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In recent years, as the number of applications that require attention and quality of performance 

have increased and modern professions are shifting from physical demands to mental workload, 

the importance of cognitive load assessment has also increased. Out of the methods that can be 

used to assess cognitive load, using physiological signals is the only method that can be used in 

real-time, while a given task is being done. An important aspect of real-time cognitive load 

assessment based on physiological signals, is the reaction time of physiological signals on the 

cognitive load. 

This objective of this study is to find the reaction time of two pupillary measure, Index of 

Pupillary Activity (IPA) and Low-High Index of Pupillary Activity, to changes in cognitive load. 

The study relies on experimental research in order to investigate this. In this research, while an 

arithmetic task is used to induce different levels of cognitive load to the test subjects, and eye 

tracker is used to track changes in their pupil size. Results are used to answer the research question. 

The findings indicate that IPA reacts to changes in cognitive load after an average of 13.6 

± 0.92 seconds. The results also indicated that this time is different whether cognitive load is 

decreasing or increasing. Meanwhile, the study also found that LHIPA was not successful in 

assessing cognitive load for the designed arithmetic task. 
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The results of the study can be used in designing systems that utilize multiple physiological 

signals in order to assess cognitive load in real-time and adjust the difficulty of the task 

dynamically to maintain performance. 

Keywords: Cognitive load, cognitive load assessment, physiological signals, pupillary 

signals, IPA, LHIPA 
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1 INTRODUCTION 

Cognitive load is defined as the amount of mental resources required to maintain performance on 

one or multiple given tasks (Jaiswal et al., 2019; Hettiarachchi et al., 2018). It also refers to the 

amount of perceived effort for learning, thinking, and reasoning which indicates the pressure that 

the working memory is subjected to, while executing a task, and represents the interaction between 

resources demanded for task execution and human resources (Haapalainen et al., 2010). In the 

field of human-computer interaction (HCI), it has also been referred to as the amount of mental 

resources that a person has at their disposal for problem solving or completing tasks, which is 

directly influenced by the amount of information that need simultaneous processing (Ferreira et 

al., 2014). The perceived amount of cognitive load a person experiences depends on the tasks, as 

well as individual, social, and environmental factors (Ferreira et al., 2014). 

Quality of performance can be adversely influenced when the cognitive load is too high or 

too low. Excessive mental workload can increase the probability of errors, negatively affect task 

performance and emotional state, or can even be life threatening and result in catastrophic 

outcomes (Jaiswal et al., 2019; Hettiarachchi et al., 2018, Wilson, 2002). As the human’s cognitive 

resources, i.e., the information processing ability of a person, is limited, it is important for 

applications that require attention and quality of performance to be able to assess cognitive load 

(Jaiswal et al., 2019).The importance of measuring cognitive load has become even more 

important in recent years, as in several modern professions physical demands have decreased while 

mental workload has increased, thus cognitive load assessment of tasks can help to create safe and 

productive working environments (Henelius et al., 2009). 

Advancements in computer technologies have resulted in improvements in people’s multi-

tasking abilities, however, an individual’s mental capacity is limited, and cognitive demands 

fluctuate in situations where attention is divided, i.e., when the primary task is interrupted or when 

the user is engaged in multi-tasking (Coyne et al., 2009; Haapalainen et al., 2010), or with a change 

in the cognitive demands of a task, e.g., the difficulty of the task (Vogels et al., 2018; Jaiswal et 

al., 2019). Therefore, it is important to design systems in such way that results in reducing 

cognitive demands and not in exceeding the capabilities of the user (Wilson, 2005). 
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There are several methods for the assessment of cognitive load. In subjective rating-based 

methods, self-reports of cognitive load are used for assessing mental efforts (Haapalainen et al., 

2010). The most commonly used method for evaluating cognitive load is the NASA task load 

index (TLX) tool (Haapalainen et al., 2010; Hart & Staveland, 1988). Another approach for the 

assessment of cognitive load is using task performance methods, in which the variation 

performance indicates the variation in cognitive load (Ikehara & Crosby, 2005; Haapalainen et al., 

2010). Although used widely, evaluating cognitive load in real-time using the aforementioned 

measurement techniques is not possible due to their post-hoc nature (Hettiarachchi et al., 2018). 

Another approach for assessing cognitive load is by monitoring physiological signals (Wilson, 

2002; Ryu & Myung, 2005). This approach is based on the evidence that changes in mental 

workload influence physiological signals such as blink rate (Ikehara & Crosby, 2005; Wilson, 

2002), pupil size (Ikehara & Crosby, 2005; Marshall, 2002, Vogels et al., 2018), abrupt changes 

in pupil size (Marshall, 2002, Vogels el at., 2018), heart rate and heart rate variability 

(Hettiarachchi et al., 2018; Ryu & Myung, 2005; Henelius et al., 2009; Ferreira et al., 2014; Jaiswal 

et al., 2019; Haapalainen et al., 2010; Wilson, 2005), and respiration (Jaiswal et al., 2019). The 

advantage of using the aforementioned approach is that it can be used to measure cognitive load 

in real-time (Ferreira et al., 2014; Haapalainen et al., 2010). Moreover, self-reports and 

performance-based measures are cheaper and easier to use, but yield qualitative results, whereas 

physiological measures, despite their greater difficulty and expense, are also more reliable and 

enable estimations on the actual capacity of an individual. (Jaiswal et al., 2019). 

In order to improve performance (e.g., in a training process), the system can use real-time 

assessments of the cognitive load in order to adjust the content, presentation format, and pace of 

training (Coyne et al., 2009). It has been known from empirical evidence that physiological signals 

react differently to changes in cognitive load; for instance, Vogels et al. (2018) reported that the 

Index of Cognitive activity (ICA) had a shorter latency than overall pupil size, or Wilson (2005) 

reported that heart rate variability (HRV) was not as sensitive to the varied cognitive demands as 

other signals, such as heart rate (HR). 

In order to improve the accuracy of cognitive load assessment, the data obtained from 

measurements of different physiological signals can be combined (Jaiswal et al., 2019). However, 

it is important to know the latency of changes in each of the physiological signals to the variations 
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in the cognitive load. Although numerous studies have discussed cognitive load assessment using 

physiological signals, they have not extensively investigated the sensitivity of these signals to 

changes in cognitive load in terms of reaction time. 

This study primarily focuses on assessing the reaction time of Index of Pupillary Activity 

(IPA) (Duchowski et al., 2018) and Low-High Index of Pupillary Activity (LHIPA) (Duchowski 

et al., 2018) to changes in the cognitive load. This data can later be used to create and improve 

systems that can adjust content and information presentation based on the real-time cognitive load 

of the user. 

The study will answer the following research questions: 

Primary question: How long does it take for changes in cognitive load to effect 

physiological signals? 

Secondary question: How successful are IPA and LHIPA indices in assessing cognitive 

load for tasks with different difficulties? 

The research will be conducted in collaboration with Tampere University. Qualitative and 

quantitative data will be used to answer the research question. The research is expected to 

contribute to the literature on assessing cognitive load based on physiological signals. 

This thesis consists of a total of six chapters. The second chapter discusses the present 

knowledge in the literature on cognitive load in general and in the field of Human-Computer 

Interaction. Different methods used for cognitive load assessment are also described in this 

chapter. 

The third chapter describes the research methods. This chapter discusses the experiment 

design for this study, as well as the reasoning behind the experiment design. It also addresses the 

software and hardware utilized in this study. Moreover, it also discusses the experiment setup, the 

acquired data, and methods used for analysis. 

The fourth chapter presents the results from the conducted experiments, while the fifth 

chapter discusses and analyses the results, in addition to limitations and proposals for future 

research in this field. 
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Finally, the sixth chapter presents the conclusion to this study, as well as considerations for 

future related studies. 
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2 LITERATURE REVIEW 

This chapter introduces cognitive load, what it means, and relevant key concepts. The chapter also 

discusses methods that have been used to assess cognitive load for an individual while performing 

a task or using a system. Additionally, it also contains the literature that has influenced the present 

research. 

2.1 Cognitive load 

Cognitive load has been differently defined. More generally, the term tends to be used to refer to 

the amount of mental resource required to maintain an adequate level of performance while 

performing one or more tasks (Jaiswal et al., 2019; Hettiarachchi et al., 2018). Although various 

definitions of cognitive load are found, more specifically, in the field of Human Technology 

Interaction (HCI) it has been defined among others as being “a multidimensional construct 

representing the load that a particular task imposes on the performer” (Haapalainen et al., 2010).  

Cognitive load is always relative to total capacity; in other words, people with smaller 

working memories experience a higher cognitive load for the same task (Vogels el at., 2018). We 

are continuously exposed to a great amount of information, and considering that human attention 

is not an unlimited resource, the cognitive demand always fluctuates, e.g., when switching between 

physical and virtual spaces or between two distinct user interfaces (Ferreira et al., 2014). In the 

context of switching between tasks, in order to help users effectively manage their cognitive 

resources, systems can provide support, in terms of avoiding providing inappropriate distractions 

(Ferreira et al., 2014). In terms of training tasks, the system can help reduce the required amount 

of time for a trainee to complete the task, by decreasing the amount of time that the trainee is 

exposed to excessive cognitive load, by means of actively adjusting the difficulty of the task using 

real-time cognitive load assessments (Coyne et al., 2009). 

2.2 Cognitive load assessment 

There are several methods that can be used in order to evaluate how much cognitive load a given 

task imposes on an individual. In this section, the most widely used methods for this purpose are 

introduced. 
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2.2.1 Performance-based methods 

Performance-based methods evaluate the cognitive load by measuring how a participant’s 

responses deteriorate (e.g., reaction time and error rate) while performing multi-tasking or a task 

with different difficulties (Ferreira et al., 2014). The performance metrics have been reported to 

have strong links with cognitive load (Ferreira et al., 2014). However, this method is only 

applicable after the task has been done, and due to the post-hoc nature of this method, the cognitive 

load can only be measured after the task is finished, and the cognitive load data are not available 

during the task, when it is most useful (Ferreira et al., 2014; Ikehara & Crosby, 2005; Haapalainen 

et al., 2010). 

2.2.2 Subjective rating-based methods 

Subjective rating-based methods use participants’ own judgement as an assessment method for 

evaluating cognitive load (Ferreira et al., 2014). These techniques are used based on the 

assumption that people are capable of reporting their mental efforts for performing a task (Paas et 

al., 2003). According to Pass et al. (2003), most subjective rating-based methods use the concept 

of overall load, and usually involve a questionnaire which the participant can use to reflect on the 

level of experienced cognitive load. Haapalainen et al. (2010) state that the most widely used 

assessment for cognitive load is the subjective NASA task load index (TLX) tool. To obtain a 

responsive and decisive estimate of workload, TLX uses a multi-dimensional rating scale in which 

information about the significance and causes of different factors are combined (Hart & Staveland, 

1998). The disadvantages of using this method include being post-hoc, similar to performance-

based methods (Haapalainen et al., 2010), and also the fact that they are ineffective in assessing 

dynamic changes in cognitive load (Ferreira et al., 2014). 

2.2.3 Physiological response-based methods 

Assessing cognitive load using performance-based methods and subjective ratings are normally 

possible et the end of the task; however, using physiological signals has the advantage of being 

available in real-time, while also making it possible to assess the affective components of cognitive 

load (Ikehara & Crosby, 2005). Physiological techniques are based on the empirical evidence that 

changes in cognitive load are reflected by physiological signals (Paas et al., 2003; Haapalainen et 

al., 2010). These techniques include, but are not limited to, measures of pupillary responses, eye 
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movements, and blink interval (Marshall, 2002; Vogels et al., 2018; Wilson, 2002; Marshall et al., 

2003; Haapalainen et al., 2010; Ikehara & Crosby, 2005), heart rate (HR) and heart rate variability 

(HRV) (Henelius et al., 2009; Ferreira et al., 2014; Haapalainen et al., 2010; Wilson, 2005; Ikehara 

& Crosby, 2005; Hettiarachchi et al., 2018; McDuff et al., 2014), electroencephalogram (EEG or 

brainwave levels) (Haapalainen et al., 2010; Ferreira et al., 2014; Henelius et al., 2009; Wilson, 

2005; Das et al., 2014;  Gavas et al., 2016) and respiration (Jaiswal et al., 2019). 

2.2.3.1 Eye measures 

Eye movements and changes in pupil dilation can be used to assess cognitive load (Marshall, 

2002). According to Ikehara & Crosby (2005), pupil size measures can be potentially used for 

cognitive state assessment related to fatigue, difficulty, strong emotion, interest, mental activity or 

effort, familiar recall, positive or negative attitudes, and information processing speed. Larger 

pupil dilations correspond to greater cognitive load while performing a task (Vogels et al., 2018). 

In this section, a few of the methods used to evaluate cognitive load based on eye measures are 

briefly discussed. 

Pupil size 

Pupil tends to dilate slightly in response to cognitive loads (Klingner et al., 2010). According to 

Vogels et al. (2018), using pupil size to assess cognitive load suffers a few drawbacks; firstly, pupil 

size is sensitive to the amount of light input, thus, in order to use this measure to evaluate cognitive 

load, it is essential to carefully control the luminosity of the environment. Secondly, the pupil size 

reacts slowly to changes in cognitive load, which makes it difficult to accurately measure the 

cognitive response to stimuli that the participant is exposed to consecutively, or when the stimuli 

overlap. It is not clear from the relevant literature how long it takes for the pupil size to reflect 

changes in cognitive load. 

Index of cognitive activity (ICA) 

The Index of Cognitive Activity measures sudden discontinuities in data obtained from continuous 

recording of pupil diameter (Marshall, 2002). The ICA is calculated from measuring rapid 

increases in pupil diameter per second (Marshall, 2002; Vogels et al., 2018). The ICA has a few 

advantages over absolute measurement of pupil size; Firstly, it does not require averaging over 

trials. Secondly, it can be used to evaluate cognitive load from a signal of any range. Thirdly, it 

can be computed in nearly real-time (Marshall, 2002). Fourthly, it separates rapid dilations due to 
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changes in cognitive load from slow dilations caused by light input changes. Finally, ICA has a 

lower latency than overall pupil size (Vogels et al., 2018). ICA has been observed to increase with 

higher task difficulties (Marshall, 2002), and is sensitive to strategic shifts in response to task 

demands (Marshall et al., 2003). 

Index of Pupillary Activity (IPA) 

The Index of Pupillary Activity is a measure of the frequency of pupil diameter proposed for 

capturing an indicator of cognitive load (Duchowski et al., 2018). It provides an open-source 

alternative to the Index of cognitive activity (closed-source) for cognitive load assessment 

(Duchowski et al., 2018). The IPA is a wavelet-based algorithm inspired by Marshall’s Index of 

Cognitive Activity (Duchowski et al., 2018; Marshall, 2002). Empirical evidence suggests that 

IPA increases with task difficulty, but experiments did not reveal any significant effect of working 

memory capacity and suggest that the OPA is sensitive to task difficulty independent of working 

memory capacity (Duchowski et al., 2018). Unlike ICA, for which the full implementation 

documentation is reported to be in an unpublished manuscript, the implementation for IPA is fully 

available for researchers to implement in their studies (Duchowski et al., 2018). 

The Low/High Index of Pupillary Activity (LHIPA) 

The Low/High Index of Pupillary Activity is another novel measure of pupil diameter oscillation 

that can discriminate cognitive load where IPA fails to do so (Duchowski et al., 2020). Similar to 

IPA, the implementation for LHIPA is fully available and it is open sourced as well (Duchowski 

et al., 2020). The LHIPA has been reported to decrease with increases in the cognitive load/task 

difficulty (Duchowski et al., 2020). It is reported to be less effective to necessarily distinguish 

between task difficulties but can robustly be used to assess cognitive load (Duchowski et al., 2020). 

Unlike IPA, LHIPA has been reported to be insensitive to off-axis distortion of pupil diameter, so 

it can be used in experiments where the participants are not required to have a fixed gaze at the 

center of the screen (Duchowski et al., 2020). 

Blink rate 

Eye blinks have been used in flight research in order to study mental demands in different aspects 

of flying; blink rate is observed to decrease with an increase in visual demands (Wilson, 2002). 
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2.2.3.2 Heart rate measures 

Heart rate metrics have been reported in the literature to reflects changes in the levels of cognitive 

load (Hettiarachchi et al., 2018; Moses et al., 2007; McDuff et al., 2014; Ikehara et al., 2005; 

Jaiswal et al., 2019; Henelius et al., 2009). According to Ikehara et al. (2005), heart rate can be 

potentially used to assess mental state changes related to stress and emotion intensity. It provides 

continuous information, although rise and decline of this measure is slow to rise and decline after 

the trigger event (Ikehara et al., 2005). The two most commonly used heart rate measures are heart 

rate (HR) itself and heart rate variability (HRV) which are briefly discussed in the following 

sections. 

Heart rate 

Heart rate is commonly calculated using the interbeat intervals or by counting the number of beats 

per minute (Hettiarachchi et al., 2018). It has been reported to increase with higher levels of 

cognitive load (Wilson, 2005). 

Heart rate variability 

Heart rate variability (HRV) refers to the fluctuations in the time interval between consecutive 

heartbeats (Shaffer & Ginsberg, 2017). HRV has been reported to be correlated with both mental 

and physical health (Moses et al., 2007). HRV is used in physiological cognitive load assessments 

(Jaiswal et al., 2019). Frequency-domain measurements of heart rate variability estimate the 

distribution of power into four frequency bands; the high frequency (HF) component refers to the 

section between 0.15 and 0.40 Hz (Shaffer & Ginsberg, 2017). According to McDuff et al. (2014), 

the HF component of HRV is reduced under cognitive load. Heart rate variability has been reported 

to be less sensitive to changes in cognitive load (Wilson, 2005). 

2.3 Cognitive load tasks 

A variety of tasks have been used by the researchers in order to induce cognitive load in the test 

participants for the purpose of cognitive load assessment. These tasks are used to induce different 

levels of cognitive load, so that the cognitive load assessment techniques can be verified. A few 

examples of the tasks previously used in the related studies are introduced in this section. 
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2.3.1 Arithmetic tasks 

Arithmetic tasks have been used in several studies in order to induce different levels of cognitive 

load in the participants (Henelius et al., 2009; Moses et al., 2007; Klinger et al., 2007; Hettiarachchi 

et al., 2018). For instance, Hettiarachchi et al. (2018) used an arithmetic task in their study for this 

purpose; the task was used in order to induce seven levels of cognitive load and included seven 

levels of difficulty, varying from very easy to extremely difficult. In order to perform the task, the 

participants had to calculate the sum of two numbers. Difficulty levels and consequently the 

demand on the working memory was induced via varying the number of digits and including carry 

summation. For instance, the very easy level consisted of adding a two-digit number with a single-

digit number without carry (e.g., 25 + 3). The extremely difficult level consisted of summing two 

three-digit numbers with carry (e.g., 365 + 298). This task was previously used as well and proven 

to be effective in inducing different levels of cognitive load (Zarjam et al., 2013). 

Another example of an arithmetic task is the one used by Siegenthaler et al. (2013), which 

is also the same task that was used to confirm effectiveness of IPA (Duchowski et al., 2018). In 

the easy phase, the instruction of the task is to count forward mentally, as accurately as possible, 

in steps of two starting at a random three-digit even number. The hard phase involved counting 

mentally backwards, as fast and accurately as possible, in steps of 17 starting at a random four 

digit number. (Siegenthaler et al., 2013) 

2.3.2 N-back task 

This task involves randomly generated digits or letter displayed one at a time on a screen, and the 

participant in instructed to state whether the currently shown letter or digit, is the same as the one 

displayed n trials before. Increasing n makes the task more difficult. To confirm effectiveness of 

IHIPA, Duchowski et al. (2020) used n-back task. 

2.3.3 Moving Target Fractions 

The moving target fractions task (MTF) was originally developed by the UI AMI Laboratory. This 

task involves a number of oval targets containing fractions. Fractions appear on the left side of the 

screen and move to the right side of the screen (see Figure 2-1). The goal for the participant is to 

select all fractions greater than the critical value of 1/3 before the target reaches the right edge of 

the screen and disappear. None of the fractions equal 1/3 and all of them are less than one. 
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Performance measure for this test is the number of incorrect selections. Points are subtracted for 

selecting wrong targets. The point is displayed at the bottom of the screen. (Ikehara & Crosby, 

2005) 

The difficulty of the task can be modified by altering the number of fractions that are 

displayed on the screen, the speed of the ovals containing fractions (the time that is needed for a 

fraction to reach from the left side to the right side of the screen), and also the range from which 

numerators and denominators are randomly selected (a wider range corresponds to a higher 

difficulty). (Ikehara & Crosby, 2005) 

 

Figure 2-1, Screen capture of the Moving Targets Fraction (MTF) task (Ikehara & Crosby, 2005) 

2.3.4 The Gauge Task 

The Gauge Task was originally developed by Pleydell-Pearce et al. at the University of Bristol. 

The task was initially designed to be used with electrophysiological recordings such as EEG, but 

was later used with other studies related to cognitive load assessment, namely eye-tracking 

devices. (Marshall et al., 2003)  
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The Gauge Task is viewed by the participant as illustrated in Figure 2-2. There are five 

gauges on the screen displayed as a column of numerical data which oscillate continuously. The 

middle value for each of the gauges is zero, and the range for each of the gauges is from -50 to 

+50. There are central pointers for each gauge that indicate the current value. Positive numbers are 

shown in black, while negatives are shown in red. There are also warning lights below each gauge 

that can be green, amber, or red. (Marshall et al., 2003) 

The warning light for a gauge is green when the value is in the |15| range, amber when the 

value is between |15| and |20|, and red when it exceeds |20|. The participant is required to monitor 

the gauges and keep them in the green area; if a gauge exceeds the desirable limit, the participant 

can switch to it using left/right arrow keys on the keyboard and adjust the value using the up/down 

arrow keys. If three gauges are in red for more than two seconds, and explosion is displayed on 

the screen and the trial ends. (Marshall et al., 2003) 

 

Figure 2-2, The Gauge Task (Marshall et al., 2003) 
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The difficulty of the task is determined by the number of gauges requiring attention at the 

same time. For instance, the lowest difficulty requires no gauge adjustment, i.e., all the gauges 

remain in the green range for the entire trial time, where in the highest difficulty, the participant is 

required to keep constant attention to all the gauges. (Marshall et al., 2003) 

2.4 Using multiple physiological signals 

Wilson (2002) investigated the mental workload in pilots during flights using multiple 

psychophysiological measures. He reasoned that since high levels of cognitive load can result in 

errors which, especially when it comes to flying an aircraft, can lead to catastrophic outcomes, it 

would be of great importance to be able to assess cognitive load on pilots during different phases 

of flying the aircraft, namely engine start, take off, climb-out, cruise, approach, high speed, and 

landing. He combined several psychophysiological signals to assess cognitive demand on the pilots 

for this purpose, including heart rate and heart rate variability, electrodermal activity responses, 

blink rates, and EEG. His research showed that the assessment from all the signals didn’t agree 

about the cognitive load; for instance blink rate mostly decreased (which is an indication of an 

increase in visual mental demands) when the pilot had to rely on aircraft equipment and gauges, 

while it was not the case for all of the signals. But overall, he was able to conclude the cognitive 

demands of each phase using multiple physiological signals. The diagrams for hear rate and blink 

rate mean during different phases of the flight can be seen in Figure 2-3. 

Jaiswal et al. (2019) conducted a research which demonstrated that it is possible for to use 

multiple physiological signals in order to assess cognitive load more accurately; the main 

physiological signal used in their study was respiration rate, to obtain which, they used peripheral 

blood volume signal (PPG), but they also used heart rate variability (HRV) in combination with 

respiration rate and concluded that using both resulted in more accuracy. They demonstrated that 

while using respiratory signals alone, the classification accuracy was about 78%, combined with 

other signals, the accuracy increased to about 81.8 percent. 
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Figure 2-3, heart rate (top) and blink rate mean (bottom) in different phases of flight. As can be seen, the highest heart rate 

(indicating highest cognitive demand) is reached during critical phases, e.g., take off (vfrto), touch and go (vfrtg), and landing 

(land), whereas the least blink rate (indicating most visual cognitive demand) is reached in instrumental flight rules (ifr), i.e., when 

the pilot is mostly relying on aircraft equipment and gauges (reduced visuals, e.g., going through clouds). 

Ferreira et al. (2014) used four psychophysiological sensors for assessing real-time 

cognitive load for younger and older adults. Their sensors included an ECG monitor for recording 

hear rate and breathing rate, and armband to measure heat flux, an EEG headset, and a GSR finger 

sensor. They concluded that the combination was quite successful in assessing cognitive load of 

the participants in terms of classification (for two task difficulties), and also, that the real time 

assessment for a time-scale of 60 seconds was more accurate (65-86%) compared to using a time-

scale of 10 seconds which yielded an average accuracy of 64-73 percent. The result of their study 

demonstrated that there should be a delay for physiological signals in order to reflect changes in 

cognitive load. 

Haapalainen et al. (2010) also used multiple physiological signals for cognitive load 

assessment; in their research, they used a contactless eye tracker to track changes in the pupil size, 
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and ECG armband, and an EEG headset. They concluded that when used together, the mentioned 

methods can yield a classification accuracy of over 80% in real-time. 

Although several studies have investigated cognitive load assessment using physiological 

signals, none of them has extensively investigated the reaction time of each, to changes in cognitive 

load, which seems to be of considerable importance when combining different signals to assess 

cognitive load in real-time. 

2.5 Current study 

Considering the previous studies conducted on cognitive load assessment using physiological 

signals, this study hypothesises that each physiological signal should have a reaction time to 

changes in the cognitive load that can be examined with a proper experiment. 

For this study, IPA and LHIPA (Duchowski et al., 2018; Duchowski et al., 2020) are 

selected as the target physiological signals, to measure the latency of changes for those specific 

physiological signals to changes in cognitive load. 

The primary question for this study is developed as follows: 

How long does it take for changes in cognitive load to effect physiological signals? 

In the process of finding an answer for the main question, the study will also aim at 

verifying that IPA and LHIPA are useful in assessing cognitive load for a user given a task, hence 

the secondary research question: 

How successful are IPA and LHIPA indices in assessing cognitive load for tasks with 

different difficulties? 

Attempting to answer the forementioned research questions, the first goal would be to make 

sure that the designed experiment phases are successful in inducing different levels of cognitive 

load to the participant. The next goal would be to answer the secondary research question, and 

finally the primary research question would be answered. The research methods used to do so is 

discussed in details in the next chapter. 
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3 RESEARCH METHODS 

This chapter presents the research methods used in the study for collecting the data required to 

answer the research question, while also presenting the objectives of the experiments and the 

required setup and experiment design. It also tries to justify the research methods used to collect 

the data. Moreover, the experiment procedure is also thoroughly explained. Data analysis methods 

used are also described. 

3.1 Experiment objective 

In this study, cognitive load is assessed using physiological signals, a method that can be used 

while the participant is doing a task, hence, cognitive load can be assessed in real time (Ikehara & 

Crosby, 2005). Various physiological signals can be used to assess cognitive load (Paas et al., 

2003; Haapalainen et al., 2010), which include measures of pupillary responses, eye movements, 

and blink interval (Marshall, 2002; Vogels et al., 2018; Wilson, 2002; Marshall et al., 2003; 

Haapalainen et al., 2010; Ikehara & Crosby, 2005), heart rate (HR) and heart rate variability (HRV) 

(Henelius et al., 2009; Ferreira et al., 2014; Haapalainen et al., 2010; Wilson, 2005; Ikehara & 

Crosby, 2005; Hettiarachchi et al., 2018; McDuff et al., 2014), electroencephalogram (EEG or 

brainwave levels) (Haapalainen et al., 2010; Ferreira et al., 2014; Henelius et al., 2009; Wilson, 

2005) and respiration (Jaiswal et al., 2019). It is possible to combine the results from multiple 

signals to increase the accuracy of the measurement (Jaiswal et al., 2019), however, for this 

purpose, it is crucial to know the time that each signals requires to reflect the changes in cognitive 

load. 

This study tries to measure how long it takes for pupil-size related signals, IPA and LHIPA, 

to reflect changes in cognitive load to answer the primary research question. The study also aims 

at verifying how successful the mentioned indices are in assessing cognitive load of a user while 

doing a certain task. 
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3.2 Experiment setup 

3.2.1 Hardware 

3.2.1.1 Eye tracker 

To capture pupil-size data, a PupilLabs Pupil Core headset was used. The technical specifications 

of the headset is as follows (Pupil Core - Eye Tracking Platform Technical Specifications - Pupil 

Labs, n.d.): 

• Gaze accuracy: 0.60° 

• Gaze precision: 0.02 

• Pupil tracking: using 3D model 

• Pupil diameter: relative size in camera pixels or absolute size in mm through 3D eye model 

• Calibration: 5-point calibration 

• Sampling frequency: 200Hz 

• Latency: 8.5ms 

3.2.2 Computer 

In order to run the tests, an HP OMEN 17 gaming laptop was used. The technical specifications 

include: 

• Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz, 2592MHz, 6 Core(s) 

• 32GB RAM 

• NVIDIA GeForce RTX 2060 

• 17.3” Full-HD display, 144Hz, IPS 

3.2.3 Software 

3.2.3.1 Operating system 

The laptop used for the experiment used a windows 10 professional edition. 
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3.2.3.2 Eye-tracker 

Pupil Capture software version 3.4 was used for capturing data from the headset. For the tests in 

this study, the 3D model pupil diameter (in millimetres) was used. For each test, the headset had 

to be calibrated for the participant. The procedure included placing the headset on the participant’s 

eyes, adjusting the pupil cameras to have a full shot of the respective eye, and then running the 

calibration software from the Pupil Capture software, which operated by showing 5 different points 

on a white page (middle point of the screen and each of the corners) on which the participant had 

to focus their gaze for a few seconds. 

3.2.3.3 Pupil measurements 

A python application was developed to capture the pupil data from the network API of the Pupil 

Capture application. For each instance of data, the average of the pupil diameter from both eyes 

was used, which was obtained by subscribing to the gaze topic of the network API. To calculate 

IPA (Duchowski et al., 2018) and LHIPA (Duchowski et al., 2020), the relevant function from 

Duchowski et al. research papers were used. In order to calculate IPA and LHIPA, a 200-

millisecond duration of data after each blink had to be removed from the samples. The timestamp 

of the blinks was also obtained from the headset by subscribing to the blink topic. 

The application could be used for two different purposes: 

• To calculate IPA and LHIPA values for a given dataset between the given start and 

end time 

• To calculate IPA and LHIPA on an interval basis. Using this mode, the application 

needed 2 arguments: 

o Interval: the interval between two consecutive calculations (in seconds) 

o Window length: the length of the window in seconds for each calculation, 

i.e., in each calculation only the pupil data from this window (before the 

calculation) was used. 
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3.2.3.4 Moving Target Fractions 

A software was developed inspired by the Moving Target Fractions (Ikehara & Crosby, 2005). 

The software consisted of a client for the participants to use, which was developed using ReactJS 

version 17.0.2. 

The software allowed to create different test profiles which then could be used to run 

experiment sessions. Each profile could have an arbitrary number of phases, which included 

calibration and trial phases. Calibration phases instructed the participant to look at the screen while 

doing nothing, to make it possible for the cognitive load, while trial phases included the main test. 

For each trial phase, the duration of the phase, number of fractions, ranges for the numerator and 

the denominator, and the time for each fraction to reach from the left side to the right side of the 

screen could be adjusted. The fractions were generated randomly, and no fraction was exactly 

equal to a third. The client also captured all of the user clicks and their locations on the screen, and 

also a score, to verify that the participant actually engaged with the test. For each correct click 10 

points were added, and for each wrong click, 10 points were subtracted from the overall score. A 

screenshot of what a trial phase of the implemented moving target fractions tests looked like can 

be seen in Figure 3-1. 

The settings for each trial phase included: 

• Duration: total duration of the phase in seconds. 

• Traverse duration: the time required for a fraction to reach the right-hand side of the page 

after appearing on the left-side of the screen. 

• Fraction count: total number of fractions appearing on the screen during the trial phase 

• Numerator maximum: determining the range from which the numerators were selected, 

from 1 to the specified number. 

• Denominator maximum: determining the range from which the denominators were 

selected, from 1 to the specified number. 

• Fraction of interest rate: ratio of the number of fractions greater than a third, to the total 

number of fractions generated during the trial phase. 
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The software also included a server developed using NodeJS to store the profiles and also 

the results from the test sessions. 

 

Figure 3-1, A screenshot of the implemented moving target fractions test 

3.3 Experiment design 

For the experiments, three different difficulty profiles were created in the moving target fractions 

test application which were called easy, medium, and difficult trial phases. The specifications used 

in each of the phases were as follows: 

Easy: 

• Duration: 60 seconds 

• Traverse duration: 8 seconds 

• Fraction count: 20 

• Numerator maximum: 4 

• Denominator maximum: 5 

• Fraction of interest rate: 0.5 

Medium: 
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• Duration: 60 seconds 

• Traverse duration: 7 seconds 

• Fraction count: 30 

• Numerator maximum: 9 

• Denominator maximum: 10 

• Fraction of interest rate: 0.5 

Hard: 

• Duration: 60 seconds 

• Traverse duration: 6 seconds 

• Fraction count: 50 

• Numerator maximum: 19 

• Denominator maximum: 20 

• Fraction of interest rate: 0.5 

Since the experiment investigated tasks with large individual differences (arithmetic tasks), 

within-group design method was used to design the experiments (Lazar et al., 2017).  In this 

experiment design, each participant was asked to do one instance of each trial phase (easy, 

medium, hard) once. This was done to: 

1. confirm that the phases with different difficulties were successful in inducing different 

levels of cognitive load to the participants, which was to be done using all three 

cognitive load assessment methods, i.e., self-report, performance, and physiological 

signals. The confirmation was done by: 

• Calculating IPA and LHIPA for each trial phase (Duchowski et al., 2018; 

Duchowski et al., 2020) which was done post-hoc 
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• Asking the participant to complete a NASA-TLX form after each trial (Hart & 

Staveland, 1988) 

• Comparing the scores for each of the phase 

2. Attempt to answer the secondary question of the study: how successful are IPA and 

LHIPA indices in assessing cognitive load for tasks with different difficulties? 

Another reason to choose the within-group design was that in this design requires less 

participants when compared to a between-group design (Lazar et al., 2017). 

To compensate for the learning effect, each participant was given an introduction before 

the first trial and was also allowed to do a test trial for a desired amount of time, until they 

confirmed that they are ready. In addition, to counterbalance the learning effect, a Latin Square 

Design was adopted, i.e., the order of the three initial phases were different for each participant 

(Lazar et al., 2017). 

To make sure that the participant was under a normal cognitive load during the tasks and 

compensate for a potential fatigue problem (Lazar et al., 2017), they were allowed to rest for as 

long as they wanted between tasks, and in addition, each task started by a 30 second calibration 

phase that didn’t involve performing any tasks, and the participants were asked to look at the 

display while doing nothing else. 

In the next section of the experiment, the participants were asked to do another task, which 

included a calibration task of 30 seconds, followed by three consecutive trial phases, one instance 

from each difficulty level, with no rest between the phases (combination task). To compensate for 

the learning effect, like the previous phases, a Latin Square Design was used (Lazar et al., 2017). 

The participants were also given the same rest time before this section. 

During this phase, IPA and LHIPA were calculated on an interval basis to investigate the 

amount of time needed for those two metrics to reflect changes in the cognitive load. 

Changes were made to the experiment design after the first two pilot sessions. First, the 

size of the circles including the fractions were increased, as it was found that clicking on them was 

not easy, and the participants could miss them, especially during the hard trial where the speed of 
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the fractions were higher. Second, the font size of the fractions was increased, to make it more 

readable for the participants. 

3.4 Recruiting participants 

The participants were mainly recruited from Tampere university, most of which were students at 

the university. In order to recruit participants: 

• A few mailing lists from the university was used to send the experiment 

advertisement 

• The experiment advertisement was also posted in a Slack channel for HTI students 

and lecturers 

• One of the lecturers also posted the experiment advertisement in the online learning 

management system (Moodle) area of their course 

13 people in total volunteered to take part in the study. The thesis supervisor also 

volunteered to participate in the first experiment session (pilot). The data collected from the pilot 

experiment was not used, as the settings for the Moving Target Fractions tests was modified after 

the pilot. Out of the other 13 tests, the data obtained from one was also discarded due to a mistake 

in the settings while capturing pupil data. 

The experiment advertisement contained information about the purpose of the study and 

was sent in English. Upon volunteering, further emails were exchanged with the participant to 

agree upon a time that suited for them. Finally, a suitable one-hour timeslot was agreed with the 

participant. 

The main problem with the recruitment process was that the study took place during the 

COVID-19 pandemic, during which the university was mostly functioning remotely, and due to 

the specific experiment setup, i.e., using an eye tracker, the tests could not be done remotely. 

3.5 Experiment procedure 

After arriving to the location where the experiments were being conducted, the participants were 

welcomed and given a verbal introduction about the study. Next, the participants were given a 

consent form to read and sign. The consent formed asked the participants for the experiment, and 



24 

 

also informed them that the test results would be stored anonymously, and no personal data were 

recorded during the tests. 

3.5.1 Introduction and preparation 

Subsequently, the participants were presented about how to perform the tasks using the moving 

target fractions test application and were given enough time to get themselves familiarized with 

the application. Then, the participants were asked about the setup and if they wanted it modified 

in anyway (e.g., move the mouse to the left-hand side for the left-handed participants). 

3.5.2 First part: single task phases 

Next, the participants were instructed to do each of the first initial phases. After the completion of 

each phase, they were presented with a NASA-TLX questionnaire to complete, and then they were 

given some time to rest, before proceeding with the rest of the task. Upon completion of the last 

single test and completing the NASA-TLX questionnaire, they were again given some resting time, 

and then instructed about the last task (combination task). 

3.5.3 Second part: combination task 

After the participants stated that they were ready for the final task, they were instructed to start it. 

There was no NASA-TLX questionnaire after the final task. 

3.5.4 After completing the tasks 

Upon completing the second part, the participants were thanked for volunteering, and asked if they 

wanted to be notified about any publications from the study, in form of a master’s thesis and/or a 

scientific paper. If so, their preferred means of notification was collected from them. 

None of the tests exceeded the one-hour timeslot that was planned. In reality, the 

experiment was designed to take much less than one hour, but to avoid running overtime in case 

of any technical difficulties, one hour was reserved, nonetheless. 
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3.6 Data 

3.6.1 Quantitative data 

Three different types of quantitative data were collected from the experiment sessions. The 

data were gathered through logs (scores from the Moving Target Fractions application and pupil 

records from the python application connected to the eye tracker) and NASA-TLX questionnaire. 

3.6.2 Scores 

Each of the phases (single and combination) had its own entry in the Moving Target Fractions 

application, which included data about the phase, included number of fractions, fraction of interest 

rate, and user score. The highest possible score could be calculated using the following equation: 

ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑐𝑜𝑟𝑒 =  10 × T × R  

where T is the total number of fractions in that phase, R is the fraction of interest rate, and 10 is 

the score for a correct click. 

The Moving Target Fractions application also recorded click locations on the screen, but 

this data was not used in the analysis phase. 

3.6.3 NASA-TLX self-report 

This data was collected after each of the 3 separate phases in the first part of the test and included 

a set of 6 questions that asked the participant to rate the mental demand, physical demand, temporal 

demand, performance (own perception), effort, and frustration level on a scale of 1 to 20. The 

questionnaire can be found in Appendix 1: NASA-TLX. 

3.6.4 Pupillary data 

For all the phases in both parts of the experiment, pupil size of the participant was recorded 

with a frequency of 200Hz. In addition, IPA and LHIPA were also recorded for a window of 10 

seconds, on an interval of 1 second. Each of the mentioned data logs were saved in a different file 

for each of the tests; one line JSON format was used to store the logs in the files. 

3.7 Data analysis 

Jupyter Notebook was mainly used for data analysis. For data loading and manipulation, python 

pandas library was mainly used. For plotting purposes, matplotlib library was mainly used. The 
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reason behind choosing Jupyter Notebook and Python in general to do most of the calculations and 

analysis was that the IPA and LHIPA functions provided were coded in Python (Duchowski et al., 

2018, Duchowski et al., 2020). 

Moreover, for other data manipulation and plots, RStudio (Version 2022.02.0) and R 

(Version 4.2.1) were used. For data loading and manipulation dplyr (Version 1.0.8), ggpubr 

(Version 0.4.0), and tidyverse (Version 1.3.1) were utilised, and for plotting, ggplot2 (Version 

3.3.5) was used. 

To test if a given data was normally distributed, Shapiro-Wilk test was used. To check for 

a significant difference between groups of data, in case of normally distributed data, One-Way 

ANOVA test was done, otherwise, Kruskal-Wallis test used.  
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4 RESULTS 

This chapter presents the results from the first and second parts of the experiment. 

4.1 First part: separate phases 

4.1.1 NASA-TLX 

The objective of using NASA-TLX questionnaires was to confirm that the chosen phases (easy, 

medium, hard) were successful in inducing different levels of cognitive load on the users. The data 

also can be utilized to answer the secondary question of the study: How successful are IPA and 

LHIPA indices in assessing cognitive load for tasks with different difficulties? 

After each phase in the first part of the experiments (separate phases), the participants were 

asked to fill-in a NASA-TLX questionnaire. The questionnaire required the participant to evaluate 

the workload factor of the tests on a scale of 1 to 20. The six workload factors in the NASA-TLX 

questionnaire were (Hart & Staveland, 1988): 

• Mental Demand (MD) 

• Physical Demand (PD) 

• Temporal Demand (TD) 

• Performance (OP for own performance) 

• Effort (EF) 

• Frustration (FR) 

In total, there were 216 records obtained from participants. It was expected that the 

workload, especially the cognitive demand, would increase as the difficulty of the phase in the test 

increased. 

Figure 4-1 shows the mean rating for each one of the six NASA-TLX workload factors for 

each test phase. It shows an increase in the mean rating for all the workload factors as the difficulty 

of the task increased. 
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Figure 4-1, Mean rating for each one of the factors for each phase 

 

Figure 4-2, Box plots for ratings for each one of the factors for each phase 
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Figure 4-2 illustrates box plots of each of the factors for each of the phases. It also suggests 

that the workload increases as the difficulty of the tasks increased. 

Shapiro-Wilk test was done on each factor to test the normality of the data. For all the 

factors (p value of 0.002, 0.00005, 0.003, 0.002, 0.03, 0.00004 for MD, PD, TD, OP, EF, and FR 

respectively) the test yielded a p value of < 0.05, indicating that the distribution was not normal. 

To confirm that the results of the workload factors were significantly different for each difficulty, 

Kruskal-Wallis test was done for each, with score and difficulty being the dependent and 

independent variables respectively. The results (p value of 0.00005, 0.0007, 0.000004, 0.004, 

0.0002, 0.0006 for MD, PD, TD, OP, EF, and FR respectively) yielded a p value of < 0.05, 

indicating that the workload factors were significantly different for different difficulties. 

4.1.1.1 Mental demand 

 

Figure 4-3, Box plots for Mental Demand factor (MD) rating for each of the phases 

Figure 4-3 presents box plots for Mental Demand factor (MD) for each of the difficulty phases. 

MD represents the amount of mental and perceptual activity (e.g., thinking, deciding, calculating, 

remembering, looking, searching, etc.) a task requires; it also assesses if the task for easy or 

demanding, simple or complex, exacting or forgiving (Hart & Staveland, 1988). As it can be seen 
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in the figure, the median values for Mental Demand for the easy, medium, and hard phases were 

respectively 2.5, 7.5, and 15.5, while the distribution for the easy phase is right skewed (the median 

is smaller than the mean), for the medium phase almost symmetrical, and for the hard phase it is 

left skewed (the median is greater than the mean). It can also be observed in the figure that the 

mean for each phase is well outside of the interquartile range (the box) of the other phases. Another 

observation from the box plots is that there are only a few outliers, meaning that most of the 

participants rated MD for each of the phases in the same vicinity. Thus, it can be inferred that there 

was indeed a difference between the mental demand of different phases. (Mcleod, 2019; 

Interpreting Data: Boxplots and Tables, 2016) 

4.1.1.2 Physical demand 

 

Figure 4-4, Box plots for Physical Demand factor (PD) rating for each of the phases 

Figure 4-4 shows box plots for Physical Demand factor (PD) for each of the phases. This factor 

corresponds to the amount of physical activity (e.g., pushing, pulling, turning, controlling, 

activating, etc.) that is required for an activity; moreover, it also represents how easy or demanding, 

slow or brisk, slack or strenuous, and restful or laborious a task is perceived to be (Hart & 

Staveland, 1988). As can be seen in the box plots, similar to MD, the median for each phase is 
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outside of the interquartile range of the other phases, so the data is different. The median of PD 

rating seems to be increasing with the increase in task difficulty, which are 1, 3, and 6.5, for easy, 

medium, and hard phases respectively. For the easy phase, the median is equal to the minimum, 

meaning that at least half of the participant thought that it they had almost no difficulty performing 

the task. The data for the hard phase, on the other hand, has a broad range; the distribution of the 

perceived rating of the physical demand ranges from 1 (not demanding at all) to 16 (which is quite 

high). PD is thus observed to be increasing with an increase the difficulty of the phases, although 

the increase in the physical demand is not as severe with the increase that was previously observed 

in the mental demand, and the increase was also more subjective. (Mcleod, 2019; Interpreting 

Data: Boxplots and Tables, 2016) 

4.1.1.3 Temporal demand 

 

Figure 4-5, Box plots for Temporal Demand factor (TD) rating for each of the phases 

Figure 4-5 shows box plots for Temporal Demand factor (TD) for each of the phases. This factor 

corresponds to pressure felt due to the rate or pace at which the tasks or task elements occurred; in 

other words, if the pace is slow and leisurely or rapid and frantic (Hart & Staveland, 1988). As can 

be seen in the box plots, similar to MD and PD, the median for each phase is outside of the 
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interquartile range of the other phases, so the data from different phases is indeed different. The 

median of TD rating seems to be increasing with the increase in task difficulty as well, which are 

2, 6, and 14.5, for easy, medium, and hard phases respectively. For the easy and medium phases, 

the median is quite low, which indicates that the pace at which the easy and medium phases 

required the user to act were perceived slow by the user. On the other hand, for the hard phase, 

although the minimum TD rating was 6 (same as the median rating for median), the median was 

quite high, and the interquartile range was between 12.75 and 17.25, which means that there was 

a bigger leap in terms of temporal demand between medium and hard phases, compared to the 

difference between easy and medium phases. TD is thus observed to be increasing with an increase 

the difficulty of the phases. (Mcleod, 2019; Interpreting Data: Boxplots and Tables, 2016) 

4.1.1.4 Performance 

 

Figure 4-6, Box plots for Performance factor (OP) rating for each of the phases 

Figure 4-6 presents box plots for Performance (OP for Own Performance) for each of the phases. 

This factor corresponds to the perceived success of the participants themselves in accomplishing 

the goals of the task set by the experimenter, or in other words, how satisfied the participant was 

with their performance in accomplishing the task goals (Hart & Staveland, 1988). Lower values 
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mean good performance while higher values indicate poor performance. For the easy phase, the 

median score is 2, which indicates good perceived performance. The median is also outside of the 

interquartile box of the medium and difficult box plots. The distribution is narrow, except for one 

participant who thought they performed quite poor (rating of 11). For medium and hard phases, on 

the contrary, for medium and hard phases, the distribution is quite wide, and also the median for 

the difficult phase is located almost in the middle of the interquartile box for the medium phase. 

This indicates that for different participants, the extent to which they thought they were successful 

in performing the task goals were quite different. But still, with less confidence, it can be inferred 

that the performance deteriorated as the difficulty of the task was increased. (Mcleod, 2019; 

Interpreting Data: Boxplots and Tables, 2016) 

4.1.1.5 Effort 

 

Figure 4-7, Box plots for Performance factor (OP) rating for each of the phases 

Figure 4-7 presents box plots for Effort (EF) for each of the phases. This factor corresponds to the 

extent to which the participant had to work (physically or mentally) in order to accomplish their 

level of performance (Hart & Staveland, 1988). Much similar to the OP, the ratings for the easy 

phase differs by a substantial margin from the other phases, while the ratings for medium and hard 
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phases are overlapping. The distribution for the easy phase is quite narrow with a median of 3 

(although there are two outliers with the rating values of 8 and 10), while the medium and hard 

phases have wider distributions with median values of 8.5 and 12.5 respectively. Like PD, the 

perceived effort, especially for the hard phase, seems to be much subjective, but overall, it can be 

inferred from the box plots that the perceived effort was also increased as the difficulty of the task 

itself was increased. (Mcleod, 2019; Interpreting Data: Boxplots and Tables, 2016) 

4.1.1.6 Frustration 

 

Figure 4-8, Box plots for Performance factor (OP) rating for each of the phases 

Figure 4-8 presents box plots for Frustration (FR) for each of the phases. This factor corresponds 

to the extent to which the participant felt insecure, discouraged, irritated, stressed and annoyed 

versus secure, gratified, confident, relaxed, and complacent during the task (Hart & Staveland, 

1988). The data for the easy phase is quite solid; it has a median rating value of 1 (minimum) and 

a third quartile of just 2. The distribution is very narrow, and there is only a single outlier, meaning 

that the participants didn’t feel frustration for the easy task. On the other hand, the range for 

medium and hard phases was between 1 and 13, and between 1 and 17, respectively. The FR rating 

for medium and hard phases were subjective as well, although the median values were quite 
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different (4.5 for medium and 12 for hard). Thus, it can be inferred, with less confidence, that the 

level of frustration also increased with the task difficulty. (Mcleod, 2019; Interpreting Data: 

Boxplots and Tables, 2016) 

4.1.2 Moving target fractions scores (performance) 

The Moving Target Fractions test application was designed to keep a score for each test. Starting 

at 0, the score was calculated by granting 10 points for each correct click on a fraction and -10 for 

each incorrect click. Clicks outside of fractions (anywhere else on the screen) didn’t change the 

score. The maximum score was calculated using the following formula: 

ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑐𝑜𝑟𝑒 =  10 × T × R  

where T is the total number of fractions in that phase, R is the fraction of interest rate, and 

10 is the score for a correct click. Thus, the highest possible score for easy, medium, and hard 

phases were 100, 150, and 250 respectively. This was used to calculate success rate using the 

following formula: 

𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑟𝑎𝑡𝑒 (%) =  
𝑠𝑐𝑜𝑟𝑒

ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑐𝑜𝑟𝑒
  × 100 

The success rate which is normalized between 0 and 100 could then be used to compare 

phases with different difficulties. 

The data from score can be used to answer the secondary question of the study: How 

successful are IPA and LHIPA indices in assessing cognitive load for tasks with different 

difficulties? 

Figure 4-8 shows the mean success percent for each of the difficulties. As can be seen in 

the figure, the mean success percent for easy, medium, and hard phases are respectively 95.0, 86.1, 

and 72.7 percent, which indicates and overall decrease in performance of the participants, as the 

difficulty of the task increases. 
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Figure 4-9, Mean success percent for each difficulty 

 

Figure 4-10, Box plot of success rate for each difficulty 
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In order to confirm the data was different, Kruskal-Wallis test was used. The reason this 

test was used is that the Shapiro-Wilk test showed that the distribution of the success was not 

normal (p < 0.05, p = 0.0001, indicating that the data was not normal). The Kruskal-Wallis test 

(success rate and difficulty being the dependent and the independent variables respectively) 

yielded p < 0.05 (p = 0.0007) indicating that success rate was significantly different for different 

difficulties. 

Figure 4-10 presents box plots for calculated success rate for each of the task difficulties. 

As can be observed in the figure, the success rate is quite obviously different for different phases. 

For the easy phase, except for 2 outliers with performed 80 percent and 60 percent, other 

participants achieved a success rate of 100 percent. For the medium phase, except for one outlier 

who achieved a success rate of 40 percent, the rest accomplished the task with a success rate of 80 

percent to 100 percent, with the median being 90, and the interquartile range of 80 percent to 96.65 

percent. On the other hand, for the hard phase, the success rate varied from a minimum of 48 

percent to a maximum of 92 percent, with a median of 70 percent, and an interquartile range of 60 

percent to 88 percent, so the distribution for the hard phase was quite wider than the other two 

phases. The median success rate for each of the phases was outside of the interquartile box of other 

phases, so it can be inferred that the success rate was different for each phase. Based on the 

observation, it can be concluded that the success rate decreased as the difficulty of the task 

increased. (Mcleod, 2019; Interpreting Data: Boxplots and Tables, 2016) 

4.1.3 Pupillary data 

During the experiment sessions, pupillary data (including pupil size and blinks) were obtained 

using the eye tracker while the participants were performing the tasks. This data was used to 

calculate IPA (Duchowski et al., 2018) and LHIPA (Duchowski et al., 2020). The results could be 

used to answer the secondary question of the study: How successful are IPA and LHIPA indices 

in assessing cognitive load for tasks with different difficulties? 

4.1.3.1 IPA 

IPA was calculated based on the pupil data recorded from the eye tracker, for each one of the 

phases during the first part of the experiment. Figure 4-11 illustrates the calculated IPA values for 

each of the phases and all participants, sorted from easy to hard difficulty. 
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IPA is expected to increase as the mental demand (in this case, difficulty of the task) is 

increased (Duchowski et al., 2018). There were 12 participants in the experiment, and during the 

first part, they did 3 tasks, so the difficulty for each participant was changed twice, meaning that 

there were 24 difficulty changes in total. Out of the 24 changes, calculated IPA changed according 

to expectation (increase when the difficulty increases and decrease when the difficulty decreases) 

for 20 observations, while for the other 4, the observation was contrary to the expectation. Hence, 

observing the IPA, it would have been possible to correctly predict the change it the cognitive load 

correctly for 83.3 percent of cases.  

 

Figure 4-11, Calculated IPA for each of the participants and the phases. The phases were sorted from easy to hard, irrespective of 

the actual order. 

Figure 4-12 illustrates box plots for calculated IPAs grouped by phase difficulty. As it can 

be seen in the figure, the seems to be an increase in the calculated IPA values as the difficulty 

increases. All summary statistics (including minimum, 1st quartile, median, 3rd quartile, and 

maximum) increase with an increase in the difficulty. However, the median value of each difficulty 

is located within the interquartile range of the other difficulties. (Mcleod, 2019; Interpreting Data: 

Boxplots and Tables, 2016) 
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Figure 4-12, Box plots of calculated IPAs grouped by phase difficulty 

In addition, to confirm the significance of the difference of the data, One-Way ANOVA 

method was used. The normality of data was confirmed by Shapiro-Wilk test (p = 0.1767, p > 

0.05, indicating that data was normal), so it was possible to use One-Way ANOVA test. The One-

Way ANOVA test yielded p < 0.05 (p = 0.0085), with IPA and difficulty being the dependent and 

the independent variables respectively, which indicated that the data for different difficulties was 

significantly different. 
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Figure 4-13, IPA mean for each difficulty, error bars represent ± 1 SE from the means 

 

Figure 4-14, Box plots of calculated IPAs grouped by order 
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Figure 4-13 illustrates IPA means for each of the phases, and the error bars represent ± 1 

standard error from the mean values. As can be seen in the figure, the mean IPA values also 

increase with an increase in the difficulty of the task. 

Figure 4-14 shows box plots for calculated IPAs grouped by order of the test (first, second, 

and third). As it can be observed in the plot, the median for the third test is significantly lower than 

the median for the other two phases, showing that as the participant is performing more of the 

same task, it becomes easier (less cognitive demand). It can also be due to a shift in the task 

performing strategy (Marshall et al., 2003). 

4.1.3.2 LHIPA 

In addition to IPA, LHIPA was also calculated based on the pupil data recorded from the eye 

tracker, for each one of the phases during the first part of the experiment. Figure 4-15 illustrates 

the calculated LHIPA values for each of the tests for each participant, sorted by difficulty (easy, 

medium, hard), and irrespective of the order that the tests were conducted. 

 

Figure 4-15, Calculated LHIPA for each of the participants and the phases. The phases were sorted from easy to hard, irrespective 

of the actual order. 
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Figure 4-16, Box plots of calculated LHIPAs grouped by phase difficulty 

LHIPA is expected to decrease as the mental demand (in this case, difficulty of the task) is 

increased (Duchowski et al., 2020). Out of the 24 phase changes, the calculated LHIPA only 

changed according to expectation for 8 changes, which indicates that LHIPA would have been 

successful in assessing the change in cognitive load only in 33.3 percent of the cases. 

Figure 4-16 shows box plots of calculated LHIPAs grouped by difficulty of the task. As it 

can be seen in the figure, there does not seem to be any meaningful trend in the calculated LHIPA 

as the difficulty of the task increases. 

Shapiro-Wilk normality test was done to check the normality of LHIPA values which 

yielded p = 0.0005 (P < 0.05, indicating the distribution is not normal). Since the data is not normal, 

Kruskal-Wallis test was done to check if the data was significantly, with LHIPA and difficulty 

being the dependent and the independent variables respectively. The test yielded p = 0.4622 (p > 

0.05), indicating that the LHIPA for different difficulties was not significantly different. 
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Figure 4-17, Mean LHIPA values for first, second, and third tasks, irrespective of difficulty, error bars represent ± 1 SE from the 

means 

Figure 4-17 shows mean LHIPA values for first, second, and third tasks, irrespective of 

difficulty. As it can be seen in the figure, the mean LHIPA seems to increase as the same task is 

done more times by the participant (which is expected to correspond to a decrease in the cognitive 

load), indicating the existence of a learning effect or a shift in strategy (Marshall et al., 2003). 

4.2 Second part: combination phase 

In the second part of the experiment, IPA was and LHIPA were calculated on a 1-second interval. 

However, based on the observations from the first part (see 5.2 for more details), LHIPA was 

removed from the second part. 

The results from the second part of the experiment will be used to answer the primary 

research question: How long does it take for changes in cognitive load to effect physiological 

signals? 

IPA was calculated in real-time on a 1-second interval for the pupil diameter data from the 

last 10 seconds. After the tests were done, the captured pupil diameter records were also used to 
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calculate IPA on the same 1-second interval, for 20 and 30 second windows as well, to see if the 

calculation window significantly affects reaction time. 

 

Figure 4-18, Changes of IPA over time based on 10, 20, and 30 second calculations (1-second interval) for participant 9. Vertical 

lines indicate start of a phase (order of phases for this participant: hard, medium, easy). Horizonal dotted lines indicate a single 

IPA value calculated using all the pupil diameter data for that phase. 

 

Figure 4-19, The same graph as Figure 4-18 (same data), only using 3-second moving average IPAs 
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Figure 4-18 shows changes of IPA based on 10, 20, and 30 second calculations for one of 

the participants. Based on the calculations, the reaction time for each phase was calculated as the 

amount of time needed for the IPA to reach the overall IPA of that phase. 

To compensate for any noise, the same calculation was also done using 3-second moving 

average IPA. The reaction time for each phase was also calculated using the new results. The 

changes in 3-second moving average IPA over time are illustrated in Figure 4-19. 

The results indicate that the reaction time for IPA to reflect changes in cognitive load, using 

the raw IPA calculations, is 10.5 ± 1.85, 11.5 ± 1.77, and 12.9 ± 2.09 seconds, using 10, 20, and 

30 calculations windows, respectively. Using the 3-second moving average, the results is 13.2 ± 

1.96, 15.9 ± 2.06, and 17.3 ± 2.37 seconds, using 10, 20, and 30 calculations windows, 

respectively. 

 

Figure 4-20, Reaction time of IPA based on different calculation window lengths (10, 20, 30 seconds), using raw IPA data and 3-

second moving average IPAs. Error bars represent mean reaction time ± SE 
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4.2.1 Comparison between different window lengths 

Even though there seems to be a slight increase in the in the reaction time, using both raw IPA 

calculations and 3-second moving average IPA, as the window duration increases, results of the 

Kruskal-Wallis test suggest there is no significant difference between the results of calculations 

using different window lengths. In order to run this analysis, first, the reaction times (a total of 216 

records) was divided into 2 sets of 108 records (raw and moving average). Shapiro-Wilk normality 

test results for each set suggested that the data was not normally distributed (p values of 2.279 × 

10-9 and 6.275 × 10-7 for raw and 3-second moving average IPAs, respectively). Then, Kruskal-

Wallis test was done for each group, with reaction time and calculation window length as 

dependent and independent variables, respectively, and the tests yielded p values of 0.54 and 0.39, 

for raw and 3-second moving average IPAs respectively, indicating that using a calculation 

window length of 10, 20, and 30 seconds, didn’t significantly affect the reaction time. 

4.2.2 Comparison between raw and 3-second moving average IPAs 

In order to check if using raw or 3-second moving average IPAs significantly affected the 

calculated reaction time, the data was grouped by window lengths of 10, 20, and 30 seconds (72 

records each). The Shapiro-Wilk test showed that the none of the data sets were normally 

distributed (tests yielded p values of 3.339 × 10-7, 2.073 × 10-5, and 3.139 × 10-6, for 10, 20, and 

30 second window lengths respectively). The Kruskal-Wallis tests for those groups of data, with 

reaction time and calculation type (raw or moving average) being the dependent and independent 

variables, respectively, yielded p values of 0.15, 0.08, and 0.12, for 10, 20, and 30 second 

calculation window lengths, respectively, indicating that for none of the calculation window 

lengths, using either raw or 3-second moving average IPA, didn’t significantly change the 

calculated reaction time. 

4.2.3 Comparison between increasing and decreasing IPAs 

The reaction time was also analysed for any significant different between reaction times when IPA 

decreased versus the reaction times when IPA increased. In order to do so, the data was divided in 

two groups, based on whether the total IPA value for the phase decreased or increased compared 

to the previous phase. The increased IPA group included 120 records, and decreased IPA included 

96 records. Even though the total number was expected to be equal (108 records each), it was not 
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the case, as the IPA didn’t change according to the expectation 100 percent of the times (see 

4.1.3.1). Figure 4-21 and Figure 4-22 illustrate mean reaction time when IPA increased or 

decreased, grouped by reaction time and calculation type (raw or moving average), where error 

bars represent mean reaction time ± SE. 

 

Figure 4-21, Reaction times when IPA increasing, for different calculation window lengths and calculation types (raw or moving 

average). Error bars represent mean reaction time ± SE 

The data was previously shown not to be normally distributed, so Kruskal-Wallis test was 

used to check if there was a significant difference between reaction times in the two groups. The 

test yielded a p value of 0.001, which indicated the results for the groups was different. The results 

show that even though the mean reaction time for all the cases was 13.6 ± 0.92 seconds, for 

increasing and decreasing IPA groups, it was 11.9 ± 1.08 seconds and 15.7 ± 1.60 seconds, 

respectively, indicating that it took longer for IPA to reach the expected value if it was decreasing. 
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Figure 4-22, Reaction times when IPA decreasing, for different calculation window lengths and calculation types (raw or moving 

average). Error bars represent mean reaction time ± SE 
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5 DISCUSSION 

The data used in this study was acquired through conducting experimental research. The acquired 

data was used for answering research questions and drawing conclusions. This chapter aims at 

interpreting the results from the conducted experiments and analysing how successful the results 

are in answering the research questions. In addition, the methods used for this study are critically 

analysed in this chapter. Moreover, at the end of the chapter, study limitations and suggestions for 

future studies are discussed. 

5.1 Confirming that the phases with different difficulties were successful in inducing 

different levels of cognitive load 

This section uses all the data acquired from the first part of the experiment (easy, medium, hard - 

separate phases) to confirm that the designed phases were successful in inducing different levels 

of cognitive load to the participants. 

NASA-TLX questionnaires were used as a self-report method for assessing cognitive load 

after each of the phases in the first part of the experiment (see 4.1.1). The questionnaire assesses 

6 main factors of workload, including Mental Demand (MD), Physical Demand (PD), Temporal 

Demand (TD), Performance (OP), Effort (EF), and Frustration (FR). (Hart & Staveland, 1988) 

Additionally, scores were given to the participants for each of the phases done by the 

Moving Target Fractions test application (see 4.1.2). 

The results from the NASA-TLX questionnaire indicates that any of the 6 workload factors 

increased as the difficulty of the task increased (Hayashi & Kishi, 2014), although the key factor 

for this research was Mental Demand (MD). MD represents the amount of mental and perceptual 

activity a task requires and how easy or demanding it is (Hart & Staveland, 1988). As can be seen 

in Figure 4-3, all of the summary statistics for MD (including minimum, 1st quartile, median, 3rd 

quartile, and maximum) did increase, with an increase in the difficulty of the tasks; moreover, the 

median MD for each of the difficulties was outside of the interquartile range of the other phases  

(Mcleod, 2019; Interpreting Data: Boxplots and Tables, 2016). Thus, the results from the NASA-

TLX questionnaires confirm that the mental demand for these phases was significantly different 

from the others, increasing as the difficulty of the task increased. 
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The results from the performance assessment (scores) also confirms this finding. Figure 

4-9 shows that the mean score decreases as the difficulty increases, and it can be seen in Figure 

4-10 that this is also true for all of the summary statistics (minimum, 1st quartile, median, 3rd 

quartile, and maximum), while the median for each phase is also outside of the interquartile range 

of the other phases (Mcleod, 2019; Interpreting Data: Boxplots and Tables, 2016). This finding 

also confirms that the scores were significantly different for each phase, and the tasks were 

successful in inducing different levels of cognitive load. 

5.2 How successful are IPA and LHIPA indices in assessing cognitive load for tasks 

with different difficulties? 

 Pupillary data (including pupil size and blinks) were acquired via an eye tracker to calculate IPA 

and LHIPA for the tasks (easy, medium, hard) in the first part of the experiment (see 4.1.3). 

The purpose of collecting this data was to answer the secondary research question: how 

successful are IPA and LHIPA in assessing cognitive load for tasks with different difficulties. 

IPA is expected to increase when the difficulty of the task increases (Duchowski et al., 2018). The 

calculated IPAs (see 4.1.3.1) indicate that IPA was successful in assessing the change in the 

cognitive load in 83.3 percent of the cases. Moreover, the results of One-Way ANOVA test for 

IPA showed that the calculated IPAs for different tasks were indeed different. 

On the other hand, LHIPA was expected to decrease with an increase in the mental demand 

when performing tasks (Duchowski et al., 2020). The calculated LHIPAs (see 4.1.3.2) did not 

show the expected results, and LHIPA was only successful in assessing a change in the cognitive 

load in 33.3 of cases. In addition, the results of Kruskal-Wallis test for LHIPA did not show any 

significant different between calculated LHIPAs for different tasks. 

The results indicate that while IPA was successful in assessing cognitive load for the given 

task with different difficulties, but LHIPA failed to do so. Since calculated IPAs and LHIPAs both 

used the same pupillary data, and considering the tasks were shown to induce different levels of 

cognitive load to the participant (see 5.1), the issue probably is not coming from the tasks or the 

hardware and the software. 

Duchowski et al. (2020) reported that IPA is more sensitive to task difficulty, especially in 

mental arithmetic tasks. Effectiveness of IPA was also tests using an arithmetic task (see 2.3.1). In 
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the same report, they showed that IPA was less effective in assessing cognitive load associated 

with working memory capacity. On the contrary, LHIPA was shown to be more sensitive when in 

tasks associated with working memory capacity, which was confirmed using n-back test (see 

2.3.2), which does not involve mental arithmetic, but is more about recalling (memory). 

The task used in this study (Moving Target Fractions, see 3.2.3.4) involved a metal 

arithmetic task, and didn’t require participants to recall anything or use working memory much. 

This could probably be the reason why IPA was successful while LHIPA failed in correctly 

assessing the cognitive load of the participants when performing given tasks. 

Since LHIPA was not successful in correctly assessing cognitive load for the task used in 

this study, it was removed from the next part, and IPA was the only measure used to answer the 

primary research question. 

5.3 How long does it take for changes in cognitive load to effect physiological 

signals? 

The results from the second part of the experiment (see 4.2) indicate that it takes some 

amount of time for the IPA to reach the expected level after the difficulty of the task, and hence, 

the cognitive load, changes. According to the results, it takes an average of 13.6 seconds (with a 

standard error of 0.92 seconds) for the IPA to adjust to the new cognitive load levels; however, it 

was also observed that in case of increasing cognitive load, the IPA reflects the changes more 

quickly, compared to the case of decreasing cognitive load. 

The results also indicate that using the IPA itself is not much different than using a 3-

second moving average IPA. The 3-second moving average analysis was done to check if 

calculated IPAs are noisy and inaccurate, but the results suggested otherwise. This finding is 

especially useful, because in practice, when using this method in real-time, it is not possible to 

calculate the 3-second moving average (or any other moving average) IPA. 

The results also suggest that the calculation window length does not significantly affect the 

reaction time. The calculations were done using 10, 20, and 30-second window lengths, and 

although in some cases the mean reaction times when using larger window lengths were higher, 

the results of Kruskal-Wallis analysis suggested that the difference was not significant. This 

finding is also important, because when using the method in real-time, as the length of the 
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calculation window is increased, the number of calculations are increase, and there might be 

performance issues if the hardware is not powerful enough. 

5.4 Limitations 

The study suffered a few limitations. First, the number of participants who were recruited for the 

study was only 14, out of which only 12 were used for the analysis. Recruiting more participant 

would have made it possible to produce a more accurate estimate for the reaction time. The same 

study with at least 30 participants might have produced much more accurate results. 

Moreover, the study was done during the COVID-19 pandemic, and it made it more 

difficult than user to recruit participants, especially since the experiments had to be conducted in 

person, due to using an eye tracker headset. 

Additionally, the used eye tracker (see 3.2.1.1) was not compatible with some eyeglass’s 

frames, especially if the frame was large, which didn’t allow the eye tracker to be fixed on the 

participants’ heads; this made it impossible to conduct the experiment with one of the volunteers 

and made it difficult to adjust the headset for two other participants. 

Lastly, the initial plan for the study was to use multiple physiological signals, as it can also 

improve the accuracy of the assessment (Jaiswal et al., 2019). Initially, the goal was to assess the 

reaction time for heart rate variability as well; however, due to lack of the required hardware, this 

was removed from the study. 

5.5 Future work 

Future studies can be conducted to assess the reaction times of other physiological signals (e.g., 

HRV, ECG, EEG, etc.) to changes in cognitive load. This can be helpful, because first, 

physiological assessments can be combined to increase accuracy (Jaiswal et al., 2019), and in 

addition, the results can be used in designing systems that can actively adjust the difficulty of a 

task (e.g., in training systems) in order to reduce the amount of time that the user to exposed to 

non-optimal or excessive cognitive load (Coyne et al., 2009). 

Another potential study would be one to assess the reaction time for LHIPA (Duchowski 

et al., 2020). This goal was initially in the scope of the present study, but after analysing the results, 

it turned out that LHIPA was not effective in assessing cognitive load induced by the Moving 
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Target Fractions task. For such study, it is recommended to use a memory task rather than an 

arithmetic task (Duchowski et al., 2020).  
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6 CONCLUSION 

The main objective of the study was to assess reaction time of physiological signal to changes in 

cognitive load. In addition, the study also tried to confirm if IPA and LHIPA could successfully 

be used for assessing cognitive load for an arithmetic task (i.e., Moving Targets Fractions task). 

To answer the secondary research question “how successful are IPA and LHIPA indices in 

assessing cognitive load for tasks with different difficulties?”, the study found that, using the 

Moving Target Fractions task, while IPA was quite successful in doing so for 83.3 percent of cases, 

LHIPA wasn’t successful (33.3 percent success rate). 

The reason for this finding is probably due to LHIPA being more sensitive to memory 

intensive tasks, e.g., the n-back task, which was also used by Duchowski et al. (2020), in order to 

prove the effectiveness of LHIPA, while IPA, as also shown by Duchowski et al. (2018), was 

tested and proven to be effective with arithmetic tasks. Since the Moving Target Fractions task 

mostly involved arithmetic calculations and didn’t really engage memory, IPA could assess the 

cognitive load associated with it, but LHIPA failed to do so. This finding was the main reason that 

LHIPA was removed from the second part of the study, i.e., answering the primary research 

question. 

To answer the primary research question “How long does it take for changes in cognitive 

load to effect physiological signals?”, the study found on average, it took 13.6 ± 0.92 seconds for 

IPA to reflect changes in the cognitive load, after the difficulty of the task had changed. The study 

also found that using raw or 3-second moving average IPAs, or 10, 20, and 30-second calculation 

window lengths, didn’t significantly change this number. On the other hand, the study found that 

the reaction time of IPA was significantly different when the change caused an increase or a 

decrease in the IPA (for increasing and decreasing IPAs, the mean reaction time was 11.9 ± 1.08 

seconds and 15.7 ± 1.60 seconds, respectively). 

Further research is required to find out if the reaction time of IPA is the same with different 

types of tasks (e.g., memory tasks), and also, find the reaction time of LHIPA to changes in 

cognitive load. 
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Both measures used in the current study (i.e., IPA and LHIPA) were based on pupillary 

signals, more precisely, the abrupt changes in pupil size. Future research can be conducted to 

investigate the reaction time of other physiological signals to changes in cognitive load.  
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