fed forward for three layers of 8-unit 

LSTMs. The final timestep’s prediction is then concatenated with the 𝑆, 𝑋, 𝑇, and 

𝑟, and fed through a fully connected network (FCN) to output the equilibrium price. 

The architecture is shown in Figure 5. 

 

Figure 5. Architecture of the neural network model used in the empirical study. 

 

The network is trained with 100 epochs and on a batch size of 64. Since batch 

normalization is used, Adam optimizer (Kingma & Lei Ba 2014) is chosen as the 

gradient descent algorithm, with a learning rate of 𝛿 = 0.0001. 

4.3 Performance metrics 

The performance of the LSTM architecture is tested against the original Black-

Scholes model, without Merton’s (1973) adjustment for dividends. The Black-

Scholes model is defined by equation (1) and (2): 

                                                      𝑐 = 𝑆𝑁(𝑑1) − 𝑋𝑒−𝑟𝑇𝑁(𝑑2)                                               (1)  
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                                                     𝑝 = 𝑋𝑒−𝑟𝑇𝑁(𝑑1) − 𝑆𝑁(𝑑2)                                               (2) 

where 𝑑1 =  
ln(

𝑆

𝑋
)+(𝑟+

𝜎2

2
)𝑇

𝜎√𝑇
; 𝑑2 =  𝑑1 −  𝜎√𝑇; 𝑁() is the cumulative density function 

of the standard normal distribution; 𝑐 is the call price; 𝑝 the put price; 𝑋 the exer-

cise price; 𝑆 the underlying price; 𝑇 the annualized fraction of time until maturity; 

𝑟 the risk-free rate; and 𝜎 the volatility of the underlying asset. 

 

The performance metrics used in the thesis are MSE, MAPE and PE, where train-

MSE shows the mean squared error on the training set, and each of these metrics 

are calculated over the test set for both models. MAPE is the mean absolute 

percent error, and PEX% is the percentage of observations within ±X% of the 

actual price. These error estimates are defined in the equations below 

                                                  𝑀𝑆𝐸 =  
1

𝑁
∑(𝐴𝑖 − 𝐹𝑖)

2

𝑁

𝑖

                                            (3) 

                                                  𝑀𝐴𝑃𝐸 =  
1

𝑁
∑ |

𝐴𝑖 − 𝐹𝑖

𝐴𝑖
|

𝑁

𝑖

                                            (4)  

                                                      𝑃𝐸 =  |
𝐴𝑖 − 𝐹𝑖

𝐴𝑖
| ∗ 100                                               (5)  

 

where 𝑁 is the size of the test data, 𝐴𝑖 is the 𝑖𝑡ℎ actual price of the option and 𝐹𝑖 

is the 𝑖𝑡ℎ forecasted value. 
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5 RESULTS 

Since train-MSEs for the LSTM structure are approximately equal to the training 

MSEs, there is no evidence of overfitting. The error metrics for call options is 

shown in table 1, while the error metrics for put options is displayed in table 2. 

 

As shown in the tables below, the LSTM architecture outperforms the Black-

Scholes in every performance metrics, for both type of options. Additionally, the 

PEX% metrics reveal that LSTM prices illiquid options with much greater accu-

racy than Black-Scholes, which struggled as shown by the PE.  

 

The Black-Scholes model particularly struggled in pricing put options. While the 

LSTM provides less accuracy in pricing put options, it stills improve over the 

Black-Scholes significantly. 

 

Model train-MSE MSE MAPE(%) PE5(%) PE10(%) PE20(%) 

BS 0.000223 0.000272 76.12 50.53 57.19 68.81 

LSTM 0.000035 0.000066 21.58 60.49 64.32 75.21 

Table 1. Error metrics comparing LSTM prices with Black-Scholes prices for call 

options. 

 

Model train-MSE MSE MAPE(%) PE5(%) PE10(%) PE20(%) 

BS 0.000554 0.000513 66.56 11.52 19.33 22.59 

LSTM 0.000093 0.000095 41.35 27.45 34.25 43.86 

Table 2. Error metrics comparing LSTM prices with Black-Scholes prices for put 

options. 

 



  

14 
 

6 CONCLUSION 

This thesis examines deep learning for option pricing, in particular using the 

LSTM architecture to learn from historic data and estimate the volatility of the 

options for better forecasting performance. The thesis used performance met-

rics to determine the relative performance of the LSTM to the Black-Scholes 

model. 

Despite a naive assumption of volatility, the LSTM architecture nonetheless 

vastly outperformed the Black-Scholes model on every performance metrics. By 

learning from historical options data, the model was able to evade financial as-

sumptions and view option’s price as a function that can be approximated by a 

neural network. Since the study only used equilibrium price, the possibility of us-

ing bid and ask prices individually, or even closing prices, leave much to be ex-

plored about the topic. 

For future research, optimal and/or unusual hyperparameters may still to be 

found for the LSTM approach. It’s also possible and perhaps academically sig-

nificant to implement deep learning for the reverse problem, i.e., to find the im-

plied volatility using historical option price. This will allow comparison between 

the plotted volatility surface and volatility surfaces from the Heston or GARCH 

models. Furthermore, deeper error analysis can be done to see if neural net-

works perform better or worse provided certain constraints (NTM, ITM or OTM 

options, different expiration dates, etc.). 
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