

Contents lists available at ScienceDirect

Public Health

journal homepage: www.elsevier.com/locate/puhe

Original Research

Gambling and online trading: emerging risks of real-time stock and cryptocurrency trading platforms

A. Oksanen ^{a, *}, E. Mantere ^{a, b}, I. Vuorinen ^a, I. Savolainen ^a

- ^a Faculty of Social Sciences, Tampere University, Finland
- ^b Faculty of Sociology, University of Bordeaux, France

ARTICLE INFO

Article history: Received 24 August 2021 Received in revised form 10 January 2022 Accepted 21 January 2022

Keywords: Investing Gambling Gaming Internet use Alcohol use Mental health Population survey

ABSTRACT

Objectives: Online platforms enable real-time trading activities that are similar to those of gambling. This study aimed to investigate the associations of traditional investing, real-time stock trading, and cryptocurrency trading with excessive behavior and mental health problems.

Study design: This was a cross-sectional population-based survey.

Methods: The participants were Finnish people aged 18–75 years (N = 1530, 50.33% male). Survey asked about monthly regular investing, real-time stock-trading platform use, and cryptocurrency trading. The study had measures for excessive behavior: gambling (Problem Gambling Severity Index), gaming (Internet Gaming Disorder Test), internet use (Compulsive Internet Use Scale), and alcohol use (Alcohol Use Disorders Identification Test). Psychological distress (Mental Health Inventory), perceived stress (Perceived Stress Scale), COVID-19 anxiety, and perceived loneliness were also measured. Background factors included sociodemographic variables, instant loan taking, and involvement in social media identity bubbles (Identity Bubble Reinforcement Scale). Multivariate analyses were conducted with regression analysis.

Results: Within the sample, 22.29% were categorized into monthly regular investors only, 3.01% were investors using real-time stock-trading platforms, and 3.59% were cryptomarket traders. Real-time stock-trading platform use and cryptocurrency trading were associated with younger age and male gender. Cryptomarket traders were more likely to have an immigrant background and have taken instant loans. Both real-time stock-trading platform use and cryptomarket trading were associated with higher excessive behavior. Cryptomarket traders especially reported higher excessive gambling, gaming, and internet use than others. Cryptomarket traders reported also higher psychological distress, perceived stress, and loneliness.

Conclusions: Regular investing is not a risk factor for excessive behavior. However, rapid online trading platforms and applications were significantly more commonly used by participants reporting excessive behavior and mental health problems. The strong association between cryptomarket trading and excessive behavior in particular underlines the need to acknowledge the potential risks related to real-time trading platforms.

© 2022 The Author(s). Published by Elsevier Ltd on behalf of The Royal Society for Public Health. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Real-time trading applications and platforms, such as Robinhood, have recently caused concerns over the gamification in investing. Investor Warren Buffett said the apps were bringing casino-like behavior to the stock market. Although the

E-mail address: atte.oksanen@tuni.fi (A. Oksanen).

similarities between investing and gambling have been discussed for a long time, ^{2,3} new forms of online apps and platforms have created a new need for empirical research in this area. These apps and platforms offer fast and easy entry into diverse investing opportunities and risks, and they are also potentially attractive to people manifesting excessive behaviors. Recently, discussions have focused on potential gambling risk in day trading and cryptocurrency trading, ^{4,5}

Online apps and platforms such as Robinhood, eToro, and Plus500 have opened the doors of day trading for many. Robinhood states that their mission is to "democratize finance for all." Users

^{*} Corresponding author. Faculty of Social Sciences, Tampere University, 33014 Tampere, Finland.

A. Oksanen, E. Mantere, I. Vuorinen et al. Public Health 205 (2022) 72–78

are allowed to trade stocks in real time and often without commission. Such apps and platforms also offer high-risk investing options such as leverage (using borrowed capital) which multiplies both wins and losses and carries a risk of losing all of one's own capital in forced liquidations. Cryptocurrency trading apps and platforms (e.g., Binance and Phemex) enable 24/7 real-time trading of cryptocurrencies such as Bitcoin and Ethereum with leverages up to more than one hundred. Cryptocurrency trading is estimated to be the fastest growing market in the world. Economists have considered cryptocurrency trading to be a highly speculative, lottery-like activity.

Researchers have suggested people might have discovered new trading apps and platforms while at home due to the COVID-19 pandemic and the temporary collapse of markets in March 2020. Some people may also have looked for new types of gambling opportunities and activities owing to the lack of sporting events, especially in the beginning of the COVID-19 crisis in Spring 2020. At that point, many of the regular gambling activities were closed, including much of sports betting. An economic analysis in 37 equity markets showed that during COVID-19, investing increased more in countries that have more gambling opportunities. This calls for attention to analyze different forms of investing and trading. Also, the COVID-19 pandemic has been a major psychological, social, and economic stressor for people. Hence, it is important to investigate the correlates of mental health to these new forms of investing and trading.

In the financial sector, there is a continuum from investing to speculation. Speculation refers to forms of financial actions that are shorter term and higher in risk. These include day-trading, inexpensive but volatile penny stocks, and the use of financial instruments such as shorting, leverage, and derivatives.^{2,11,12} Even though a relationship between gambling and financial speculation has long been noted, according to a systematic review by Arthur, Williams, and Delfabbro, there is relatively little empirical research on the topic.² Economic studies suggest gamblers and gamblinglike investors have similar sociodemographic and psychological profiles, with the less wealthy individual making riskier decisions to rise out of poverty.3 However, one Canadian study found that high-risk stock-traders were more likely to be male, self-employed, or employed full-time and to have higher income than gamblers.² Studies suggest that personal risk factors, such as risk-taking, sensation-seeking, and overconfidence, are similar for both gambling and stock trading.^{2,13} Trading is also found to be more common among males.14,15

There are very few studies on users of real-time trading apps and platforms. A recent study based on a sample drawn from Amazon's Mechanical Turk found that cryptocurrency trading strongly correlates with problem gambling severity. ¹⁶ Another recent study based on a sample of gamblers from the panel of Prolific found that cryptocurrency trading was associated with a wider range of gambling activities. A Korean study found out that bitcoin investors reported higher rates of excessive gambling than share investors.¹⁷ There is also a general lack of studies investigating the relationship between day trading and gambling. A South Australian study found that day-traders were involved in skillbased gambling and had a higher rate of problem gambling than non-traders.¹¹ A Dutch study on investors showed that investors who had gambling problems were more speculative, traded more frequently, and invested more often in derivatives and leveraged products.18

This study aimed to investigate the associations of traditional investing, real-time stock trading, and cryptocurrency trading with excessive behaviors and mental health problems. Our research questions were the following: 1) What background factors are

associated with regular investing and real-time trading using online platforms and 2) how different types of investing are related to excessive behaviors and mental health problems.

Methods

Participants and procedure

Gambling in the Digital Age Survey was targeted to Finnish speakers in mainland Finland in April 2021. The survey focused on gambling and addictive behavior. Participants (N = 1530) were 18–75 years old (M = 46.67; SD = 16.42), and 50.33% of them were male (n = 770), 49.41% were female (n = 756), and 0.26% reported other gender (n = 4). The participants were from all major areas of Finland: 35.29% were from Helsinki-Uusimaa region, 21.50% from Southern Finland, 24.84% from Western Finland, and 18.37% from Northern and Eastern Finland.

Data collection was administrated by Norstat, and all respondents answered the survey online. Participants were drawn from Norstat's Web-based panel. The response rate for the survey was 34.60%, and the median response time for the full survey was 18 min. Comparison of the sample to the Finnish population aged 18 to 75 years was conducted using population census figures provided by Statistics Finland in StatFin service (https://www.stat. fi/tup/statfin/index_en.html). Gender distribution of the sample was almost identical to the population aged 18 to 75 years according to statistics provided by statistics Finland (50.33% vs 50.20% male). Also, in terms of age, the sample matched the Finnish population aged 18 to 75 years (mean age = 46.67 vs 46.89). There were slightly more participants from the Helsinki-Uusimaa region in the sample than in the population (35.29% vs 30.94%) and less participants from Northern and Eastern Finland (18.37% vs 23.16%). The sample also included a higher percentage of people having at least a BA degree from a university than in the population (38.50% vs 27.28%).

The data quality protocol for the project was stored on the Open Science Framework website prior to the data collection. Data quality checks involved attention checks, patterned responses checks, rapid responses checks, and nonsensical responses checks. 19,20 Open-ended comments were also checked to further evaluate possible biased motives in response patterns.

The study was approved by the academic ethics committee of Tampere region in Finland in March 2021. All participants agreed to voluntarily participate in the surveys and were informed about the aims and purpose of the study.

Measures

Types of monthly investing and trading were categorized based on three questions: "How often have you practiced investing (e.g., investing in stocks or funds)?" "How often do you use services suitable for real-time investing (e.g., eToro, Plus500)?" and "How often have you traded in cryptomarkets (e.g., Binance, BitPanda)?" We created a categorical variable on the basis of participants' monthly investing and trading activity: non-investors (0), regular investors who do not use online platforms for stock or cryptocurrency trading (1), investors using real-time stock-trading platforms but not trading in cryptomarkets (2); and cryptomarket traders (3).

We used the Problem Gambling Severity Index (PGSI) to measure excessive gambling. ^{21,22} The PGSI has been widely used to assess problem gambling in the general population rather than in clinical settings. ^{23,24} For the purpose of the study, respondents were asked about their gambling during the previous 6 months

A. Oksanen, E. Mantere, I. Vuorinen et al. Public Health 205 (2022) 72–78

(e.g., "Have you felt that you might have a problem with gambling?"). The response choices were 0 (never), 1 (sometimes), 2 (most of the time), and 3 (almost always). A higher score on the scale indicates more excessive gambling. The scale had excellent internal consistency measured with McDonald's omega ($\omega=0.95$, see details in Table 1).

We used the Internet Gaming Disorder Test (IGDT) to measure excessive gaming. The IGDT is a short 10-item screen that has been used to assess internet gaming disorders. The measure includes statements about excessive behaviors in gaming during previous 6 months for the purposes of this study (e.g., "Have you risked or lost a significant relationship because of gaming?"). Answer choices were 0 (*never*), 1 (*sometimes*), and 2 (*often*). Higher scores of the scale indicate higher levels of excessive gaming. The scale had good internal consistency ($\omega = 0.89$).

We measured excessive internet use with the 14-item Compulsive Internet Use Scale (CIUS). The CIUS has been widely used and validated in previous studies on excessive internet use. The CIUS is designed as an addiction screener and includes measures that are similar to other addictions scales, such as those on withdrawal (e.g., "Do you think about the internet, even when not online?"). Responses are rated on a five-point scale from 0 (never) to 4 (very often). Higher scores on the scale indicate higher levels of excessive internet use. The scale had excellent internal consistency ($\omega = 0.95$).

We measured excessive alcohol use with the Alcohol Use Disorders Identification Test (AUDIT-C). The AUDIT-C is a widely used screener for excessive drinking. 29,30 Three items of AUDIT-C measure frequency of drinking, heavy drinking, and units per drinking occasion. Responses to each item are assigned risk points from 0 to 4. Higher scores on the scale indicate higher risk for excessive drinking. The scale showed good internal consistency ($\omega=0.81$).

Table 1 Characteristics of study variables.

Categorical variables	n	%			
Monthly investing					
No	1088	71.11			
Regular investors	341	22.29			
Real-time platform users	46	3.01			
Cryptomarket traders	55	3.59			
Male	770	50.33			
Age<40 years	579	37.84			
Higher education	589	38.50			
Working	806	52.68			
Income>3000€/month	528	34.51			
Children	896	58.56			
Immigrant background	52	3.40			
Instant loans	292	19.08			
Continuous measures	M	SD	Range	n of	ω

Continuous measures	М	SD	Range	n of items	ω
Social media identity bubbles (IBRS-9)	30.38	10.74	9-63	9	0.90
Excessive gambling (PGSI)	1.31	3.33	0 - 25	9	0.95
Excessive gaming (IGDT)	1.34	2.64	0 - 20	10	0.89
Excessive internet use (CIUS)	8.79	9.65	0 - 52	14	0.95
Excessive alcohol use (AUDIT-C)	3.58	2.69	0 - 12	3	0.81
Psychological distress (MHI-5)	12.40	4.73	5-30	5	0.89
Perceived stress (PSS)	13.61	7.04	0 - 40	10	0.89
COVID-19 anxiety (C-19-ANX)	18.89	7.34	6 - 42	6	0.88
Perceived loneliness (R-UCLA-3)	1.76	1.77	0-6	3	0.86

SD, standard deviation; IBRS-9, 9-item Identity Bubble Reinforcement Scale; PGSI, Problem Gambling Severity Index; IGDT, Internet Gaming Disorder Test; CIUS, Compulsive Internet Use Scale; AUDIT-C, Alcohol Use Disorders Identification Test; MHI-5, 5-item Mental Health Inventory; PSS, Perceived Stress Scale; C-19-ANX, COVID-19 anxiety scale; R-UCLA-3, Revised UCLA Loneliness Scale.

We measured psychological distress using the 5-item Mental Health Inventory (MHI-5). The MHI-5 is a short version of the original 38-item inventory including items on anxiety, depression, positive affect, and emotional control (e.g., "How much of the time, during the last month, have you felt downhearted and blue?"). It has been widely validated as an accurate screener for mood disorders in general population. $^{32-34}$ Responses were given on a scale from 1 (*none of the time*) to 6 (*all of the time*). Two items on positive affect were reverse coded. The measure had good internal consistency ($\omega = 0.89$).

Perceived stress was measured with the 10-item Perceived Stress Scale that was developed as a screener for psychological stress. Scale items of the scale ask about uncontrollable and stressful events during the last month (e.g., "How often have you been upset because of something that happened unexpectedly?"). Answer options ranged from 0 (*never*) to 4 (*very often*). A higher score on the scale indicates higher perceived stress. The measure had good internal consistency ($\omega = 0.89$).

COVID-19 anxiety was assessed using a scale based on the 6-item Spielberger State—Trait Anxiety Inventory (STAI-6).³⁷ The COVID-19 anxiety scale screens anxiety state during the COVID-19 pandemic.³⁸ Respondents were asked to evaluate their feelings about the COVID-19 crisis during the past seven days with six statements (e.g., "I feel tense"). The response scale for each statement ranged from 1 (does not describe my state at all) to 7 (describes my state completely). The scale had good internal consistency ($\omega = 0.88$).

Loneliness was measured with a 3-item loneliness scale adapted from the standard Revised UCLA Loneliness Scale. $^{38-40}$ The scale includes three statements about perceived loneliness (e.g., "How often do you feel isolated from others?"). Answer options were 0 (*almost never*), 1 (*sometimes*), or 2 (*often*). Higher scores indicate higher levels of perceived loneliness. The measure had good internal consistency ($\omega = 0.88$).

Background and control variables included sociodemographic variables. Options for gender included categories for male (n=770), female (n=756), and other (n=4). Dummy variables were created to indicate participants who were male and those younger than 40 years. We also used dummy variables for income (more than 3000 ϵ /month) and having children. Immigrant background was assessed with the question: "Was your mother or father born abroad?" We also asked respondents whether they have taken any instant loans (i.e., pay-day loans). Instant loans were included in the data because they are considered major economic stressors that can lead to long-term financial difficulties. 41,42

Social media identity bubbles were measured with the 9-item Identity Bubble Reinforcement Scale. An This measure involves statements on social identification, homophily with others online, and reliance on information coming from others on social media. This type of bubble behavior is an important form of herd behavior, and bubble behavior has been recognized in cryptomarket trading as well. An Possible responses ranged from 1 (does not describe me at all) to 7 (describes me completely). Higher scores on the scale indicate higher involvement in social media bubbles. The measure had excellent internal consistency ($\omega=0.90$).

Our survey also included questions on activities during the COVID-19 pandemic. Measured items were gambling in general, gaming, cryptocurrency trading, and social media profile updates. Response options were the following: *I have not engaged in this activity, no change, decreased,* and *increased.* We report descriptive findings on these measures in the results section to provide additional information about activities of investors during the COVID-19 era.

Statistical analyses

Statistical analyses were carried out using Stata, version 16, software. We report descriptive findings on different types of investing and other behaviors during the COVID-19 pandemic. Statistical modelling focused first on the analysis of background factors associated with different types of investing. This was conducted with multinomial logistic regression using non-investors as a reference group. Table 2 reports relative risk ratios (RRRs), standard errors (SE), and the statistical significance of results (p). RRRs are interpreted as odds ratios (ORs) in binary logistic regression (RRRs >1 indicate higher risk, and RRRs <1 indicate lower risk).

Associations of different types of investing and excessive behavior and mental health problems are analyzed using negative binomial regression owing to the overdispersion of scales measuring excessive behavior. Hence, negative binomial regression provides a better alternative for the analysis of skewed outcome variables. A similar method of analysis was selected for all eight outcome variables reported in Tables 3 and 4 for the sake of comparability. Robustness checks were conducted by running the analyses with ordinary least squares regression, but the main results concerning types of investing remained the same. For these reasons, we report only the results based on the main analyses.

Tables 3 and 4 report the incidence-rate ratios (IRRs). IRRs are interpreted as ORs (an IRR >1 indicates higher risk, and an IRR <1 indicates lower risk). We first report unadjusted models (model 0) without control variables, indicating only the associations of types of investing with excessive behavior and mental well-being. Full models adjusted for number of confounding factors.

Results

Within the sample, 22.29% of participants were categorized into monthly regular investors only, 3.01% were investors using real-time stock trading platforms, 3.59% were cryptomarket traders, and the rest were non-investors.

Multinomial logistic regression models were used to analyze background factors associated with these three categories of investing in comparison to non-investors (Table 2). Male gender was associated with all forms of investing, especially real-time stock market platform use (RRR = 6.24, P < 0.001) and cryptocurrency trading (RRR = 5.06, P < 0.001). Younger age and higher income were associated with all types of investing. Regular investing was more common among those with higher education (RRR = 1.48, P = 0.005) and employment (RRR = 1.42; P = 0.015). Cryptomarket traders were less likely to have children (RRR = 0.49, P = 0.045) and more likely to have an immigrant background (RRR = 3.47, P = 0.008). Instant loans were less common among regular investors

(RRR = 0.47, P < 0.001) and more likely among cryptomarket traders (RRR = 2.53; P = 0.005) than among non-investors.

Respondents were asked about their activities during the COVID-19 pandemic (from March 2020 to April 2021) in comparison to their previous activities. Of all respondents, 4.58% reported increased gambling during the COVID-19 pandemic; 13.07% reported increased gaming, 2.55% reported increased cryptocurrency trading, and 6.93% reported increased their social media updates. These figures were higher especially among real-time stock trading platform users, and of them, 13.04% reported increased gambling, 23.91% reported increased gaming, and 15.22% reported increased frequency of social media updates. Of cryptomarket traders, 47.27% reported increased purchases of cryptocurrencies.

Table 3 reports the findings on associations of excessive behaviors and different types of investing. As indicated by results for model 0, regular investing was not associated with any of the excessive behaviors. However, regular investors did report higher excessive internet use than non-investors (IRR = 1.18; P = 0.037). Real-time trading app users reported higher excessive gaming (IRR = 2.12; P = 0.016), higher excessive internet use (IRR 1.57; P = 0.018), and higher excessive alcohol use (IRR = 1.39, P = 0.003) than did non-investors. Similarly, cryptomarket traders reported higher excessive gambling (IRR = 5.98; P < 0.001), higher excessive gaming (IRR = 4.21; P < 0.001), higher excessive internet use (IRR 2.43; P < 0.001), and higher excessive alcohol use (IRR = 1.35, P = 0.004) than did non-investors. Full models adjusted a number of background factors, but the main results did not change, Both real-time stock-trading platform users and cryptomarket traders reported higher excessive behavior than non-investors and regular investors. Cryptomarket trading had very high IRRs. All types of investing were associated with excessive internet use. In comparison to non-investors, only real-time stock trading platform users reported higher excessive alcohol use than non-investors.

Table 4 reports the findings of associations between mental well-being and different types of investing. The results for model 0 demonstrate that cryptomarket traders reported higher distress (IRR = 1.18, P = 0.001), higher stress (IRR = 1.24, P = 0.004), higher COVID-19 anxiety (IRR = 1.16, P = 0.007), and higher perceived loneliness (IRR = 1.37, P = 0.025) than did non-investors. Regular investors and real-time platform users did not differ from non-investors. Full models showed that cryptomarket traders reported higher psychological distress (IRR = 1.11; P = 0.035), higher perceived stress (IRR = 1.16; P = 0.043), and higher perceived loneliness (IRR = 1.32, P = 0.044) than did non-investors.

Discussion

This study investigated users of real-time trading apps and platforms. Analyses based on a sample of adult population in

Table 2Multinomial logistic regression model on correlates of different types of monthly investing.

	Regula	r investors			Real-tir	ne platforn	n users		Cryptomarket traders				
	RRR	95%	CI	P	RRR	95%	CI	P	RRR	95%	CI	P	
Male	1.36	1.05	1.77	0.022	6.24	2.73	14.26	<0.001	5.06	2.44	10.47	<0.001	
Age<40 years	2.32	1.70	3.18	< 0.001	3.82	1.83	7.95	< 0.001	7.66	3.47	16.87	< 0.001	
Higher education	1.48	1.13	1.95	0.005	1.40	0.73	2.70	0.310	0.90	0.47	1.70	0.738	
Working	1.42	1.07	1.89	0.015	0.63	0.31	1.26	0.192	1.79	0.88	3.63	0.107	
Income>3000€/month	2.50	1.84	3.40	< 0.001	3.19	1.48	6.86	0.003	3.48	1.75	6.93	< 0.001	
Children	1.22	0.90	1.65	0.195	0.69	0.34	1.41	0.314	0.49	0.25	0.98	0.045	
Immigrant background	0.80	0.37	1.72	0.573	0.37	0.05	2.90	0.340	3.47	1.38	8.73	0.008	
Instant loans	0.47	0.32	0.71	< 0.001	1.05	0.48	2.29	0.903	2.53	1.33	4.80	0.005	
Social media identity bubbles	0.99	0.98	1.00	0.154	1.03	1.00	1.06	0.059	1.00	0.97	1.03	0.926	

^{*}Reference category, no monthly investing. RRR, relative risk ratio; CI, confidence interval.

Table 3Negative binomial regression models on associations of different types of monthly investing and excessive behavior.

	Gambling				Gaming				Internet				Alcohol			
	IRR	95%	CI	P	IRR	95%	CI	P	IRR	95%	CI	P	IRR	95%	CI	P
Model 0																
Investing (ref. no)																
Regular investors	0.77	0.55	1.08	0.130	0.90	0.69	1.17	0.441	1.18	1.01	1.38	0.037	1.02	0.92	1.12	0.731
Real-time platform users	1.96	0.90	4.26	0.089	2.12	1.15	3.89	0.016	1.57	1.08	2.28	0.018	1.39	1.12	1.73	0.003
Cryptomarket traders	5.98	2.98	12.01	< 0.001	4.21	2.44	7.28	< 0.001	2.43	1.73	3.42	< 0.001	1.35	1.10	1.65	0.004
Full model								_								
Investing (ref. not)																
Regular investors	0.76	0.54	1.07	0.111	0.87	0.67	1.13	0.298	1.17	1.00	1.36	0.045	0.96	0.87	1.06	0.436
Real-time platform users	2.08	0.96	4.52	0.064	1.87	1.05	3.31	0.033	1.63	1.15	2.30	0.006	1.20	0.97	1.49	0.087
Cryptomarket traders	4.61	2.25	9.42	< 0.001	2.62	1.55	4.43	< 0.001	1.91	1.38	2.65	< 0.001	1.14	0.93	1.39	0.219
Male	1.43	1.08	1.89	0.012	1.48	1.20	1.83	< 0.001	0.83	0.74	0.94	0.003	1.38	1.27	1.49	< 0.001
Age<40 years	1.55	1.15	2.09	0.004	2.37	1.87	3.00	< 0.001	2.16	1.88	2.48	< 0.001	0.99	0.91	1.09	0.902
Higher education	0.70	0.53	0.94	0.017	0.95	0.76	1.18	0.630	1.02	0.90	1.16	0.767	0.85	0.78	0.92	< 0.001
Working	1.24	0.93	1.67	0.143	1.13	0.91	1.41	0.284	1.07	0.94	1.22	0.297	1.12	1.03	1.22	0.006
Income>3000€/month	0.77	0.56	1.06	0.104	0.73	0.56	0.94	0.014	0.84	0.73	0.98	0.026	1.11	1.01	1.22	0.034
Children	0.82	0.62	1.10	0.186	0.71	0.56	0.89	0.003	0.85	0.74	0.97	0.017	0.82	0.75	0.90	< 0.001
Immigrant background	1.09	0.52	2.26	0.825	1.21	0.70	2.07	0.495	1.47	1.06	2.03	0.022	0.88	0.71	1.10	0.253

IRR, incidence-rate ratio; CI, confidence interval.

 Table 4

 Negative binomial regression models on associations of different types of monthly investing and mental well-being.

	Distress				Stress				COVID-19 anxiety				Loneliness			
	IRR	95%	CI	P	IRR	95%	CI	P	IRR	95%	CI	P	IRR	95%	CI	P
Model 0																
Investing (ref. no)																
Regular investors	0.97	0.93	1.02	0.250	0.94	0.88	1.00	0.056	0.97	0.93	1.02	0.265	0.88	0.77	1.01	0.075
Real-time platform users	1.01	0.90	1.12	0.898	0.95	0.81	1.12	0.578	1.04	0.92	1.17	0.524	1.10	0.80	1.51	0.550
Cryptomarket traders	1.18	1.07	1.30	0.001	1.24	1.07	1.43	0.004	1.16	1.04	1.29	0.007	1.37	1.04	1.81	0.025
Full model																
Investing (ref. not)																
Regular investors	0.99	0.95	1.04	0.694	0.97	0.91	1.03	0.331	0.97	0.92	1.02	0.242	0.97	0.84	1.11	0.617
Real-time platform users	0.99	0.90	1.11	0.922	0.96	0.83	1.13	0.654	1.03	0.92	1.15	0.656	1.14	0.84	1.55	0.397
Cryptomarket traders	1.11	1.01	1.22	0.035	1.16	1.00	1.34	0.043	1.08	0.97	1.20	0.158	1.32	1.01	1.74	0.044
Male	0.96	0.92	0.99	0.020	0.91	0.86	0.96	< 0.001	0.94	0.90	0.98	0.002	0.87	0.78	0.97	0.013
Age<40 years	1.15	1.10	1.20	< 0.001	1.22	1.15	1.30	< 0.001	1.16	1.11	1.21	< 0.001	1.26	1.11	1.42	< 0.001
Higher education	1.04	1.00	1.09	0.030	1.01	0.95	1.06	0.864	1.07	1.03	1.12	0.002	1.11	0.99	1.24	0.080
Working	0.99	0.95	1.03	0.543	1.00	0.94	1.06	0.968	1.02	0.98	1.07	0.249	0.89	0.80	1.00	0.050
Income>3000€/month	0.89	0.85	0.93	< 0.001	0.86	0.81	0.92	< 0.001	0.92	0.87	0.96	< 0.001	0.71	0.62	0.82	< 0.001
Children	0.92	0.88	0.95	< 0.001	0.89	0.84	0.95	< 0.001	0.96	0.91	1.00	0.044	0.78	0.69	0.88	< 0.001
Immigrant background	1.10	1.00	1.20	0.056	1.16	1.00	1.33	0.045	1.14	1.03	1.26	0.014	1.16	0.88	1.52	0.282

IRR, incidence-rate ratio; CI, confidence interval.

Finland compared non-investors and regular investors to real-time trading platform users and cryptocurrency traders. According to our results, males, younger individuals, and those with a higher education were more likely to engage in all forms of investing. Cryptomarket traders were more likely to have taken instant loans and less likely to have children. Results showed that both real-time trading platform use and cryptomarket trading were associated with higher scores of addictive behavior measures. Especially cryptomarket traders reported significantly higher scores in excessive gambling, gaming, internet use, and alcohol use. Cryptomarket traders also reported higher scores in different measures on mental health problems.

Considering previous economic studies, it is not surprising that males engage in risky economic activities. ^{14,15} Specifically, cryptomarket traders were more commonly younger males. This could be, at least partly, explained by personality and preference factors, such as high excitatory value and orientation toward a specific economic goal. ⁴⁶ The results are aligned with those of previous studies on the

association between cryptomarket trading and excessive gambling. 4,16,17 We also found strong associations between cryptomarket trading and excessive gaming and internet use that has not been reported in previous studies.

Cryptomarket traders reported higher scores in psychological distress, stress, and perceived loneliness. These difficulties may have been exacerbated during the COVID-19 pandemic owing to concerns over economics, health, and social isolation.⁴⁷ Prior studies have shown that mental health problems are related to higher risk-taking online.⁴⁸ Hence, it is conceivable to at least hypothesize that people with existing mental health problems would be more susceptible to taking economic risks on online platforms.

Under unusual and unexpected circumstances brought by COVID-19, people have rushed into stock markets and looked for alternative activities. Cryptocurrencies have been in the spotlight and gained attention in the media and social media. As noted in economic literature, there is a continuum from investing to speculation, and most speculative forms of investing are often related to

A. Oksanen, E. Mantere, I. Vuorinen et al. Public Health 205 (2022) 72–78

day-trading.^{2,11} During the COVID-19 pandemic, the markets have certainly been more unpredictable, but at the same time, people have had the opportunity provided by the platforms to practice day-trading. Our results call for more studies on how investing turns into gambling given the use of these platforms.

Our study is limited to Finland, and findings are based on self-reported measures and a cross-sectional design. No implications of causality can thus be drawn from the results. Also, our data are limited by relatively few participants using platforms for real-time trading and cryptomarket trading. Despite these limitations, we were able to demonstrate that real-time trading apps are used by people manifesting excessive behaviors. More research attention should therefore be directed toward these speculative forms of investing as a specific form of gambling. Future studies should also investigate in detail different forms of cryptocurrency investing and trading that were beyond the scope of our study.

Trading platforms enable making a large volume of transactions quickly and relatively effortlessly, making impulsive and high-risk short-term actions possible. The results of this study indicate that users of these platforms reported higher scores in excessive behaviors. Although our study did not focus on potential long-term impacts of these platforms, it would be important to recognize that these platforms are potentially attractive to those individuals who are struggling with behavioral addictions. User awareness training may be needed for individuals using such trading platforms to increase awareness of the risks involved.

Author statements

Ethical approval

None sought.

Funding

The study was funded by the Finnish Foundation for Alcohol Studies (Gambling in the Digital Age Project, 2021, PI: A. Oksanen). Ilkka Vuorinen was supported by grant from the Jenny and Antti Wihuri Foundation.

Competing interests

None of the authors have a conflict of interest to declare.

References

- Fitzgerald M. Warren Buffett says Robinhood is catering to the gambling instincts of investors [Internet]. CNBC; 2021 May [cited 2021 Aug 18]. Available from: https://cnb.cx/3gV7nbk.
- Arthur JN, Williams RJ, Delfabbro PH. The conceptual and empirical relationship between gambling, investing, and speculation. J Behav Addict 2016;5: 580–91.
- 3. Kumar A. Who gambles in the stock market? *J Finance* 2009;**64**:1889–933.
- Delfabbro P, King D, Williams J, Georgiou N. Cryptocurrency trading, gambling and problem gambling. Addict Behav 2021;122, 107021.
- Håkansson A. Changes in gambling behavior during the COVID-19 pandemic a web survey study in Sweden. Int J Environ Res Publ Health 2020;17; 4013.
- Robinhood [Internet]. Our mission [cited 2021 Aug 18]. 2021. Available from: https://robinhood.com/us/en/support/articles/our-mission/.
- Grobys K, Junttila J. Speculation and lottery-like demand in cryptocurrency markets. J Int Financ Mark Inst Money 2021; 101289.
- **8.** Guzmán A, Pinto-Gutiérrez C, Trujillo MA. Trading cryptocurrencies as a pandemic pastime: COVID-19 lockdowns and bitcoin volume. *Mathematics* 2021;**9**; 1771.
- Pagano MS, Sedunov J, Velthuis R. How did retail investors respond to the COVID-19 pandemic? The effect of Robinhood brokerage customers on market quality. Finance Res Lett 2021;43. 101946.
- Chiah M, Zhong A. Trading from home: the impact of COVID-19 on trading volume around the world. Finance Res Lett 2020;37.101784.

Arthur JN, Delfabbro P. Day traders in South Australia: similarities and differences with traditional gamblers. *J Gambl Stud* 2017;33:855

–66.

- Heimer R, Simsek A. Should retail investors' leverage be limited? J Financ Econ 2019;132:1–21.
- 13. Barber BM, Odean T. Trading is hazardous to your wealth: the common stock investment performance of individual investors. *J Finance* 2000;**55**:773–806.
- **14.** Barber BM, Odean T. Boys will be boys: gender, overconfidence, and common stock investment. *Q J Econ* 2001;**116**:261–92.
- Cueva C, Iturbe-Ormaetxe I, Ponti G, Tomás J. Boys will still be boys: gender differences in trading activity are not due to differences in (over) confidence. I Econ Behav Organ 2019:160:100–20.
- Mills DJ, Nower L. Preliminary findings on cryptocurrency trading among regular gamblers: a new risk for problem gambling? *Addict Behav* 2019;92: 136–40.
- Kim HJ, Hong JS, Hwang HC, Kim SM, Han DH. Comparison of psychological status and investment style between bitcoin investors and share investors. Front Psychol 2020:11: 502295.
- **18.** Cox R, Kamolsareeratana A, Kouwenberg R. Compulsive gambling in the financial markets: evidence from two investor surveys. *J Bank Finance* 2020: 111; 105709.
- Curran PG. Methods for the detection of carelessly invalid responses in survey data. I Exp Soc Psychol 2016:66:4—19.
- Pickering D, Blaszczynski A. Paid online convenience samples in gambling studies: questionable data quality. *Int Gambl Stud* 2021;21(3):516–36. https:// doi.org/10.1080/14459795.2021.1884735.
- 21. Ferris J, Wynne H. *The Canadian problem gambling index: final report.* Ottawa: Canadian Centre on Substance Abuse; 2001. p. 59 [cited 2021 Aug 18]; Available from: https://www.greo.ca/Modules/EvidenceCentre/files/Ferris%20et% 20al(2001)The_Canadian_Problem_Gambling_Index.pdf.
- 22. Holtgraves T. Evaluating the problem gambling severity index. *J Gambl Stud* 2009;**25**:105–20.
- **23.** Currie SR, Hodgins DC, Casey DM. Validity of the problem gambling severity index interpretive categories. *J Gambl Stud* 2013;**29**:311–27.
- 24. Raisamo SU, Mäkelä P, Salonen AH, Lintonen TP. The extent and distribution of gambling harm in Finland as assessed by the Problem Gambling Severity Index. *Eur J Publ Health* 2015;25:716–22.
- 25. Király O, Sleczka P, Pontes HM, Urbán R, Griffiths MD, Demetrovics Z. Validation of the ten-item internet gaming disorder test (IGDT-10) and evaluation of the nine DSM-5 internet gaming disorder criteria. Addict Behav 2017;64: 253–60.
- Meerkerk GJ, Van Den Eijnden RJ, Vermulst AA, Garretsen HF. The compulsive internet use scale (CIUS): some psychometric properties. *Cyberpsychol Behav* 2009;12:1–6.
- 27. Dhir A, Chen S, Nieminen M. A repeat cross-sectional analysis of the psychometric properties of the Compulsive Internet Use Scale (CIUS) with adolescents from public and private schools. Comput Educ 2015;86:172—81.
- **28.** Guertler D, Rumpf HJ, Bischof A, Kastirke N, Petersen KU, John U, et al. Assessment of problematic internet use by the compulsive internet use scale and the internet addiction test: a sample of problematic and pathological gamblers. *Eur Addiction Res* 2014;**20**:75–81.
- Babor TF, Higgins-Biddle JC, Saunders JB, et al. The alcohol use disorders identification test. Guidelines for use in primary care. 2nd ed. Geneva: WHO; 2001 [cited 2021 Aug 18]. Available from: https://www.who.int/publications/i/item/audit-the-alcohol-use-disorders-identification-test-guidelines-for-use-in-primary-health-care.
- Kaarne T, Aalto M, Kuokkanen M, Seppa K. AUDIT-C, AUDIT-3 and AUDIT-QF in screening risky drinking among Finnish occupational health-care patients. Drug Alcohol Rev 2010;29:563-7.
- Berwick DM, Murphy JM, Goldman PA, Ware Jr JE, Barsky AJ, Weinstein MC. Performance of a five-item mental health screening test. *Med Care* 1991;29: 169–76.
- **32.** Cuijpers P, Smits N, Donker T, ten Have M, de Graaf R. Screening for mood and anxiety disorders with the five-item, the three-item, and the two-item Mental Health Inventory. *Psychiatr Res* 2009;**168**:250–5.
- Rumpf HJ, Meyer C, Hapke U, John U. Screening for mental health: validity of the MHI-5 using DSM-IV Axis I psychiatric disorders as gold standard. *Psychiatr Res* 2001;**105**:243–53.
- Thorsen SV, Rugulies R, Hjarsbech PU, Bjorner JB. The predictive value of mental health for long-term sickness absence: the Major Depression Inventory (MDI) and the Mental Health Inventory (MHI-5) compared. BMC Med Res Methodol 2013;13:1–7.
- **35.** Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. *J Health Soc Behav* 1983;**24**:386–96.
- **36.** Cohen S, Williamson G. Perceived stress in a probability sample of the United States. In: Spacapan S, Oskamp S, editors. *The social psychology of health*. Newbury Park, USA: Sage; 1988. p. 31–67.
- Marteau TM, Bekker H. The development of a six-item short-form of the state scale of the Spielberger State—trait Anxiety Inventory (STAI). Br J Clin Psychol 1992;31:301–6.
- Hughes ME, Waite LJ, Hawkley LC, Cacioppo JT. A short scale for measuring loneliness in large surveys: results from two population-based studies. Res Aging 2004;26:655–72.
- **39.** Savolainen I, Oksa R, Savela N, Celuch M, Oksanen A. Covid-19 anxiety a longitudinal survey study of psychological and situational risks among Finnish workers. *Int J Environ Res Publ Health* 2021;**18**; 794.

- Savolainen I, Oksanen A, Kaakinen M, Sirola A, Paek HJ. The role of perceived loneliness in youth addictive behaviors: cross-national survey study. JMIR Ment Health 2020;7.
- 41. Oksanen A, Aaltonen M, Rantala K. Social determinants of debt problems in a Nordic welfare state: a Finnish register-based study. *J Consum Pol* 2015; **38**:229–46.
- **42.** Oksanen A, Savolainen I, Sirola A, Kaakinen M. Problem gambling and psychological distress: a cross-national perspective on the mediating effect of consumer debt and debt problems among emerging adults. *Harm Reduct J* 2018;**15**:1–11.
- **43.** Kaakinen M, Sirola A, Savolainen I, Oksanen A. Shared identity and shared information in social media: development and validation of the identity bubble reinforcement scale. *Media Psychol* 2020;**23**:25–51.
- **44.** Cretarola A, Figà-Talamanca G. Bubble regime identification in an attention-based model for Bitcoin and Ethereum price dynamics. *Econ Lett* 2020:191.
- Geuder J, Kinateder H, Wagner NF. Cryptocurrencies as financial bubbles: the case of Bitcoin. Finance Res Lett 2019;31:179–84; 108831.
- **46.** Zaleskiewicz T. Beyond risk seeking and risk aversion: personality and the dual nature of economic risk taking. *Eur J Pers* 2001;**15**:S105–22.
- Kämpfen F, Kohler IV, Ciancio A, Bruine de Bruin W, Maurer J, Kohler HP. Predictors of mental health during the Covid-19 pandemic in the US: role of economic concerns, health worries and social distancing. *PLoS One* 2020;15; e0241895.
- Keipi T, Näsi M, Oksanen A, Räsänen P. Online hate and harmful content: crossnational perspectives. New York: Routledge; 2017; e14035.