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ABSTRACT
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The .NET virtual machine provides support for running cross-platform applications. The vir-
tual machine provides cross-platform support by translating platform-independent bytecode into
platform-dependent instruction during execution. The bytecode, in our case, the Common In-
termediate Language, is generated by compiling C# code into the bytecode. By compiling a
high-level language into bytecode, the application can be developed using a high-level language,
compiled once, and deployed on multiple platforms. The .NET virtual machine uses stack archi-
tecture, which requires the C# to be converted into a stack-based bytecode during compilation. In
addition to producing stack-based bytecode, the compiler removes syntactic sugar from the code.
Syntactic sugar is removed by replacing complex semantics with simpler ones.

In this thesis, we performed benchmarks to determine the performance effects of high-level
changes. In addition to benchmarks, we inspected the changes on the bytecode level. The bench-
mark methods iterate over a sequence of elements, counting the sum of all elements. We started by
comparing the performance differences between arrays and lists. The list showed a small overhead
in most cases and a noticeable overhead in some cases. Because the generic list contains different
implementation details, we performed additional benchmarks on the used syntactic sugar. The
additional benchmarks included comparing the performance of fields, properties, and indexers. In
most cases, simple syntactic sugar does not add overhead to the performance. However, using
properties and indexers through a field inside an instanced method seems to add overhead. The
overhead could be removed by storing the target object in a local variable before the loop. Storing
the target object in a local variable removes the need to load it from a field during each iteration.

Keywords: .NET, C#, CIL, Compiler Theory, Micro-optimization
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1 INTRODUCTION

Software development is an ever-growing industry that keeps expanding as new devices
and platforms are introduced. This poses a challenge to software development since dif-
ferent platforms support different things. Traditional programming languages that are
compiled into native code can be executed on certain platforms. This makes software
development harder since platform-specific changes may be required for an application
to work. Process virtual machines solve the problem by providing an execution environ-
ment to execute bytecode. The execution environment translates bytecode instructions
into native code. Using a bytecode language as an intermediate format provides a mid-
dle ground between high-level code and native code. Commonly, bytecode is generated
by compiling a high-level programming language into a bytecode language. In addition
to code execution, the process virtual machine can utilize a garbage collector to manage
memory.

Applications executed inside a process virtual machine are used for all kinds of ap-
plications. These include console, web, Internet of Things, mobile, and desktop appli-
cations. The main limitation is system programming, where the overhead caused by the
virtual machine and garbage collection becomes problematic. However, in regular appli-
cations, this overhead is not noticeable. The time lost in slower execution is saved in the
shorter development time.

Bytecode-based applications go through two main stages. The first stage contains
compiling a high-level programming language into bytecode. In this stage, a compiler
translates a high-level programming language into a bytecode language. This translation
includes modifying the code structure to fit the virtual machine architecture. The second
stage includes executing the bytecode inside a process virtual machine. During the execu-
tion, the bytecode is translated into native instructions. The translation can be done with
an interpreter or a just-in-time compiler.

This thesis is a look at Common Language Runtime, which is an implementation
of the Common Language Infrastructure standard. The standard defines a stack-based
virtual machine and executable code. We will also look at the C# (c sharp) programming
language and how it is compiled into the executable code. Finally, we will perform bench-
marks to determine the performance impact of high-level changes. We will compare the
performance between an array and a generic list. Additionally, we will compare the per-
formance of fields, properties, and indexers to access values. The performance of each
feature is tested with multiple methods using a benchmarking framework. In addition
to the high-level changes, we will inspect the bytecode. Finally, the benchmark results
and bytecode are used to inspect the impact of high-level changes. Code examples and
benchmarks used during this thesis are available on GitHub (Löppönen, 2022).
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This thesis aims to inspect the changes made during bytecode compilation and how
they affect the overall performance of the resulting application. The compilation pro-
cess includes transforming C# code into stack-based bytecode. This transformation also
includes removing the syntactic sugar included in C#. Syntactic sugar is removed by
replacing the higher-level syntax with semantically matching lower-level syntax. The re-
placement process can produce varying amounts of bytecode. We will also inspect the
changes produced by high-level syntactic refactoring.

• RQ1. What is the performance impact of syntactic sugar?
• RQ2. What is the performance impact of C# loop statements?
• RQ3. What type of high-level modifications can be used to improve performance?
The second chapter introduces a few background knowledge areas used in the fol-

lowing chapters. It includes an introduction to process virtual machines, compilers, and
disassembling. The third chapter introduces the Common Language Runtime, which de-
fines an environment for executing applications. The chapter includes information about
the type system, metadata, and generics. The fourth chapter introduces the .NET runtime,
which is an implementation of the Common Language Runtime. It includes a better look
at various implementations of the runtime. These implementations include the JIT com-
piler, Garbage Collector, and standard libraries. The fifth chapter contains a few examples
of compile-time transformations taking place during C# to bytecode compilation. These
examples include lowering, for-each statement, and properties. The sixth chapter contains
the research task and results. The final chapter contains the conclusion of the thesis.
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2 BACKGROUND

The journey from high-level code to code execution inside a process virtual machine
is a multi-step process. This multi-step process contains multiple knowledge areas. In
addition to code execution, additional steps may be required to inspect the changes on
a bytecode level during the process. The process starts with compiling high-level code
into bytecode. During compilation, the high-level code is translated into bytecode. The
compilation can contain various optimization techniques used to optimize the resulting
bytecode. In the end, the resulting bytecode is packaged into a binary file. The binary
file can be disassembled for human inspection or given to a process virtual machine for
execution. Process virtual machines can be used to execute bytecode. They provide
an execution environment to execute code and a garbage collection to manage memory
during the execution. Both the execution environment and garbage collector can contain
implementation details that affect the code execution.

2.1 Process Virtual Machines

Figure 1. Process Virtual Machine.

A process virtual machine or application virtual machine, shown in Figure 1, is designed
to run a single program with a single process. It runs just like a regular application within
the host OS as a process. The virtual machine is created when a process is initiated and
destroyed when the process exits or dies (Sudha et al., 2013). A process virtual ma-
chine is made out of multiple components. These components can be divided into two
units based on their responsibilities. These units are the execution engine and garbage
collector. The execution engine is responsible for loading and executing code (ECMA
International, 2012, p. 72; Kokosa, 2018, p. 239). Code can be executed using an inter-
preter, just-in-time compiler, or a combination of both (Shi et al., 2008). Additionally,
the execution engine can provide additional features such as a unified type system, ex-
ception handling, and additional security features (Costa & Rohou, 2005; Kokosa, 2018,
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p. 238). The garbage collector is responsible for allocating and releasing memory (ECMA
International, 2012, p. 6; Kokosa, 2018, p. 239).

The execution environment translated platform-independent bytecode into platform-
specific machine code. Meijer & Gough (2000) note that by using an intermediate lan-
guage, you need only n + m translators instead of n ∗ m translators, to implement n
languages on m platforms. The bytecode is produced by compiling high-level code into
bytecode. A bytecode language is easier to translate into platform-specific instructions
compared to high-level programming languages. Bytecode languages can also provide
language independence by defining a shared type system (Costa & Rohou, 2005; Meijer
& Gough, 2000). A shared type system allows different tools to share the declaration,
using, and managing of primitive and user-defined types.

Popular process virtual machines such as Java Virtual Machine and .NET use a virtual
stack architecture. Stack architecture provides a small code size and does not require ex-
plicit registers to be defined (Maierhofer & Ertl, 1997; Shi et al., 2008). Stack architecture
executes code by pushing values onto an evaluation stack. A single instruction will either
push a value onto the stack or pop values off the stack. Values on the stack are consumed
by their first use and are thus unavailable for subsequent uses (Park et al., 2011). Values
with multiple uses require multiple copies. In addition to consuming values on first use,
the values must be pushed onto the stack in the expected consumption order as random
operand access is not supported (Park et al., 2011). An alternative to stack architecture
is virtual register architecture. Virtual register architecture uses virtual registers to store
values. In this approach, the bytecode defines registers where the values are stored. Shi
and others (2008) suggest that stack-based bytecode is better suited for JIT compilation
since it does not make any assumptions about the number of available registers. They also
found that register-based bytecode outperforms stack-based bytecode when interpreted.

2.2 Compilers

Compilers are used to translate one language to another. Commonly a high-level lan-
guage is compiled into a lower-level language. When targeting a process virtual machine,
a high-level language is compiled into a bytecode language used by the virtual machine.
There may be multiple high-level programming languages that target a single bytecode
language. Java, Kotlin, and Scala are high-level programming languages that are com-
piled into Java Bytecode, which is used by Java Virtual Machine (Urma, 2014). C#, F#,
and Visual Basic are high-level programming languages that are compiled into Common
Intermediate Language (CIL), which is used by .NET (.NET Programming Languages,
2022).
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Figure 2. Compilation process using a compiler.

Compilers compile the source code in multiple steps. The steps are visualized in
Figure 2. The compilation process starts with lexical analysis, which is used to split the
source code into lexical units. These lexical units are formed based on the syntactic rules
of the language. Each lexical unit represents a single identifier, special word, operator,
or punctuation symbol. Once the source code is converted into a list of lexical units,
the list is given to a syntax analyzer. The syntax analyzer is used to build a parse tree
from the lexical units. The parse tree is a hierarchical tree structure representing the
syntactic structure of the source code. During the parse tree generation, a symbol table
is generated. The symbol table contains the various identifiers present in the parse tree.
Each identifier stored in the symbol table references the defining parse tree node. This
allows the following steps to access various parts of the parse tree through the identifiers
stored in the symbol table. After the parse tree and symbol table are created, they are
given to a semantic analyzer which performs various checks on the parse tree. Semantic
analysis includes checking that the used identifiers have been defined and that they follow
the correct typing rules. After semantic analysis, additional optimization can be applied.
Finally, the parse tree is used to generate code. (Sebesta, 2012, pp. 24–27)
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2.3 Disassembly

Bytecode-based applications are commonly compiled directly into a binary format used
by the process virtual machine. Storing the application as a binary file provides several
benefits. Binary files provide fast access to the data. Values, character, and miscellaneous
data can be stored and accessed without additional conversion being required. Sometimes
the stored data may be hard to represent in a text format, which makes storing bytes a
more accessible solution. Binary files also provide smaller file sizes. The main disadvan-
tage of binary files is that they are not human-readable. A disassembler can be used to
convert a binary file into a text format. Converting a binary file into a text format allows
the bytecode to be inspected. Additionally, an assembler can be used to compile the text
format back into binary format. This provides a platform to modify compiled applica-
tions without having access to the source code. This can be useful when working with
applications where access to the source code is lost or unknown.

When bytecode applications are executed using a JIT compiler, the JIT compiler pro-
duces machine instructions. The machine instructions produced by the JIT compiler can
be disassembled for further inspection. Inspecting the machine instructions produced by
the JIT compiler can provide further insight into the application’s logic. However, when
inspecting code generated by a JIT compiler, it is important to understand how the code
was generated. There are different types of JIT compilers, which can produce different re-
sults. For example, some JIT compilers recompile often used methods, which can change
the outcome. Additionally, it is important to note that the JIT produces platform-specific
results, and the changes made based on the compiled instructions may be hard to transfer
to different platforms.
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3 COMMON LANGUAGE RUNTIME

Common Language Runtime (CLR) is a Virtual Execution System published by Mi-
crosoft. It is an implementation of the Common Language Infrastructure (CLI), which
was also initially designed by Microsoft. The CLI is a public standard, ECMA-335 Com-
mon Language Infrastructure, that defines a virtual execution system and executable code
(ECMA International, 2012). Having a public standard as the basis for a runtime al-
lows different vendors to provide their own implementations of it while still allowing the
executable code to be shared between the different implementations. Using a virtual exe-
cution system allows the same code to be deployed on multiple platforms, only requiring
the execution system to be implemented on the target platform. Popular implementations
of the CLI standard include .NET and Mono.

The Common Language Infrastructure took heavy inspiration from Java Virtual Ma-
chine (JVM) and its ecosystem. It is a few years younger than JVM, which allowed the
CLI design team to use JVM as a comparison when designing the different components.
JVM was originally designed to be a virtual machine for Java bytecode applications. This
made it a good platform to run object-oriented Java applications but made it harder to sup-
port other programming languages and programming paradigms. The CLI was designed
from the start to support a wide range of programming languages (Meijer & Gough, 2000).
CLI aims to provide support for object-oriented, functional, and procedural programming
paradigms. This allows multiple high-level languages to target the CLI.

When building a CLI application, it is converted into a set of binaries, including the
project and its dependencies. These binaries include the intermediate language presenta-
tion of the application, with additional files that are required by the application. These
binaries can form an executable file or a library file. Using a binary format to represent
the build application allows the same binary to be used in different environments. Using
a standardized binary format to store the intermediate language allows the application to
be decompiled back into the intermediate language if required. This allows the compiler-
generated code to be inspected. In addition to this, the application can be decompiled,
modified, and recompiled without access to the original source code. This can be useful
when working with legacy systems or applications where the original source is lost or
unknown.

3.1 Common Type System

At the center of the CLI is a unified type system, the Common Type System (CTS), that is
shared by compilers, tools, and the CLI itself. It is the model that defines the rules the CLI
follows when declaring, using, and managing types. The CTS establishes a framework
that enables cross-language integration, type safety, and high-performance code execution
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(ECMA International, 2012, p. 6). By sharing a common type system and high-level
execution environment, interoperability between different languages becomes easier than
binary interoperability. Easy interoperability is a prerequisite for multi-language library
design and software component reuse (Meijer & Gough, 2000).

Type safety is promoted by typing everything. It guarantees that references are typed,
and the value or object referenced is typed. It also guarantees that only appropriate oper-
ations can be invoked. This includes making sure that the method or field for the given
type exists, with valid visibility based on where the reference is compared to the refer-
enced entity.

The common type system is designed to support object-oriented, function, and pro-
cedural programming languages. The type system revolves around two entities: objects
and values. Value types are used to represent simple bit patterns for things like integers
and floats. Each value also stores a type that defines what the bits represent and what op-
erations can be performed on them. Objects are self-typing entities with unique identities
that contain slots to store other entities. While the content of the slots may change, the
identity of the object never changes. (ECMA International, 2012, p. 16)

Figure 3. Common Type System.

Figure 3 displays the type system (ECMA International, 2012, p. 18). The type sys-
tem can be used to determine how a value is stored within the virtual execution system.
A value of a reference type is always allocated on the heap (Fruja, 2008). This results in
variables with reference type pointing to values on the heap. Additionally, the values are
treated as pass-by-reference. Values of a value type are allocated either on the evaluation
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stack or on the heap within an object class instance (Fruja, 2008). Variables with value
type store the value directly and treat the values as pass-by-value.

The common type system is designed to be future-proof, with easy to expand types.
This means that it should be easy to add new types without affecting the existing types
or their implementation. For example, signed integers are stored as int16, int32, and
int64. If a 128-bit integer is required in the future int128 could be added without
breaking anything in the existing implementation. In contrast, C# contains keywords for
the values as short, int, and long, which do not explicitly state their implementation
sizes.

The standard does not define memory layouts for object fields. However, the byte-
code contains keywords for defining different layouts. The first option is automatic, which
allows the runtime to determine the best layout. This allows the runtime to reorder the
fields as seen fit. Retaining rights to reorder fields allows the runtime to store objects in
a compact way with aligned fields. Additional keywords include manual field offsets and
sequential memory layouts. Different memory layouts may be required when communi-
cating with unmanaged code.

Field alignment is part of data structure alignment that is concerted in the way that
the data is arranged and accessed in the memory. A Processor reads the memory in word-
sized chunks that are defined based on the processor’s architecture. A word is the natural
unit of data for the processor. Common word sizes are 4 bytes for 32-bit architecture and
8 bytes for 64-bit architecture (Kokosa, 2018, p. 9). Additionally, the data is addressed
at memory locations that are multiples of the word size. Providing fast access to values
stored in these chunks requires the values to be aligned with the chunks (Eimouri et al.,
2016). This means that each value should start at the start of the chunk, or multiple smaller
values should be distributed evenly in a single chunk. Uneven values are slower to access
since they require additional reads to access. The data can be aligned by applying padding
after value so that the following value can start at the beginning of the following chunk
(Eimouri et al., 2016). Hence, allowing the runtime to reorder fields should provide the
best possible memory layout in different environments.

3.2 Metadata

Metadata is used to store additional information about the bytecode. It is used to describe
and reference types defined by the common type system. It allows data to be stored in a
neutral format that is not directly tied to any specific programming language. This makes
the bytecode easier target for multiple high-level programming languages and different
tools since they can use the language-independent metadata to communicate with each
other. The metadata is produced by a compiler when a high-level language is compiled
into bytecode. Costa & Rohou (2005) note that the metadata is not optional information
added for the convenience of other tools. It is necessary for the proper execution of the
code. They also found that metadata is a substantial part of the total bytecode size.
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New types – value types and reference types – are introduced into the CTS via type
declarations expressed in metadata. In addition, metadata is a structured way to represent
all information that the CLI uses to locate and load classes, lay out instances in memory,
resolve method invocations, translate CIL to native code, enforce security, and set up
runtime context boundaries. (ECMA International, 2012, p. 53)

Metadata is also used to form CLI components and assemblies. CLI components
are used to divide the application logic into smaller software components. Each com-
ponent contains metadata about the declarations, implementations, and references made
or required by the component. This makes each component self-describing since they
do not require external sources to describe them. When deploying an application, CLI
components and additional files are packed into assemblies, which are logical units of
functionality. Assembly can be an executable file or linked library. The main difference
is that the linked library does not contain an entry point, which prevents it from being
executed by itself. A single project can contain multiple assemblies. The compile-time of
large projects can be reduced by dividing them into multiple assemblies. Multiple assem-
blies divide the compilation into smaller chunks. This also means that only the modified
assembly needs to be recompiled.

3.3 Generics

The CLI standard also defines generics. Generics can be used to define types and methods
that do not explicitly state their type. Rather than having an explicit type, they contain a
type parameter, which defines the type when the type or method is created or invoked.
This increases the code reusability since the generic types can be used to implement
reusable data structures, algorithms, and other components. Reusability reduces code
duplication and errors caused from maintaining multiple typed data collections (Parnin
et al., 2012). The addition of type parameters also allows type safety to be enforced since
the type parameter can be used for type checking. Fruja (2006) concludes that generic
types maintain the type safety of the CLR.

Type parameters may be constrained so that they can only be instantiated with types
having particular characteristics. Type constraints include whether a type is a reference
type or a value type, whether it derives from a specific class or implements a particular
interface (or interfaces), and whether it supplies an accessible no-arg constructor (Brosgol,
2010). In practice, this means that a variable with the generic type can use fields and
methods described by the type constraint. Generics provide a small runtime overhead
compared to casting and boxing because the type conversions and checks can be done
during compile time. Brosgol (2010) concludes that runtime overhead is avoided after the
initial JIT compilation.
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4 .NET

.NET is Microsoft’s implementation of the CLR. It has evolved during the years with
the CLI and CLR. The original implementation was the .NET Framework, which is a
Windows-only implementation of the runtime (Akinshin, 2019, p. 96). In 2016 a new run-
time was introduced named .NET Core which is a cross-platform implementation of the
runtime (Akinshin, 2019, p. 100). .NET Core provides partial support for .NET Frame-
work applications on Windows, OSX, and Linux, but there is no guarantee that .NET
Framework applications could run in .NET Core. In 2020 a new .NET Core version was
released with only the name .NET (What’s new in .NET 5, 2022). This release was the
first step to combine .NET Framework and .NET Core into a single runtime.

Mono is an open-source implementation of Microsoft’s .NET Framework based on
the ECMA standards for C# and the Common Language Runtime (Mono, 2022). It tries
to provide cross-platform support for the otherwise Windows-only .NET Framework ap-
plications. However, some functionality is missing compared to .NET (Mono Application
Portability, 2020). Mono is sponsored by Microsoft (Mono, 2022) and is used by vari-
ous companies, including the Unity game engine (Companies using Mono, 2020). Since
Mono is a separate implementation of the standard, it may yield different performance
results compared to .NET.

Optimizing .NET applications may yield different results on different versions. In
addition to the .NET release version, it is important to note that the different components
making up the virtual machine contain versions. Primarily these include the JIT compiler,
garbage collector, and standard libraries.

4.1 RyuJIT

The .NET virtual machine uses just-in-time compilation to execute code. .NET 5 uses
a just-in-time compiler named RyuJIT. It was initially introduced in 2013 (.NET Team,
2013) and took over the previous implementation in 2018 (Forstall, 2018). RyuJIT aimed
to improve optimization, code generation, and to open up the design and implementation.

The JIT compilation consists of different phases. The initial phase consists of im-
porting the CIL bytecode and transforming it into an intermediate representation. The
intermediate representation is then prepared for the optimization phases. During the
optimization phases, a range of optimization techniques is applied to the intermediate
representation. Finally, the back-end phases are used to emit native code based on the
intermediate representation. (RyuJIT Tutorial, 2021)

RyuJIT executes code by compiling method bodies into native code and then running
the native code. The code is JIT compiled as needed during execution and stores the
resulting native code in memory so that it is accessible for subsequent calls in the context
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of that process (Managed Execution Process, 2021). Unused methods are not compiled.
RyuJIT uses a single-tier approach for code execution (RyuJIT Tutorial, 2021). This
means that all used methods are JIT-compiled, and the JIT compilation is done only once.
Other approaches include interpreting rarely called methods to remove overhead caused
by the initial JIT phases and multi-tier JIT compilation. Multi-tier JIT tries to improve
performance by recompiling often used methods. Multi-tier JIT for RyuJIT has been in
the works but is not part of any stable release.

4.2 Garbage Collection

The .NET virtual machine uses a garbage collector to allocate and release memory on a
heap. The heap is divided into a small object heap and a large object heap. By default, the
small object heap stores object smaller than 85000 bytes, and the large object heap stores
all the larger objects. However, the large object heap size threshold can be modified. A
new heap allocation is made when a new object of reference type is created. The common
type system can be used to determine if a given object is a reference type.

The garbage collector is a generational garbage collector, which means that the ob-
jects stored in the memory are divided into generations. Using generations to divide the
objects allows the garbage collector to process the objects in smaller chunks. During col-
lection, the garbage collector tries to find and release objects no longer referenced by the
active program. Objects that are referenced by the active program are considered living,
and the objects no longer referenced dead.

In total, there are three generations. The generations use zero-based indexing. Gen-
eration 0 stores all the newly created small objects. Most of the objects are expected to
die during the first generation. Generation 1 and 2 are used to store long-living objects
from the previous generations. However, generation 2 is the last generation meaning that
the object can not move to another generation. An object is long-living if it is alive during
collection. A generation gets collected when it requires more space. The first genera-
tion is mostly for short-living objects since it gets collected when enough new objects
have been created. During collection, the living objects are moved to the next generation.
The next generation will be collected when it requires space. Large object heap has a
single generation, which is collected alongside generation 2. Collecting generation 2 is
considered a full garbage collection since every generation is collected.

4.3 Class Libraries

Class libraries are used to share common functionality between multiple applications.
They provide high interoperability between different programming languages using the
common language specification (CLS). This allows the class libraries to be used by any
CLS-compliant compiler. The common language specification is a subset of the common
type system.
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Class libraries are divided into three types. The first type is platform-specific class
libraries, which provide support to platform-specific APIs. The second type is portable
class libraries, which provide platform-independent APIs. Finally, the third type is .NET
Standard, which is a combination of portable and platform-specific APIs. The .NET Stan-
dard is a formal specification of APIs available on multiple implementations. However,
.NET 5 adopts a different approach to establishing uniformity, and this new approach
eliminates the need for .NET Standard in many scenarios (.NET Standard, 2021). How-
ever, it should be noted that .NET Standard is not deprecated. .NET Standard is still
needed for libraries that can be used by multiple .NET implementations (.NET Standard,
2021). Multiple implementations including, .NET Framework, .NET Core, and Mono,
provide support for the .NET standard.
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5 BYTECODE COMPILATION

Compiling a high-level programming language into bytecode is an important part of the
overall development process. It is important to understand what kind of bytecode is gen-
erated from a high-level programming language since the bytecode gets executed during
runtime. Optimizing high-level code without understanding what kind of bytecode it gen-
erates can lead to redundant changes. Additionally, some high-level language features are
converted into a different format. These language features are known as syntactic sugar,
which means that they provide simplified syntax for implementing existing functionality
(Syntactic Sugar - Wikipedia, 2021). The syntactic sugar is removed during compilation
by using lowering (Warren, 2017). This means that the resulting bytecode may be dif-
ferent from the original high-level programming language. Understanding the differences
between the high-level programming language and bytecode should help with understand-
ing how the code is executed. Additionally, bytecode inspection can be used to gain better
insight into the application logic.

C# is a high-level object-oriented programming language designed as the flagship lan-
guage for the Common Language Infrastructure. It is based on a public standard, ECMA-
334 C# Language specification (ECMA International, 2017). The standard contains def-
initions for the language syntax, representation, and semantic rules of C# programs. The
C# Language specification does not contain anything related to the Common Language
Infrastructure. Roslyn is a popular .NET Compiler Platform containing different APIs to
compile, analyze, and refactor C# and Visual Basic code. The Roslyn compiler compiles
C# and Visual Basic into CIL bytecode.

C# and CIL are both object-oriented programming languages. However, CIL uses
explicit syntax to store information, whereas C# contains implicit declarations. For ex-
ample, C# contains default access modifiers, CIL does not. C# classes inherit an object
class without explicit inheritance, CIL classes extend it explicitly. Every class in both
languages is based on the object class. This means that they must inherit the object class
at some point. Additionally, the CIL bytecode uses different syntax rules for identifiers.
This allows the C# compiler to generate bytecode identifier, which would be illegal in C#.
This makes overlap between the user and compiler-generated identifiers impossible.

Compiler back-ends for stack machines perform a DFS (depth-first search) traversal
on the parse tree and generate code as a side effect. Common subexpression elimina-
tion finds expressions with multiple uses. The resulting DAGs (directed acyclic graph)
complicate stack code generation since operands on the stack are consumed by their first
use and are thus unavailable for subsequent uses. DAGs can be converted to trees by
storing multiply-used values in temporaries and replacing references by references to the
corresponding temporaries. (Park et al., 2011)
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5.1 Hello World

Creating a simple Hello World application in C# requires only a few lines of code. An
example of this can be seen in Code example 1. It contains using-directive, class decla-
ration, main method, and method call. The using-directive is used to import the Console
class, which prints "Hello World" into a terminal. The compiler makes the static Main
method into the application entry point by default.
using System;
public class HelloWorld {

public static void Main() {
Console.WriteLine("Hello World");

}
}

Code example 1. Simple Hello World application in C#.

A compiled version of the Hello World application can be seen in Code example 2.
The bytecode version follows a similar class structure to C#. However, the class and
method declarations contain additional information, and the bytecode class contains an
explicit constructor and extends a System.Object class. The methods bodies start
with various keywords. However, the main bytecode instructions are prefixed with IL_
numbering. These instructions are translated into native instructions by the JIT compiler.

All CIL bytecode method bodies start with a .maxstack keyword. The keyword
describes how many items the method may push onto the evaluation stack. The max stack
size must be defined ahead of time. Commonly the max stack size is calculated by a
compiler during bytecode compilation. Items pushed onto the evaluation stack are placed
in stack slots. A single slot does not have a fixed size. This means that the value can not be
used to determine the evaluation stack frame size. However, the value is used to determine
how many values need to be tracked by an analyzer during the methods execution.

In the Code example 2, the Main method contains an additional .entrypoint
keyword, which marks the entry point for the application. The keyword is used because
the bytecode does not make any assumptions about the language or its entry point. The C#
compiler uses a static Main method as an entry point, which is why it placed the keyword
into the bytecode. Providing the C# compiler with a different entry point would move the
keyword in the bytecode.

Executing the bytecode would start by pushing the Main method onto the stack. The
Main method would be selected as the starting point based on the .entrypoint key-
word. The method would be pushed onto the stack as a stack frame. The stack frame
contains zero arguments and local variables. Additionally, it contains an empty evalua-
tion stack with eight stack slots, shown by the .maxstack keyword. The first instruction
inside the Main method would push the string "Hello World" onto the evaluation stack.
The next instruction would call the static WriteLine method, which would take the previ-
ously pushed string as an argument. The called method would be added as a stack frame
onto the stack, and it would consume the string from the Main methods evaluation stack.
Once the called method is executed, the stack frame would be removed from the stack,
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and the execution would return to the Main method. The last instruction would return
the method. Since the Main method is the entry point, the application would exit because
there are no more instructions to execute.

.class public auto ansi beforefieldinit HelloWorld
extends [System.Runtime]System.Object

{
.method public hidebysig static

void Main () cil managed
{

.maxstack 8

.entrypoint
IL_0000: ldstr "Hello World"
IL_0005: call void

[System.Console]System.Console::WriteLine(string)
IL_000a: ret

}

.method public hidebysig specialname rtspecialname
instance void .ctor () cil managed

{
.maxstack 8
IL_0000: ldarg.0
IL_0001: call instance void

[System.Runtime]System.Object::.ctor()
IL_0006: ret

}
}

Code example 2. Compiled Hello World application.

5.2 Lowering

Lowering (Warren, 2017) or desugaring (Syntactic Sugar - Wikipedia, 2021) consists of
internally rewriting more complex semantic constructs in terms of simpler ones. Lowering
is used during compilation to convert high-level code into lower-level code. Converting
the high-level code to a low-level code allows the compiler to reuse the logic used to
implement the lower-level logic. Lowering can also help with avoiding compiler bugs
and edge-cases (Warren, 2017). The Roslyn compiler contains a sub-directory dedicated
to lowering (Lowering - dotnet/roslyn, 2022).

C# implements various keywords to implement loops, including for, foreach,
while, do, and goto statements. Inspecting the bytecode generated from for, while,
and goto loops displays that they generate matching bytecode. Additionally, a foreach
loop can be lowered into a while loop. This means that all the different loops can be
expressed using a goto statement. The CIL bytecode uses branch instructions to jump
to a given location. This matches the behavior of goto statements. Figure 4 displays the
lowering of various loops statements in the Roslyn compiler (Lowering - dotnet/roslyn,
2022).
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Figure 4. Lowering loop statements.

Code example 3 displays three ways to implement semantically matching loops. Each
approach includes an initializer, condition, iterator, and statement. Separate iterator state-
ment shown in the examples is not required in while and goto statements but is in-
cluded to visualize the transformation from a for loop. The initializer is executed once
before entering the loop. This could include initializing local variables used by the loop.
The condition is used to determine if the loop statement should be executed. When enter-
ing the loop, the statement is executed. After the statement has been executed, the iterator
is executed. Finally, the loop returns to the condition. This is repeated while the condition
holds. The goto loop displayed in Code example 3 could be converted into a do state-
ment by removing the first goto statement because it would skip checking the condition
before the first iteration.

// For Loop.
’for’ ’(’ initializer ’;’ condition ’;’ iterator ’)’ statement
// While Loop.
initializer
’while’ ’(’ condition ’)’
’{’

statement
iterator

’}’
// Goto Loop.
initializer
’goto’ goto_condition ’;’

goto_body ’:’
statement
iterator

goto_condition ’:’
’if’ ’(’ condition ’)’

’goto’ goto_body ’;’

Code example 3. Lowering for loop.
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5.3 For Each

C# contains a foreach keyword that can be used to write a for-each statement. The
statement is lowered during bytecode compilation because the CIL bytecode does con-
tain a foreach statement. The for-each statement enumerates the elements of a collec-
tion, executing an embedded statement for each element of the collection (Statements
- C# language specification, 2022). The collection is enumerated using an enumera-
tor. An enumerator provides a way to iterate over all the elements stored in a collection
while hiding the implementation details. The enumerator consists of two main things: a
Current property and a MoveNext() method. The MoveNext() method advances
the enumerator to the next element. The method returns a boolean value which tells
if a move was made. After a successful move, the Current property can be used to
access the current element. Before the first move and after the last element, the value
of the property is undefined. The enumerator is retrieved from the collection using a
GetEnumerator() method. The method returns an enumerator for the collection.
This means that different collections can have different implementations for the enumer-
ator. The GetEnumerator(), Current, and MoveNext() are matched during the
bytecode compilation based on their signature. Signature-based matching allows the col-
lection and enumerator to be implemented without any dependencies. Code example 4
displays a foreach statement before and after compilation. The example shows how
the bytecode version is disassembled into a while loop.

// C#
Collection<int> collection = new Collection<int>();
foreach(int item in collection) {

Console.WriteLine(item);
}
// C# -> CIL -> C#
Collection<int> collection = new Collection<int>();
Collection<int>.Enumerator enumerator =

collection.GetEnumerator();
while(enumerator.GetNext()) {

int item = enumerator.Current;
Console.WriteLine(item);

}

Code example 4. A for-each statement before and after compilation.

In addition to signature-based matching during compilation, inheritance and inter-
faces can be used to implement and enforce the rules. The collections included in the
System.Collections and System.Collections.Generic namespaces use
various interfaces to enforce the signature-based rules. In addition to providing support
for the foreach statements, the interfaces are used by the System.Linq namespace.
The System.Linq namespace provides multiple methods for iterating and modifying
collections using different interfaces.
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5.4 Properties

In C# properties can be used to implement data encapsulation. Data encapsulation is a
property of a well-written object (Bartoníček, 2014). Data encapsulation should be used
to protect private data stored in objects. Commonly this is done by using accessors to
access private members of a class. Properties provide a mechanism to write accessors.
They are used similarly to fields. However, they consist of a get and set method. This
allows them to be used as fields while maintaining the flexibility of accessor methods.

Properties are syntactic sugar which is compiled into a simplified bytecode. This
includes converting the get and set methods into real methods and replacing the field uses
with the methods. Some metadata about the property is stored in the bytecode. Properties
are complicated since C# threats properties as fields and CIL as methods. The C# compiler
must transform properties into methods during compilation. In some cases, the compiler
may only have access to a compiled assembly, which means that the compiler must use
the metadata stored in the bytecode to determine if a property is being used.

There are different types of properties. C# version 1.0 introduced properties that
provided a field-like syntax to implement a get and set method. C# version 3.0 introduced
auto-properties. Auto-properties provide a field and accessors without data validation.
The bytecode versions of auto-properties include a field, a get method, a set method, and
property metadata. C# version 6.0 extended auto-properties to support field initialization.
Additionally, properties can exclude either method or change the visibility of one method.
However, the changed visibility must be less than the property’s visibility.

Code example 5 displays a simple property that is used to access a private field. It
contains a get method that returns the value stored in the private field. It uses an arrow
function which removes the need to use the return keyword. The property also contains a
set method, which assigns a new value to the private field. The set method uses a value
keyword, which represents the value given to the property. Code example 6 displays a
compiled version of the property. Similar to the C# version, it contains a field and a prop-
erty. However, the bytecode version includes two methods that the property references.

public class Example {
private int m_value;
public int Value {

get => m_value;
set => m_value = value;

}
}

Code example 5. C# class with property.

When a CIL bytecode method is executed, a frame is added to the evaluation stack.
Stack frames are used to limit the visibility of each method. This means that the evaluation
stack is made out of frames, which contain the values used by methods. The stack frame
provides each method with an empty evaluation stack, input array, and local variable ar-
ray. Providing each method with an empty evaluation stack simplifies the overall process
since methods can only work with their own evaluation stack. In summary, the process
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virtual machine contains an evaluation stack that contains frames. Each frame contains an
evaluation stack for instructions and values and an array for method parameters and local
variables.

In Code example 6 the get_Value() method receives zero parameters, but the first
instruction loads a parameter stored at the index zero. This is because instance methods
receive the target object as an argument. The method works by first pushing the target
object onto the evaluation stack. It then pushes an instruction to load a field from the
target object at the top of the evaluation stack. The load operator consumes the target
object from the stack and replaces it with the result. Finally, a return instruction will
return the value stored in the evaluation stack. The set_Value() method in Code
example 6 receives a parameter. However, it still receives the target object, which means
that the input array contains two values. The first instruction pushes the target object
onto the evaluation stack. The second instruction pushes the value parameter onto the
evaluation stack. The third instruction consumes these values by storing the value in the
object. Finally, the method returns.

.class public auto ansi beforefieldinit Example
extends [System.Private.CoreLib]System.Object

{
.field private int32 m_value

.method public hidebysig specialname
instance int32 get_Value () cil managed

{
.maxstack 8
IL_0000: ldarg.0
IL_0001: ldfld int32 Example::m_value
IL_0006: ret

}

.method public hidebysig specialname
instance void set_Value (

int32 ’value’
) cil managed

{
.maxstack 8
IL_0000: ldarg.0
IL_0001: ldarg.1
IL_0002: stfld int32 Example::m_value
IL_0007: ret

}

.property instance int32 Value()
{

.get instance int32 Example::get_Value()

.set instance void Example::set_Value(int32)
}

}

Code example 6. Compiled C# class with property.
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Code example 7 contains an auto property version of the property displayed in Code
example 5. Using an auto property removes the need to define a field to store the value.
Additionally, the get and set methods are reduced to simple keywords. Auto properties
do not allow method bodies because they are compiler generated. The bytecode version
of auto property can be seen in Code example 8. Constructor and compiler-generated
attributes have been excluded from the example. The compiled version of property in
Code example 6 and auto property in Code example 8 provide matching bytecode with
only a different field name. This means that a simple property and auto-property provide
matching results at a bytecode level.

public class Example {
public int Value { get; set; }

}

Code example 7. C# class with auto property.

.class public auto ansi beforefieldinit Example
extends [System.Private.CoreLib]System.Object

{
.field private int32 ’<Value>k__BackingField’

.method public hidebysig specialname
instance int32 get_Value () cil managed

{
.maxstack 8
IL_0000: ldarg.0
IL_0001: ldfld int32 Example::’<Value>k__BackingField’
IL_0006: ret

}

.method public hidebysig specialname
instance void set_Value (

int32 ’value’
) cil managed

{
.maxstack 8
IL_0000: ldarg.0
IL_0001: ldarg.1
IL_0002: stfld int32 Example::’<Value>k__BackingField’
IL_0007: ret

}

.property instance int32 Value()
{

.get instance int32 Example::get_Value()

.set instance void Example::set_Value(int32)
}

}

Code example 8. Compiled C# class with auto property.
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5.5 Indexers

In C# indexer allows an object to be indexed in the same way as an array (ECMA Interna-
tional, 2017, p. 322). Similarly to properties, indexers are syntactic sugar that is compiled
into a simplified bytecode. Like properties, indexers are compiled into bytecode meth-
ods. Some key differences for indexers include no user-defined names, signature-based
identification, always an instance member, and support for additional parameters (ECMA
International, 2017, p. 323).

Code Example 9 displays how an indexer can be declared and used. Code Example
10 displays a shortened version of the compiled bytecode class. The example shows that
the indexer has been compiled into separate get and set methods. Additionally, the indexer
has been stored as property metadata in the bytecode.

public class Example {
private int[] m_values;
public int this[int index] {

get => m_values[index];
set => m_values[index] = value;

}
}
// Using the indexer:
var example = new Example();
example[0] = 0;

Code example 9. C# class with indexer.

.class public auto ansi beforefieldinit Example
extends [System.Runtime]System.Object

{
.field private int32[] m_values
.method public hidebysig specialname

instance int32 get_Item (
int32 index

) cil managed
// ...
.method public hidebysig specialname

instance void set_Item (
int32 index,
int32 ’value’

) cil managed
// ...
.property instance int32 Item(

int32 index
)
{

.get instance int32 Example::get_Item(int32)

.set instance void Example::set_Item(int32, int32)
}

}

Code example 10. Compiled C# class with indexer.
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6 BYTECODE INSPECTION

In this chapter, we will perform benchmarks and inspect the bytecode generated from
different C# features. We will start by comparing the performance between an array and
the generic List<T> included in the System.Collections.Generic namespace.
Both the array and list can be used to store a sequence of elements. However, the list
extends the functionality provided by an array. Comparing the performance between an
array and a list should give us an idea of the possible performance impact the selected
high-level data structure may have. After comparing arrays and lists, we will compare the
performance between fields, properties, and indexers with bare-bone implementations to
try and measure the performance impact of syntactic sugar.

Inspecting the C# version of the generic list shows that it uses an internal array to store
the values. Access to these values is provided using methods, properties, and an indexer.
When a list is created, it allocates an internal array with an initial capacity. Access to the
internal array is limited based on a size variable. The size variable describes the number
of elements stored in the list. New elements can be added using various add methods,
increasing the size. Existing elements can be removed using various removal methods,
decreasing the size. When values in the list are accessed, the size variable is used as the
upper bound. The size is always smaller or equal to the capacity. By initially allocating a
larger array than required, new elements can be added to the end without reallocating the
entire array. The capacity is increased by reallocating the entire array into a new larger
array. (List.cs, 2022)

Benchmarks are used to measure the performance of a given solution (Akinshin,
2019, p. 9). We are performing the benchmarks using the BenchmarkDotNet frame-
work. Using a benchmarking framework helps with automating the process and avoiding
different pitfalls. Arrays and lists were selected because they provide a flexible platform
to perform benchmarks. They allow the benchmarks to be performed with various input
sizes. Iterating over a sequence of elements requires the same action to be repeated multi-
ple times. Accessing different elements prevents the runtime from optimizing the solution
for a single input. Iterating over all the elements stored in an array requires a linear O(N)

loop. The linear time complexity means that the runtime should scale linearly with the
input size. If a solution does not scale linearly, it may have some edge cases which make
it unpredictable. In our case, the syntactic features may add unexpected overhead.

The benchmarked methods do not implement any platform-specific optimizations.
Additionally, the methods do not contain any intentional heap memory allocations. Re-
moving heap allocations removes the possibility of a garbage collection cycle, which
could add additional overhead to the benchmark. In some cases, syntactic sugar in C#
may produce hidden heap allocations by hiding the explicit object creation (Kokosa, 2018,
pp. 481, 489–490). However, the hidden memory allocations in C# are always visible on
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the bytecode level.
It is up to the virtual machine to optimize the code. The virtual machine defines

automatic memory layouts for objects and inlines the code. Bound checking is one thing
to consider when working with arrays. Bound checking ensures that a given index is
within the array. Akinshinin (Akinshin, 2019, pp. 73–76) states that using arrays length
in the condition of the loop can help the JIT compiler to eliminate bound checking. This
is because it automatically uses the upper limit. It is also noted that these types of features
should not be exploited while benchmarking.

The source code and used results are available on GitHub (Löppönen, 2022). All
benchmarks were performed using a release build. The benchmarks are written for C#
9.0, compiled with Roslyn, and benchmarked using .NET 5.0. The benchmarks are di-
vided into separate classes that contain a setup and the benchmark methods. The setup
is used to create and populate the tested data structure. The data structures store 32-bit
integers, starting from zero and increasing by one for each position. The 32-bit integer
was selected for simplicity. The data structures use a generic type parameter to define the
type of the stored objects. However, the benchmarking methods use an explicit type. The
benchmarks were performed using three input sizes, including 1000, 10000, and 100000
elements. It should be noted that the largest input results in an overflow resulting in an
incorrect result.

6.1 BenchmarkDotNet

BenchmarkDotNet is a .NET benchmarking framework. The framework can be used to
transform methods into benchmarks. Transforming a method into a benchmark allows the
framework to test its execution time and memory usage. In addition to benchmarking, the
framework helps to avoid common benchmarking mistakes. The framework provides dif-
ferent attributes that are used to mark different test-related methods and fields. In addition
to just testing methods, it provides support for setup and multiple input values. This pro-
vides a flexible framework for testing the performance with multiple inputs. (Akinshin,
2019, pp. 367–373; BenchmarkDotNet, 2021)

The framework supports multiple runtimes. It automatically generates isolated projects
for each runtime setting and builds them in release mode. It then uses the input values
and methods to generate all possible combinations. Each combination for a benchmark
process is launched a few times to try and measure its performance. Each launch contains
multiple iterations, where a single iteration includes invoking the benchmarked method.
Before the actual benchmarking start, a few warmup methods are performed. A warmup
run is used to verify that the JIT compiler has compiled the target method. An overhead
warmup is used to evaluate the performance impact of the framework. A pilot run is used
to determine how many iterations should be used to test the method. Finally, the bench-
mark iterations are executed, and a summary of the results is created. (How it works -
BenchmarkDotNet, 2019)
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6.2 Benchmark Methods

All the benchmarking methods iterate over the target data structure, counting the sum of
all the stored elements. The tested data structures are allocated before the benchmark,
resulting in zero heap memory allocation during the benchmarks. We are only testing
the performance of accessing values stored in the targeted data structure. Only accessing
values allows us to avoid reallocations resulting from modifying a targeted data structure.

There are a few things to consider when testing the performance. First, we consider
where the value is stored. Based on the Common Type System, both the array and the list
are stored on the heap. However, they can still be referenced in various ways. They can
be stored in a field in an object, local variable, or received as an argument to a method.
When a value is stored in a field, it requires few instructions to load when used inside
a method. The method receives the owner object as the first argument. When a field is
used, the owner object is pushed onto the evaluation stack, and then an ldfld instruction
is used to load the value stored in the field. When a value is received as an argument or
declared as a local variable, ldloc and ldarg instructions can be used to push the value
onto the evaluation stack. Secondly, we can consider the non-indexed values used during
the loop. For example, the length of a data structure is commonly used in the condition
of the loop. However, if the length does not change, the length can be stored in a local
variable. Storing the length in a local variable removes the need to load the length from
the target object during each iteration. Finally, the implementation of a foreach loop is
unknown to the user, which can yield widely different results.

There are multiple ways to implement linear loops. Because the C# compiler uses
lowering to rewrite loops, we will only consider for and foreach loops. After lower-
ing for, while, and goto statement loops produce matching bytecode. A for loop
can iterate over the target data structure either forwards or backward. A forward loop
starts from the first element and stops at the last element. A backward or a reverse loop
starts from the last element and stops at the first element. The main difference between a
forward and backward loop is hidden in the initializer and condition. Since the backward
loops start from the last element, the length of the data structure is retrieved only once
during the initialization. This allows the condition to compare a local value to a constant
value.

Code example 11 displays a simplified class structure of a benchmark class. It shows
a field used to store the benchmarked structure with two benchmark methods. The bench-
mark method is used to benchmark the performance when the target is stored in a field.
The static benchmark method is used to benchmark the performance when the target is
received as an argument. The static method still uses the same field as the regular method.
However, the field is only loaded once before the static method is called. Additionally,
Code example 11 shows the bytecode instruction used to access the target when received
as a field or as an argument.

Code example 12 displays the bodies of different benchmark methods. The example
displays how the target is iterated and how the value is accessed inside the loop. The
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public class BenchmarkClass {
private int[] m_array;

[Benchmark]
public int BenchmarkMethod() {

var sum = 0;
for(int i = 0; i < m_array.Length; i++) {

//IL_0006: ldarg.0 // this
//IL_0007: ldfld int32[]
// BenchmarkClass::m_array // this.m_array
//IL_000c: ldloc.1 // i
//IL_000d: ldelem.i4 // this.m_array[i]
sum += m_array[i];

}
return sum;

}

[Benchmark]
public int StaticBenchmarkMethod() {

return StaticBenchmarkMethod(m_array);
}

private static int StaticBenchmarkMethod(int[] array) {
var sum = 0;
for(int i = 0; i < array.Length; i++) {

//IL_0007: ldarg.0 // array
//IL_0008: ldloc.1 // i
//IL_0009: ldelem.i4 // array[i]
sum += array[i];

}
return sum;

}
}

Code example 11. Benchmark class structure.

method names have been shortened to single-character names shown and described in
Table 2. These names will be used to display the results. Methods A to E are forward
loops, and F and G are backward loops. Method A, a simple for loop, will always be
used as the baseline performance measurement. Method B is a foreach loop. It will
be excluded if the target does not implement the requirements. Methods C, D, and E are
extensions to the for loop. They store the length, target, or both in a local variable before
the loop starts. Method F is a backward loop, and Method G is a backward loop that stores
the target in a local variable. The initializer in the backward loop retrieves the length of
the array. Because the length is only retrieved once, it is not stored in a local variable
separately.
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Method Description

A For loop

B Foreach loop

C For loop, with a fixed length

D For loop, with a local reference to the target

E For loop, with a fixed length and local reference to the target

F Reverse For loop

G Reverse For loop, with a local reference to the target

Table 2. Benchmark method descriptions.

// Method A
for(int i = 0; i < m_array.Length; i++) {

m_array[i];
}
// Method B
foreach(var element in m_array) {

element;
}
// Method C
int length = m_array.Length;
for(int i = 0; i < length; i++) {

m_array[i];
}
// Method D
int array = m_array;
for(int i = 0; i < array.Length; i++) {

array[i];
}
// Method E
int length = m_array.Length;
int array = m_array;
for(int i = 0; i < length; i++) {

array[i];
}
// Method F
for(int i = m_array.Length - 1; i >= 0; i--) {

m_array[i];
}
// Method G
int array = m_array;
for(int i = array.Length - 1; i >= 0; i--) {

array[i];
}

Code example 12. Loops used to iterate over a collection of elements.
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Non-static Methods

Array List

Method Mean StdDev Ratio Mean StdDev Ratio

A 658,8 ns 2,06 ns 1,00 1283,2 ns 7,73 ns 1,95

B 437,0 ns 1,47 ns 0,66 2706,7 ns 8,61 ns 4,11

C 651,8 ns 2,20 ns 0,99 722,0 ns 2,24 ns 1,10

D 670,8 ns 2,25 ns 1,02 694,1 ns 2,80 ns 1,05

E 672,7 ns 3,30 ns 1,02 693,4 ns 1,95 ns 1,05

F 653,1 ns 1,52 ns 0,99 724,3 ns 3,29 ns 1,10

G 658,9 ns 2,90 ns 1,00 694,2 ns 2,65 ns 1,05

Static Methods

Array List

Method Mean StdDev Ratio Mean StdDev Ratio

A 668,7 ns 2,41 ns 1,02 692,9 ns 4,08 ns 1,05

B 446,2 ns 5,07 ns 0,68 2712,4 ns 17,92 ns 4,12

C 677,6 ns 3,66 ns 1,03 693,0 ns 2,86 ns 1,05

D 670,7 ns 2,56 ns 1,02 693,8 ns 2,95 ns 1,05

E 675,4 ns 2,05 ns 1,03 693,2 ns 2,91 ns 1,05

F 657,9 ns 2,47 ns 1,00 694,5 ns 2,95 ns 1,05

G 657,3 ns 2,87 ns 1,00 692,8 ns 2,52 ns 1,05

Table 3. Array and List benchmark results (n = 1000).

6.3 Baseline Performance

The baseline performance comparison includes performing all the previously mentioned
benchmark methods for arrays and lists. Table 3 displays the benchmark results. The table
displays the results for an input size of 1000. In total, the benchmarks were conducted
using three different input sizes. The table is divided into two halves horizontally. The
top half displays the performance of non-static methods, and the bottom half displays
the performance of static methods. The mean column shows the mean runtime of the
method. The StdDev column displays the standard deviation for the runtime. The ratio
column displays the ratio current mean/baseline mean, where the baseline mean is the
mean of the non-static method A for an array. The ratio column can be used as a guideline
to find differences. However, it is only based on the mean and should not be used as a
precise measurement.

Figures 5 and 6 visualize the results shown in Table 3. The figures display the mean
and standard deviation of each method. The standard deviation is visualized by a vertical
bar around the mean. Figure 5 displays all the methods. It can be seen that methods A and
B contain some variation compared to the other methods. Figure 6 shows the same results
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Figure 5. Array and List benchmark results (n = 1000).

Figure 6. Closeup of Array and List benchmark results for methods C-G (n = 1000).
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Figure 7. Array and List benchmark results (n = 10.000).

Figure 8. Array and List benchmark results (n = 100.000).
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without A and B columns. These result show that the list adds additional overhead in all
methods. Figures 7 and 8 display additional results for larger input sizes. They show that
the runtime scales linearly with the input size as expected.

Looking at method A in Figure 5, we can see one outlier. The methods runtime almost
doubles when the list is accessed through a field in the owner object. Method A produces
almost identical bytecode for the non-static and static methods. The only difference is that
the non-static version uses the ldfld instruction to load the list from the owner object.
The load instruction could be considered as the reason for the longer runtime. However,
the same changes can be seen when using an array, but the runtime does not change. This
suggests that having to load an object from a field produces a slower runtime.

Looking at method B in Figure 5, we can see that there is a big difference between
using an array and a list. It shows that enumerating over an array using the foreach
statement provides the fastest runtime. Looking at the results produced by the list shows
the slowest runtimes. However, it is important to note that the list provides a custom enu-
merator implementation. The implementation contains additional logic that is executed
during the enumeration. At this point, the additional logic implemented by the list is
unknown. This makes the performance comparison difficult and unfair since we do not
know what the list is doing. We are not going to cover the additional logic added by the
list. However, a quick overview shows that the list tracks its state and throws an error if
the collection is modified during enumeration. This results in a safe way to enumerate
over a collection.

Figure 5 shows that methods C to G provide similar results. These methods are better
shown in Figure 6. Non-static methods C and F for a list show that storing the list’s
item count in a local variable can reduce the overall runtime. Storing the count in a local
variable removes one ldfld instruction and almost halves the runtime compared to the
regular for loop shown by method A. However, methods C and F containing the ldfld
instruction and still results in a slower runtime than methods D, E, and G without the
instruction. The generic list seems to provide a consistent performance when the list is
stored in a local variable or received as an argument.

For arrays, method B seems to provide the best runtime. At first glance, methods B
and D seem similar. However, they contain some minor details that can be used to explain
the performance difference. Code examples 13 and 14 include small samples of methods
B and D. Both samples display the beginnings of the methods and how the addition is
performed. The beginnings display the code size, max stack size, and local variables.
Code example 13 shows that method B has a max stack size of two and declares four
local variables. Two of the local variables are compiler generated and do not have names.
They have been named as "array" and "i" in the comments. Code example 14 show that
method D results in a smaller code size with three local variables. However, it has a
max stack size of three. Code example 13 shows that the foreach statement splits the
addition into two parts. The first part includes loading the current value and storing it in a
local variable. The second part includes loading the current sum and the current value and
adding them together. The max stack size is reduced by using the local variables to store
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the current value. In the Code example 14, the addition starts by pushing the current sum
onto the evaluation stack, followed by loading the current value and adding them together.
Having to load the current value on top of the current sum increases the stack size.

// Header size: 12
// Code size: 33 (0x21)
.maxstack 2
.locals init (
[0] int32 sum, //Total sum "sum"
[1] int32[], //Target array "array"
[2] int32, //Iterator "i"
[3] int32 v //Current value "v"

)
// ...
// Counting sum: Description Stack
IL_000d: ldloc.1 //Push "array" ["array"]
IL_000e: ldloc.2 //Push "i" ["array", "i"]
IL_000f: ldelem.i4 //array[i] [array[i]]
IL_0010: stloc.3 //"v" = array[i] []

IL_0011: ldloc.0 //Push "sum" ["sum"]
IL_0012: ldloc.3 //Push "v" ["sum", "v"]
IL_0013: add //"sum" + "v" ["sum" + "v"]
IL_0014: stloc.0 //"sum" = "sum" + "v" []
// ...

Code example 13. Sample of method B for an array.

// Header size: 12
// Code size: 31 (0x1f)
.maxstack 3
.locals init (
[0] int32 sum, //Total sum "sum"
[1] int32[] arr, //Target array "array"
[2] int32 i //Iterator "i"

)
// ...
// Counting sum: Description Stack
IL_000d: ldloc.0 //Push "sum" ["sum"]
IL_000e: ldloc.1 //Push "array" ["sum", "array"]
IL_000f: ldloc.2 //Push "i" ["sum", "array", "i"]
IL_0010: ldelem.i4 //array[i] ["sum", array[i]]
IL_0011: add //"sum" + array[i] ["sum" + array[i]]
IL_0012: stloc.0 //"sum"="sum" + array[i][]
// ...

Code example 14. Sample of method D for an array.
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Non-static Methods

Method Mean Ratio Code Size Max Stack Locals

A 658,8 ns 1,00 34 3 2

B 437,0 ns 0,66 33 2 4

C 651,8 ns 0,99 36 3 3

D 670,8 ns 1,02 31 3 3

E 672,7 ns 1,02 38 3 4

F 653,1 ns 0,99 36 3 2

G 658,9 ns 1,00 33 3 3

Static Methods

Method Mean Ratio Code Size Max Stack Locals

A 668,7 ns 1,02 24 3 2

B 446,2 ns 0,68 28 2 4

C 677,6 ns 1,03 26 3 3

D 670,7 ns 1,02 26 3 3

E 675,4 ns 1,03 28 3 4

F 657,9 ns 1,00 26 3 2

G 657,3 ns 1,00 28 3 3

Table 4. Array benchmark method bytecode statistics. Mean (n = 1000).

Table 4 displays statistics about the compiled bytecode methods. It shows the runtime
means and mean ratio compared to the non-static A method. The code size column dis-
plays the bytecode size. The max stack shows the max stack size stored in the bytecode
generated by the compiler. Finally, the locals column displays the number of local vari-
ables declared by the method. In addition to the shown statistics, it should be noted that
all methods receive a single argument. The non-static methods receive the owner object,
and the static methods receive the array. There does not seem to be a direct relation-
ship between the code size and execution time. Comparing matching static and non-static
methods show that the code size decreases, but it does not increase the performance.

The baseline performance benchmark results have shown that arrays provide consis-
tent runtimes when iterated. The main performance difference is achieved by using a
foreach statement to enumerate the elements. The improved performance seems to be
caused by minimizing the max stack size. The max stack size can be decreased by using
local variables to store intermediate values rather than keeping them on the stack. The
bytecode generated from the foreach statement for arrays can be replicated by a for
loop by introducing a new local variable inside the loop to store the current value. A
for loop that replicates the foreach loops bytecode for arrays can be seen in the Code
example 15. The generic list included in the standard library seems to contain more vari-
ation. It seems to provide slower runtime when accessed through a field. The foreach
statement provides the slowest runtime. However, the decrease in performance is caused
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by additional checks made by the implementation of the list. The additional checks can
be used to avoid errors caused by modifying the collection during enumeration. Because
the list contains various implementation details, it is hard to tell to what extent syntactic
sugar affects the performance.

private int[] m_array;
public int ReplicateForeach() {

var sum = 0;
var arr = m_array;
for(int i = 0; i < arr.Length; i++) {

var v = arr[i];
sum += v;

}
return sum;

}

Code example 15. For-statement that produces matching bytecode to the for-each
statement when enumerating an array.

The performance increase shown by the foreach loop seems to match Akinshin’s
(2019, pp. 407–411) Case study 2: Local variables, where the introduction of a local
variable causes an increase in performance. In the case study, the addition of a local
variable changed how a value is created. In our case, adding a local variable reduces the
max stack size.

It should be noted that local variables behave differently in C# and CIL. In C#, local
variables must be declared before being used, and they can have different scopes inside
the method. In CIL, all the local variables are declared at the beginning of the method
before any instructions. This means that the bytecode does not contain scopes for local
variables and all the variable assignments use the memory reserved in the stack frame.
Assigning a new value to a local variable allocated memory only if the statement on the
right-hand side requires allocating memory. The difference is important as it can affect
how the variable declaration is seen. In C#, a variable declaration inside a loop can be
seen as a new variable on each iteration. However, in CIL, a single local variable is used
during every iteration. CIL reusing a single local variable means that the C# variable
declarations are mainly used for compile-time operations and checks.
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6.4 Syntax Performance

In the previous section, we concluded that iterating arrays provides consistent perfor-
mance. In most cases, the generic list included in the standard libraries provided similar
performance to arrays. However, in some approaches, the generic list showed a decrease
in performance. The list provides additional features using properties and indexers. How-
ever, these properties and indexer may contain some additional implementation details
that were not covered. In this section, we aim to test the performance impact of properties
and indexers. The performance impact is measured by providing access to an array us-
ing properties and indexers. By hiding an array behind syntactic sugar and performing the
same benchmark methods, we can measure the performance impact of the syntactic sugar.
Using bare-bone syntactic sugar to access the array allows us to test the performance cost
added by the syntax sugar rather than any implementation details.

We aim to test the performance by storing an array inside a class and a struct. Using
structs to implement data structures is not recommended, as they are meant for small
and short-lived values (Choosing Between Class and Struct, 2021). The main difference
between classes and structs is that classes are reference types, whereas structs are value
types. Based on the Common Type System, this affects how they are treated and stored in
the memory during execution. We test structs to see the performance impact of syntactic
sugar. Properties and indexers do not have to be used to implement complex features.
They can add simple functionality that utilizes existing values to generate new values.
For example, they can return values based on other values stored in the object. Like
the generic list, we use a generic type parameter to define the type of the stored elements.
Using a generic type provides a flexible and reusable implementation of the tested method.
Code example 16 demonstrates how a field, property, and indexer are declared using a
generic type.

public class GenericClass<T> {
// Array with generic type.
public T[] m_array;
// Auto-property array with a generic type.
public T[] Array { get; set; }
// Indexer with a generic type.
public T this[int index] {

get => m_array[index];
set => m_array[index] = value;

}
// Read-only property for the arrays length.
public int Length => m_array.Length;

}

Code example 16. Using generic type to declare field, property, and indexer.
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Table 5 displays the benchmark results for classes, and Table 6 displays the bench-
mark results for structs. The tables have been divided into two horizontal halves. The
top half shows the results for non-static methods, and the bottom half displays the results
for static methods. The indexer implementation hides the array and does not implement
a custom enumerator. Not having a custom enumerator prevents performing method B
on indexers. The field column displays the benchmark results when storing the array in a
public field. The property column displays the benchmark results when storing the array
in an auto-property. The indexer column displays the benchmark results when storing the
array in a private field and accessing the elements through an indexer. Storing the array
in a private field prevents others from accessing its length. Additional read-only property
is used to provide access to the length of the array.

Figure 9 visualizes the results for classes shown in Table 5 and Figure 10 visualizes
the results for structs shown in Table 6. The figures display the mean and standard devi-
ation of each method. The standard deviation is visualized by a vertical bar around the
mean. Additionally, Figure 11 displays the results for properties and indexers in classes
and structs. These are the same results shown in Tables 5 and 6.

Overall, the benchmark results show that the performance impact of syntactic sugar
is minimal. However, in Figures 9 and 10 method A shows that using either property
or indexer adds additional overhead in a specific condition. This condition requires a
non-static method that stores the target object in a field. The decrease in performance is
not seen in the static counterpart or when the target object is stored in a local variable.
Additionally, Figure 11 shows that structs provide smaller overhead compared to classes.
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Non-static Methods

Field Property Indexer

Method Mean StdDev Mean StdDev Mean StdDev

A 660,3 ns 3,98 ns 1303,1 ns 4,61 ns 1304,1 ns 5,08 ns

B 443,9 ns 1,36 ns 444,6 ns 1,45 ns - -

C 649,8 ns 2,12 ns 653,7 ns 3,52 ns 654,8 ns 2,75 ns

D 675,6 ns 2,53 ns 675,5 ns 3,18 ns 662,1 ns 2,22 ns

E 668,9 ns 2,79 ns 673,3 ns 2,44 ns 653,2 ns 2,74 ns

F 655,2 ns 4,42 ns 687,0 ns 22,47 ns 672,3 ns 11,51 ns

G 658,4 ns 2,41 ns 659,3 ns 2,02 ns 657,0 ns 3,88 ns

Static Methods

Field Property Indexer

Method Mean StdDev Mean StdDev Mean StdDev

A 661,5 ns 2,72 ns 658,9 ns 2,56 ns 659,8 ns 3,31 ns

B 556,5 ns 3,17 ns 435,2 ns 2,52 ns - -

C 651,8 ns 2,02 ns 652,5 ns 4,09 ns 655,2 ns 5,05 ns

D 673,6 ns 2,94 ns 675,0 ns 2,42 ns 662,3 ns 4,39 ns

E 674,5 ns 3,93 ns 675,9 ns 2,83 ns 652,2 ns 3,13 ns

F 654,7 ns 3,22 ns 652,7 ns 3,52 ns 655,9 ns 3,62 ns

G 658,8 ns 2,81 ns 658,1 ns 2,03 ns 653,5 ns 2,94 ns

Table 5. Syntactic sugar performance on classes (n = 1000).

Inspecting the bytecode for non-static A methods shows that the value in a given
index is accessed in a different manner in each approach. All the approaches start by
pushing the owner object onto the stack. The owner object is then used to load the field
which contains the target object. When the target object is an array stored in a field, a
ldfld instruction is used to load the array onto the stack. Once the array is on the stack,
the current index is pushed onto the stack. Finally, a ldelem.i4 instruction is used to
access the element at the current index. Properties replace the array loading instruction
with a method call that retrieves the array. Indexers push this further by implementing
a get method that receives the current index as an argument and returns the element as
a result. This results in the indexer hiding much of the implementation inside the get
method. Additionally, classes and structs use different instructions to call the methods.
Classes use a callvirt instruction while structs use call instruction. In addition to
accessing the value at the current index, the length of the array is accessed in a similar
manner.

Comparing non-static methods A, C, and F in Figure 11 show that storing the length
in a local variable can remove the overhead seen in method A. Converting the condition
of the loop into a comparison between local variables removes a load field instruction and
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Non-static Methods

Field Property Indexer

Method Mean StdDev Mean StdDev Mean StdDev

A 660,2 ns 2,30 ns 916,0 ns 3,30 ns 917,4 ns 3,57 ns

B 432,0 ns 1,28 ns 443,1 ns 1,87 ns - -

C 655,7 ns 3,66 ns 650,7 ns 2,76 ns 652,5 ns 3,16 ns

D 674,7 ns 2,72 ns 673,3 ns 2,63 ns 674,8 ns 3,89 ns

E 675,6 ns 1,94 ns 678,0 ns 4,22 ns 673,5 ns 3,47 ns

F 658,4 ns 3,11 ns 653,2 ns 3,56 ns 651,6 ns 2,44 ns

G 657,4 ns 1,94 ns 658,1 ns 2,08 ns 657,1 ns 2,61 ns

Static Methods

Field Property Indexer

Method Mean StdDev Mean StdDev Mean StdDev

A 674,8 ns 2,71 ns 674,7 ns 4,64 ns 673,4 ns 2,82 ns

B 443,9 ns 2,22 ns 431,4 ns 0,78 ns - -

C 677,3 ns 1,99 ns 673,9 ns 2,91 ns 675,4 ns 3,20 ns

D 668,8 ns 2,70 ns 671,7 ns 1,59 ns 673,9 ns 2,89 ns

E 672,8 ns 2,06 ns 674,2 ns 2,87 ns 673,6 ns 2,59 ns

F 656,4 ns 2,67 ns 666,5 ns 8,70 ns 657,9 ns 2,67 ns

G 657,8 ns 2,68 ns 657,3 ns 2,32 ns 657,5 ns 2,19 ns

Table 6. Syntactic sugar performance on structs (n = 1000).

a method call from each iteration.
Static methods seem to provide consistent performance. This can be seen in Figure

11. The static methods do not include the initial loading of the target field. The static
methods receive the target object as an argument. Receiving the target object as an argu-
ment allows the argument to be loaded onto the stack. Once the target object is on the
stack, the required method can be called. The main difference between the static methods
is the instruction used to load the arguments. Arguments with a reference type are loaded
onto the stack with a ldarg instruction. Arguments with a value type are loaded onto
the stack with a ldarga.s instruction.

Overall, the non-static method A seems to provide a special condition that adds addi-
tional overhead to the performance. The additional overhead can be removed by moving
a ldfld instruction outside the loop. The instruction can be moved out of the loop by
storing the target object in a local variable or by receiving it as an argument. Otherwise,
using properties or indexers does not seem to add significant overhead to the performance.
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Figure 9. Syntactic sugar performance on classes (n = 1000).

Figure 10. Syntactic sugar performance on structs (n = 1000).
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Figure 11. Properties and indexers on classes and structs (n = 1000).

6.5 Discussion

We have shown how various C# features get transformed during bytecode compilation.
We have also performed benchmarks on the high-level changes. We chose to benchmark
only two loop statements because multiple loop statements produce matching bytecode
after being lowered during compilation. Lowering is used to rewrite the loops with sim-
plified constructs, resulting in a matching bytecode. We also noted that there are some
differences in local variables between C# and CIL. In C#, local variables can be declared
when needed. The declaration also affects the scope of the variable. In CIL, all the vari-
ables are declared before any instructions, and they do not have scopes.

The benchmark results showed that arrays and lists generally provide similar run-
times. Arrays provide consistent performance, with room for small improvements. The
best performance for arrays is provided by the foreach statement, which uses local
variables to store the target object and the enumerated value. Storing the enumerated
value in a local variable removes the need to hold it on the stack. The generic list showed
more variation in the results. In some cases, the generic list added additional overhead
to the performance. When the list is used through a field, it adds additional overhead
to the performance. The overhead can be removed by storing the list in a local variable
before the loop or by receiving the list as an argument. These changes simplify accessing
the list inside the loop. The foreach statement provided the slowest runtime for the
generic list. The list contains a custom enumerator used during the foreach statement.
The custom enumerator contains implementation details that were not covered. Having
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custom implementation details makes the performance comparison harder since the com-
pared implementations may provide different features.

Simple properties and indexers without additional code do not add significant over-
head to the performance. Additionally, the runtime for all features scaled linearly to the
input size as expected. Properties and indexers seem to decrease the performance when
used in a method through a field. In addition to classes, the same decrease in performance
can be seen when using structs. This performance decrease is similar to the one seen in
the generic list. The performance decrease can be avoided by storing the targeted data
structure in a local variable before the loop and using the local variable inside the loop.
Storing the targeted data structure in a local variable reduces the number of instructions
required to access the values. Using an array stored in a field did not show the same per-
formance decrease. The main difference between using an array and syntactic sugar to
access an array is the replacement of direct bytecode instructions with method calls.

The code size of the benchmarked methods did not seem to affect the performance.
However, the benchmarked methods were under 40 bytes long. In addition to the code
size, the local variable count did not seem to affect the performance. All methods received
one argument and had two to four local variables. A decrease in the max stack size seemed
to increase the performance. However, a decrease in the max stack size was seen only in
one method.

Our benchmarks focused on the runtime performance of the tested features. Addi-
tional benchmarks could be performed on the startup cost of generics, properties, and
indexers. These benchmarks could be used to determine how much these features affect
the duration of the initial JIT compilation. The duration of the initial JIT compilation
may impact the overall performance of a short-running process. The bytecode inspection
could be expanded to include the JIT-compiled instructions. The JIT-compiled instruc-
tions would be platform-specific instructions that could include platform-specific opti-
mizations. However, they could provide better insight in to the performance.
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7 CONCLUSION

Process virtual machines provide a platform-independent environment for running appli-
cations. They are executed inside an operating system just like any other process. Pro-
cess virtual machines provide platform independence by translating platform-independent
bytecode into platform-specific machine code. Using bytecode to deliver the application
allows the same code to be deployed on multiple platforms. Additionally, a bytecode
language can enable cross-language integration by using metadata to define shared prop-
erties. This allows multiple high-level languages to target a single bytecode language. By
combining metadata with the bytecode instructions, the bytecode can form self-describing
software components.

Compilers are used to translate one language to another. In this thesis, high-level code
was compiled into bytecode. During the compilation, the high-level code was transformed
into stack-based bytecode. Additionally, the compilation process included the removal
of syntactic sugar. Lowering is used to rewrite complex semantics using simpler ones.
Lowering is also used to simplify loop statements. Stack-based bytecode includes pushing
values onto an evaluation stack. When a value is used, it must be on top of the stack. Once
used, the value is unavailable for subsequent uses. Multiple uses require multiple copies.

The .NET virtual machine contains an execution engine to execute bytecode and a
garbage collector to manage memory. The execution engine uses a just-in-time compiler
named RyuJIT to translate bytecode instruction into machine code. RuyJIT is a single-
tier JIT compiler, which means that a method is JIT compiled during the first call, and the
resulting machine code is stored and used for subsequent calls. The garbage collector is
a generational garbage collector, which divides the objects into generations. By dividing
the objects into generations, the garbage collector can focus on a single generation that is
likely to contain dead objects.

Our benchmarks focused on comparing arrays, lists, properties, and indexers. The
baseline benchmarks showed that the foreach statement provides the fastest way to
iterate over an array. The performance increase seems to be caused by the statement
producing a smaller maximum stack size compared to a for statement. However, the
resulting bytecode can be replicated using a for statement, by storing the current value
in a local variable at the beginning of the loop statement. Overall, arrays and lists pro-
vided similar results, with the list providing a small overhead in most cases and noticeable
overhead in a few cases. The list added overhead when used inside a non-static method
through a field and when enumerated using the foreach statement. The for-each state-
ment provided overhead to the method because it provides a custom implementation for
enumerating the list. The custom implementation makes the performance comparison
harder because it provides different features. Additional benchmarks were performed for
properties and indexers to see the cost of syntactic sugar without the implementation de-
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tails included in the generic list. The additional benchmark showed the same overhead
when the target object was used inside a non-static method through a field. Additionally,
the overhead was smaller when using structs compared to classes. The overhead could be
removed by storing the target object in a local variable before the loop. In all other cases,
properties and indexers did not add noticeable overhead. It seems that local variables can
be used to reduce the amount of instruction required to access values.

Overall, syntactic sugar does not seem to have a noticeable impact on performance.
The main difference is that direct bytecode instructions are replaced with method calls.
In the cases where syntactic sugar caused a decrease in performance, it could be easily
removed by storing the targeted data structure in a local variable before the loop. Storing
the targeted data structure in a local variable reduced the number of instructions required
to access the values. Additionally, storing the current value in a local variable inside the
loop before using it could be used to decrease the maximum stack size required by the
method. Reducing the maximum stack size seems to increase the performance. Based
on our benchmarks, the introduction of new local variables in C# can be used to improve
performance in certain cases.
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