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A B S T R A C T   

One solution for online condition monitoring of photovoltaic (PV) modules is to identify single-diode model 
parameter values from measured current–voltage (I–V) curves. By this way, use of expensive thermal cameras 
and radiometric sensors utilized in traditional monitoring methods can be avoided. Unfortunately, most of the 
parameter identification methods require measurements of the operating conditions, i.e., irradiance and tem-
perature. This article proposes a novel procedure for identification of the single-diode model parameter values 
along with the operating irradiance and temperature values from measured I–V curves without needing any other 
measurement. The only inputs of the proposed procedure are the I–V curve measurements at the actual operating 
conditions together with the parameter values of the module model in standard test conditions. The proposed 
procedure is experimentally validated using I–V curves of three PV module types measured from two different 
locations. Both the whole I–V curves or only a part of them, in a limited voltage range, are considered. Moreover, 
I–V curve measurements with an emulated increase of the series resistance are used to demonstrate the cor-
rectness of the identified series resistance values. It is shown that the procedure identifies the operating irra-
diance and temperature with high accuracy even during sharp irradiance transitions and low irradiance 
conditions and identifies series and shunt resistances very reliably under nearly constant high irradiance con-
ditions. Moreover, for the first time, a comprehensive comparison of various fitting approaches based on root- 
mean-square error (RMSE) minimization, including two novel approaches, is presented. The results show that 
the different fitting approaches based on RMSE minimization affect the accuracy of the parameters identification 
in a different way, this meaning that the used fitting approach is a factor that should be considered when 
implementing model parameter identification by curve fitting.   

1. Intoduction 

Online monitoring of photovoltaic (PV) modules condition, faults, 
aging and soiling is vital for operating PV power plants with the highest 
possible overall efficiency. Typically monitoring of PV modules relies on 
expensive methods using thermal cameras [1] or radiometric sensors [2] 
either in fixed installations or carried by drones. Thus, more efficient 
methods and tools are needed to reduce the maintenance and operation 
costs of PV power plants. One possible solution for online monitoring is 
to utilize measured current–voltage (I–V) curves, which can be modelled 
quite accurately under varying irradiance and temperature conditions 
using well-known electrical models, such as the single-diode model 
(SDM) and two-diode model. These models contain also condition and 
aging dependent parameters rendering condition monitoring based on 

parameters identification. The SDM is the most used electrical model 
providing a good trade-off between complexity and accuracy. 

The values of the parameters appearing in the electrical models are 
usually identified in standard test conditions (STC), at which irradiance 
G and temperature T values are given, and then converted to other 
conditions based on their G and T behavior [3]. Several methods have 
been proposed for global and diffuse irradiance estimation. Comparisons 
of those methods are presented in [4,5]. However, the methods do not 
provide accurate enough estimates to be used in PV module parametric 
identification. Thus, appropriate environmental condition measure-
ments are needed to identify parameter values under field conditions. 
Indeed, most of the presented parameter identification procedures 
require measurements of the operating conditions. For instance, 
measured ambient temperature or module backside temperature is used 
in [6], both irradiance and temperature are needed for the approaches 
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presented in [7–11] and temperature is needed for the per-unit SDM- 
based method proposed in [12]. The need of operating condition mea-
surements restricts the use of these methods for on-site condition 
monitoring. Only few procedures have been proposed earlier for para-
metric identification from measured I–V curves without the need for any 
other measurements. One such a procedure for SDM parameter identi-
fication was proposed in [13], which identifies the values of G and T 
along with the SDM parameter values. Instead of identifying multiple 
parameters, some methods focus on identification of the series resistance 
that is the most significant parameter for the assessment of the PV 
module state of health. An overview of these methods is given in [14]. In 
[15], a diagnostic method based on calculation of diagnostic indicators 
from I–V curves was proposed for detecting partial shading, increased 
series resistance and potential induced degradation of PV modules. 

The SDM allows to simulate I–V curves via an implicit equation, 
which is often expressed in explicit form exploiting the Lambert W 
function [16]. Although the use of the explicit expression leads to lower 
accuracy compared to the use of the implicit equation, it is often pre-
ferrable due to lower computational burden. In addition to an accurate 
model, correct parameter values are vital for accurate modelling. During 
the last years, several deterministic [17] and stochastic [18,19] pro-
cedures have been proposed to calculate the SDM parameter values 
under given G and T conditions. A review of the parameter extraction 
methods was presented in [20] and 12 optimization algorithms for 
parameter estimation were compared in [21]. Some of the methods, like 
[22], utilize the whole I–V curve while some of them, like [23], require 
only the three most meaningful points of the curve, namely short-circuit 
(SC), open-circuit (OC) and maximum power point (MPP), in addition to 
the measured T and/or G. The deterministic methods can further be 
divided into numerical and analytical ones. In numerical methods, the 
exact solution of the SDM is calculated iteratively. A widely used nu-
merical procedure is the one provided by Villalva et al. [24]. The 
analytical methods provide a complementary strategy where, under 
certain simplifications, the parameters are calculated by means of 
explicit equations [25]. A review of the analytical methods was pre-
sented in [26]. Moreover, an experimental validation of several explicit 
methods used for the SDM parameter identification was presented in 
[27], where the analysis focused on identification of series resistance in 
presence of artificial degradation. 

Although several methods for SDM parameter extraction have been 
presented, only little attention has been paid to utilized fitting ap-
proaches based on root-mean-square error (RMSE) minimization. In 
general, all previous methods utilizing I–V curves aim to find a param-
eter set by which RMSE in I between the original and modelled I–V curve 
is minimized, by assuming that the simulated current is calculated at 
each voltage value where the real current was experimentally measured. 
This results from the fact that typically the current of the PV module is 
expressed as a function of the voltage, i.e., I = f(V). However, the voltage 
of the PV module can be expressed as a function of the current, i.e., V = f 
(I), as well. By that way, the curve fitting can be made based on mini-
mization of RMSE in V instead of I, comparing the voltage coordinates of 
experimental and simulated points with the same current values. These 
two fitting approaches I and V have been compared earlier only in [28]. 
It was found therein that the recommended fitting approach is depen-
dent on the method used to compute the I–V curve from the SDM. 
However, different fitting approaches based on RMSE minimization are 
not limited to these two, but other approaches can be formed by 
applying the I approach for one part of the curve and the V approach for 
other, e.g., the former at voltages that are lower than the MPP one and 
the latter between the MPP and the OC condition. In [28], the I and V 
approaches were compared using only 6 cases of single I–V curves. Thus, 
there is a need for a comprehensive study of fitting approaches based on 
RMSE minimization. 

In this article, a novel procedure is proposed for the SDM parameter 
identification from measured I–V curves without the need for any other 
measurement. The proposed procedure identifies the SDM parameter 
values along with the values of G and T. Thus, the proposed procedure 
can be applied in on-site applications. Moreover, the procedure is 
implemented by four fitting approaches based on RMSE minimization, 
which are compared in terms of accuracy and computational costs. 
Validation of the proposed procedure and comparison of the fitting 
approaches is done using comprehensive sets of I–V curves of three PV 
modules measured at two different locations. Both the whole I–V curves 
or portions of them are considered. Moreover, I–V curve measurements 
after having added an external series resistance are used to estimate the 
correctness of the identified series resistance values. In this study, actual 
on-site I–V curve measurements are used while most of the earlier 
parameter identification procedures, like [11], have been validated 

Nomenclature 

αEg thermal coefficient of energy band gap (1/K) 
αI thermal coefficient of short-circuit current (A/K) 
αV thermal coefficient of open-circuit voltage (V/K) 
η ideality factor (-) 
ηSTC ideality factor at STC (-) 
CSTC coefficient calculated at STC (A/K3) 
Eg, STC material energy band gap at STC (J) 
G irradiance (W/m2) 
GSTC STC irradiance (W/m2) 
I current (A) 
IMPP, STC maximum power point current at STC (A) 
Iph light-generated current (A) 
Iph, STC light-generated current at STC (A) 
Is dark saturation current (A) 
Is, STC dark saturation current at STC (A) 
ISC short-circuit current (A) 
ISC, STC short-circuit current at STC (A) 
k Boltzmann constant (J/K) 
Ns number of series-connected PV cells in a PV module (-) 
q elementary charge (C) 
Rs series resistance (Ω) 

Rs, STC series resistance at STC (Ω) 
Rsh shunt resistance (Ω) 
Rsh, STC shunt resistance at STC (Ω) 
T temperature (K) 
TSTC STC temperature (K) 
V voltage (V) 
VMPP, STC maximum power point voltage at STC (V) 
VOC open-circuit voltage (V) 
VOC, STC open-circuit voltage at STC (V) 
Vt thermal voltage (V) 
Vt, STC thermal voltage at STC (V) 
W Lambert W function 

Abbreviations 
MPP maximum power point 
OC open-circuit 
PL power limit 
PV photovoltaic 
RMSE root-mean-square error 
SC short-circuit 
SDM single-diode model 
STC standard test conditions  
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using I–V curves from manufacturers data sheets. 
The main novelty of this study is twofold: (1) a novel procedure for 

SDM parameter identification from measured I–V curves without the 
need for G or T values is proposed and experimentally validated; and (2), 
for the first time, a comprehensive experimental comparison of various 
fitting approaches based on RMSE minimization, including two novel 
approaches, is presented. The proposed identification procedure is 
suitable for on-site applications facilitating online condition monitoring 
of PV modules. The results of this study show that the used fitting 
approach affects the obtained parameter values significantly, meaning 
that the used fitting approach is a factor that should be considered when 
implementing SDM parameter identification by curve fitting. Thus, the 
first comprehensive comparison of these approaches presented in this 
article is a worthwhile contribution to the current knowledge providing 
valuable information for development of parameter identification pro-
cedures. The results of this study are particularly relevant for parametric 
identification, condition monitoring and mathematical modelling of PV 
modules and systems. 

The rest of this article is organized as follows. The proposed identi-
fication algorithm is introduced in Section 2.1, the studied fitting ap-
proaches are presented in Section 2.2 and the used measurement data is 
described in Section 2.3. Section 3.1 presents the results obtained by 
exploiting the entire I–V curves. The results obtained with portions of 
I–V curves, thus by using a subset of the experimental points they 
include, are presented in Section 3.2 and identification of the series 
resistance is further examined in Section 3.3 using I–V curves measured 
with additional series resistance values. The results and their signifi-
cance are further discussed in Section 4. Finally, the conclusions of this 
study are provided in Section 5. 

2. Methods and data 

2.1. Identification algorithm 

In this study, the basic implicit equations derived from the SDM are 
used to model PV modules. The most typical way is to express the cur-
rent as a function of the voltage and current as. 

I = Iph − Is

(
e

V+Rs I
ηVt − 1

)
−

V + RsI
Rsh

, (1)  

where Iph is the light-generated current, Is the dark saturation current, Rs 
the series resistance, η the ideality factor and Rsh the shunt resistance of 
the PV module [25]. The thermal voltage Vt can be expressed as 

Vt =
NskT

q
, (2)  

where Ns is the number of series-connected PV cells in the module, the 
Boltzmann constant is represented by k and q is the elementary charge. 
From Eq. (1) the following expression can be derived for the voltage as a 
function of the current and voltage 

V = RshIph − RshIs

(
e

V+Rs I
ηVt − 1

)
− (Rs + Rsh)I. (3)  

The implicit equations (1) and (3) are used instead of the computa-
tionally less demanding explicit ones exploiting the Lambert W function 
since the purpose of this study is to compare fitting approaches based on 
RMSE minimization and thus the computational burden is not essential, 
but an iterative fitting method exploiting the implicit equations was 
considered to be more suitable for this purpose due to its higher accu-
racy. The equivalent circuit of a PV cell based on the SDM is presented in 
Fig. 1. 

The set of identified parameters is {G, T, Rs, Rsh}. In order to identify 
these parameters from measured I–V curves using Eqs. (1) and (3), 
values for Iph, Is and η are required. The following procedure for 
obtaining these values is novel. The light-generated current Iph can be 

calculated as 

Iph =
G

GSTC

(
Iph, STC + αI(T − TSTC)

)
, (4)  

where αI is the thermal coefficient of ISC [29]. This equation is usually 
applied with the assumption that Iph, STC = ISC, STC [29]. However, 
instead of applying that simple assumption in the procedure here below, 
the effect of the parasitic resistances is taken into account by solving Iph, 

STC as a function of ISC, STC from Eq. (1) as 

Iph, STC = ISC, STC

(
Rsh + Rs

Rsh

)

, (5)  

based on the widely used assumption [25,29] that in the SC condition Is 
is negligible. Eq. (5) is then substituted to Eq. (4) leading to 

Iph =
G

GSTC

(

ISC, STC

(
Rsh + Rs

Rsh

)

+ αI(T − TSTC)

)

. (6)  

The ideality factor η was selected to remain fixed at its STC value [30], 
which is calculated as 

ηSTC =
αV −

VOC, STC
TSTC

Vt, STC

(
αI

Iph, STC
− 3

TSTC
−

Eg, STC
kTSTC

2

) , (7)  

where αV is the thermal coefficient of VOC and Eg, STC is the material 
energy band gap at STC [31]. The saturation current Is is calculated as 

Is = CSTCT3/ηSTC e
− Eg (T)
ηSTC kT , (8)  

where CSTC is a coefficient calculated at STC [32]. In the more common 
version of Eq. (8), η is assumed to be equal to 1 [29], but in the proposed 
procedure its value is computed as above. In OC and STC conditions, Eq. 
(1) can be written as 

0 = Iph, STC − Is, STC

(

e
VOC, STC

ηSTC Vt, STC − 1
)

−
VOC, STC

Rsh
. (9)  

By neglecting the last term (Rsh≫VOC, STC) and the unitary term with 
respect to the exponential one in Eq. (9), Is can be expressed as 

Is, STC = Iph, STCe−
VOC, STC

ηSTC Vt, STC . (10)  

By substituting Eq. (10) into Eq. (8), the coefficient CSTC can be solved as 

CSTC =
Iph, STCeγSTC

TSTC
3/ηSTC

, (11)  

where 

Fig. 1. SDM equivalent circuit of a PV cell.  
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γSTC = −
VOC, STC

ηSTCVt, STC
+

Eg, STC

ηSTCkTSTC
. (12)  

The energy bang gap is calculated as 

Eg(T) = Eg, STC
(
1 + αEg (T − TSTC)

)
, (13)  

where αEg is the thermal coefficient of Eg [30]. 
For the actual curve fitting, guess values for the identified parame-

ters {G, T, Rs, Rsh} are required. For all I–V curves, except the first of 
each dataset, the identified parameter set of the previous curve is used as 
guess values, given that the time interval between two consecutive curve 
acquisitions is not too long. For the first curve of each dataset, STC 
values of {G, T, Rs, Rsh} are used as their initial guesses. The STC values 
of Rs and Rsh are calculated by the following procedure. First, the Iph, STC 
is assumed to be ISC, STC. Secondly, ηSTC is calculated by Eq. (7). After 
that, Is, STC is obtained using Eq. (8) with the STC values of T, η and Eg. 
Finally, the STC values for the parasitic resistances are calculated by the 
procedure presented in [25]: the STC values for Rs and Rsh are obtained 
by 

Rs, STC =
xηSTCVt, STC − VMPP, STC

IMPP, STC
(14)  

and 

Rsh, STC =
xηSTCVt, STC

Iph, STC − IMPP, STC − Is, STC(ex − 1)
, (15)  

where x  is computed utilizing the Lambert W function as  

The proposed procedure is illustrated in Fig. 2. 

2.2. Fitting approaches based on RMSE minimization 

Traditionally PV module I–V curves are modelled by calculating I for 
the given values of V. Correspondingly the curve fitting of SDM is 
typically made based on minimization of RMSE in I, by assuming that 
the simulated I–V curve is computed at the same experimental voltage 
values at which the current was measured. The opposite solution is to 
calculate V for each given value of I and fit the curve based on mini-
mization of the RMSE in V. In the following, these two fitting approaches 
are called approaches I and V, respectively. In addition to these two 
approaches, combinations of them can be formed by applying the I 
approach for one part of the I–V curve and the V approach for other. One 
justified way is to apply different approaches for different branches of 
the measured I–V curve, at the left side and at the right side of the MPP. 
That might be advantageous for identifying the parasitic resistances as 
the series resistance is related to the slope of the curve at voltages higher 
than the MPP voltage (right side of the MPP) whereas the shunt resis-
tance depends on the slope of the curve at voltages lower than the MPP 
voltage (left side of the MPP). 

Two novel fitting approaches combining the I and V strategies are 
proposed and compared with the I and V approaches. In the I&V 
approach, the RMSE in I is minimized on the left side of the measured 
MPP and the RMSE in V is minimized on the right side of the MPP. In the 
V&I approach, the opposite approach is applied: the RMSE in V is 

minimized on the left and the RMSE in I on the right side of the MPP. 
There are some factors that might impede the use of combined RMSE 
computation approaches and thus need to be taken into account: I and V 
values of I–V curves usually differ by one order of magnitude (V values 
are typically larger than I values) and the number of experimental {I, V} 
pairs on the left and right side of the MPP is not the same. Due to these 
factors, RMSE values on one side of the MPP are larger than on the other 
side, and thus one side of the MPP will have larger weight on the total 
RMSE of the curve than the other side, i.e., there will be uneven 
weighting. In order to avoid this effect, the I and V values need to be 
normalized before curve fitting. In the I&V approach, the I values are 
divided by IMPP and the share of points in the right side of the MPP, while 
the V values are divided by VMPP and the share of points on the left side 
of the MPP. In the V&I approach, the I values are divided by IMPP and the 
share of points in the left side of the MPP, and the V values are divided by 
VMPP and the share of points on the right side of the MPP. The values of 
ISC, STC, VOC, STC, IMPP, STC and VMPP, STC used in the curve fitting are 
normalized correspondingly. Values of αI and αV are set in proportion to 
the normalized ISC, STC and VOC, STC, and the rest of the parameter values 
are calculated by the procedure of Section 2.1 using the normalized 
values. 

The examined fitting approaches are compared in terms of identified 
parameter values, computation costs (numbers of iterations and func-
tion evaluations) and the relative area between the measured and fitted 
curves with respect to the area of the measured curve. The identified G 
and T values are compared to the measured ones in Sections 3.1 and 3.2 
and I–V curve measurements with additional Rs are used to estimate the 
correctness of the identified Rs values in Section 3.3. Comparison in 
terms of the obtained RMSE values does not make sense since the vari-

able relative to which the RMSE is calculated determines which 
approach has the lowest RMSE, i.e., if the RMSE is calculated with 
respect to I, the I approach has the lowest RMSE and so on. Thus, the 
areas between the measured and fitted curves are calculated to compare 
accuracies of the curve fits obtained with different fitting approaches. 

2.3. Measurement data 

Validation of the proposed SDM parameter identification procedure 
and comparison of the fitting approaches based on RMSE minimization 
is done utilizing four sets of I–V curves measured from three different PV 
modules. Two datasets are from the University of Malaga, Spain and two 
datasets are from Tampere University, Finland. First, parameter identi-
fication using entire I–V curves is studied with two datasets. The first 
dataset consists of 55 I–V curves of a ISOFOTON I-53 module measured 
in Malaga on 29 July 2017. The second dataset consists of 900 I–V curves 
of a NAPS NP190GK module measured in Tampere on 21 August 2020. 
Parameter identification using only a part of the I–V curves is demon-
strated using a set of 20 I–V curves of a ISOFOTON ISF-145 module 
measured in Malaga on 14 July 2014. Finally, identification of Rs is 
further examined using a set of 300 I–V curves of the NAPS NP190GK 
module in Tampere. This set consist of two subsets of 100 curves 
measured with additional Rs of 0.22 and 0.69 Ω on 16 and 31 July 2020, 
respectively, and 100 curves measured without additional Rs on 26 
August 2020. The PV cells used in the I-53 and ISF-145 modules are 
fabricated of monocrystalline silicon while the NP190GK is composed of 
polycrystalline silicon PV cells. The use of measured I–V curves of 

x = W

⎡

⎢
⎢
⎣

VMPP, STC
(
2IMPP, STC − Iph, STC

)
e

VMPP, STC(VMPP, STC − 2ηSTC Vt, STC)
ηSTC2 Vt, STC 2

ηSTCIs, STCVt, STC

⎤

⎥
⎥
⎦+ 2

VMPP, STC

ηSTCVt, STC
−

VMPP, STC
2

ηSTC
2Vt, STC

2. (16)   
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several PV modules demonstrates that the proposed SDM parameter 
identification procedure can be applied to different PV modules. 

Time intervals between the measurements of the I-53 and ISF-145 
modules were from 6 to 7 s and from 9 to 10 s, respectively. The I–V 
curves of the I-53 and ISF-145 modules consist of 88 and 74 {I, V} pairs 
on average, respectively. On-plane incident irradiance values were 
measured by CMP21 pyranometers (Kipp & Zonen) and PV module 
back-sheet temperatures were measured by Pt100 temperature sensors. 
A detailed description of the University of Malaga measurement system 
is presented in [33]. The I–V curves of the NAPS NP190GK module were 
measured once per second using an I–V curve tracer utilizing the elec-
tronic load method [34]. The I–V curve tracer is located inside a labo-
ratory and thus the measurements are done through cables having a 
total resistance of 0.363 Ω. The I–V curves were pre-processed by the 
procedure provided in [35] after which the points with identical 
measured voltage value were replaced with a single point by averaging 
their measured current values. The pre-processed curves consist of 657 

{I, V} pairs on average. An SP Lite2 pyranometer (Kipp & Zonen), 
mounted at the same 45◦ tilt angle as the module, was used to measure 
irradiance incident on the module. Back-sheet temperature of the 
module was measured by a Pt100 temperature sensor. A detailed 
description of the Tampere University measurement system is presented 
in [36]. 

The electrical parameter values used in this work for the studied PV 
modules are presented in Table 1. The datasheet values provided by the 
manufacturer were used for the ISF-145 module. It was noticed that the 
values provided by the manufacturers for the I-53 and NP190GK mod-
ules, which have been working for a long time, are not close to the real 
ones. Thus, the values determined in [37] and [38] were used for the I- 
53 and NP190GK modules, respectively. These values were determined 
based on measurements done near the measurements used in this study. 
Thus, those values are valid for the study presented in this article. 

The SDM parameters at STC calculated for the studied PV modules 
are summarized in Table 2. The initial guess solutions and ranges of the 
identified parameters {G, T, Rs, Rsh} are presented in Table 3 for the 
studied PV modules. Due to the short time intervals between consecutive 
I–V curve measurements, the identified set of parameters {G, T, Rs, Rsh} 
of the previous curve is used as the guess solutions from the second curve 
onwards. 

3. Experimental results 

3.1. Parameter identification using entire I–V curves 

In the first identification example, values for the parameter set {G, T, 
Rs, Rsh} were identified for 55 I–V curves of the ISOFOTON I-53 module. 

Table 1 
Electrical parameter values of the studied PV modules.  

Variable ISOFOTON I-53 ISOFOTON ISF-145 NAPS NP190GK 

ISC, STC (A) 2.56 8.55 8.72 
VOC, STC (V) 20.5 22.4 32.8 
IMPP, STC (A) 2.26 8.00 7.94 
VMPP, STC (V) 16.5 18.1 22.9 
αI (A/K) 0.00102 0.00359 0.0047 
αV (V/K) − 0.061 − 0.072 − 0.124 
Ns 36 36 54  

Table 2 
SDM parameters of the studied PV modules at STC.  

Variable ISOFOTON I-53 ISOFOTON ISF-145 NAPS NP190GK 

Iph, STC (A)  2.56  8.55  8.72 
ηSTC (-)  0.88541  1.0041  1.0655 
Is, STC (A)  3.4425e-11  2.8646e-10  2.0145e-9 
Rs, STC (Ω)  0.60181  0.18235  0.70927 
Rsh, STC (Ω)  90.167  131.43  96.994  

Fig. 2. Flowchart of the proposed identification procedure.  

Table 3 
Initial guess solutions and ranges of the four identified parameters for the 
studied PV modules.  

Parameter ISOFOTON I-53 ISOFOTON ISF-145 NAPS NP190GK 

G (W/m2) 1000 [10, 1300] 1000 [10, 1300] 1000 [10, 1300] 
T (◦C) 25 [0, 70] 25 [0, 90] 25 [0, 70] 
Rs (Ω) 0.60181 [0.1, 5] 0.18235 [0.05, 5] 0.70927 [0.1, 5] 
Rsh (Ω) 90.167 [5, 500] 131.43 [5, 700] 96.994 [50, 800]  

Fig. 3. Identified and measured irradiances for the set of 55 I-53 module 
I–V curves. 
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The identified and measured irradiances are presented in Fig. 3. The 
measured irradiance is quite constant during the studied period, varying 
between 991 and 996 W/m2. All the studied fitting approaches based on 
RMSE minimization reproduce the shape of the measured irradiance 
curve nicely with some overestimation. The overestimation is the 
smallest for the V and V&I approaches and the largest for the I approach. 
However, even the largest overestimations are only around 2% of the 
measured irradiance. 

Fig. 4 presents the identified and measured temperatures for the I-53 
module I–V curves. All the fitting approaches somewhat underestimate 
the measured temperature. The I approach provides the most accurate 
identified temperature with an average difference of 3.6 ◦C or 1.2% from 
the measured values. Moreover, the I approach provides the smoothest 
irradiance while the irradiances identified by the other approaches, 

especially the V approach, show more fluctuations. The V approach is 
the only one failing to reproduce the shape of the measured temperature 
curve. 

In addition to the operating irradiance and temperature also the 
values of the parasitic resistances were identified. The identified series 
and shunt resistance are presented in Figs. 5 and 6, respectively. The I 
approach provides the smallest resistance values with the smallest 
variation. The I&V approach gives the second smallest values with small 
variation, while the resistance values provided by the V and V&I ap-
proaches show somewhat larger variation. However, all the approaches 
identify stably the shunt resistance. The series resistance values identi-
fied by the I approach are close to the STC value of Table 2 similarly than 
the shunt resistance values identified by the I and I&V approaches. 

As stated in Section 2.2, the accuracy of the fitting approaches is 
compared in terms of the relative area between the measured and fitted 
curves with respect to the area of the measured curve. The areas are 
presented in Fig. 7 for the I-53 module I–V curves. All the approaches 
show good accuracy in terms of the relative area between the measured 
and fitted curves. However, the smallest areas are achieved by the I and 
I&V approaches. Moreover, the areas achieved by these approaches are 

Fig. 4. Identified cell temperatures and measured module backside tempera-
tures for the set of 55 I-53 module I–V curves. 

Fig. 5. Identified series resistances for the set of 55 I-53 module I–V curves.  

Fig. 6. Identified shunt resistances for the set of 55 I-53 module I–V curves.  

Fig. 7. Areas between the measured and fitted curves with respect to the area 
of the measured curve for the set of 55 I-53 module I–V curves. 

Table 4 
Computation costs of the studied fitting approaches for the set of 55 I-53 module 
I–V curves.  

Approach Average number of 
iterations 

Average number of function 
evaluations 

I  20.7 108 
V  21.8 114 
I&V  22.1 116 
V&I  22.8 119  

Fig. 8. Identified and measured irradiances for the set of 900 NP190GK module 
I–V curves. 
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very stable. The largest variation together with the largest values exists 
in the areas of the V approach. 

The numbers of iterations and function evaluations for the studied 
approaches are listed in Table 4 for the I-53 module I–V curves. These 
values indicate that the I approach is computationally the least 
demanding while the V&I approach has the highest computational 
burden. However, the differences between the approaches are small. 

In the second identification example, 900 I–V curves of the NAPS 
NP190GK were examined. The curves were measured once a second 
during a period of 15 min. The selected period involves a wide range of 
different operating conditions. The identified and measured irradiances 
are presented in Fig. 8. The measured irradiance is quite constant on a 
high level for the first three minutes after which some shading occurs 
decreasing the irradiance to around 600 W/m2. The shadings are fol-
lowed by other three minutes of high irradiance conditions after which a 
longer shading period exist followed by nearly constant high irradiance 
conditions at the end of the period. Despite of the sharp irradiance 
transitions, all the approaches success to follow the shape of the 
measured irradiance with slight overestimation. 

Accuracy of the identified irradiance values is further illustrated in 
Fig. 9 where the differences between the identified and measured irra-
diances are presented. During the constant high irradiance conditions, 
all the identified irradiances are within 1.3% from the measured irra-
diance. In these conditions, the irradiance overestimation is the smallest 
for the V and V&I approaches and the largest for the I approach similarly 
than in the first identification example. During the constant low irra-
diance conditions around 11:54, all the identified irradiances are about 
15 W/m2 or 9% higher than the measured value and there are only 
minor differences between the approaches. As expected, the largest 
differences between the identified and measured irradiance values exist 
during sharp irradiance transitions. In order to further illustrate the 
behavior of the identified irradiances, the irradiance identified by the I 
approach is presented in Fig. 10 as a function of the measured irradi-
ance. Fig. 10 confirms the slight irradiance overestimation and shows 
that the identified irradiance values are close to the measured ones along 
the whole irradiance range. 

The identified and measured temperatures are presented in Fig. 11 
for the NP190GK module I–V curves. The operating temperature of a PV 
module is naturally dependent on the irradiance incident on the module. 
The measured temperature decreases about 10 ◦C during the shading 
period around 11:54. However, the irradiance transitions around 11:48 
were so fast that they did not cause a temperature drop. All the fitting 
approaches somewhat underestimate the measured temperature simi-
larly than in the first identification example (see Fig. 4). Again, the I 
approach provides the most accurate identified temperature. However, 
the differences between the approaches are smaller than in the first 
identification example. All the approaches success to follow the shape of 
the measured irradiance, apart from the sharp irradiance transitions 

which cause large variation in the temperature identified by the V and 
V&I approaches. Only few small peaks exist in the temperature identi-
fied by the I&V approach while the I approach provides stable identified 
temperature even during the fastest irradiance transitions. 

The series and shunt resistance identified for the NP190GK module 
I–V curves are presented in Figs. 12 and 13, respectively. Again, the I 
approach provides the most stable identified resistances with the 
smallest values. All the approaches identify resistance values higher 
than the STC values of Table 2, the values identified by the I approach 
being closest to the STC values. The differences in identified series 
resistance values between the approaches are smaller than in the first Fig. 9. Differences between the identified and measured irradiances for the set 

of 900 NP190GK module I–V curves. 

Fig. 10. Scatter plot between the irradiance identified by the I approach and 
the measured irradiance for the set of 900 NP190GK module I–V curves. 

Fig. 11. Identified cell temperatures and measured module backside temper-
atures for the set of 900 NP190GK module I–V curves. 

Fig. 12. Identified series resistances for the set of 900 NP190GK module 
I–V curves. 
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identification example. The series resistances identified by the V, I&V 
and V&I approaches vary largely during the sharp irradiance transitions. 
However, the I approach provides quite stable identified value even 
during the irradiance transitions. During the short medium irradiance 
conditions around 11:48 and 11:56, the identified shunt resistances of 
the I and I&V approaches have higher values than during the constant 
high irradiance conditions. That kind of behavior was achieved also by 
other procedures proposed in previous literature [13,39]. In both of 
these approaches, the current was expressed as a function of the voltage 
in explicit form, i.e., the I approach was used. However, by the V and 
V&I approaches lower shunt resistance values are obtained during the 
medium conditions than during the constant high irradiance conditions. 
This demonstrates that the used fitting approach has a great effect on the 
obtained shunt resistance values. In some cases, during the longer 
shading period around 11:54, the identified shunt resistance values 
reach the upper bound of Table 3 in line with the results shown in [13]. 
This happens most often with the V&I approach and is most rare for the I 
approach. However, during high irradiance conditions, the proposed 
identification procedure identifies stably the shunt resistance. Indeed, 
during the constant high irradiance conditions, the identified shunt re-
sistances of all the approaches are much more stable than the ones ob-
tained for the same NP190GK module in [13]. 

Fig. 14 shows the relative areas between the measured and fitted 
curves for the NP190GK module I–V curves. All the approaches show 
good accuracy under constant irradiance conditions, even during the 
shading period around 11:54. Indeed, the relative areas for the 
NP190GK module are smaller than for the I-53 module in the first 
identification example. Relative areas of over 1% occur for the V and 
V&I approaches during the irradiance transitions. The largest relative 
areas for the I and I&V approaches are 0.60% and 0.77%, respectively. 

Moreover, the relative areas for these approaches are much more stable 
than those for the V and V&I approaches. 

The numbers of iterations and function evaluations for the studied 
approaches are compiled in Table 5 for the NP190GK module I–V curves. 
These values indicate that in this identification example the I and I&V 
approaches are computationally less demanding than the V and V&I 
approaches. The numbers of iterations and function evaluations in 
Table 5 are larger than those for the I-53 module I–V curves in Table 4, 
which is reasonable since the NP190GK module I–V curves consist of a 
larger number of measurement points than the I-53 module I–V curves. 

3.2. Parameter identification using portions of the I–V curves 

In this identification example, 20 I–V curves of the ISOFOTON ISF- 
145 module were examined to demonstrate parameter identification 
using only a part of the measured I–V curve. In practical applications, 
ideal condition monitoring would be based on I–V curve measurements 
performed in the vicinity of the MPP, so that a small power drop is 
required to perform the identification action. In order to define an 
adequate share of the I–V curves near the MPP for feasible parameter 
identification, the results are presented as a function of power limit (PL). 
The PL gives the power, with respect to the MPP power, from which the 
curve is cut so that only the points with power higher than the PL are 
utilized for the identification. The power limit was varied from 0% (all 
the samples of the I–V curve are used for the identification) to 99% (only 
the points within 1% from the MPP power). The operating conditions of 
the module are almost fixed over the measurement period: the irradi-
ance varied only slightly between 903 and 905 W/m2 and the temper-
ature increased marginally being between 50.3 and 51.5 ◦C. 

The average differences between the identified and measured irra-
diances are shown in Fig. 15 for the 20 curves. The results are promising 
showing that the operating irradiance can be identified reliably using 
only the points within 20% of the maximum power. Again, all the ap-
proaches identify irradiances higher than the measured values and the 
largest overestimation corresponds to the I approach. Fig. 16 presents 
the average differences between the identified cell temperatures and 
measured module backside temperatures for the 20 ISF-145 module I–V 

Fig. 13. Identified shunt resistances for the set of 900 NP190GK module 
I–V curves. 

Fig. 14. Areas between the measured and fitted curves with respect to the area 
of the measured curve for the set of 900 NP190GK module I–V curves. 

Table 5 
Computation costs of the studied approaches for the set of 900 NP190GK module 
I–V curves.  

Approach Average number of 
iterations 

Average number of function 
evaluations 

I  24.7 128 
V  27.4 142 
I&V  23.2 121 
V&I  28.1 146  

Fig. 15. Average differences in the identified irradiances with respect to the 
measured irradiance for the set of 20 ISF-145 module I–V curves as a function of 
the power limit. 
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curves. Also these results are promising: the identified irradiances of all 
the approaches are within 2.5 ◦C from the measured one with a broad 
power limit range from 0% to 97%. Again, the I approach provides the 
highest and the V approach the lowest identified temperature levels. 

The average identified series and shunt resistances are presented in 
Figs. 17 and 18, respectively, for the 20 ISF-145 module I–V curves. The 
identified series resistances in Fig. 17 are quite constant through the 
whole power limit range indicating that the series resistance can be 
identified accurately from measurements performed in the vicinity of 
the MPP. The shunt resistances identified by the I and I&V approaches 

decrease almost linearly with the increasing power limit until they in-
crease rapidly with very high power limits. The decrease of the identi-
fied shunt resistance while the power limit increases from 0% to 60% is 
faster for the V and V&I approaches than for the I and I&V approaches. 
With power limits from 70% to 95%, the identified shunt resistances of 
all the approaches are close to each other. Again, the smallest resistance 
values are identified by the I approach. 

Fig. 19 shows the average relative areas between the measured and 
fitted curves as a function of the power limit for the 20 ISF-145 module 
I–V curves. When most of the curves (power limit below 50%) is used for 
the parameter identification, the I and I&V approaches have the smallest 
areas between the measured and fitted curves. At power limits from 52% 
to 92%, the V approach has the smallest area. However, the differences 
between the approaches are small at power limits higher than 50%. The 
areas of all the approaches increase with increasing power limit except 
that at very high power limits the areas of the I, I&V and V&I approaches 
decrease with increasing power limit. For all the approaches, the 
average relative area between the measured and fitted curves is less than 
1.5% at power limits less than 94%. The small areas between the 
measured and fitted curves even with high power limits indicate that the 
proposed identification procedure provides accurate curve fits and can 
be used for condition monitoring utilizing I–V curve measurements 
performed only in the vicinity of the MPP. This is an important finding 
demonstrating suitability of the proposed procedure for practical 
applications. 

3.3. Identification of a varying series resistance 

In order to demonstrate the ability of the proposed procedure to 

Fig. 16. Average differences between the identified cell temperatures and the 
measured module backside temperature for the set of 20 ISF-145 module I–V 
curves as a function of the power limit. 

Fig. 17. Average identified series resistances for the set of 20 ISF-145 module 
I–V curves as a function of the power limit. 

Fig. 18. Average identified shunt resistances for the set of 20 ISF-145 module 
I–V curves as a function of the power limit. 

Fig. 19. Average areas between the measured and fitted curves with respect to 
the area of the measured curve for the set of 20 ISF-145 module I–V curves as a 
function of the power limit. 

Fig. 20. Series resistances identified by the I approach for the set of NP190GK 
module I–V curves with additional resistances. 
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identify the actual value of the series resistance, NP190GK module I–V 
curves obtained by adding an additional resistance at the module ter-
minals were examined. The examined I–V curve set consists of two 
subsets of 100 curves measured with additional resistance of 0.22 and 
0.69 Ω. For sake of comparison, the third subset consists of 100 curves 
measured without additional resistance. In each case, the irradiance 
incident on the module increased slowly from around 900 W/m2 to 
around 1000 W/m2. Figs. 20 and 21 show the series resistance values 
identified by the I and V approaches, respectively, as a function of the 
measured irradiance. Both approaches identify stably the three resis-
tance levels. The obtained resistance values are in accord with the re-
sults shown in [40]. In line with the three earlier identification 
examples, the I approach identifies somewhat lower series resistance 
values than the V approach. Anyway, the differences between the two 
approaches are small. The series resistance values obtained for the 
curves without additional resistance are in line with the results of Fig. 12 
obtained for the same NP190GK module. 

In order to further demonstrate the quality of the series resistance 
values identification, the average increases of the identified series re-
sistances for the curves measured with additional resistances compared 
to the curves without any additional resistance are listed in Table 6 for 
all the four fitting approaches. The results of Table 6 show that the 
additional resistance values are identified accurately. Especially, the 
additional series resistances are very well identified by the V approach, 
for which the identified series resistances differ only 0.01 and 0.001 Ω 
from the used additional resistance values. 

4. Discussion 

In order to conclude the results, rankings of the studied approaches 
in several features are compiled in Table 7. The approaches were 
compared in terms of accurate identification of G and T, stable identi-
fication of the parasitic resistances, accuracy of curve fitting and 
computation costs based on the results of Section 3.1. Moreover, the 
approaches were compared in terms of accurate identification of addi-
tional Rs based on the results of Section 3.3. Summary of Table 7 shows 
that the I and I&V approaches are the most usable ones for parametric 
identification. They were the best two approaches in every feature 

except in the accurate identification of G and additional Rs. The V&I 
approach was the best one in terms of the accurate identification of G 
and the V approach identified the additional Rs most accurately. 
Otherwise the V and V&I approaches provided the most unstable iden-
tified values and were the least accurate approaches in general. Based on 
the summary of Table 7 it is evident that the most suitable approach for 
parameter identification is dependent on the identified parameter. 

The two identification examples in Section 3.1 demonstrated the 
accuracy of the proposed procedure utilizing the whole measured I–V 
curves. Moreover, feasibility of the proposed procedure for online con-
dition monitoring was demonstrated in Section 3.2 using only a subset of 
the experimental samples falling close to the MPP. Measured I–V curves 
of three different PV module types, including both monocrystalline and 
polycrystalline silicon PV modules, were used in these examples. 
Moreover, the measurements were performed at two different locations. 
The use of quite different datasets demonstrates that the proposed SDM 
parameter identification procedure is neither affected by geographic 
factors nor by some specific feature of the PV module, but it can be 
applied in different locations for different PV modules of several types. 

Naturally, the identified irradiance and temperature values are not 
fully comparable with the measured ones. Firstly, the experimental 
irradiance values are measured from a single point beside the PV module 
and the incident irradiance is not completely constant over the surface of 
the module, but irradiance differences might occur. Thus, it is expected 
that there are some differences between the identified and measured 
irradiance values. As for the temperature, even larger differences can be 
expected due to thermal inertia of the PV module. Instead of working 
with the actual cell temperature, the back-sheet temperature was 
measured for all the modules. Thus, the effect of thermal inertia is sig-
nificant causing a time lag between the identified and measured tem-
peratures. As can be seen in Fig. 11, the changes in the measured module 
back-sheet temperature follow the changes in the identified temperature 
trend with some delay. Moreover, also temperature differences exist 
within the PV module: for example, cells in the center might be warmer 
than cells closest to the edge. 

One factor affecting performance of the fitting approaches based on 
RMSE minimization is point distribution of the I–V curves, i.e., how 
large share of the points is on which side of the MPP. In an ideal situa-
tion, the points would be evenly distributed, but in practice that is rare. 
Relative RMSE of a single point might be of totally different scale 
depending whether it is calculated with respect to the current or voltage. 
In practice, on constant current region (left side of the MPP), small 
difference in current will lead to large difference in voltage. Similarly, 
on the right side of the MPP, small difference in voltage will lead to large 
difference in current. Thus, the selected fitting approach defines which 
part of the curve has the highest weight when minimizing the RMSE. All 
the studied I–V curves had most of the points on the left side of the MPP, 
i.e., at voltages lower than the MPP voltage. For the I-53 and ISF-145 
modules, the shares of points on the left side of the MPP were around 
60% and 55%, respectively. For the NP190GK module, the share of 
points varied between 58% and 75% increasing with decreasing 

Fig. 21. Series resistances identified by the V approach for the set of NP190GK 
module I–V curves with additional resistances. 

Table 6 
Average increases of the identified series resistances (Ω) for the curves with 
additional resistances compared to the curves without any additional 
resistance.  

Approach 0.22 Ω 0.69 Ω 

I  0.266  0.718 
V  0.230  0.689 
I&V  0.261  0.706 
V&I  0.238  0.696  

Table 7 
Rankings of the studied fitting approaches in several features.  

Feature I V I&V V&I 

Accurate identification of G, 1st example 4th 2nd 3rd 1st 
Accurate identification of G, 2nd example 4th 2nd 3rd 1st 
Accurate identification of T, 1st example 1st 4th 2nd 3rd 
Accurate identification of T, 2nd example 1st 4th 2nd 3rd 
Stable identification of Rs and Rsh, 1st example 1st 4th 2nd 3rd 
Stable identification of Rs and Rsh, 2nd example 1st 4th 2nd 3rd 
Accurate identification of additional Rs 4th 1st 3rd 2nd 
Accuracy of curve fitting, 1st example 1st 4th 2nd 3rd 
Accuracy of curve fitting, 2nd example 2nd 4th 1st 3rd 
Computation costs, 1st example 1st 2nd 3rd 4th 
Computation costs, 2nd example 2nd 3rd 1st 4th  
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irradiance (SC current) level. 
In this study, the fitting approaches were compared using solely the 

proposed SDM parameter identification procedure. However, it was 
found in [28] that the most suitable fitting approach is dependent on the 
procedure used to compute the I–V curve from the SDM. Thus, further 
comparison of the fitting approaches based on RMSE minimization, 
especially the most promising ones (the I and I&V approaches), with 
several parameter identification procedures, considering both the SDM 
and two-diode model, is an interesting topic for future investigations. 

5. Conclusions 

This article proposed a novel procedure for SDM parameter identi-
fication from measured I–V curves without needing any other mea-
surements. The only inputs of the proposed procedure are the I–V curve 
measurements from actual operating conditions among with the STC 
parameter values of the module. The proposed procedure identifies the 
SDM parameter values along with the operating irradiance and tem-
perature values. Measured I–V curves of three PV module types from two 
different locations were used to experimentally validate the proposed 
procedure. First, accuracy of the proposed procedure when entire 
measured I–V curves are utilized was demonstrated by two identification 
examples. The examples show that the procedure identifies the oper-
ating irradiance and temperature of the PV modules with high accuracy 
even during sharp irradiance transitions and low irradiance conditions. 
Moreover, the identified series and shunt resistances were very stable 
under nearly constant high irradiance conditions. Especially, the pro-
posed procedure was found to provide more stable identified values of 
the shunt resistance than an earlier method. Moreover, feasibility of the 
proposed procedure for online condition monitoring was demonstrated 
using only partial curves. The results show that the SDM parameters as 
well as the operating irradiance and temperature can be identified quite 
accurately from a small part of I–V curve measured in the vicinity of the 
MPP. This is an important finding demonstrating the feasibility of con-
dition monitoring with only minimal interruption of PV power pro-
duction. Moreover, I–V curve measurements with additional series 
resistance were used to demonstrate the correctness of the identified 
series resistance values. 

Moreover, for the first time, a comprehensive comparison of various 
fitting approaches based on RMSE minimization was presented. In 
addition to the traditional I approach and earlier presented V approach, 
two novel approaches combining them were proposed. Our assumption 
was that applying different approaches for the left and right side of the 
MPP might be advantageous for identifying the parasitic resistances. The 
results show that the selected fitting approach affects the obtained 
parameter values. The I and I&V approaches were found to be the most 
usable ones giving the most stable identified values. Moreover, these 
approaches identified temperature most accurately and were the most 
accurate ones in terms of the area between the measured and fitted 
curves. However, these approaches showed the largest overestimation of 
the irradiance. On the other hand, the V approach provided the most 
accurate identified values of the additional series resistances although 
otherwise it provided the most unstable identified values and was shown 
to be the least accurate approach in general. The V&I approach was 
found to the best one in terms of the accurate identification of irradi-
ance. However, it has the highest computational burden. Thus, the most 
suitable approach for parameter identification is dependent on the 
identified parameter. Based on the results it is evident that the used 
fitting approach is a factor that should be considered when imple-
menting SDM parameter identification by curve fitting. 

CRediT authorship contribution statement 

Kari Lappalainen: Conceptualization, Data curation, Methodology, 
Formal analysis, Writing – original draft. Michel Piliougine: Concep-
tualization, Data curation, Writing – review & editing. Giovanni 

Spagnuolo: Conceptualization, Writing – review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

The work has received financial support from Business Finland and 
the “Ministerio de Ciencia, Innovación y Universidades” of the “Gov-
ernment of Spain” (grant RTI2018-095097-B-I00). The authors 
acknowledge Prof. Mariano Sidrach-de-Cardona from the University of 
Malaga for having made available some experimental data sets used in 
the article. 

References 
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