
Thuy Phuong Nhi Tran

COMPONENTIZED
VISUALIZATION COMPONENTS

WITH MICRO-FRONTENDS

Faculty of Information Technology and Communication Sciences (ITC)
Bachelor’s thesis

Supervisor: Kari Systa
Publish date:

ABSTRACT

Thuy Phuong Nhi Tran:
Componentized Visualization Components With Micro-Frontends
Bachelor’s thesis
Tampere University
Bachelors Degree Programme in Natural Science and Engineering
Publish date:

With a rapid increase in demand of using the Internet, web application has be-

come a key and essential role in today’s world. In the near future, billions of

devices will be connected to the Internet for sharing values. Therefore, having

cutting-edge web technologies urges companies and researchers to find out a

novel approach for developing, testing, and deploying web application.

The Microservices concept has become a "trending" concept that almost all

developers are familiar with this architecture for solving problems caused by

a single monolith application in the server side. With the idea of decomposing a

traditional large monolith application into a smaller independent application,

Micro-Frontends architecture has been introduced as "microservices" for client

side. It has gained remarkable popularity and has been adopted by several es-

tablished companies such as Starbucks, Ikea, and many others. However, The

concept of Micro-Frontend is quite new and many organizations still hesitate to

adopt this architecture due to a lack of knowledge and skills.

This thesis will provide a basic concept concerning the advantages of adopt-

ing Micro-Frontends architecture in some cases. Also, it brings an observation

on a real project developing application with Micro-Frontend patterns.

Keywords: web application, micro-frontend, visualizations, microservices.

PREFACE

I would like to express my gratitude and appreciation to all VISDOM project

members, especially my supervisor, Kari Systä for his support during my time

working as Research Assistant, and research and writing this bachelor thesis.

Also, I would like to show a special esteem to Ville Heikkilä, Henri Bomström,

and Hong Nghia Duc for offering valuable knowledge and tools that help me

during the conducting experience and researching phase.

Tampere April 2022

Thuy Phuong Nhi Tran

CONTENTS

1 INTRODUCTION . 1

2 BACKGROUND . 2

2.1 Micro-Frontends in a nutshell . 2

2.2 The strengths and benefits of Micro-Frontend architecture 4

2.3 Micro-Frontends implementation approach 6

2.3.1 Single-Page Application . 6

2.3.2 Overview of Single-spa . 7

3 OVERVIEW OF THE RESEARCH PROJECT- VISDOM 9

3.1 Overall of VISDOM project . 9

3.2 Overall Architecture . 13

3.3 The reference architecture . 14

3.4 Proof-of-concept implementation 15

3.4.1 Visualizations . 15

3.4.2 Configurable dashboard . 19

4 PROTOTYPE VISUALIZATION FOR VISDOM PROJECT 24

4.1 Setting up single-spa . 24

4.2 Communication setup between Micro-Frontend visualization ap-

plications: MQTT . 26

4.3 Integrating visualization applications to VISDOM Dashboard Com-

poser . 29

4.3.1 The mechanism of deploying visualizations with Dashboard

Composer . 29

4.3.2 Visualizations deployed with Dashboard 31

5 SITUATION ANALYSIS . 32

5.1 Visualization implementation and reference architecture 32

5.2 Current prototype visualizations and microservices concept . . . 33

6 CONCLUSION . 36

References . 38

LIST OF FIGURES

2.1 End-to-end example teams with Micro-Frontends architecture![2] 2

2.2 Microservices architecture [2] . 3

2.3 Each micro frontend is deployed to production independently [6] 5

2.4 Application using single-spa framework [8] 7

3.1 Work packages of VISDOM project [10] 10

3.2 Example of status visualization . 12

3.3 Example of EKG visualization . 13

3.4 Technology value chain of the VISDOM project [9] 14

3.5 Relation between micro-frontends and MQTT broker 17

3.6 Data management system architecture [15] 18

3.7 The dashboard composer architecture. [9] 20

3.8 VISDOM dashboard allowing creation of custom dashboards from

same data in any viewpoint [10] . 21

3.9 The dashboard composer example view 22

4.1 Status and EKG in the same page view 28

4.2 New module dialog in local development 30

4.3 Add new view to dashboard . 30

5.1 Proposal architecture for getting configuration with authentication 33

5.2 a) Visualizations with traditional monolith application b) Visual-

izations with Micro-Frontends architecture 34

LIST OF SYMBOLS AND ABBREVIATIONS

SPA Single-page application, web application that interacts with users by

dynamically loading parts of the current page, rather than reload the

whole page.

MQTT Message Queueing Telemetry Transport- a lightweight, publish-subscribe

network protocol that transports messages between devices.

EKG Electrocardiogram, a type of visualization imitating heart’s electrical

activities.

URL Uniform Resource Locator, a reference to a web resource that speci-

fies its location on a computer network, or the Internet.

1

1 INTRODUCTION

In the rapid development of the Internet, where web application plays a cru-

cial role, a demand for a new and innovative web technologies become a major

and important task for many industrial companies. Speaking about the world of

client-side, over years, there are many new front-end frameworks that are con-

tinuously introduced such as static HTML files, server-side rendering (SSR), or

Single-page application (SPA). These traditional architectures work well for the

traditional web applications due to their small number of users, complexity, and

low real-time communication between visualizations. However, most of them

become monolith front-ends, which leads to many problems such as when the

application grows in both size and complexity, it becomes hard to scale when

multiple teams try to modify the same front-ends simultaneously, or in another

situation when the front-ends are needed to be reused in another application.

Therefore, looking for an innovative ways to develop, and maintain the applica-

tion becomes a crucial task.

Micro-Frontends was introduced as one of the innovative ways to change the a

front-end application implementation approach since the introduction of SPA.

Micro-Frontends helps solving many challenges of web application when it gets

bigger in size and complexity in many situations. The objective of this thesis is

to provide an introduction of Micro-Frontends and its strengths, benefits, and

potentials in multiple aspects. Furthermore, the thesis also discusses the adop-

tion and implementation of Micro-Frontends in an existing research project.

This document is structured as follows. Chapter 2 discusses briefly the back-

ground of Micro-Frontends regarding its architecture, strengths, and benefits

of adopting Micro-Frontends in some situations. Chapter 3 gives a deep un-

derstandings of overall goal and current architecture overview regarding Micro-

Frontends of an existing research. The way of implementing and designing

prototype visualizations with Micro-Frontends architecture that are use in the

project will be discuss more preciously in chapter 4. Chapter 5 will analyse the

visualization implementations with the project architecture, and the current

prototypes with the concept of micro services. With all the analysis and obser-

vation of the adoption of Micro-Frontends architecture in this research project

will lead to the general conclusion, which will be discussed briefly in the last

chapter of this thesis, chapter 6

2

2 BACKGROUND

Development teams have always been looking for new way to improve the per-

formances of the application to continuously deliver their values to the cus-

tomer. In recent years, Micro-Frontends architecture has gained a great atten-

tion thanks to its potentials for solving the current challenges in web application

development. This chapter will introduce briefly the Micro-Frontends architec-

ture and its strength, benefits, and potentials for future development.

2.1 Micro-Frontends in a nutshell

Micro-Frontends, which was introduced in 2016 [1], enables a large and com-

plex monolith application to decompose into smaller individual or semi-individual

front-end applications, called "micro-apps". Each of these applications consists

of different frameworks or libraries that work loosely together.

Figure 2.1 End-to-end example teams with Micro-Frontends architecture![2]

Microservices architecture is an architecture style that allows one big multi-

tasking application to decompose into smaller applications that are responsi-

ble for only one task. To serve a single user request, the request will be proxied

to server, then microservices-based application will make use of many internal

3

microservices applications to compose the response [3]. With microservices

architecture, the responding time to the request sent by client side can be re-

duced significantly as in stead of one monolith server application processes the

request step-by-step, multiple micro applications can process the parts of re-

quest at the same time.

Figure 2.2 Microservices architecture [2]

Micro-Frontends extends the concept of micro-services of backend to the fron-

tend side. The idea is to break down a large simple monolith application into

smaller applications that can be developed and implemented individually with

different technologies, and single-spa helps in achieving that goal. Single-spa

takes inspiration from modern framework component life-cycle for the entire

applications [4].

Micro-Frontends shares main principles, benefits, and issues of microservices [1].

The current trend is to build a web application that is feature-rich, powerful, and

business sub-domain, which matches with the concept of Micro-frontends. The

main idea of Micro-Frontends is simply the web applications that are the com-

position of features, which are owned and developed independently by a de-

velopment team. Each team should have only one domain to take care of and

4

develop end-to-end. With ability to develop, test and deploy independently, de-

velopment teams are able to build applications that are isolated and coupled

services [2]. One of the Micro-Frontends architecture purposes is to divide the

development teams responsibilities vertically, while it is horizontal division in

traditional monolith front-end architecture, as shown in Figure 2.1. The devel-

opers can be technologically agnostic and develop their own "micro-app" with

their own technologies since Micro-Frontends is independent of technologies.

The idea of Micro-Frontend is not new. In the past, there was long, bulky term

Frontend Integration for Verticalised Systems [5], which share the same approach,

however, Micro Frontends is clearly a more friendly and memorable term. Micro-

Frontends architecure is nowadays adopted by several large industrial compa-

nies such as DAZN, Ikea, New Relic, Starbucks, Zalando, and many others [2].

2.2 The strengths and benefits of Micro-Frontend architecture

While using traditional front-end frameworks such as SPA, each modification

leads to redeploy the whole application, and full deployment takes long time or

causes many unexpected issues. There for developers will block on each other

with small changes. Therefore, there are must be reasons why Micro-Frontends

draw attention since its introduction. Here are some of the benefits of Micro-

Frontends:

• Simple, decoupled codebase: With Micro-Frontends architecture, each

individual micro front-end applications definitely has smaller code de-

pendency and complexity compared to the traditional monolithic front-

end architecture. Additionally, the complexity from unintentional and in-

appropriate coupling between components is avoided [6].

• Deployment and development independence: It is believed that each Micro-

Frontends have its own continuous delivery pipeline, which builds, tests,

and deploy [3] or any other ways that are independent with the other Micro-

Frontends. Therefore, as the whole large monolithic application is decom-

posed into smaller front-end applications, so the delivery of each of these

application do not affect the other ones.

• Better scalability and incremental upgrades: In Micro-Frontends archi-

tecture, one person or one development team will take care of one micro

5

Figure 2.3 Each micro frontend is deployed to production independently [6]

front-end application, so they know the application appropriately. There-

fore, the Micro-Frontends can be upgraded, modified, or even rewritten

more smoothly and causes less code-breaking risk.

• Autonomouse development teams : In the traditional monolithic front-

end applications, in a large application, there might be teams that are re-

sponsible for one specific aspect such as styling, validation. However, with

Micro-Frontends architecture, one teams can have full ownership of the

whole Micro-Frontends application [6]. As they only have one domain to

handle, the development process can move quickly an effectively.

• Reusability: One component/visualization can be built and deployed in-

dependently, so many teams can re-use the code in different application

or places.

• Technology agnosticism: With Micro-Frontends, it is not a big problem

when different developers in a team use different technologies such as

React, Vue, Angular for building visualizations, since Micro-Frontend is

independent of technologies.

• Learning Curve: For people who join in the late development phase, it is

much easier for them to understand the smaller applications than the one

big monolith application with thousand lines of code and dependencies.

As mentioned above, the developments teams can benefit a lot when adopt-

ing the Micro-Frontends architectures. However, every technologies have its

benefits and issues. Since different projects or applications differ in scale and

purposes, understanding the issues and whether trade-offs overcome the draw-

backs when using Micro-Frontends is important.

6

2.3 Micro-Frontends implementation approach

There are different frameworks that can speeds-up micro front-end application

development. For example, Bit is one of the most popular frameworks for de-

veloping micro front-end application. It allows developers/development temas

to create front-ends by using independent components, which are then can be

used by the other development Teams [7]. This section only introduce single-

spa framework, which is used for developing micro front-end application in the

research project ,VISDOM, in this thesis. The reason is VISDOM requires the

micro front-end implementation option that allows micro applications, not just

a component, (i.e. visualizations) to be implemented independently and with

different front-end frameworks.

2.3.1 Single-Page Application

In Single-page Application (SPA), only one HTML file is loaded to the browser [2]

and it does not need to refresh or load the whole page when the user interacts

with the page, which gives the user a smoother user experience. The overall de-

sign of SPA is almost the same as the traditional design, the presentation logic

resides in the client, and server transactions can be data-only. The single-page

term refers to the single HTML file, which is loaded fully once by the browser. It

will provide a rooting point (basically a single HTML element [2]) for JavaScript

applications to be loaded with HTML files (also with images, css, and so on).

The views are portions of the Document Object Model (DOM), not the whole

page, so when the user makes a change, the view is generated in the browser

and dynamically attached to the DOM. In short, when there is a need for change

in view, it will compare two DOM and only re-render the needed part.

In Single-Page Application, the server is the bridge for the front-end React app

to connect and communicate with the database. The server can be implemented

in multiple programming languages such as NodeJS, Python, C, and so on (it de-

pends on developers preferences). The server provides the API for the front-end

application. There might be several endpoints, which will provide specific data

or responses based on React app needs/ requests. One option used widely in

React App is using Axios for query data or sending the request to the back-end.

7

2.3.2 Overview of Single-spa

Single-spa is a framework that brings together multiple JavaScript micro front-

end application in a single front-end application. Multiple Applications are

combined into one single application regardless of the framework or library.

Figure 2.4 Application using single-spa framework [8]

A single-spa application consists of two main components: root applications

(also known as root-config), and a number of application. Firstly, an applica-

tions part can be thought as single-page application packaged up into modules.

Each application must know how to mount, unmount, and bootstrap itself from

the DOM. It seems like a SPA, but the main difference between a traditional SPA

and single-spa applications is that all applications are able to works properly

with each others even they do not know the other’s work flow and HTML page.

Lastly, the other main component is a single-spa root config, which renders the

HTML page and the JavaScript code that registers applications [4]. Each ap-

plication should be registered with three parts: a name, a function to load the

application’s code, and a function in order to determine the active status of the

application. For example, the React SPAs are applications in this case, when

they are active, they should be able to listen to URL routing events and put the

content on the DOM. Otherwise, when they are inactive, they do not listen to

the URL routing and are totally removed from the DOM [4].

It is worth to note that single-spa is an advanced architecture, which is differ-

ent from all typical behaviours of front-end application. Therefore, it requires

changes to existing paradigms and a good understanding of underlying tools.

Single-spa applications are available in multiple web browsers such as Chrome,

8

Firefox, Safari, Edge, and IE11 (with polyfills) [4].

9

3 OVERVIEW OF THE RESEARCH PROJECT- VISDOM

One of the main purposes of the project is to create configurable dashboard

that can display various visualizations with different contents based on user

roles and preferences. A dashboard is not only for directed data display, but

it can also include diagnostics tools that help the stakeholders to investigate

possible problems in their projects [9]. The VISDOM project adopts the Micro-

frontends architecture, where each visualization is developed and deployed in-

dependently by one development team.

This section will introduce the overall architecture of VISDOM project and dis-

cuss deeply the how the visualizations negotiate the constraints the configurable

dashboard with the Micro-frontends concept. This will show how developers

benefit and face challenges with Micro-Frontends in a real project.

3.1 Overall of VISDOM project

"Visualization is a powerful method for the internal communication within a

team of developers, but even more, it is useful in cross-disciplinary commu-

nication with various stakeholders, such as operations and business manage-

ment" [10]. There are many software development tools that already provide

many kinds of visualizations. However, utilization of data from multiple source

is still on another level of research prototypes. VISDOM introduce a novel and

innovative approach of developing new types of integrated visualizations that

combines data from several sources. The VISDOM project provides various vi-

sualizations from simple to advanced ones.

VISDOM contains six work packages which are geared towards the real-time vi-

sualizations development. The visualizations are aimed for improve efficiency,

and customer satisfaction [10]. The relation of six packages is depicted in Fig-
ure 3.1.

The main objective of WP1 is gathering requirements for developing real-time

visualization in WP2-WP4. The implementation of visualizations in WP3 re-

quires data which is collected, processed, and analyzed by techniques provided

in WP2. The implementation from both WP2 and WP3 are used in WP4 for

10

demonstration, experimentation and validation [10].

Figure 3.1 Work packages of VISDOM project [10]

WP1 conducts state-of-practice investigations starting with use cases where VIS-

DOM has identified the needs for real-time visualisation based on aggregated

data from different sources. Below is a identified tentative list of use cases,

which shows that VISDOM has experts in software visualizations in both uni-

versities and companies cases.

• Use case 1: visualization of quality aspects. In quality aspect, DevOps

has two facets, which require visualizations to achieve the goals. Firstly,

the first facet is the internal quality of a software product and its associ-

ated process. The other one is the users perceive quality of the product

based on thier interactions and experience. The overall goal is to provide

high-level visualization that help developers improve their development

process and code quality (i.e. technical debt, consistent style) [10].

• Use case 2: Entering international service business. With data, met-

rics, visualizations and dashboard can be a valuable tool for changing the

mode of operation, which should reduce the obstacles to enter the inter-

national business. In this use case, the usefulness of different types of vi-

sualization methods is observed. For collecting the feedback from stake-

holders, a demonstration of how visualization dashboard can help com-

11

pany to lower the barrier of entering and extending international mar-

ket [10].

• Use case 3: visualization in teaching. This thesis only focus on this use

case. During the learning process, the problems that students facing re-

main unknown until the exam takes place or an assignment is due. At

that point, it is too late for course staffs to help these student to pass the

course. And the situation even worse when students have distance learn-

ing, where there is little or even no direct contact. Even in the cases where

there are good contacts to students, the students may be intentionally or

unintentionally overly optimistic about their current situation [10]. In this

case, visualizations can be utilized in some courses in the same way as

in software companies. With visualizations, course staffs can identify the

abnormal of course implementation or students with the changes in visu-

alization patterns.

With motivation mentioned in use case 3, an observation is conducted on Pro-

gramming 2 course which is implemented by Tampere University. There are

two course implementation that are currently in use: a two-period implemen-

tation, and a one-period one (also known as double-speed). The initial idea is

to help teacher to look into students that are falling behind a certain thresh-

old, and to find a better way to help these student to get back to the expected

track. There are many attributes that are used in visualizations to support the

idea of the teach case. For example, the GitLab provides the number of com-

mits, the number of submissions, and points of each exercise for each student.

The visualizations will display these data in multiple ways that can help teacher

to identify pain-point in a mass course specifically from the viewpoint of tasks.

Additionally, visualizations helps teachers to have a comparison between dif-

ferent course implementations. In idealistic world, teachers also would like to

reach out to students who are falling from the course. However, it is not possible

due to a vast number of students attending the course, so the idea is to identify

the exercises/tasks that are overly difficult for a large portion of attending stu-

dents. Then, the teachers can make modification or give more support to help

these student to complete the course.

Among visualizations, for teaching case, there are two visualizations that bring

most valuable information for teachers: Status and EKG view:

• Status view: has four different modes: points, commits, exercises, and

submissions. Points and exercises modes shows total and missed points/ex-

ercises of all students by stacked bar; each bar presents for one student.

12

The other modes indicate the number of commits or submissions of each

exercise by color schema. The more commits or submissions are, the darker

the color is. An example of Status view with course implementation 90 in

week 9 with submission mode is shown in Figure 3.2.

Figure 3.2 Example of status visualization

• EKG view: Electrocardiogram is a method recording the heart electrical

signal for the doctor to determine the health status of patients. EKG in

VISDOM is based on a similar idea. A set of input data is used to gener-

ate visualizations based on users’ interests and preferences that different

stakeholders and expertise can analyse. The EKG view is a good example

of genetic visualization as it can be configured to show multiple inputs

in the same graph based on different stakeholders’ interests and prefer-

ences, which is also the main purpose of the Dashboard Composer. From

an abnormal point in repeated patterns, stakeholders can detect and anal-

yse the problems from the root. The EKG is utilized for teaching case to

find out the workflow, workload, and progress of a single student with re-

peated patterns that problems can be quickly determined as variations in

patterns. Therefore, course assistants or teachers can help that student

to get back to the suitable track as soon as possible. An example of EKG

visualization of course implementation 90 is shown in Figure 3.3.

There are at least two roles in teaching case. First role is teachers who are re-

sponsible for course implementation. They may show interests in the overview

of the course for identifying the difficulty of exercises or tasks, which helps them

to adjust these exercises in an appropriate way. The other role is teacher as-

sistant (TA), who helps students with their tasks or project during the course.

13

Figure 3.3 Example of EKG visualization

Therefore, in this case, visualization providing further information of a single

student will be more suitable for the TA. For teaching case, there are two dash-

boards that are currently in use: Dashboard Composer utilizing Micro-Frontends

architecture, and educational dashboard which is a monolith front-end appli-

cation.

3.2 Overall Architecture

Overall, the architecture of VISDOM project comprises of three main elements:

data sources, data management system, and Visualizations and Dashboard. The

technology value chain is depicted in Figure 3.4 below:

First, Data sources are software engineering databases, repositories, and tools

such as GitHub, Trello. In this project, methods and tools (open source by de-

fault) are built for collecting data from multiple sources [9]. Data management

system provides unified interface for collecting and storing data. The data col-

lected from the data sources will be processed and transformed in Data man-

agement system, which provides the formatted data to the last main compo-

nent: Visualizations and Dashboard. Lastly, the last element comprises of two

smaller components: configurable dashboards, and visualizations. These vi-

sualizations are responsible for displaying data with interactive graphs, charts,

14

Figure 3.4 Technology value chain of the VISDOM project [9]

etc. Furthermore, they provide advanced functionalities such as responding

to different stakeholders’ input such as zooming in or out, and can be con-

figured based on stakeholders’ references. Dashboard composer matches the

stakeholders’ need with the corresponding visualizations with customized view.

Users can request for multiple visualizations at the same time.

This thesis will focus on the last component among three main components: Vi-

sualizations and Dashboard. With this component, it can tell how this research

project benefits from the Micro-Frontends architecture and how different visu-

alizations get the external data and communicate with each other. Therefore,

being familiar with the technology value chain is important for the implemen-

tation of Visualizations.

3.3 The reference architecture

In general, reference architecture in software development field provides a method-

ology or set of templates that are used as constraints for more concrete architec-

ture [11]. The reference architecture provides guidance or solutions for apply-

ing specific patterns to solve further particular problems happened during the

development phases. In short, the reference architecture gives a development

team the way that they are shooting towards.

In the VISDOM project, one of the most crucial task is to provide different vi-

sualizations with different configurable features in multiple dashboards based

15

on the role of users. There are more than one dashboards that display the same

visualization. The idea of building multiple single monolith dashboards can

cause many problems. It can be simple and quickly at the beginning phase of

project. However considering a case when one new feature is added to a visu-

alization of a dashboard, this also calls for modification of this visualization in

another dashboard, which can be negotiable if there are only two dashboards.

However, problems raise when the number of dashboards increases, multiple

modification can cause process delayed and unexpected issues. Therefore, the

designs of the visualizations should accompanies with the reusable reference

implementation [9].

Micro-Frontends architecture can solve problems that are mentioned above from

re-usability to visualization components independent implementation and par-

allel deployment. With Micro-Frontends architecture, the case of a single mono-

lith components that can handle and response to each and every requests is

avoided.

3.4 Proof-of-concept implementation

From the discussion in the previous section, the VISDOM project can gain many

benefits from adopting Micro-Frontend architecture. This section will provide

discussion of the detailed design of visualization components with Micro-Frontends

and how a configurable dashboard composer selects and displays specific visu-

alization based on users’ interest.

3.4.1 Visualizations

VISDOM project takes inspiration from medical diagnostics for visualizations.

Conventional visualizations often present a single viewpoint to the underlying

data [9]. The goal of VISDOM project is to provide visualizations that are intu-

itive and easy to understand for variety of stakeholders [10]. Therefore, novel

visualizations should provide a good summary of the most essential informa-

tion of a certain aspect of software process. The information should be shown

in the way that every stakeholder can straightforwardly understand regardless

their background, so that stakeholders can investigate the details or specifics to

detect the issues from the root through visualization. As mentioned, the one of

the main purposes of this research project is to display visualizations based on

role of the users and their preferences. Therefore, these visualizations can be

16

configured for stakeholders references and especially for their role, for example

in teaching case, if the user is a teacher assistant, he or she cannot access to

all the modes of one visualization such as saving configuration preference. The

limitation for specific stakeholders does not only come from the visualization

components, but also the adapter, where the data is queried. When the users

make requests to the Micro-Frontend component, these will be proxied to the

data adapter. Based on the user token, the adapter provides different data for-

mats for the visualization components.

There are reasons why this project benefits from adopting Micro-Frontends ar-

chitecture for visualization components. Currently, all the visualizations are

only implemented by ReactJS; however, different visualizations are developed

independently by different teams in different universities, which means a mod-

ification in one visualization should not affect the other visualization. The con-

tinuous development and deployment are priorities. Each development team

is familiar with different front-end framework and the visualization can be ex-

changed between teams. Additionally, from the architecture point of view, indi-

vidual visualization is treated as black boxes that each handles its own data re-

trieval, processing, and presentation [9]. Their outputs are optimized and con-

trolled by the dashboard composer. There are other architectures or technolo-

gies that aims at re-usability, however, each visualization is built as a complete

and independent application not just a component. With these requirements,

Micro-Frontends paradigm provides features that best fit for the implementa-

tion of visualization components, where individual independent visualizations

works together to create larger front-end, dashboard.

Communication between micro front-end visualizations

In Micro-Frontends architecture, it is important to define the communication

between micro-frontends. One method is to use an event emitter injected into

each micro-frontend [2]. When one of the micro-frontends changes its state

or emits an event, the others, which have subscription of that particular event,

will react appropriately. Another way for micro-frontends to communicate with

each other is using message broker, for example MQTT or RabbitMq. Alterna-

tively, the temporary (session storage) or permanent (local storage) web storage

can be used to store the information that is shared between micro-frontends.

By utilizing the local storage and the same event-driven mechanism, it would

release the pressure on implementation and maintenance when new features

added. However, there are also drawbacks, for example the life cycle of the react

component is hard to handle and the web application should better be client

17

independent, that need the careful consideration before choosing web storage

as means of communication.

In the VISDOM project, for teaching case, there are many visualizations, which

show the progress of one student or the status of all students registered for a

course, that work together in the dashboard. They follow the Micro-Frontend

architecture, so the communication or information exchange is important. For

example, as mentioned, there are two course implementations, when one of the

visualizations changes the selected course implementation, the others, which

also have selection of course implementation, should change their view accord-

ing to the new selected course implementation. By this way, it will implement

a synchronization between visualizations, which improve users’ experience as

they do not need to select the configuration mulitple times.

In order to facilitate communication between visualizations, MQTT broker is

utilized in the VISDOM project. DockerHub provides Eclipse Mosquitto im-

age, which is an open source implementation of a server for the MQTT pro-

tocol [12]. MQTT broker is used for some reasons. It is designed as an ex-

tremely light-weigh publish/subscribe message transport [13]. Additionally, for

the communication between Micro-frontends components, MQTT can be sim-

ply set up and modified based on future requirements. The relation between

micro-frontends and MQTT broker is shown in Figure 3.5

Figure 3.5 Relation between micro-frontends and MQTT broker

The core of MQTT is the MQTT broker (Message Queue as in Figure 3.5) and the

MQTT client (micro-frontend application). An MQTT clients publishes a mes-

sage, which includes a topic, to the broker and other clients subscribing to that

topic will receive messages. The MQTT broker is responsible for dispatching

18

messages between the sender and the according subscribers [14]. The broker

uses the topics and the subscriber list to dispatch the messages to appropriate

clients.

Each micro-frontend acts as both publisher and subscriber. Every visualizations

can publish a new state value to one topic, and every other visualizations fol-

low or subscribe to that topic will change their state according to the new state

value. For example, in the teaching case, as mentioned above, the visualiza-

tions show the status of one student specified by unique ID or the whole course

progress with multiple view modes. When one of the visualizations changes its

state such as student ID, or viewing mode, or different course implementation,

the other visualizations subscribing to that topic will also change their states,

which leads to a change in the view according to the new states. By this way, it

allows synchronization between micro-frontend applications, which is also one

of the key requirements in developing the configurable dashboard.

Data Management System

The data management system collects data from various software engineering

tool, then transforms and processes them to provide the suitable uniform data

interface for visualization consumption. The Figure 3.6 shows the Data Man-

agement System that is currently developed in the VISDOM project.

Figure 3.6 Data management system architecture [15]

19

There are four main components in Data Management System: Data fetcher,

database (MongoDB), data adapters, and data broker. From Figure 3.6, the data

fetcher pulls the raw data from the data sources and store the data in database [15].

Then, the data adapter can read and fetch the raw data from database. Based

on the visualization components, the data adapter will process and transform

the raw data into appropriate format in order to provides them to visualizations.

In this thesis, the database is the Gitlab database, which is pulled directly from

the repositories hosted by Tampere University’s Gitlab, and A+ database. The

database contains various collection, for example commits’ information includes

the number of commits of each task, time and content of each commit, and

points that students gain from single exercise. The adapter will read these data

and transform them based on different visualizations’ needs. It provides differ-

ent endpoints for different data query purposes. For instance, the adapter pro-

vides an endpoint that single-student-progress visualizations can query only

the information related to a specific student through student ID. This shows

the original idea of using the adapter that it eases the pressure on processing

raw data from the front-end side. Additionally, the query time will also be re-

duced as the only the necessary parts of data are queried. With the new data

adapter architecture, the memory cache simply stores the query parameters

and the corresponding response in memory. With memory cache, even if the

data sent over the network is reasonably large, or each micro-frontend appli-

cation queries processed data separately and try to make many requests to the

server, it would not burden the server.

As visualizations follow Micro-Frontends design pattern, so there are also draw-

backs in the data query aspects. Even though the data adapter provides multiple

endpoints for multiple data needs, however the client side still need to process

the data multiple times due to the format given by the adapter does not suitable

for displaying purpose in many visualizations. Additionally, whenever users in-

put changes, the whole data is queried and processed again, which leads to the

noticeable loading time.

3.4.2 Configurable dashboard

The key concept of the dashboard composer is the dashboard designed for dif-

ferent stakeholders, roles, needs, which means that it can be configured based

on users input and preferences. The dashboard consists of multiple visualiza-

20

tions in the same page, which constitutes a view satisfying the users’ needs. Dif-

ferent roles have different dashboard functionality limitations.Figure 3.7 below

shows the dashboard composer architecture.

Figure 3.7 The dashboard composer architecture. [9]

The yellow box presents for the Data Management System which is discussed

in the previous sub-section. The two red boxes in the middle contain visu-

alizations that follow the Micro-Frontents architecture. Individual visualiza-

tion is implemented as visualizations services by different development teams

and other entities interested in specific visualizations concepts or domains [9].

Last but not least, the main topic in this subsection, the dashboard composer

specifics are in the right box which is in blue. It provides a necessary infrastruc-

ture, which allows the services to register their available visualizations for use

within the dashboard composer. These applications are registered as micro-

frontends and can be developed and maintained separately by different teams.

The dashboard composer makes use of import maps, which allows web pages

to control the behavior of JavaScript imports [16], to include the source code of

multiple visualizations.

The components of dashboard are depicted in Figure 3.7. Service information

is responsible for creating available views based on user’s roles, preferences; it

also includes metadata of what and how the front-end applications should be

viewed. View information includes a selection of visualizations, pre-configured

21

perspectives, and layout information based on user’s specifies [9], which then

can be rendered as individual dashboard page view. Stakeholder information,

as its name, is the collections of stakeholder information including set of as-

sumptions and guess of which visualizations should fit and relate to one specific

stakeholder. From this, the pre-configured and default dashboard view can be

improved. View logic component creates, manages, and renders views configu-

rations. Also, it provides the logic for selecting individual visualizations or group

of visualizations perspectives for different user roles [9]. Layout logic provides

necessary functionalities for the layout of multiple visualisations in the same

page view including responsive and customized grid for displaying a single ap-

plication. Lastly. visualization control logic implements the necessary func-

tionality for inter-visualization communication and relaying of events, such as

changes in visualization perspective, to all the visualizations present in the cur-

rent view [9].

Figure 3.8 VISDOM dashboard allowing creation of custom dashboards from same data
in any viewpoint [10]

Before accessing to the dashboard, the user need to log in to the dashboard

with valid credentials. Based on the provided credentials, the composer pro-

22

vide the mechanism for selecting and configuring the visualizations based on

current user’s role, preferences, and the other factors. By this way, it is possible

to retrieve the suitable default dashboard based on the user’s role and interests,

and stakeholder information. Additionally, the included visualizations can also

be customized and set limitations based on personal requirements and roles,

which means that not everyone can configure the dashboard and these visual-

izations completely in the same way. It is possible for the stakeholders to save

the configuration of their customized dashboard and visualizations for further

use, which needs a database and back-end for; however, in the current version

of dashboard composer this feature has not been implemented. The dashboard

currently supports for roles: administrator, teacher, teaching assistant, and stu-

dent. Each role will have different default dashboard and functionalities/fea-

tures in an individual visualization.

Figure 3.9 The dashboard composer example view

Figure 3.9 gives an example of multiple visualizations displaying in a single

view page. The position and size of each visualization can be customized based

on personal usage and preferences. All these configurations will be saved for

further needs, which means that if user log in with the same credentials next

time, the user will no longer need to re-configure the dashboard.

In the current version of dashboard composer, it has many uncompleted fea-

tures, which should be implement to ensure the original concept of dashboard:

23

not everyone is accessible to all micro-frontends. For example, the configura-

tions and preferences storing part is in view information, which should use the

personal token to fetch the configurations and preferences from database. Us-

ing role/user restriction that a user can only access to a set of predefined micro-

frontends. Currently, every roles can access to all functionalities of all visualiza-

tions, which is in contrast with the initial purposes of the dashboard. From the

visualizations perspective, there should be ways for them to receive the user’s

token that they can set restrictions in features based on stakeholders informa-

tion.

24

4 PROTOTYPE VISUALIZATION FOR VISDOM

PROJECT

From the discussion in the previous chapters, as each Micro-Frontend applica-

tion is implemented and developed independently and development teams is

technology agnostics. Therefore, there are multiple approaches to implement a

Micro-Frontend applications. For the VISDOM project, all visualization appli-

cations are implemented by ReactJS framework using Single-SPA. This section

provides the detailed implementation steps of visualizations, which shows the

benefits of Micro-Frontends in implementing the visualizations that are com-

patible with the dashboard.

The EKG and Status visualizations will be discussed as an example visualiza-

tion in this section as all the Micro-Frontend visualization applications share

the similarities in set up and implementation steps. These visualizations, in

this case, use the data from the Programming 2 course implemented by Tam-

pere University for displaying multiple variables related to students’ status dur-

ing attending the course such as points, number of commits and submissions,

and so on.

4.1 Setting up single-spa

As discussed in the previous section, single-spa consists of application and single-

spa root config, and single-spa shares many similarities with SPA. Therefore, be-

fore converting application to single-spa application, ensure that the SPA does

not contain any rendering errors or warnings.

Webpack is a free and open-source static module bundler for JavaScript appli-

cation [17]. The React application requires environmental variables declared in

its configuration, which are used to create Webpack config. Webpack config is a

JavaScript object [18] allowing configuring and extending Webpack’s basic con-

figuration. All the required variables are listed as below:

ADAPTER_HOST =
MQTT_HOST =
CONFIGURATION_HOST =

25

DATA_TOKEN =
VISUALIZATION_KEY =

Program 4.1 Environmental variables for Webpack config

The name of these variables are quite straightforward that can explains its mean-

ings. ADAPTER_HOST is a URL that visualization applications do the data query

with valid DATA_TOKEN for authentication purposes, while MQTT_HOST defines the

host connection where micro-frontend applications communicate with each

others. The detail of information transfered between visualizations will be in-

troduced later in this section. For EKG visualization, it has a feature of storing

users’ configuration, which requires a server for this functionality. The URL to

that server is defined in CONFIGURATION_HOST. Lastly, as the storing configura-

tion server requires a unique key specifying for a visualizations to access to the

correct database, the special key is stored in variable VISUALIZATION_KEY.

In the traditional React SPA, these environmental variables can be access with

process which is a global variable is injected by the Node at runtime and repre-

sents the state of the system environment of the application. However, as men-

tioned above, when converting traditional SPA to single-spa, it also creates a

shareable, customizable webpack config that adds react-specific configuration

to webpack-config-single-spa [8]. The Webpack config files has structure as dis-

played in Programe 4.2.

const webpackMerge = require ("webpack -merge ");
const singleSpaDefaults = require ("webpack -config -single -spa");
const webpack = require (" webpack ");
require (" dotenv "). config (); // use dotenv to access environment

variables

module . exports = (webpackConfigEnv) => {
const defaultConfig = singleSpaDefaults ({

// The name of the organization this application is written for
orgName : " visdom ",
// The name of the current project .
projectName : " ekgview ",
// Environment Variables
webpackConfigEnv ,

});

return webpackMerge .smart (defaultConfig , {
// modify the webpack config however you ’d like to by adding to

this object
],

26

});
};

Program 4.2 Webpack config for visualization

The last thing left of setting up single-spa application for React is converting the

visualization, whick allows the application to be downloaded as an in-browser

ES module with "entry file".

// Create our SingleSPA application .
const lifecycles = singleSpaReact ({

React ,
ReactDOM ,
rootComponent : App ,
errorBoundary (err , info , props) {

// Customize the root error boundary for your microfrontend
here.

return <ErrorBoundary />;
},

});

export const bootstrap = lifecycles . bootstrap ;
export const mount = lifecycles .mount ;
export const unmount = lifecycles . unmount ;

Program 4.3 "entry files" for creat single-spa application

This entry file not only allows the visualization applications to be in-browsers

ES module, but also satisfies the single-page application requirements: it must

know how to mount, unmount, and bootstrap.

4.2 Communication setup between Micro-Frontend visualiza-

tion applications: MQTT

There are multiple message brokers that can be utilized for storing, routing,

and delivering messages between visualizations in VISDOM project. However,

MQTT broker is chosen thanks to its lightweight publish/subscribe message

transport [13], and simple setup and implementation. DockerHub has an image

for the Mosquitto broker.

The setup of MQTT message broker can be done directly by executing com-

mands to the docker container or MQTT client can be set-up to the local ma-

chine. The second approach is more suitable in this case, it can be done by

27

utilizing a docker-conpose file as in Program 4.4.

version : "3.0"
services :

mqtt:
image : eclipse - mosquitto
restart : always
ports :

- " 1883:1883 "
- " 8898:8898 "

volumes :
- ./ tmp/mqtt :/ mosquitto /data
- ./ mosquitto .conf :/ mosquitto / config / mosquitto .conf

Program 4.4 Docker-compose for MQTT setup

version: "3" denote that version 3 of Docker Compose is used with appro-

priate features. services defines the container that will be created, in this case

the container name is mqtt. As mentioned, mosquitto provided by DockerHub

is utilized, which is a pre-built image. port defines the mapping between con-

tainer’s host and machine host. In this case, the MQTT broker is exposed to port

ws://127.0.0.1:8898, which can be assigned to MQTT_HOST in environmental

variables file above for connection.

import MQTT from "async -mqtt";
const MQTT_TOPIC = " VISDOM ";

const setupMQTTClient = (client , dispatch) => {
\\ TODO: Define the client setup with available events
client . subscribe (MQTT_TOPIC);

};

export const MQTTConnect = (dispatch) => {
return MQTT. connectAsync (MQTT_ADDR)

.then ((client) => {
setupMQTTClient (client , dispatch);
return client ;

})
\\ TODO: Disconnect with the client is the connection is fail

};

export const publishMessage = (client , messageObj) => {
return client . publish (MQTT_TOPIC , JSON. stringify (messageObj));

};

Program 4.5 MQTT connection in visualization components

28

When one of the visualization changes its state, it will publish an message with

specific MQTT_TOPIC and message is the state object, which is converted into

string type. Other visualizations subscribe to that topic will receive the string

type message. Then they will compare their current state with the incoming

message, if any differences are detected, the visualizations will render the view

again based on the shareable state. By this way, it establishes a real-time syn-

chronization between visualizations.

Figure 4.1 Status and EKG in the same page view

For example, in Programming 2 course, a large number of students attending

the course, so finding an exact studentID among more than hundred others

is difficult. The idea is when status and EKG visualizations are in the same

browser page, users do not need to change the student in two views separately,

but changing one of visualizations, the other one should update its view asyn-

chronously for better user experience.

Each bar in status view represents one student, and it can be selected for more

detailed information in the pop-up dialog. When the user choose one student

by clicking to one specific bar in status visualization, it can publish the message

by the "sync" button below the graph via MQTT broker. The EKG view subscrib-

ing that "VISOM" topic will receive that studentID, then the visualization will

automatically update its view corresponding to the incoming message.

29

4.3 Integrating visualization applications to VISDOM Dashboard

Composer

The dashboard composes of two main components: Dashboard Composer, and

Root Config. The Root Config is responsible for providing the infrastructure for

registering applications to the VIDOM ecosystem [19]. Different applications

can be registered as mirco-frontends and can be developed, implemented, and

deployed independently by different development teams. Lastly, the dashboard

composer is responsible for two main tasks [20]. The first task is selecting the

suitable visualizations for the current user based on multiple criterias such as

role, preferences, or interests. The second one is to handle the dashboard layout

and rendering logic. All the available visualization components are configured

as separate micro-frontend application in the composer and rendered accord-

ing to stakeholders.

In the current version, the Dashboard Composer only provides configuration

functionalities related to selecting visualization displayed in one page, and lay-

out/sizing of each application. This configuration is stored in local storage.

Therefore, there are no users’ role limitations, every roles can access to the same

visualization with similar features provided by each micro-frontend applica-

tion. This is not the supposed behavior of Dashboard Composer. In future de-

velopment, the authorization must be the priority, the proposal development

will be discuss more carefully in Chapter 5.

4.3.1 The mechanism of deploying visualizations with Dashboard

Composer

Once the application is started, the import map override can be set to the port

that the application is running. Import-map-override is an browser and NodeJS

JavaScript library for overriding import maps [16], which allows dynamically

change to the URL for the modules by storing overrides in local storage.

When new visualizations are added to dashboard locally for testing purposes,

the module name should be in this format: @[organization name]/project name.

For example, with EKG visualization, the module name should be @visdom-poc/ekgview,

where organization name is visdom-poc. After the visualizations are added suc-

cessfully, new view can be added with the form shown in Figure 4.3.

From the above form, it is shown that the dashboard can be configured in mul-

30

Figure 4.2 New module dialog in local development

Figure 4.3 Add new view to dashboard

tiple ways that satisfy users’ needs, and interests. Users are able to choose how

many visualizations that would be displayed in a single browser page by "add

microfrontend" button. Additionally, users can choose the size for each visual-

ization, in Figure 4.3, the size of micro-frontend application would be full width

of browser page. It can be set to half by reducing all the sizing options two times.

31

4.3.2 Visualizations deployed with Dashboard

The Root Config component of Dashboard Composer provide importmap.json
file, which allows micro-frontend applications to be added as default module

instead of local development.

\\ Below is just some example necessary modules
{

" imports ": {
"react ": " https :// cdn. jsdelivr .net/npm/ react@16 .13.1/ umd/react .

production .min.js"
"@visdom -poc/root - config ": "/visdom -poc -root - config .js",
"@visdom -poc/ composer ": "/visdom -poc - composer .js",
\\ Adding EKG view for deployment
"@visdom -poc/ ekgview ": "/ ekgview .js",

}
}

Program 4.6 importmap.json file for default modules

32

5 SITUATION ANALYSIS

Within the thesis scope, it is clear that the VISDOM project has many bene-

fits from adopting Miro-Frontends architecture. It also explain the reasons why

Micro-frontends pattern has just been introduced recently, but has gained a

great popularity among other architecture. This section will give a detailed dis-

cussion about the current design with original reference architecture and the

concept of micro-services in the back-end side based on literature review.

5.1 Visualization implementation and reference architecture

In the current implementation, as discussed above, the Dashboard Composer

allows users to configure the rendering layout of different visualizations in mul-

tiple ways. Based on their needs, interests, and preferences, users can select the

number of visualization applications that can be shown in the same browser

page. Additionally, the view applications can be configured in such ways that

they can be displayed in the same row (side-by-side) or as a list. From the vi-

sualization point of view, for genetic and advanced visualizations such as status

and EKG, they provide various functionalities that allow user to visualize data in

multiple ways for further analysis and problems detection via repeated patterns.

With these features, both Dashboard Composer and visualization can satisfy all

stakeholders’ needs, however, despite Dashboard provides a login page for au-

thentication, the credentials are hard-coded, which means the users’ email and

password are stored as pure string. The Dashboard Composer simply receives

the user’s credentials inputs and compares them with login information stored

as string in the back-end side without any further authentication layout. There-

fore, there is no restriction between users’ roles in both Dashboard Composer

and visualizations as they do not receive any authentication tokens from the

Dashboard. For example, for teaching case, there are at least two roles, teacher

who is responsible for the course implementation, and teacher assistants (TA)

who take responsibilities for exercises graded and student support. Teacher has

interests in course overview, while TA would like to have a more detail informa-

tion of one student with his or her workload. Dashboard should capture these

tendencies to come up with the best visualization application what can fulfill

these needs. Furthermore, for visualizations, they should receive the users’ cre-

33

dentials to limit their available features for different stakeholders.

Figure 5.1 Proposal architecture for getting configuration with authentication

Firstly, the back-end loads the Dashboard and mirco-frontend application with

features disability and without any data. After users login to the Dashboard with

credentials, the server will receive these credentials and check if they are valid.

If the users successfully login to the Dashboard, with role restrictions, Dash-

board only provides available and pre-defineds visualizations. The server then

will send the valid token to micro-frontend visualization applications. They will

restrict the features and data that can be accessed by the current user to en-

sure that not everyone is accessible to the same micro-frontend application. For

some visualizations, they allow users to save their configuration for further in-

spection, for example in EKG visualization, users can save their current config-

uration for later use without remembering and re-configuring the graph again

for next time. The server will check the credentials sent by dashboard to fetch

only the configuration/preferences available for specific users. By this way, the

role of users will affect the functionalities and feature provided by Dashboard

Composer and micro-frontend applications, which is also the key concept of

the Dashboard.

5.2 Current prototype visualizations and microservices concept

From Figure 2.1 and Figure 2.2, microservices and Micro-Frontend architec-

ture share many similarities from the concept to implementation approach.

These two architectures have the same purposes: decomposition of one large

monolith application into smaller single-responsible-task applications that can

34

be implemented, tested, and deployed independently.

Figure 5.2 a) Visualizations with traditional monolith application b) Visualizations
with Micro-Frontends architecture

Similar to microservices architecture, when the users successfully access to the

Dashboard Composer and request for multiple visualizations displayed in the

same browser page, with traditional web application implementation, one ap-

plication is responsible for all steps from setting the layout of views to fetch nec-

essary data for every single visualizations. Each view is loaded in order, there-

fore, it takes time to complete the loading of the whole page. The more visu-

alizations users prefer to inspect, the more time it takes. However, with Micro-

Frontend architecture, when the Dashboard receives users’ request for visual-

ization, it will call on visualization application to compose the request.In each

micro-frontend application, the data is fetched and processed independently

at the same time, which reduce the loading time significantly. For instance,

in the VISDOM project, there are two dashboards to serves different visualiza-

tion purpose at different project phase. One is the Dashboard Composer as dis-

cussed through this thesis for cooperating and sharing visualizations between

35

universities, and the other one is teaching demo dashboard for visualizations

experience in Programming 2 course. The former one follows Micro-Frontend

architecture, and the latter one is a traditional monolith application. When in-

specting the page containing all visualizations, the teaching demo dashboard

requires much more time than the Dashboard Composer.

36

6 CONCLUSION

While microservices has been introduced and used widely, Micro-Frontends ar-

chitecture is still a novel concept but has gain a huge popularity thanks to its

innovative implementation approach for the front-end side. The most com-

mon motivation for adopting Micro-Frontend architecture amongst the others

is the the growth of traditional monolith applications leads to complexity and

difficulty in scaling and maintaining. Micro-Frontends extends the concept of

microservices for server side to client side. However, despite having multiple

advantages in many development aspects, Micro-Frontends architecture is not

a silver bullet for designing web applications. For example, it may increase over-

all complexity of the whole system, or in general increase the development and

cloud-related costs [2] for the small software teams or the traditional monolith

application can fulfills all the web application requirements.

In this thesis research studies, Micro-Frontends architecture is adopted by VIS-

DOM project development teams for sharing visualization between different

teams and independent implementation, test, and deployment. Adopting such

a novel concept helps solving many problems and developing requirements

that a traditional monolith application such as teaching demo dashboard can-

not fully provide the best performance. Having many separated visualization

components that each of them takes responsibility for coming up with different

visualized data approach benefits the project multiple ways as discussed in the

previous chapters. Currently VISDOM project has seven visualizations and the

number may increase in the near future. Therefore, by implementing each view

as a micro-frontend application reduces the risks and challenges for integrating

new visualizations application to the existing ones.

Not only VISDOM, the other well-known companies such as Netflix, Facebook

also acquire the Micro-Frontend concept for web application development, which

is a strong evidence for its advantages. However, it definitely has drawbacks

when adopting this advance architecture. In VISDOM project, the simple im-

plementation is traded up for scalability and maintenance from using Micro-

Frontends pattern instead of traditional approach. Additionally, the pressure on

the data adapter also increase as multiple request at the same time. No archi-

tecture is perfect, that why looking for an effective innovative way for software

development becomes a crucial and major task.

37

REFERENCES

[1] “Technology radar: Micro frontends.” (2006), [Online]. Available: https:
/ / www . thoughtworks . com / radar / techniques / micro - frontends. (Ac-

cessed: 20.01.2022).

[2] S. Peltonen, L. Mezzalira, and D. Taibi, “Motivations, benefits, and issues

for adopting micro-frontends: A multivocal literature review,” Informa-

tion and Software Technology, 2021. [Online]. Available: https : / / www .
journals.elsevier.com/information-and-software-technology.

[3] “What is microservices architecture?” (), [Online]. Available: https : / /
cloud.google.com/learn/what-is-microservices-architecture. (Ac-

cessed: 26.01.2022).

[4] “Getting started with single-spa.” (), [Online]. Available: https://single-
spa.js.org/docs/getting-started-overview. (Accessed: 21.01.2022).

[5] M. Geers. “Miro-frontends.” (), [Online]. Available: https://micro-frontends.
org/. (Accessed: 20.01.2022).

[6] C. Jackson. “Miro-frontends.” (), [Online]. Available: https://martinfowler.
com/articles/micro-frontends.html. (Accessed: 10.01.2022).

[7] “Bit workflows.” (), [Online]. Available: https://legacy-docs.bit.dev/
docs/workflows. (Accessed: 23.04.2022).

[8] “Create-single-spa.” (), [Online]. Available: https://single-spa.js.org/
docs/create-single-spa/. (Accessed: 22.01.2022).

[9] K. Systa, O. Sievi-Korte, H. Bomstrom, and V. Lunnikivi, Visdom reference

architecture, deliverable 2.5.1, 2020.

[10] V. members, Fpp annex template.

[11] “Understanding the value of reference architectures.” (), [Online]. Avail-

able: https://doveltech.com/innovation/understanding-the-value-
of-reference-architectures/. (Accessed: 20.01.2022).

[12] “Eclipse-mosquitto.” (), [Online]. Available: https://hub.docker.com/_/
eclipse-mosquitto/. (Accessed: 20.01.2022).

[13] “Mqtt: The standard for iot messaging.” (), [Online]. Available: https://
mqtt.org/. (Accessed: 20.01.2022).

[14] “Getting started with mqtt.” (), [Online]. Available: https://www.hivemq.
com/blog/how-to-get-started-with-mqtt/. (Accessed: 20.01.2022).

https://www.thoughtworks.com/radar/techniques/micro-frontends
https://www.thoughtworks.com/radar/techniques/micro-frontends
https://www.journals.elsevier.com/information-and-software-technology
https://www.journals.elsevier.com/information-and-software-technology
https://cloud.google.com/learn/what-is-microservices-architecture
https://cloud.google.com/learn/what-is-microservices-architecture
https://single-spa.js.org/docs/getting-started-overview
https://single-spa.js.org/docs/getting-started-overview
https://micro-frontends.org/
https://micro-frontends.org/
https://martinfowler.com/articles/micro-frontends.html
https://martinfowler.com/articles/micro-frontends.html
https://legacy-docs.bit.dev/docs/workflows
https://legacy-docs.bit.dev/docs/workflows
https://single-spa.js.org/docs/create-single-spa/
https://single-spa.js.org/docs/create-single-spa/
https://doveltech.com/innovation/understanding-the-value-of-reference-architectures/
https://doveltech.com/innovation/understanding-the-value-of-reference-architectures/
https://hub.docker.com/_/eclipse-mosquitto/
https://hub.docker.com/_/eclipse-mosquitto/
https://mqtt.org/
https://mqtt.org/
https://www.hivemq.com/blog/how-to-get-started-with-mqtt/
https://www.hivemq.com/blog/how-to-get-started-with-mqtt/

38

[15] “Components for the data management system.” (), [Online]. Available:

https : / / github . com / visdom - project / VISDOM - data - management -
system/tree/master/documentation/adapters/general. (Accessed: 18.03.2022).

[16] “Import maps.” (2021), [Online]. Available: https://wicg.github.io/
import-maps/. (Accessed: 20.01.2022).

[17] “Webpack.” (), [Online]. Available: https://webpack.js.org/guides/
getting-started/. (Accessed: 23.04.2022).

[18] “An introduction to webpack configs.” (2020), [Online]. Available: https:
//masteringjs.io/tutorials/webpack/config. (Accessed: 21.01.2022).

[19] “Visdom poc root config.” (), [Online]. Available: https://github.com/
visdom-project/VISDOM-PoC-Root-Config. (Accessed: 22.01.2022).

[20] “Visdom poc dashboard composer.” (), [Online]. Available: https://github.
com/visdom-project/VISDOM-PoC-Composer. (Accessed: 22.01.2022).

https://github.com/visdom-project/VISDOM-data-management-system/tree/master/documentation/adapters/general
https://github.com/visdom-project/VISDOM-data-management-system/tree/master/documentation/adapters/general
https://wicg.github.io/import-maps/
https://wicg.github.io/import-maps/
https://webpack.js.org/guides/getting-started/
https://webpack.js.org/guides/getting-started/
https://masteringjs.io/tutorials/webpack/config
https://masteringjs.io/tutorials/webpack/config
https://github.com/visdom-project/VISDOM-PoC-Root-Config
https://github.com/visdom-project/VISDOM-PoC-Root-Config
https://github.com/visdom-project/VISDOM-PoC-Composer
https://github.com/visdom-project/VISDOM-PoC-Composer

	INTRODUCTION
	BACKGROUND
	Micro-Frontends in a nutshell
	The strengths and benefits of Micro-Frontend architecture
	Micro-Frontends implementation approach
	Single-Page Application
	Overview of Single-spa

	OVERVIEW OF THE RESEARCH PROJECT- VISDOM
	Overall of VISDOM project
	Overall Architecture
	The reference architecture
	Proof-of-concept implementation
	Visualizations
	Communication between micro front-end visualizations
	Data Management System

	Configurable dashboard

	PROTOTYPE VISUALIZATION FOR VISDOM PROJECT
	Setting up single-spa
	Communication setup between Micro-Frontend visualization applications: MQTT
	Integrating visualization applications to VISDOM Dashboard Composer
	The mechanism of deploying visualizations with Dashboard Composer
	Visualizations deployed with Dashboard

	SITUATION ANALYSIS
	Visualization implementation and reference architecture
	Current prototype visualizations and microservices concept

	CONCLUSION
	References

