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A B S T R A C T   

In the scientific literature, various temporal resolutions have been used to model electric vehicle charging loads. 
However, in most studies, the used temporal resolution lacks a proper justification. To provide a strengthened 
theoretical background for all future studies related to electric vehicle charging load modeling, this paper in
vestigates the influence of temporal resolution in different scenarios. To ensure reliable baselines for the com
parisons, hardware-in-the-loop simulations with different commercial electric vehicles are carried out. The 
conducted hardware-in-the-loop simulations consists of 134 real charging sessions in total. In order to compare 
the influence of different temporal resolutions, a simulation model is developed. The simulation model utilizes 
comprehensive preliminary measurement-based charging profiles that can be used to model controlled charging 
in fine detail. The simulation results demonstrate that the simulation model provides sufficiently accurate results 
in most cases with a temporal resolution of one second. Conversely, a temporal resolution of 3600 s may lead to a 
modeling error of 50% or even higher. Additionally, the paper shows that the necessary resolution to achieve a 
modeling error of 5% or less vary between 1 and 900 s depending on the scenario. However, in most cases, 
resolution of 60 s is reasonably accurate.   

1. Introduction 

In the scientific literature, it has been a common practice to model 
electric vehicle (EV) charging loads by using a temporal resolution of 
15–60 min. However, the accuracies of different temporal resolutions 
are not properly analyzed. Therefore, the inaccuracies of the modeling 
results remain currently unknown. 

When using a temporal resolution of, e.g., 60 min, the model rounds 
up the arrival and departure times to full hours. Additionally, only an 
average load of each time step can be modeled. Naturally, the coarser 
the resolution, the more significant the inaccuracies are likely to be. 
Furthermore, in case a charging control algorithm is used, the used 
temporal resolution of the simulation model also has an influence on the 
control signal. This may be a crucial factor from two points of view. 
Firstly, according to the charging standard IEC 61851, the minimum 
allowed current limit to be set by the EV supply equipment (EVSE) is 6 A 
which equals to 1.38 kW (230 V) in a single-phase charging point. Thus, 
the EVSE cannot force an EV to charge with a power of, e.g., 1 kW. 
Secondly, as shown in [1], EVs may not be able to use all charging 
currents between the minimum current limit of the EVSE (6 A) and the 

maximum supported charging current of the on-board charger (OBC) of 
the EV. By overlooking these factors, the charging load modeling may be 
inaccurate especially in case of controlled charging. 

1.1. Related studies 

The influence of temporal resolution have been assessed e.g. from a 
PV self-consumption point-of-view [2,3]. In [2], it is shown that the 
temporal resolution of the load profiles is more critical for the accuracy 
of the determination of self-consumption rates than the resolution of the 
PV generation. In [3], it is demonstrated that the error in yearly 
self-consumption is around 3.6%, 6.1%, 9.3%, and 12.5% when the 
temporal resolution is 5, 15, 30, and 60 min, respectively. According to 
these studies, a temporal resolution of 15 min is reasonably accurate to 
assess self-consumption of the PV generations. Conversely, for the 
optimal sizing of a battery inverter power of an energy storage system, a 
temporal resolution of 5 min or finer is necessary [2]. In case of 
modeling an uncontrolled EV charging load, these results could poten
tially be used as guidelines as there are no charging control signals to be 
considered. However, as mentioned earlier, there are two especially 
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notable factors in controlled charging which may require a finer tem
poral resolution in order to preserve reasonable modeling accuracy. 

In [4], the impact of different temporal resolutions on the peak of the 
normalized power (PNP) of uncontrolled EV charging is assessed. The 
results show that the PNP can be relatively accurately evaluated even 
with a resolution of 60 min when considering charging powers of 3.7 
kW. When considering 22 kW charging powers, a resolution of 1 min is 
notably more accurate than 5 min. However, no further analyses of the 
impacts of the temporal resolution are conducted, and finer temporal 
resolutions are not considered. According to the authors’ knowledge, no 
other studies regarding the assessment of the influence of the temporal 
resolution on EV charging load modeling are yet carried out. 

To give an outlook of the research related to EV charging load 
modeling, Table 1 lists 25 recent studies. For each study, the temporal 
resolution (T) of the modeling is presented. Additionally, a short 
description of the objective of the study is shown. 

As shown in Table 1, a wide range of temporal resolutions is used to 
model EV charging loads. In all aforementioned studies, modeling of 
multiple EVs were considered. Additionally, controlled charging was 
considered in each study except in [17–19,23,26]. However, very little 

effort is made to justify the selected resolutions or to assess the potential 
inaccuracies of the results. In [5] and [22], it is acknowledged that the 
temporal resolution affects the accuracy of the results. However, a 
further investigation is left out of the papers. 

1.2. Contributions and structure 

Based on the literature review, it seems necessary to assess the im
pacts of the temporal resolution of the EV charging load modeling. To fill 
the gaps in the literature, four research questions are formed:  

1 What is the impact of the temporal resolution when modeling home 
charging or a small charging site? To address this question, multiple 
hardware-in-the-loop (HIL) simulations are carried out using 1–4 
commercial EVs. The results are then compared with simulation re
sults obtained by using different temporal resolutions (Sections 3.1 
and 3.2).  

2 What is the impact of the temporal resolution when modeling a large 
charging site? This question is addressed by simulating a three-month 
period using different temporal resolutions (Section 3.3). In this 
scenario, the EV charging behavior is based on real-world charging 
data of a commercial charging site.  

3 How accurately the EV charging loads can be modeled using the developed 
simulation model? To address this question, the results of the HIL 
simulations are compared with the simulations results obtained by 
using one second temporal resolution (Section 3.5).  

4 Which temporal resolutions are necessary in different situations to ensure 
reasonably accurate modeling? To address this question, the coarsest 
temporal resolutions that achieve a modeling error of less than 5% 
are presented separately for each scenario (Section 3.6). 

The contribution of this paper is to carry out a thorough analysis that 
fills the related gap in the scientific literature and provides justified 
answers for the research questions. Furthermore, the goal is to provide 
useful guidelines and a strengthened scientific background for future 
studies regarding the EV charging load modeling. 

The rest of the paper is as follows. Section 2 describes the assessment 
method. Section 3 analyses the results of each scenario. Additionally, the 
results are analyzed from the perspective of the overall accuracy of the 
simulation model, and the necessary resolutions to achieve reasonably 
accurate results in different scenarios are presented. The paper is 
finalized with conclusions in Section 4 where the research questions are 
addressed separately. 

2. Assessment method 

This section describes the used data, the key values of interest, the 
examined scenarios, the used control method, the experimental setup of 
the HIL simulations, and the used simulation model. Each part forms its 
own subsection. 

2.1. Used data 

To evaluate home charging, household electricity consumption data 
of a five-day period is used. The data was measured in December 2018 in 
one-second resolution at a detached house located in Pirkanmaa, 
Finland. The building is built in 2010 and its floor area is 158 m2. A 
geothermal heat pump is used as the main heating system. This repre
sents a typical new Finnish detached house. The daily energy con
sumption and the daily peak load varies between 34.4–59.0 kWh and 
5.9–7.9 kW, respectively. 

In order to evaluate a large charging site in a realistic manner, 
charging session data of REDI is used. REDI is a shopping center located 
in Helsinki, Finland, and has over 200 charging points that support 22 
kW charging [30]. The data is gathered over a three-month period in 
2020 (January–March) and contains 3801 charging sessions which 

Table 1. 
Recent studies related to EV charging load modeling.  

Refs. T The main objective of the study 

[5] 2 h Define Markov decision process formulation in reinforcement 
learning framework 

[6] 1 h Minimize charging costs and negative impacts of volatile 
renewable energy resource output 

[7] 1 h Voltage control through a charging pricing strategy of fast 
charging stations 

[8] 1 h Develop a multi-agent system to simulate energy hub with various 
EV penetrations 

[9] 1 h Optimize the quality of the charging service through a pricing 
scheme 

[10] 1 h Determine optimal EV charging stations and distributed 
generation units to minimize costs 

[11] 1 h Determine optimal charging stations in case of increasing EV 
penetration 

[12] 1 h Frequency regulation through vehicle-to-grid control while 
considering several uncertainties 

[13] 1 h Reduce power system generation costs through a flexible EV 
charge/travel schedule 

[14] 30 
min 

Minimize EV charging costs through scheduling models 

[15] 30 
min 

Reduce peak demand in the grid through charging scheduling 

[16] 30 
min 

Minimize load variance and charging costs through charging 
behavior prediction 

[17] 30 
min 

Propose a probabilistic approach to evaluate the impact of EVs on 
distribution system 

[18] 15 
min 

Propose a spatial-temporal method to model EV charging loads in 
distribution network 

[19] 15 
min 

Manage the power imbalance among feeders through tie-line 
voltage-source converters 

[20] 15 
min 

Minimize peak-valley load difference through coordinated 
charging scheduling 

[21] 15 
min 

Minimize charging costs and emissions with and without grid 
reinforcement 

[22] 15 
min 

Reduce EV charging costs in a workplace through vehicle-to-grid 
control 

[23] 10 
min 

Analyze the impacts of the EV charging load on the grid using 
Markov Chain simulation 

[24] 5 min Propose a data-driven approach for load modeling to guide 
infrastructure planning 

[25] 1 min Maximize self-consumption of photovoltaic generation via 
charging coordination 

[26] 1 min Present a spatial-temporal EV charging load simulation model that 
considers e.g. traffic 

[27] 1 min Minimize charging costs while ensuring quality of charging service 
[28] 15 s Provide centralized frequency regulation with reduced 

communication requirements 
[29] 10 s Coordinate EV charging loads to increase photovoltaic self- 

consumption  
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results in 42.7 charging sessions per day. The data includes arrival and 
departure times in one second temporal resolution, charged energy, and 
charging peak power. According to the data, EVs have on average a stay 
duration of 236 min, an active charging time of 101 min, and a charged 
energy of 7.4 kWh. It is also seen that in 59.3% of the charging sessions 
the stay duration is less than 5 min longer than the active charging time. 
This means that the stay duration often acts as a bottleneck, and 
consequently, most EVs are not fully charged before departure. The 
average daily number of EVs plugged in at REDI is illustrated in Fig. 1. 

2.2. Key values of interest 

This paper aims to assess the impacts of temporal resolution in 
various scenarios. In order to assess the influence, three key values are 
examined. The key values are:  

• The highest momentary peak load (P)  
• The highest hourly peak load (Ph)  
• The charged energy (E) 

The highest momentary peak load simply refers to the highest peak 
load value of a single time step in a single day. The highest hourly peak 
load refers to the highest average loading during a one-hour long period 
in a single day. This is an interesting value as it can be the basis for a 
power-based distribution tariff component as in [31–33]. In Scenario 1, 
the peak loads include both the EV charging load and the household’s 
electricity consumption. The charged energy refers to the energy that is 
charged during each one-hour time slot (i.e., 0:00–1:00, 1:00–2:00 etc.). 

This definition is made due to the selection that one hour is the coarsest 
temporal resolution. Furthermore, the temporal resolution in electricity 
pricing is often one hour and thus a modeling error in the hourly energy 
consumptions may affect certain cost or benefit analysis. 

2.3. Examined scenarios 

The simulations focus on three scenarios: (S1) a household with one 
EV, (S2) a small charging station with four charging points, and (S3) a 
large charging site with up to 21 simultaneous charging sessions. The 
first scenario (S1) is carried out using three EVs: Nissan Leaf 2012, 
Nissan Leaf 2019, and BMW i3. The home charging sessions are assumed 
to begin at evening. However, to generate more different circumstances, 
the HIL experiments are carried out using three different starting times 
for the charging sessions: 17:00, 19:00, and 21:00 h. A single simulated 
circumstance that has certain arrival time(s) and energy requirement(s) 
is referred to as an event. In Scenario 1, there are 45 (5 days × 3 starting 
times × 3 EVs) different events. To ensure more straightforward 
comparability, the driving distances of the EVs are kept constant at 24 
km, which equals to the average daily driving distance in Finland [34]. 
Depending on the charging and driving efficiencies of the EVs, the en
ergy drawn from the grid (the charging losses are included) varies be
tween 3.5 and 6.0 kWh. 

The second scenario (S2) is carried out in 25 different events. In each 
event, 3 or 4 of the EVs shown in Table 2 are used which results in 89 HIL 
charging sessions in total. For each event, the arrival times, the depar
ture times, and the driving distances are randomly selected. In this 
scenario, the average driving distance is 19.1 km (distances vary be
tween 4.3 and 65.0 km). This results in an average energy requirement 
of 3.8 kWh (energies vary between 0.8 and 11.6 kWh) from the grid 
point of view. The arrival times of the EVs varies between 16 h and 22 h 
and thus create circumstances where 1–4 EVs are simultaneously 
requesting charging. Sojourn times were assumed to be long enough so 
that the EVs can be fully charged. 

The third scenario (S3) is formed using the charging session data of 
REDI. For the modeling purposes, the recorded charging peak powers 
are used to determine the type of the EV according to Eq. (1), where Pp is 
charging peak power. The third scenario is divided into three sub
scenarios based on the used control method: an uncontrolled charging, a 
peak load management (PLM) with a total charging current limit of 3 ×
160 A, or a PLM with a total charging current limit of 3 × 126 A. In the 
case of uncontrolled charging, the highest peak current was 191 A ac
cording to the simulations. These subscenarios are used to determine the 
impact of the temporal resolution together with the use of charging 
control to the modeling accuracy in a large charging site. The control 
method is presented in the next subsection. 

The EVs and the key parameters of the scenarios are presented in 
Tables 2 and 3, respectively. According to an ablation study [35], the 
actual EV model is not necessary attribute to model charging profiles 
accurately. Instead, the number of used phases and the maximum cur
rent drawn are more crucial. Therefore, as the four EVs considered in 
this paper have different combinations of the number of used phases and 
the maximum current drawn, they can be used to represent different EV 
fleets quite well. 
⎧
⎪⎪⎨

⎪⎪⎩

EVtype = Nissan Leaf 2012, if 0 kW < Pp ≤ 4.5 kW
EVtype = Nissan Leaf 2019, if 4.5 kW < Pp ≤ 10 kW
EVtype = BMW i3 2016, if 10 kW < Pp ≤ 15 kW
EVtype = Smart EQ 2020, if 15 kW < Pp ≤ 25 kW

. (1) 

It is worth mentioning that the charging data of REDI cannot be used 
to accurately determine the initial missing energy from the EVs. As 
around 60% of the EVs depart before the charging is finished, the 
charged energies essentially pose a lower bound for the initially missing 
energies of the EVs. In this paper, the charged energy in the data is 
assumed to be the exact energy that is initially missing from the EV when 
it is plugged in. This simplification means that the total charging 

Fig. 1. The average number of EVs plugged in at REDI.  

Table 2. 
The used electric vehicles.  

EV Max charging power 

Nissan Leaf 2012 3.7 kW (1 × 16 A) 
Nissan Leaf 2019 7.4 kW (1 × 32 A) 
BMW i3 2016 11.0 kW (3 × 16 A) 
Smart EQ forfour 2020 22.1 kW (3 × 32 A)  

Table 3 
Examined scenarios.   

Site Nmax Ne Control method 

S1 A household with one EV 1 45 PLM 
S2 A small charging site 4 25 PLM 
S3 A large charging site 21 89 a Unc. / PLM 

Nmax is the maximum number of simultaneous charging sessions. 
Ne is the number of different events. 

a Scenario 3 is examined using pure simulations over an 89-day period. 
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energies in the simulations are likely lower than in reality. However, the 
same assumption is applied for the simulations of each temporal reso
lution and thus the results are comparable with each other. 

To form a baseline, each event in Scenarios 1 and 2 is carried out as a 

HIL simulation with commercial EVs. After that, the events are simu
lated with seven different temporal resolutions (1, 10, 30, 60, 300, 900, 
and 3600 s). These simulations are carried out without any HIL 
component. Scenario 3 is only simulated with the different temporal 
resolutions, and the results obtained using the temporal resolution of 
one second is chosen to be the baseline for this scenario. Further 
explanation of the experimental HIL simulation setup and the simulation 
model is given in Sections 2.5 and 2.6, respectively. 

2.4. Control method 

It is worth emphasizing that the following control method in itself is 
not the focus of this paper. Instead, the idea is simply to create situations 
where the charging currents are limited by the control system in contrast 
to the uncontrolled charging where the charging currents are only 
limited by the OBCs of the EVs. The aim of the control method is to limit 
peak loading. In Scenario 1, the daily load peak of the household is 
assumed to be known in advance and the charging power is limited so 
that the total load of the real estate and EV charging does not cause a 
higher daily load peak. An illustration of the loading of the household 
and the peak load limit is given in Fig. 2. In the figure, the green area 
between the peak load limit (gray dotted line) and the electricity con
sumption of the household (purple area) represents the capacity that is 
available for EV charging. The charging capacity for the EV can be 
calculated according to Eq. (2), where t is a time step, Pmax is the highest 
daily peak load of the household, and Phousehold is the power consumption 
of the household. 

PEV(t) = Pmax − Phousehold(t). (2) 

In Scenario 2, the total loading of the charging station is limited to 3 
× 32 A which allows all four charging sessions to be simultaneously 
active, yet a dynamic load management is required if more than one EV 
is charging simultaneously. In this paper, fair sharing algorithm pre
sented in [36] is used which divides the available charging capacity 
evenly among the EVs. The capacity allocation is illustrated in Eq. (3) 
[36], where PEV is the allocated power for each EV, Pcapacity is the 
available total charging capacity, and N is the number of active EVs 
requesting to be charged. Scenario 3 is essentially the same than Sce
nario 2 except that depending on the subscenario the total loading is 
either: not limited, limited to 3 × 160 A, or limited to 3 × 126 A. 

PEV(t) =
Pcapacity
N(t)

. (3) 

As stated in the charging standard IEC 61851, an EVSE cannot set a 
new charging current limit for an EV more frequently than once every 5 
s. Therefore, in case of HIL simulation or simulation with one-second 
resolution, the control algorithm is run every 5 s. In case of other res
olutions, the control algorithm is run every time step. 

2.5. Experimental setup 

The idea of the experimental setup is to form the baselines for Sce
narios 1 and 2 by measuring the real charging events. Then, the base
lines are compared with the simulations. The experiments are carried 
out as HIL simulations at the Smart Grid Technology Lab [37] at TU 
Dortmund University. The hardware components include the four EVs 
(shown in Table 2) and two charging stations (Wirelane Doppelstele and 
RWE eStation). Both charging stations include two 22 kW (230 V, 3 ×
32 A) sockets. The charging currents at RWE charging station are 
measured by using KoCoS EPPE PX power quality analyzers whereas 
Wirelane charging station includes built-in current measurement de
vices for both sockets. 

The control algorithm is implemented using Python programming 
language. The algorithm is run on a computer that is connected to the 
same local network with the charging points so that the system is able to 
adjust the charging current limits of the EVSE and read measurements of 

Fig. 2. Household electricity consumption and available charging capacity.  

Fig. 3. The experimental setup for (a) Scenario 1 and for (b) Scenario 2.  

Fig. 4. The laboratory setup.  
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the realized charging currents in real-time. A pre-recorded household 
electricity consumption data (described in Section 2.1) is read from an 
Excel file to simulate the household electricity consumption. The 
experimental setups for Scenarios 1 and 2 are shown in Fig. 3. Due to the 
limitations of the laboratory equipment, Scenario 3 with up to 21 
simultaneous charging sessions can only be simulated. The simulated 
setup for Scenario 3 is similar than the setup shown in Fig. 3(b) but there 
are 21 virtual charging points instead of the 4 physical charging points. 
A picture of the laboratory setup is shown in Fig. 4. 

2.6. Simulation model 

The idea of the simulation model is to allow the baselines of each 
scenario to be replicated with different temporal resolutions. These must 
be done as pure simulations without any HIL components. To model the 
EVs as accurately as possible, the modeling of the EVs is based on actual 
preliminary measurements of the EVs. The charging profile is measured 
in 1 s resolution for each EV for each possible charging current limit 
(integer) set by the EVSE. Only the current limit integers (6, 7, 8, … 32 
A) are considered as the charging stations does not allow floating point 
numbers as current limits. 

The preliminary measurements are used to calculate the missing 
energy from the batteries in each time step. The calculation begins from 
the end of the measurement where the missing energy is zero (i.e., the 
EV is fully charged). Then, a lookup table is formed to link a missing 
energy (Wh) to a charging current vector representing each phase cur
rent (A). The process and a formed lookup table is illustrated in Fig. 5. In 
the figure, the EV model is BMW i3 2016 and the current limit set by the 
EVSE is 6 A. A separate lookup table is formed for each EV and for each 
possible current limit. The lookup table is formed only for the part where 

the charging current is decreasing. For the constant power part (e.g., 
energy requirement of ≥ 199 Wh in Fig. 5), the model assumes constant 
currents. The process and the received charging profile models are 
essentially the same than the ones mentioned in [38]. However, in this 
paper, different current limits are considered and thus the model can be 

Fig. 5. Lookup table illustration of the charging of BMW i3 2016 with a current 
limit of 6 A, where I1–I3 represents phase currents. 

Fig. 6. Block diagram of the simulation model.  

Fig. 7. Illustration of Nissan Leaf 2012 charging profile.  
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used to simulate controlled charging instead of only uncontrolled 
charging. In this paper, the energy that is missing from the battery of an 
EV is referred to as energy requirement. 

As opposed to [38], the simulation model is modified to consider 
different time resolutions. Coarser time resolutions are obtained by 
averaging the values of the considered time period. In Fig. 6, an un
controlled charging session of Nissan Leaf 2012 (i.e., the current limit set 
by the EVSE is ≥ 16 A) is illustrated in different cases. In the figure, 
“HIL” represents actual laboratory measurements whereas the rest 
represent simulation results with different temporal resolutions. In each 
of these cases, the EV draws 5.2 kWh from the grid. However, it can be 
clearly seen that a coarser time resolution results in a higher deviation 
between the measured charging profile and the simulated charging 
profile. 

The operation of the simulation model is illustrated in Fig. 7. At the 

beginning, the model reads general input data and EV related input data. 
Since the arrivals and departures may not necessarily occur at an exact 
time step in all temporal resolutions, they are rounded to the closest time 
step. For example, an arrival time of 12:33:21 would be rounded to 
12:30:00 or 13:00:00 in case of 15 min or 1 h resolutions, respectively. 

After determining the initial values, the model simulates the EV 
charging until all EVs are fully charged or departed. In each time step, 
the model determines the status of each EV (away of plugged in). For the 
EVs that are plugged in, the charging control algorithm determines the 
charging current limits according to Eq. (2) or (3) depending on the 
scenario. After that, the charging currents are determined according to 
the charging profile models (lookup tables) where the realized charging 
currents depends on the current limits and the energy requirements. 
Finally, at the end of each time step, the remaining energy requirements 
of the EVs are updated based on the determined charging currents 
(assuming 230 V). 

In the home charging scenario, the real-time power consumption of 
the household acts as a control signal for the EV charging according to 
Eq. (2). Even though the control is in real-time, it includes a small delay 
as the power consumption must be measured first before it can be used 
as a control signal. In the simulations, the delay is considered in case of 
temporal resolutions of 1–30 s. For example, in case of 30 s temporal 
resolution, this means that an average household power consumption of 
the previous 30 s period is used to determine the EV charging current 
limit for the next 30 s period. In case of resolutions of 60–3600 s, the 
delay of the real-time control is neglected as it yields more accurate 
results than using a delay of 60–3600 s. Therefore, for temporal reso
lutions of 60–3600 s, the average power consumption of a single time 
step is used to determine the EV charging current limit for the very same 
time step. 

It is worth noting that minor deviation between the HIL measure
ments and the simulation results are expected as the simulation model 
does not consider factors such as battery temperatures in the modeling. 
It is commonly known that the battery temperature plays an important 
role in the EV charging and it must be considered by the battery man
agement system to prevent dangerous situations and to maximize the 
performance and cycle life of battery [39]. From the power grid point of 
view, this can be seen, e.g., as a reduced charging current if the OBC tries 
to protect the battery from overheating [40]. However, due to the 
increased complexity of the modeling and the data requirements to form 
the model, the temperature factor is excluded from the simulation 
model. 

3. Results 

In this section, the results of each scenario are presented in separate 
subsections. In Scenarios 1–3, the results related to powers are presented 
as root mean square percentage errors (RMSPEs) calculated according to 
Eq. (4), where p̂ represents the baseline, p represents the compared case 
(i.e., simulation results obtained with different temporal resolutions), 
and t is a charging event (or a day in Scenario 3). As mentioned earlier, 
HIL measurements form the baselines in Scenario 1 and 2. Since there 
are not enough EVs to carry out the Scenario 3 in a similar fashion than 
Scenarios 1 and 2, the simulation results of the most accurate temporal 
resolution (1 s) are chosen to form the baseline for Scenario 3. The re
sults related to charged energy are presented as root mean square errors 
(RMSEs). Percentual error related to the charged energy is assessed later 
in Section 3.4. Additionally, the general accuracy of the simulation 
model and the recommended temporal resolutions are investigated 
separately in Sections 3.5 and 3.6, respectively. 

pRMSPE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑T
t=1

(
p̂ t − pt
p̂ t

)2

T

√
√
√
√
√

× 100%. (4) 

To provide further values that may help future studies to select the 

Fig. 8. RMSPE in the highest momentary peak loads in Scenario 1.  

Fig. 9. RMSPE in the highest hourly peak loads in Scenario 1.  

Fig. 10. RMSE in the charged energies in Scenario 1.  

T. Simolin et al.                                                                                                                                                                                                                                 



Electric Power Systems Research 208 (2022) 107913

7

appropriate temporal resolution, mean absolute errors (MAEs) are also 

Fig. 11. RMSPE in the highest momentary peak loads in Scenario 2.  

Table 4 
RMSPE and RMSE for all charging events in Scenario 1.  

Case P (%) Ph (%) E Ea Eb 

HIL 0.0 0.0 0 Wh 0 Wh 0 Wh 
1s 1.7 0.6 60 Wh 53 Wh 71 Wh 
10s 8.7 0.6 62 Wh 54 Wh 75 Wh 
30s 19.2 0.9 69 Wh 56 Wh 89 Wh 
60s 19.3 1.1 77 Wh 57 Wh 103 Wh 
300s 20.8 3.3 184 Wh 66 Wh 295 Wh 
900s 23.0 6.2 398 Wh 98 Wh 654 Wh 
3600s 31.1 8.1 707 Wh 132 Wh 1172 Wh  

a includes only the charging sessions that are moderately controlled. 
b includes only the charging sessions that are heavily controlled. 

Fig. 12. RMSE in the charged energies for moderately controlled and heavily 
controlled charging sessions in Scenario 1. 

Fig. 13. RMSE in the charged energies in Scenario 2.  

Fig. 14. RMSPE in the highest hourly peak loads in Scenario 2.  

Table 5 
RMSPE and RMSE for all charging events in Scenario 2.  

Case P Ph E 

HIL 0.0% 0.0% 0 Wh 
1s 10.1% 1.9% 145 Wh 
10s 10.2% 1.9% 145 Wh 
30s 10.4% 1.9% 146 Wh 
60s 11.1% 1.9% 155 Wh 
300s 16.1% 2.8% 265 Wh 
900s 25.2% 7.5% 676 Wh 
3600s 51.2% 27.1% 2254 Wh  

Fig. 15. Modeled charging load on 25 February 2020 in different temporal 
resolutions. 

Fig. 16. RMSPE in the highest momentary peak loads in Scenario 3.  

T. Simolin et al.                                                                                                                                                                                                                                 



Electric Power Systems Research 208 (2022) 107913

8

calculated. However, to retain the flow of the paper, the MAEs are 
presented in the Appendix. The MAEs for Scenarios 1–3 are presented in 
Tables A1–A3, respectively. 

3.1. Scenario 1: a household with one EV 

In Scenario 1, the households electricity consumption acts as a 
control signal for the EV charging according to Eq. (2) as mentioned 
earlier. The results for the scenario are illustrated in Figs. 8–11. In Fig. 8, 
the RMSPEs in the highest momentary peak loads are presented. In the 
figure, it can be seen that the error is notable (5.8–12.4%) with even a 
temporal resolution of 10 s. For temporal resolution of 1 s and 60 s the 
error varies between 1.1–2.4% and 15.1–22.8%, respectively. These 
results were expected due to the volatile nature of the electricity con
sumption in households where the highest momentary peak load often 
lasts only for a short duration. In case of one-hour temporal resolution, 
the RMSPE is 27.8–34.3%. The relative errors in the highest hourly peak 
loads are presented for Scenario 1 in Fig. 9. When comparing Figs. 8 and 
9, it can be seen that in all cases the error in the highest hourly peak 
loads is lower than the error in the highest momentary peak loads. Even 
in case of one-hour temporal resolution the error is less than 12.4%. For 
temporal resolutions of 60 s and 300 s the error varies between 0.5–1.8% 
and 0.5–5.6%, respectively. 

The RMSEs in the charged energies are presented in Fig. 10. As seen 
in the figure, the relative error is very small (34–101 Wh) when the 
temporal resolution is 60 s. However, coarser resolutions tend to result 
in notably higher errors. In one-hour resolution, the error of all EVs is 
707 Wh. By considering the fact that the average charging load of all 
hourly time slots in Scenario 1 where an EV is charging is 1927 Wh, the 
RMSE is seen considerable. A closer examination regarding the charged 
energy reveals a clear correlation between the magnitude of the error 
and the charging control. As mentioned earlier, an EVSE can adjust the 
charging current limit only between 6 and 80 A in charging mode 3 
according to the IEC 61851 charging standard. If the available charging 
capacity is below 6 A, the charging must be paused until there is enough 
capacity available. In case of coarser temporal resolutions, more details 
of the household’s electricity consumption are lost. And, since the 
household’s electricity consumption is a key factor for the EV charging 
control in Scenario 1, coarser temporal resolutions may have notable 
impacts on the error of the charged energy. 

Fig. 17. RMSPE in the highest hourly peak loads in Scenario 3.  

Fig. 18. RMSE in charged energies in Scenario 3.  

Table 6 
RMSE for all charging events in Scenario 3.  

Case P (%) Ph (%) E 

1s 0.0 0.0 0 Wh 
10s 0.2 0.2 44 Wh 
30s 1.1 0.4 110 Wh 
60s 1.3 0.3 121 Wh 
300s 3.3 1.5 380 Wh 
900s 7.7 3.0 1026 Wh 
3600s 20.4 9.8 3713 Wh  

Fig. 19. Percentual error for charged energy in all scenarios.  

Table 7 
RMSE for Scenarios 1 and 2 with 1 s temporal resolution.  

Scenario P (%) Ph (%) E (%) 

S1 (Nissan Leaf 2012) 2.4 0.3 2.8 
S1 (Nissan Leaf 2019) 1.1 0.6 1.6 
S1 (BMW i3 2016) 1.4 0.8 4.8 
S1 (All) 1.7 0.6 3.1 
S2 (3 EVs) 1.3 0.7 2.3 
S2 (4 EVs) 13.4 2.4 4.3 
S2 (All) 10.1 1.9 3.8  

Table 8 
Recommended temporal resolutions depending on the type of scenario and the 
considered values.  

Scenario P Ph E 

Home charging, uncontrolled 1 s 300 s 900 s 
Home charging, controlled 1 s 300 s 1 s 
A small charging site, controlled 60 s a 300 s 60 s 
A large charging site, uncontrolled 300 s b, c 900 s b 300 s b 

A large charging site, controlled 300 s b, c 900 s b 300 s b  

a In a few simulations, even a temporal resolution of 1 s resulted in an error of 
>10%. However, in such events, the temporal resolution of 60 s yielded results 
as good as the 1 s resolution. Therefore, the 60 s resolution is seen sufficient. 

b Baseline (i.e. reference point) is the simulation result with 1 s temporal 
resolution instead of hardware-in-the-loop simulation. 

c The evaluation of the simulation model indicates that the modeling of the 
highest momentary peak load is subject to a notable error and thus the presented 
temporal resolution may not be accurate. 
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In Fig. 11, the errors in the charged energies are presented separately 
for the charging sessions that are moderately controlled and heavily 
controlled. The term “moderately controlled” refers to charging sessions 
where the charging of the baseline did not have to be paused due to a 
lack of available capacity whereas the term “heavily controlled” refers to 
charging sessions where the charging of the baseline was paused. As 
seen in the figure, a finer resolution is much more important if the al
gorithm has to temporarily disable the charging. It is also worth noting 
that the IEC 61851 charging standard does not allow each phase to be 
controlled separately. Therefore, a three-phase charging session requires 
a higher minimum capacity than a single-phase charging session. This 
explains why the error for BMW in Fig. 10 is more heavily dependent on 
the temporal resolution compared to the two other EVs. The results for 
Scenario 1 are presented in Table 4. 

It is reasonable to note that in Scenario 1, the plug-in times for the 
EVs were at 17:00:00, 19:00:00, or 21:00:00 and thus they were not 
affected by the change of the temporal resolution. Therefore, the errors 
seen in the results presents the influence of the temporal resolution of 
the control signal for a single EV. However, when modeling real-life 
situations, the temporal resolution is likely to affect the modeling ac
curacy also if the plug-in and plug-out times are rounded up by the 
model. 

3.2. Scenario 2: a small charging site 

The results of Scenario 2 are illustrated in Figs. 12–14. In Fig. 12, it 
can be seen that the highest momentary peak loads cannot always be 
accurately modeled by the simulation model even with the 1 s resolu
tion. This means that the other assumptions and simplifications in the 
simulation model, such as the exclusion of considering battery temper
atures, can have notable impacts to the modeling accuracy. According to 
a closer investigation, the simulation model was not always able to 
model the charging currents in the decreasing current stage correctly. 
This caused some charging sessions in the simulation model to finish a 
few minutes earlier or later than in HIL measurements. And, since the 
available charging capacity is divided evenly among the EVs that are 
requesting to be charged according to Eq. (3), a modeling error in one 
charging sessions can influence the charging capacity distribution if 
there is a charging control algorithm in use as in this scenario. As the 
status of the EVs are modeled wrong for only a few minutes, it does not 
affect the hourly peak powers or charged energies very much as it can 
affect the momentary peak loads as seen in Figs. 12–14. It is also worth 
mentioning that the issue is especially significant due to the fact that 
there are only a few EVs. In case of multiple EVs (as in Scenario 3), it is 
less impactful if, e.g., the status of one EV (requesting charging or not) is 
modeled wrong as it does not have relatively high influence on the total 
load. Conversely, if there is only one EV (as in Scenario 1), the same 
issue is not possible. 

The above-mentioned issue occurs only in the events with four EVs, 
and thus, the events with three EVs are modeled more accurately 
especially in case of 1–60 s resolutions. For coarser resolutions (≥ 300 s), 
the error becomes increasingly more notable and the difference between 
the events that have three or four EVs diminish. This is assumed to be 
due to the errors caused by coarse temporal resolutions become much 
more significant than the error caused by the other assumptions and 
simplifications in the simulation model excluding the temporal 
resolution. 

The errors in the highest hourly peak loads are presented in Fig. 13. 
The errors seem to be relatively consistent, between 0.5–3.6%, for res
olutions of 1–300 s. For resolutions of 900 s and 3600 s, the error in
creases to 6.8–8.3% and 14.7–33.8%, respectively. The errors in the 
charged energies are presented for Scenario 2 in Fig. 14. The errors for 
all charging events are between 145 and 155 Wh in case of temporal 
resolutions of 1–60 s. For coarser resolutions of 300, 900, and 3600 s, the 
error increases exponentially to 265, 676, and 2254 Wh, respectively. 
The results for Scenario 2 are presented in Table 5. 

3.3. Scenario 3: a large charging site 

To demonstrate the influence of different temporal resolutions in a 
commercial charging site, an illustration of Scenario 3 is given in Fig. 15. 
The day selected for the figure represents an average day in terms of 
daily charged energy. As seen in the figure, one-hour temporal resolu
tion clearly results in a lower total charging power compared to other 
resolution. This is due to the fact that in 13.3% of the 3801 charging 
sessions the arrival and departure times round up to the same hour, i.e., 
the charging session do not essentially happen in case of one-hour res
olution. In case of 900 s resolution, the arrival and departure times 
round up to the same moment in 3.1% of the charging sessions. In terms 
of energy, these charging sessions represents 3.0% (3600 s resolution) 
and 0.04% (900 s resolution) of the total charged energy according to 
the charging data. 

The errors in the highest momentary peak loads in Scenario 3 is 
presented in Fig. 16. The figure shows that the error is relatively small 
(≤ 1.6%) when the resolution is ≤ 60 s. For coarser resolutions, the error 
begins to increase notably. For the highest hourly peak loads, the results 
are similar but around half of the magnitude. The relative errors in the 
highest hourly peak loads are illustrated in Fig. 17. The errors in the 
charged energies in Scenario 3 are presented in Fig. 18. For each sub
scenario, the errors are ≤ 174 Wh for resolutions of ≤ 60 s. For coarser 
resolutions of 300, 900, and 3600 s, the errors increase exponentially to 
334–436, 971–1122, and 3236–4142 kWh, respectively. The results for 
Scenario 3 are presented in Table 6. 

3.4. Comparison of the absolute errors of the charged energies 

Due to the fact that the temporal resolution affects the charged en
ergies in each hourly time slot and may cause it to be zero in some hourly 
slots, the RMSPE for the charged energies were not possible to be 
calculated in a similar fashion than the peak loads. The RMSE in the 
charged energy is converted into percentual RMSE using Eq. (5), where 
the ERMSE is the absolute RMSE (kWh) and EAvg is the average hourly load 
of all one-hour time slots where at least one EV is charging. The results 
are presented in Fig. 19, where S1–S3 represents different scenarios. It 
can be seen that the relative error is moderately low (0.7–7.0%) in all 
scenarios in case of 60 s temporal resolution. In case of coarser resolu
tions, the error increases, but the increment is substantially dependent 
on the scenario. 

ERMSE,% =
ERMSE
EAvg

. (5)  

3.5. Evaluating the simulation model 

According to the simulation results of Scenarios 1 and 2, the simu
lation model successfully models the key values accurately with one 
second temporal resolution. The simulation results of the one-second 
temporal resolution are presented in Table 7. In most scenarios, the 
relative error in the highest momentary peak load is around 1–2%. 
However, the error in Scenario 2 with charging events of four EVs or all 
events is over 10%. As mentioned earlier, this exceptionally high error 
originates from the other assumptions and simplifications in the simu
lation model, such as the exclusion of considering battery temperatures 
in the modeling. Similar effect is seen also in the errors of the highest 
hourly peak loads. However, in all scenarios, the error in the highest 
hourly peak loads is much smaller compared to the errors of the highest 
momentary peak loads. The errors of the charged energies vary between 
1.6 and 4.8% and there do not seem to be a clear trend between the 
scenarios and the magnitude of the error. Overall, the results indicate 
that the simulation model is sufficiently accurate to model the key 
values of the EV charging in most scenarios even though the battery 
temperatures are not considered in the model. 

As mentioned earlier, the simulation model does not consider all 
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factors that influence the charging load modeling. Therefore, the sim
ulations with different temporal resolutions include two types of 
modeling inaccuracies: temporal resolution-based modeling error and 
the errors cause by all other factors, such as the exclusion of battery 
temperature in the modeling. In case of a fine temporal resolution, the 
other factors are the dominant cause for the modeling errors whereas, in 
case of a coarse resolution, the temporal resolution-based inaccuracies 
are dominant. In Scenarios 1 and 2, the temporal resolution-based error 
seems to become the dominant cause of modeling errors after the tem
poral resolution of 60 s. This explains why the error is relatively steady 
for resolutions of 1–60 s and increases rapidly after resolution of 60 s in, 
e.g., Figs. 9–14. Additionally, as the baseline for the comparisons in 
Scenario 3 is the simulation results with 1 s temporal resolution instead 
of HIL measurements, the results include only the temporal resolution- 
based errors. Therefore, a more consistent correlation between the 
modeling errors and the temporal resolution is seen in Scenario 3 than in 
Scenarios 1 and 2. 

3.6. Recommended temporal resolutions 

As seen in the results, simplified simulations with excessively coarse 
temporal resolutions may lead to significant modeling inaccuracies. For 
example, when using one-hour temporal resolution, the error may be 
over 50% in the highest momentary peak loads (as seen in Fig. 12), over 
30% in the highest hourly peak loads (as seen in Fig. 13), or almost 80% 
in the charged energies (as seen in Fig. 19). Therefore, it is clear that the 
use of a justified temporal resolution in simulations is vital to ensure a 
reasonable modeling accuracy. 

In Table 8, the necessary temporal resolution to achieve a relative 
error of less than 5% is shown separately for each key value and for each 
different type of scenario. Since Scenario 3 could not be carried out as 
HIL simulation, the baseline is the simulation results with 1 s temporal 
resolution. To summarize Table 8, it can be said that to model the 
highest momentary peak load accurately, a fine temporal resolution of 
1–60 s is necessary. To model the highest hourly peak load, a temporal 
resolution of 300–900 s is reasonable. 

In order to model the charged energies accurately, the necessary 
temporal resolution vary more notable depending on the situation. If 
there is a volatile control signal (e.g., household’s energy consumption- 
based control) and the charging session may be required to be tempo
rally stopped, a very fine temporal resolution of even 1 s may be 
necessary. Conversely, to model the charged energy of a single EV 
without a complex control mechanism, a temporal resolution of 
300–900 s should be sufficiently accurate. In a scenario that is between 
the two extremes, a temporal resolution of 60 s is likely to be reasonably 
accurate. 

It is worth noting that this paper considers measurement-based 
charging load profiles in the modeling which often leads to quite accu
rate results as shown in Section 3.5. In case of more simplified charging 
load modeling approaches, the charging load modeling may contain 
some inaccuracies that are not related to the temporal resolution. Thus, 
even the use of temporal resolution of 1 s may not lead to accurate re
sults in that case. However, by using the recommended temporal reso
lutions of Table 8, it is reasonable to assume that the EV charging load 
modeling will not include any significant temporal resolution related 
errors. 

3.7. Discussion 

The simulations of this paper consider only uncontrolled charging 
and controlled charging with a peak load management. It is expected 
that different scenarios using different control algorithms may require 

different temporal resolutions to be sufficiently accurate. However, all 
control algorithms presented in the scientific literature cannot be tested 
using HIL simulations with commercial EV, which sets some limitations 
to this kind of study. For example, the considered EVs do not support 
vehicle-to-grid operation and are not able to transfer information, such 
as battery-status, to the control system. 

However, the results of this paper can also be used as guidelines for 
different scenarios that use other charging control algorithms. To 
determine the reasonably accurate temporal resolutions in case of other 
control algorithms, the focus should be put on the control signal and 
how it is affected by the change of the temporal resolution. For example, 
if charging is controlled based on hourly electricity prices, the control 
signal’s resolution is an hour. Therefore, the use of one-hour resolution 
or finer does not negatively influence on the accuracy of the control 
signal. This means that charging control based solely on hourly elec
tricity prices could be simulated with a similar accuracy as uncontrolled 
charging, and sufficiently accurately results could be obtained using 
300–900 s resolution (see Table 8.). Furthermore, if a control algorithm 
combines a peak load management with a volumetric electricity price 
(€/kWh) optimization, the price optimization is not assumed to have an 
influence on the recommended temporal resolution, and thus the rec
ommended temporal resolution is 1–300 s depending on the situation 
(see Table 8). 

Other benchmark algorithms, such as earliest deadline first and least 
laxity first, may depend on the mobility requirements of the EVs 
including departure time or energy requirements. However, these al
gorithms are not expected to be notably dependent on the used temporal 
resolution. This is because the change of temporal resolution does not 
influence on the energy requirement. Additionally, the simulation model 
already has to consider the departure time even in the case of uncon
trolled charging to determine when charging is allowed or not. A similar 
reasoning can potentially be used in case of other control algorithms to 
determine a reasonably accurate temporal resolution. 

4. Conclusions 

In this paper, the influence of the temporal resolution on the electric 
vehicle charging load modeling is assessed. To form realistic baselines 
for the simulations, laboratory experiments with up to four commercial 
electric vehicles are carried out. In addition, to evaluate electric vehicle 
charging at home or at a large charging site, detailed household’s 
electricity consumption data and charging session data of REDI shop
ping center was used. Furthermore, a laboratory measurement–based 
electric vehicle charging simulation model is developed. 

The investigated research questions and the findings of the study are 
as follows:  

1 What is the impact of the temporal resolution when modeling home 
charging or a small charging site? In most cases, the modeling error is 
relatively modest with temporal resolutions of ≤ 60 s but increases 
exponentially with higher temporal resolutions. However, for home 
charging in which the peak load is the sum of the charging load and 
the household’s electricity consumption, the modeling error is 
notable (≥ 8.7% on average) already with temporal resolutions of 
≥10 s.  

2 What is the impact of the temporal resolution when modeling a large 
charging site? According to the results, a temporal resolution of 
300–900 s may be sufficient to model the total load of a large 
charging site in case of uncontrolled charging or a relatively simple 
control method. However, it is noted that in commercial charging 
sites, the parking duration may not always be very long. Therefore, 
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exceedingly coarse resolution (e.g. one-hour) may lead to a situation 
where some of the charging sessions are excluded from the modeling.  

3 How accurately the electric vehicle charging loads can be modeled using 
the developed simulation model? The simulation results indicate that 
the developed simulation model is sufficiently accurate (error less 
than 5%) in most cases even though the battery temperatures are not 
included in the model. However, the results also show that due to this 
simplification, there may be notable inaccuracies mostly in the 
highest momentary peak loads.  

4 Which temporal resolutions are necessary in different situations to ensure 
reasonably accurate modeling? To model the highest hourly peak 
loads, a temporal resolution of 300 s is seen sufficiently accurate 
regardless of the size of the charging site and the use of control al
gorithm. To model the highest momentary peak loads in a charging 
site, a temporal resolution of 60–300 s is reasonably accurate. 
However, if the peak load is also dependent on an external load, such 
as a volatile household’s electricity consumption, a very fine reso
lution of 1 s may be necessary. To model the charged energy in each 
hourly time slot accurately, the necessary temporal resolution varies 
significantly depending on the scenario. In case of uncontrolled 
charging of a single electric vehicle, a resolution of up to 900 s may 
be sufficient. However, if the charging is controlled and there is a 
chance that the charging must be temporally stopped (e.g. to avoid 
load peaks), a very fine temporal resolution of 1 s may be necessary. 
In other cases, a temporal resolution of 60 s is likely to be sufficiently 
accurate to model the charge energy. 

As shown in this paper, the influence of the temporal resolution is of 
great importance and the use of a justified resolution should not be 
overlooked. To strengthen the theoretical background of all future 
electric vehicle charging related simulations, this paper provides guid
ance in terms of the necessary temporal resolution of the electric vehicle 
charging load modeling. Since the modeling methods and parameters 
play an important role in the simulations, future work should consider 
different EVs and investigate how different modeling methods influence 
on the modeling accuracy. 
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