

Niladri Saha

MINING OF MOTIVATORS AND DE-MOTIVATORS
FOR SOFTWARE DEVELOPERS FROM GITHUB

AN EMPIRICAL STUDY

Faculty of Information
Technology and

Communication Sciences
M.Sc. Thesis
March 2022

ABSTRACT

Niladri Saha: Mining of Motivators and De-Motivators for Software Developers from GitHub

M.Sc. Thesis

Tampere University

Master’s Degree Programme in Software, Web, and Cloud

March 2022

Examiners: Outi-Sievi Korte and Terhi Kilamo

In the present day, the software industry is experiencing a high rise of burnout cases amongst soft-

ware engineers. Several companies are implementing various policies to motivate software engineers

and prevent the rise of burnout cases and depression in the software industry. But still, the cases are

rising worldwide. As software engineers are an essential part of the software industry, it is a concern

for the software industry and its growth. Thus, it is necessary to find an approach to deal with this.

This thesis aims to find out measurable motivators and de-motivators that can be extracted from

GitHub Repositories. It will also be useful for future research on the well-being of software developers

in the context of open-source software development as well as for an organization.

An empirical study is done to find out the motivational and de-motivational factors from the extracted

data of GitHub. First, a literature review is done to get the list of motivators and de-motivators. Then a

quantitative approach is applied by extracting over 26566 Issues with comments from 35 repositories

and over 6520 commits from 35 repositories. From the extracted data, mapping is done with the moti-

vators and de-motivators. Once the mapping is completed, the calculation of the motivators and de-

motivators is done using metrics that are based on the extracted data. After this, variations of those

factors are observed with different sentiments and emotions. Then a survey is done with the develop-

ers associated with different GitHub repositories. Once the survey is completed, both the results from

the data mining and survey are compared to verify whether these factors from GitHub correctly match

with the developers’ viewpoint.

Results show that Issue complexity, risk, and collaboration are the factors that can be measured from

the GitHub repository. However, it is found that risk is not at all a de-motivator as both the survey and

mining results show developers are more willing to work on risky issues. The collaboration score

seems to be contradictory with survey results as the survey shows developers feel the positive effect

on collaboration.

Keywords: Emotion, Motivation, Issue, Commit, Complexity, Risk, Sentiment, Collaboration

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

PREFACE

This thesis was done as part of research work under the supervision of assistant professor
Outi-Sievi Korte and was funded by Ulla Tuominen Foundation, Finland and Tampere Uni-
versity, Finland. The idea of the thesis was stemmed from the rising number of burn-out
cases arising in Finland amongst software engineers in the past few years. This thesis work
can be considered as the starting point for future research works related to the well-being of
software developers. The topic was unique and quite challenging in the initial days due to
the lack of studies made on this domain. However, it was a great experience doing this the-
sis work due to the voluminous learning associated with it.

I would like to thank my supervisor Outi-Sievi Korte and examiner Terhi Kilamo for their use-
ful suggestions to improve my thesis work. Apart from that, I would like to thank God for al-
lowing me to study master’s from Tampere University. Also, I am very grateful to my mother
for her unconditional support and love during my stressful and lonely time in Finland.

Tampere, March 2020

Niladri Saha

Table of Contents

1. Introduction ... 1

2. Motivation and Models of Motivation ... 3

2.1 Definition of Motivation .. 3

2.2 Intrinsic Motivation Model .. 3

 2.2.1 Goal Setting Model .. 4

 2.2.2 Expectancy Model .. 7

 2.3 Extrinsic Motivation Model .. 9

 2.3.1 Job Characteristics Model ... 10

 2.3.2 Affective Events Model .. 12

 2.4 Hybrid Motivation Model ... 15

 2.5 Related Works on Motivation Mining ……………………………………………. 17

3. Sentiment and Emotion... 19

3.1 Concept of Sentiment .. 19

 3.2 Concept of Emotion .. 20

 3.3 Sentiment Analysis Tools ... 22

3.4 Emotion Analysis Tools .. 26

 4. Open-Source Software Development Concept ... 30

 4.1 Open-Source Software Development Lifecycle .. 30

 4.2 GitHub Repository ... 32

 4.3 Different Types of Issues in GitHub ... 32

 4.4 PyGitHub ... 34

 5. Research Methodologies ... 36

 5.1 Overview of the Mining Process and its components 36

 5.2 Preliminary Study: Tools Comparison for Sentiment Analysis 37

 5.3 Extraction of Issue Details ... 40

 5.4 Extraction of Commit Details ... 42

 5.5 Mapping of Factors and Metric Calculation .. 43

 5.6 Survey Design ... 46

 6. Results and Analysis .. 47

 7. Conclusion .. 61

 Bibliography .. 62

 Appendix (A-B) .. 68-70

LIST OF SYMBOLS AND ABBREVIATIONS

 AET Affective Events Theory

 MPS Motivation Potential Score

 AEM Affective Events Model

 AE Affective Events

 JCM Job Characteristic Model

 OSS Open-Source Software

 MOCC Motivators, Outcomes, Characteristics, and Context

 CI/CD Continuous Integration/Continuous Deployment

 BERT Bidirectional Encoder Representations from Transformers

 GloVe Global Vectors for Word Representations

 ELMo Embeddings from Language Mode

 API Application Program Interface

 CPU Central Processing Unit

 GPU Graphics Processing Unit

 VIST Valence, Instrumentality, Self-Efficacy, Trust

 3.x Python version starting from 3.0

1

 1. Introduction

The software industry is now one of the biggest industries. A survey by Statista [17] has pre-

dicted that in 2021 the revenue of the software industry will be close to USD 578,018 million.

Worldwide the software industry employs around 55 million workforces [18]. Thus, it is one of

the critical service sectors where millions of software engineers work hard to maintain the

software’s usability for the citizens worldwide. However, a software engineer’s job is not the

easiest one to do. Coding, testing, designing, or client meetings are part of every software

developer’s daily routine. In addition to this, in some cases, the constant pressure to prove

their mettle, toxic work culture, bad managers, and long working hours lead to a burnout situ-

ation for software engineers. To avoid burnout and depression, software engineers need to

be motivated towards their work. In a study on software development, Rasch et al. [10]

claimed that a software developer’s performance has a direct impact on any software devel-

opment. On the other hand, motivation influences performance [70]. A software developer is

also an employee of an organization or part of a software project. Hence, motivation is one

of the important factors in performance from a software development perspective. Further, it

is claimed that motivation is the desire to act to achieve a goal [19]. It is one of the most im-

portant aspects of defining and achieving our goals. As a result, a software developer's day-

to-day tasks may be hampered by a lack of motivation. Even a lack of motivation makes it

difficult for software engineers to achieve their objectives.

Therefore, in the present day, several companies try to introduce various methods for the

well-being of the employees to motivate them to do their job with more flexibility. In addition

to that, several policies such as work from home, paid maternity leaves, mental-health pro-

grams, performance-based salary hikes, working hour flexibilities are implemented in com-

panies like American Express, Hyatt, Google to motivate employees in their workplace [21].

However, there are still some gaps in implementing such policies, so, many of the software

engineers are suffering from high burn-out rates also some companies like Infosys, Accen-

ture, and Wipro are suffering from high attrition rates [20]. From the employee reviews

[68][69], it is observed that a de-motivating environment is the main reason behind such attri-

tion in most cases.

2

Therefore, it is important to get an insight into the motivational and de-motivational factors

for software engineers and try to build a framework for an organization or a team to have

motivated developers. Several studies have been made in the last ten years on motivational

aspects in software engineering. Among these methods, some proposed several ways to

mine motivation. Even there are research approaches to mine motivation from the software

repositories [6] or using software-based methods to get the factors of motivation [13]. How-

ever, they do not provide any guidance on how to derive the measurable motivators and de-

motivators or any source that helps us measure the motivators and de-motivators for the

software engineers. Thus, this thesis is done to address the gaps in the previous research

works. The work is performed as an empirical study to get insight into the motivational fac-

tors directly from the mined data.

In this thesis, all the data are collected related to closed issues and their commits from

GitHub. Then mapping is done with the motivators as well as de-motivators with the data col-

lected from GitHub. In addition to this, this thesis also shows how to extract sentiment and

emotion from all the issues and try to gain more insight to check how the emotion affects

these motivators or de-motivators in an Open-Source Software Project context. The main

aim of this thesis is to answer the following questions:

RQ1. What are the measurable motivators and de-motivators that can be derived from

GitHub?

RQ2. How to derive the measurable motivators and de-motivators from GitHub?

RQ3. How are these measurable motivators or de-motivators influenced by emotion and

sentiment?

The whole thesis is structured as follows: Chapter 2 gives the overview of different types of

motivation models related to software engineering and related works that had been done in

the past on motivation mining. Chapter 3 elaborates on Sentiment and Emotion and de-

scribes different emotion and sentiment analysis tools available in the market. Chapter 4 il-

lustrates the Open-Source Project concepts and gives an overview of GitHub. Chapter 5 de-

scribes the methodologies used in this thesis. Chapter 6 illustrates the results and their re-

lated analysis. It also answers the all-research questions. Finally, Chapter 7 is the conclu-

sion which summarizes the whole thesis and tries to give an idea about the future research

related to motivators and de-motivators calculation.

3

2.Motivation and Motivation Models

This chapter elaborates on the concept of motivation. It also deals with the different types of

motivation models that have applications in software engineering. All the models are de-

scribed with their advantages and disadvantages because it helps in selecting the best

model to build the framework for calculating motivators and de-motivators.

2.1 Definition of Motivation

There are several definitions provided for motivation in different industry perspectives. One

of the definitions by McConnell [22] states that motivation is a soft factor. It is difficult to

quantify, and it is also sometimes overshadowed by other trivial factors. However, it is easier

to measure [22]. According to McConnell [22], every organization recognizes the importance

of motivation, but no one tries to put it into practice properly. Many conventional manage-

ment approaches have been observed to be ineffective, resulting in significant reductions in

motivation and morale in exchange for tiny methodology improvements.

Motivation can be viewed as intrinsic or extrinsic [24]. In a nutshell, intrinsic motivation is a

desire to do something interesting, whereas extrinsic motivation is a desire to do something

because of some rewards associated with it. The inclusive leadership or management style

is conducive to intrinsic motivation whereas an exclusive approach like coercive or authorita-

tive action relies on extrinsic motivation [24]. Motivation, on the other hand, is derived from

the word 'motive,' which refers to the needs, wishes, wants, or drives that are linked with per-

sons [25]. It is the process that motivates people to achieve their objectives. The desire for

money, success, recognition, job happiness, teamwork, and other psychological elements

can all influence people's behaviour at work. It also states that the process of motivation

consists of three distinct stages: First a need or driver to achieve, second a stimulus that

needs to be aroused and finally when needs are satisfied, the satisfaction or attainment of a

goal.

2.2 Intrinsic Model of Motivation

The Intrinsic Model of Motivation is built based on the intrinsic motivational factors of a hu-

man being. It is claimed that intrinsic motivation is a motivation that is driven by internal fac-

tors [26]. Ryan et al. [76] claim that intrinsic motivation is the doing of an activity for its inher-

4

ent satisfactions rather than for some separable consequences. In humans, intrinsic motiva-

tion is not only a form of motivation, but it is a pervasive and also important one [76]. From

birth to the stage of adolescence, humans, in their healthy state, are curious, inquisitive.

They are ready to explore unknown things. For these, they do not need any extraneous in-

centives as stated by Ryan et el. [76].

Intrinsic motivation is an important part of a person’s well-being. It is more concerned with

self-realization, growth of an individual, a satisfaction to achieve something by own merits.

The model based on intrinsic motivation elaborates the framework for self-realization or

growth of the person.

There are several limitations associated with intrinsic motivation. Some popular psychology

studies state one such thing as the “overjustification effect” [26]. The reason is when some-

one is already intrinsically motivated to do a task that is associated with extrinsic motivation.

As stated, if a person loved chemistry (which is an intrinsic motivation), and then the person

enrolled in a class on chemistry at school due to love on the course and was focused on get-

ting an excellent grade (which is an extrinsic factor) - the student’s intrinsic motivation would

diminish [26]. The intrinsic motivation model in such cases, cannot solve such kind of sce-

nario.

Next elaboration of two Intrinsic Models of Motivations: Goal Setting Model and the Expec-

tancy Model are discussed.

2.2.1 Goal Setting Model

Goal Setting Theory or model is an employee engagement tactic that deals with setting spe-

cific goals to improve the productivity of the employees in a workplace [63]. To improve em-

ployee performance and employee engagement at the workplace, goal-setting theory can

help in several ways. Locke et al. [27] described the Goal Setting Theory i.e., Goal Setting

Model based on five moderators. These moderators are given below as per the study by

Locket et al. [27].

Goal Commitment

Goal commitment is important for people when the goal is difficult to achieve. It is because

achieving a difficult goal requires very high effort from the people. If there is no commitment

towards the goal, then attaining the goal may be out of sight. According to Locke et al. [27],

two categories of factors facilitate goal commitment: a) factors that make goal commitment

5

important including the importance of the outcome when the goal is achieved and b) peo-

ple’s self-belief that they can attain the goal.

Goal Importance

Goal importance should be clear to the people. There are many ways to convince people

about the goal. One of the approaches is publicly announcing with all its background and im-

portance also with the outcome. Generally, in any software engineering project or any ICT

company, the importance of the goal is set by a performance review.

Self-Efficacy

Self-Efficacy is another important moderator towards goal commitment. It is just like goal im-

portance that induces goal commitment. For example, to achieve the goal of a technically

sound team, it is important to inspire Software engineers to be empowered with the decision-

making processes or niche skills. Inspiring leaders try to inspire or motivate their subordi-

nates with motivational speeches or workshops that motivate employees to take the risk.

Feedback

Feedback is also an important part of the goal attainment process. To check their proper

progress Software engineers can ask for a review of their goal plan from their supervisors.

An effective goal plan needs multiple rounds of discussion between the supervisor and his or

her subordinates. A weak review of the goal plan or ineffective goal plan can kill employee

motivation or may hamper employees’ progress in a workplace.

Task Complexity

Another moderator in goal attainment is task complexity. To complete a high-level task or a

task with higher complexity, a high-level skill set is needed. Thus, in that case, employees

who lack such skills need to upskill themselves. This case turns to self-efficacy as by self-

efficacy an employee can reskill or upskill themselves in certain areas. It helps them further

to solve complex tasks.

Fig. 1 shows the Goal Setting Model which explains how moderators with goal core and

mechanisms help in achieving satisfaction which further increases the productivity of the em-

ployees.

6

Figure 1: Elements of Goal-Setting Theory (Model) [27]

Advantages of the Goal-Setting Model are as follows:

 Goal-Setting Theory can be used in workplaces to raise the incentives of the employ-

ees smoothly and quickly [28].

 Goal-Setting Model can raise the intrinsic or personal motivation of the employee to-

wards work. However, proper feedback should be in place, which can guide the em-

ployee to attain its goal [28].

Disadvantages of the Goal-Setting Model are as follows:

 Conflict with the employees and its management in goal setting. There are many in-

stances where conflict happens between the employee and the management in a goal

setting. Sometimes unrealistic goals can hamper employee motivation which ulti-

mately leads to a higher attrition rate.

 Understanding of the goal. In case the employee has no idea about achieving the goal

or lacks the skill to attain it, then it will be a failure.

 In some circumstances, the Goal-Setting Model does not guarantee employee satis-

faction. For example, although Amazon is chosen as one of the best places to work

due to its most flexible work pattern, the satisfaction score is low [29]. It is again due

to the long work hours and unrealistic goals for employees.

7

2.2.2 Expectancy Model

The Expectancy Model is built on the mental process of choosing a particular aim from the

given options. Expectation Theory or Model was first proposed by Victor Vroom from Yale

School of Management. He states, “This theory emphasizes the needs for organizations to

relate rewards directly to performance and to ensure that the rewards provided are those re-

wards deserved and wanted by the recipients.” [31]. The Expectancy Model has served as a

rich source for theoretical innovations in several domains like organizational behaviour, lead-

ership, and compensation [74].

From, Vroom’s viewpoint [75], the expectancy model has three key elements:

 Expectancy: effort → performance (E→P)

 Instrumentality: performance → outcome (P→O)

 Valence: V(R) outcome → reward

Where variables E, P, O, R, V denote expectancy, performance, outcome, reward, and va-

lence respectively.

Although in a few studies the outcome is also considered as a key element [74].

Expectancy

Expectancy is one’s effort that results in the attainment of desired performance goal P [31]. It

has three moderators which are: Self-Efficacy, Goal Difficulty, and Perceived Control.

Instrumentality

Instrumentality is the belief that a person will receive a benefit or reward when the expecta-

tions are met [31]. The reward can be in the form of cash prizes, promotions, awards and so

on. Performance incentives which are directly related to monthly pay-out for individual per-

formance are one of the major elements in Instrumentality.

Valence

Valence is the value that the candidate places on the outcome which is based on their moti-

vation to reach the goal. The valence can have three distinct scores [31].

0 = indifferent to the outcome

-1 = avoiding the outcome

+1 = welcomes the outcome

Now, in calculating the motivational force all three components including the valence score

will be used.

Motivational Force = Expectancy X Instrumentality X Valence …………………. (1)[33]

8

The advantages of the Expectancy Model are as follows:

 It is based on self-interest. So, it explains the formulas to the people who want to

achieve maximum satisfaction and minimum dissatisfaction [32].

 It gives importance to rewards and pay-off.

 It centres around psychological extravagance where the final objective is achieved to

attain maximum satisfaction and minimum pain.

The disadvantages of the Expectancy Model are as follows,

 Expectancy Model is an idealistic approach. In a real-life scenario, it is very hard to

see people achieving satisfaction after attaining full rewards. The correlation is a hy-

pothetical one [32].

 The application of the theory is limited in real-life scenarios. As reward cannot directly

correlate to any performance in any organization. Other parameters also come in this

picture like education, responsibility, designation, relationship with your manager.

Fig. 2 shows the Expectancy Model where it is shown that the motivational state is the out-

come of the performance.

 Figure 2: Expectancy Theory Process [33].

9

2.3 Extrinsic Motivation Model

The Extrinsic Motivation Model is built on the extrinsic motivational factors of the human be-

ing [34]. Extrinsic motivation is a construct that comes into play whenever there is an activity

done to achieve a separable outcome [76]. The extrinsic motivational factors are motivation

towards rewards, prizes, fame, money. For example, to buy a luxurious car you need a well-

paying job or a well-established business. Thus, to get a good salary you need to motivate

yourself to do the work but here the goal is to buy a car. In contrast to the Intrinsic Motivation

Model, the extrinsic model does not explain how self-efficacy should be increased, how to

achieve the rewards by the process of self-determination.

The Extrinsic Motivation Model works best for those people who are motivated towards mon-

etary rewards, fame, public attention. The model is valid when extrinsic motivation is valid till

the reward has its value. Once the reward loses its worth, the extrinsic motivation loses its

value [34]. For example, consider a scenario, when companies like Google, Amazon, Nokia

fail to achieve a desired profit in the markets and fail to provide the facilities to the employee

and finally shuts down their operation. In that scenario, the extrinsic motivation to work in

such a company will be diminished. Ryan et al. [76] depict a taxonomy of human motivation

in Fig. 3 which can help to discriminate between intrinsic and extrinsic motivation.

 Figure 3: A taxonomy of human motivation [76]

10

There are several limitations associated with the Extrinsic Motivation Model. The Extrinsic

Motivation Model cannot explain the cases where the extrinsic model loses its worth. It only

outlines the idea of how to achieve the reward. However, sometimes to achieve an externally

motivated reward, some intrinsic factors come into play which is not explained by an extrin-

sic motivation model. In the next section, two Extrinsic Motivation Models: The Job Charac-

teristic Model and the Affective Events Model are elaborated.

2.3.1 Job Characteristic Model

Job Characteristic Model or JCM was first coined by Hackman and Oldham in 1976 [35].

This model has been popular among different management practices. It helps the manage-

ment in different workplaces to identify certain job characteristics that can affect the outcome

of a job [35]. JCM also provides recommendations on how to enrich jobs in an organization

[64]. Hackman and Oldham mentioned five job characteristics that can help management

practices in identifying the satisfaction rates amongst the employees. Five characteristics are

given as follows,

Skill Variety
Skill variety indicates the variety of skills needed to do a certain job. It also indicates how a

candidate can gather proper skills to complete a certain job. For example, there are two job

responsibilities in a software firm- one is a manual tester, and one is an automation tester.

The job of a manual tester is quite straightforward and needs a limited skill set. However, the

job of an automation tester includes knowledge of manual testing as well as different auto-

mation testing framework. Thus, the second type of job requires more skill varieties and ex-

perience.

Task Identity
In task identity, one can find a complete picture of his or her job when the person can identify

the type of the job. As an example, a software engineer is associated with the only require-

ments gathering part of a project and another software engineer is associated with all the

end-to-end processes of the project- from the requirement, gathering to project live. So, the

second software engineer knows the complete picture of the job and can identify his or her

position in the project.

Task Significance
Task significance means when a job has some impact on the lives of society. For example, a

heart-surgeon deals with complex cases of the hearts of several people in a town or city. His

11

or her life-saving procedures change many lives in the city or town. Similarly, a network engi-

neer implements different complex network designs around a certain area in a city which

helps many citizens seamlessly connect to the network and complete their work.

Autonomy
Autonomy means when your job has a certain degree of freedom in carrying out tasks like

flexible work hours, work from home facilities, decision-making capabilities. In most corpo-

rate behemoths, this power lies with only supervisors or managerial positions. But now, it

comes to ground-level employees like entry-level Software engineers, HR professionals, and

many more.

Feedback
Feedback is important when it comes to job progress. It is always better to appraise an em-

ployee in his or her daily activities. It not only motivates the person but also guides the per-

son in his or her duties. It also makes them aware of whether they are going in the proper

direction or not. As per Luenendonk [35], “If they are told by their supervisors or managers

that they are going a good job, they are likely to feel motivated to continue with how they are

doing so far. In contrast, if they are told that they are not performing as expected, then they

will respond accordingly and improve their performance.”

Now if all the factors are combined, the Motivation Potential Score will be found. The equa-

tion is like equation (2),

MPS = (Skill Variety + Task Identity + Task Significance)/3 X Autonomy X Feedback

……………. (2)[35]

A high score of MPS means all five job core characteristics are high which means positive

outcome [35]. If the score is low, then the scores of those characteristics can be found and

offset by making it high. It means management should take care of low scoring characteris-

tics so that in future they can have a high value. The model has been shown below in Fig. 4.

12

Figure 4: Job Characteristics Model Overview Diagram [38]

As per Luenendonk [35], the benefits of JCM are as follows,

 JCM is very easy to understand model which is why it receives popularity in several

consultancy firms.

 JCM is a common framework in calculating Job Satisfaction.

 The job characteristics model helps an organization to improve employee perfor-

mance and satisfaction by adjusting the job responsibilities.

The limitation of JCM are as follows,

 The job characteristics model was developed during the 1980s when organizations

had well-defined job roles [36]. But now, the scenario is changed. In current days, an

organization has several overlapping roles where this model does not find its feasibil-

ity.

 It is not easy to measure the motivation of each employee. It needs individual consul-

tation which makes the whole process lengthy. Thus, in those cases, the job charac-

teristics model does not fit well [37].

2.3.2 Affective Events Model

Affective Events Model was developed by Russell et al. [39]. They proposed the idea of this

theory by saying “Affective Events Theory also adds time as an important when examining

effect and satisfaction. Research on mood and emotion indicates that affect levels fluctuate

over time and that the patterns of these fluctuations are predictable to a great extent”. The

13

theory proposes that patterns of affective reactions influence both overall feelings about

one's job and discrete behaviours at the workplace. Therefore, this model is based on emo-

tion and moods which have direct effects on job performance as well as job satisfaction. The

fundamental idea of the theory is based on that affection fluctuates over time. It is not con-

stant. Just like mood swings happen to us all the time during a single day. Similarly, the work

environment is also a place where each day is not the same. Based on the workplace set-

tings our emotions and mood change indirectly. The behaviour at work as proposed by Rus-

sell et al. [39] are of two types: Affect Driven Behaviour and Judgement Driven Behaviour.

AE Model is supported by the Five-Factor where Conscientiousness, Agreeableness, Neu-

roticism, Openness to Experience, and Extraversion. These factors lead to more job satis-

faction [1].

Affect Driven Behaviour

Affect Driven Behaviour is an almost instantaneous reaction to an event [40]. Here the re-

sponse is almost instant just after the event. For example, during a heated argument with

your colleague due to some misunderstanding in a work issue, you stop talking with the per-

son.

Judgement Driven Behaviour

In judgement driven behaviour, the reaction is not instantaneous rather it goes through cog-

nitive review. For the same example that is mentioned above, when the heated argument

happened instead of stopping talking, you think about the matter that what went wrong. You

are more interested in finding the root cause of the disagreement and based on that you take

your next action. So, the process is time-consuming. The AE Model is shown in Fig. 5.

14

Figure 5: Affective Events Model: Macro Structure [39]

The advantages of this AE Model are as follows,

 AE Model is easy to understand and has direct applications in real-life scenarios.

 AE Model gives a satisfactory overview of workplace conflicts and their influence on

job satisfaction.

 AE Model is also helpful for employees to act wisely in conflicting situations in the

workplace. The same applies to managers too.

The disadvantages of the AE Model are as follows,

 AE Model only deals with job satisfaction. Motivation is a secondary thing here.

 Sometimes job satisfaction and motivation do not go hand in hand [30]. Thus, the Af-

fective Events Theory is not applicable for those cases.

 Motivation is the outcome of an emotion or mood. Thus, Affective Events Theory fails

to explain the motivation behind a task properly as it only covers the variety of moods

or emotions in different environment settings.

15

2.4 Hybrid Model of Motivation

Sharp et al. [14] proposed a new model of motivation for software engineers which takes all

the factors from the Extrinsic Model and Intrinsic Model. In addition to this, it also considers

individual personality, environment Factors, and software engineers’ characteristics. This

model has paved the way for thinking about motivation in the software engineering context

from a different perspective. First, it follows the systematic literature review by Beecham et

al. [3] and lists all the motivators and categorizes them into intrinsic and extrinsic motivation

factors that are relevant to the software engineering domain (refer Fig. 6).

 Figure 6: Intrinsic and Extrinsic motivators [14]

Secondly, the MOCC Model briefs about software engineers’ characteristics and then shows

how these characteristics change concerning the environment and individual personality.

Later it is enhanced by categorizing some intrinsic motivational factors into two parts: Inher-

ent in software engineering and organization-specific or job-specific. The further enhance-

ment is done by adding factors like locus of control, job, and goal clarity as intrinsic motiva-

tors [14]. Similarly, self-esteem, communication skills are considered as an individual per-

sonality and the model was re-generated like in Fig.7.

16

 Figure 7: Enhanced MOCC Model [14]

In this model, context and individual personality are given an important place. It tries to put

an overview of how it affects motivation whether intrinsic or extrinsic which further leads to

an outcome.

The advantages of the MOCC Model are given as follows,

 MOCC Model is easy to understand and provides a coherent framework for future

studies in motivation analysis of software engineers.

 MOCC Model contains all the components of intrinsic as well as extrinsic motivation.

In addition to this, it also considers individual personality and contextual factors in de-

riving the outcome of motivation.

 It is more concerned about motivation and its outcome not about only job satisfaction.

Thus, it may help companies to find out the motivated and demotivated Software en-

gineers.

The disadvantages of the MOCC Model are,

 MOCC Model is based on a systematic literature review. It does not have any practi-

cal implementation.

 MOCC Model does not consider the internalized extrinsic motivational factors.

17

 Most of the portion of the model is built from an organization or management per-

spective. Thus, there are missing points on personal motivation.

In this thesis, all the models had been studied but MOCC Model was chosen. It is because

MOCC Model consists of the factors related to both intrinsic as well as extrinsic motivation.

In addition to this, MOCC Model includes the internal factors associated with the person as

well as the context. In software engineering, internal factors associated with a software engi-

neer or developer matter and also the context which is the job role or workplace setting [14].

Thus, MOCC Model is a good candidate to start the thesis with.

2.5 Related Works on Motivation Mining

There are several studies performed in the past on motivation mining using different ap-

proaches. Some of them are not related to motivation mining but they provided a great basis

for this thesis work. The important ones are mentioned below,

Hertel et al. [6] proposed an approach to measure the motivational factors for the software

developers working in an OSS project. In this approach, the measurable motives are derived

via survey-based results and two social sciences models: VIST and Extended Klandermans.

However, it did not consider all the factors related to intrinsic motivation.

Ortu et al. [62] did a study on the JIRA issues and mined emotion from the issue comments.

They showed how emotion affects issue fixing time. Here, in this study, it was shown happy

developers fixed issues in less time but when they had negative emotions, the fixing time

could be longer. This is indeed useful if we apply this for motivation mining too. In addition to

issue fixing time, other data points can also be reviewed as part of calculating motivational

factors.

Another approach by Da Silva et al. [5] is to find out a motivation strategy for software engi-

neers using a set of motivational factors defined by Beecham et al. [3] with the expectancy

theory. It calculated the average dissatisfaction and average motivation force score for each

motivator by surveying. It is more about finding the impact of a set of motivators in a team of

software developers. However, it did not provide any significant guidance on how to meas-

ure those motivational factors.

Graziotin et al. [8] studied to find what were the factors that created unhappiness amongst

the software developers. Also, the research was done to support happy developers are

18

highly productive. Although it is more about finding factors that generate negative emotion,

the factors which were listed for unhappiness can be considered as de-motivators too which

again matches with the de-motivator list provided by Beecham et al. [3]. However, Graziotin

et al. [8] did not provide a way to measure these factors that create unhappiness or the fac-

tors that create happiness.

Shahri et al. [13] did an empirical study to find out the motivation using a software-based ap-

proach. Here, they collected all the details from the participants using an online persona-

based survey to get the persona pattern and their preferences to a certain motivational set-

ting. It was like an experiment where a certain goal was published in an employee portal.

Employees were asked to take different online quizzes or events to earn virtual badges,

scores to accomplish the goal of getting a promotion. The approach was interesting as it

deals with different parameters like Points, Virtual Badges to weigh the motivation of a candi-

date but is not helpful in mining measurable motivators and de-motivators.

Beecham et al. [3] pointed out several motivators and de-motivators that can be used for the

study of the motivation of software engineers. It has also stated which motivators or de-moti-

vators can be considered as intrinsic factors as well as extrinsic factors. These factors are

helpful to get an overview of the motivation of a Software Engineer. However, it does not

mention any technique to how to calculate them or how to get them directly or indirectly from

GitHub or any online platform that hosts Open-Source projects.

 Murgia et al. [7] and Ortu et al. [9] implemented an approach to store the issue details from

an Issue Tracking System like Jira for further extraction of details related to the issue in emo-

tion mining. But it does not mention any further approach to how to utilize those data in moti-

vation mining. The paper mentioned issue fixing time as one of the factors that affect emo-

tion [9]. However, it did not show how it can be measured.

Sinha et al [23] implemented an approach to find the sentiment of developers from the

GitHub commit logs. The technique was quite straightforward to understand but it did not

mention why the developers’ sentiment changes with the day of the week or with the number

of files changed.

The studies which are mentioned above have provided several approaches to mine motiva-

tion, related emotion, and sentiment from software repositories. Some of these methods are

the basis of the thesis work. However, they don’t have any proper technique to measure the

motivators or de-motivators and study their variation with sentiment and emotion.

19

3. Sentiment and Emotion

In this chapter, the general concepts of sentiment and emotion are discussed. Sentiment

and emotion both played an important role in this thesis work. It was needed to observe the

variation of the sentiment and emotion with different motivators and de-motivators. Novielli et

al. [72] mentioned that sentiment and emotion have the following significance in software en-

gineering,

 Identifying sentiment and emotion based on the analysis of developers’ communica-

tion and textual feedback help in measuring the emotional states of different stake-

holders.

 The sentiment and emotion analysis also helps in understanding the antecedents

and the impact of different affective states for an individual developer or a group of

developers.

 The whole concept of emotion and sentiment helps in providing recommendations to

the developers about other developers’ sentiment and emotional traits.

Novielli et al. [72] also state that affective computing which is “computing that relates to,

arises from, or influences emotion” is now an established discipline. Affective computing is a

multidisciplinary field that investigates how technology enables human affect recognition. It

also helps to embed emotional intelligence in software systems to support emotional aware-

ness in individuals and groups. Thus, both sentiment and emotion analysis are important in

understanding the traits of software engineers working in a software project.

3.1 Concept of Sentiment

The sentiment is a judgement about a particular topic or idea. The sentiment is a quite popular

term in social media. For example, on Twitter or Facebook, a video or a post receives a myriad

number of comments. From the comments, we can judge whether the video or the post creates

a positive impact on the netizens or not by going through the sentiment expressed through

their comments. Similarly, in software engineering, when a team of software engineers work

on an industry-based project or in an open-source project, they comment on the tasks of other

software engineers. Based on the comments or opinion, a software engineer can understand

whether his or her tasks are going in a proper direction or not.

As per Cambridge Dictionary, Sentiment is a thought, an opinion, or idea based on a feeling

about a situation or way of thinking of a situation[41]. As per Collin’s Dictionary, Sentiment

can be defined in three contexts [42]. In variable noun context, a Sentiment is an attitude of

20

people based on their thoughts and feelings. In countable noun context, it is an idea or a

feeling that someone expresses in his or her feelings. In an uncountable noun context, the

definition is like this “Sentiment is feelings such as pity or love, especially for things in

the past, and maybe considered exaggerated and foolish.” [42]

3.2 Concept of Emotion

Emotion has significance in any software engineer’s personality. There are various defini-

tions exist for Emotion [50][51][52] in different contexts. Emotions are intuitively well-under-

stood ideas, but defining them properly is difficult [39]. Emotion is a reaction to an event, or it

is a range of reactions that are interconnected with each other. Intuition tells us that there

are various types of emotion, each of which deals with a unique phenomenal experience and

has diverse repercussions for individuals and organizations [39]. In software engineering,

emotion has a great significance as based on emotion, the motivational outcome varies a lot.

In the software engineering industry, each day is new learning for a software engineer.

Therefore, there will be a range of emotions in a single moment that can affect an engineer’s

actions in the workplace. It is, therefore, a need to understand what emotion means. Next,

the different definitions of emotion are discussed. Although there is no concrete definition to

define emotion, it is useful enough to get an overview of it.

Shaver et al. [53] mentioned five different types of emotion that are evident in human na-

ture. Gordon et al. [65] mentioned seven types of emotion frequently occurring in software

developers. After studying both kinds of literature, those emotions are described below.

Fear

Fear is one of the most common emotions among human beings. It is aroused automati-

cally in the central nervous system when the person feels threatened, alone dealing with

difficult situations. It is also observed when something bad happens without any explana-

tion and knowledge, where the total situation is out of control of the person, the fear be-

comes evident. The outcome of this emotion is crying, yelling, thinking of doing something

wrong to avoid the situation, or thinking of committing suicide or killing someone to save

himself or herself.

Sadness

When something life-threatening event is coming, a person is aroused with fear. But sad-

ness comes when the life-threatening or any fearful event is over. It means it deals with

the result of such an event. When someone dies, or when someone already faced brutal

treatments or faced life-threatening incidents, he or she becomes sad with those happen-

21

ings. The person may possess a negative outlook towards life. The person may avoid so-

cial contact to hide sadness. Such kind of emotion is quite prevalent amongst rape vic-

tims, refugees. In the software engineering context, it may happen with those employees

when they are unable to deliver a product within the deadline and it directly affects their

employment. The engineer is sad as he lost his job and sees no sign of getting the next

one. However, the victim can come out of sadness by self-controlling of the emotion and

other preventive measures like therapy, social contact and so on.

Anger

Anger comes when something that the person deserves, goes to another person. Or the

person is deprived of the deserving thing. It can also happen when the person thinks

someone trying to create pain in his or her life or trying to create a bad impact on his or

her life. Expressions of this emotion will be like showing teeth, yelling, cursing. But it can

be self-controlled by the proper use of anger management principles.

Joy

Where sadness is associated with negative outcomes, joy is associated with positive out-

comes. Positive outcomes mean success in a business or being successful at the job or

task. From a software engineering perspective, it means when a software engineer suc-

cessfully delivers a product fix an issue or implements a new feature successfully. Joy

makes people more outgoing and cheering as opposite to sadness where people become

more introverted and withdrawn.

Love

Love has a similar characteristic to joy. The difference is joy is not associated with any

outcome. Love is more about liking certain things in life. A person has a love for dogs or

any kind of pet. It is since a person likes certain characteristics of a pet that attracts him.

Similarly, a human being can love another human being. In the software engineering con-

text, love can be explained as a software engineer’s love for coding or learning new tech-

nologies. Or the engineers’ love for working in different countries for an employer to meet

more like-minded software engineers.

Happiness

Happiness comes when you feel satisfied with your life or achievement [66]. Perfect hap-

piness comes when you achieve all the desired goals, and all your needs are fulfilled.

From a software engineering perspective, this can be achieved when a developer is satis-

fied with the performance of a project. Or, more specifically, when the developer gives a

spectacular performance in his or her work and achieves the result he or she wants.

22

Disgust

According to Merriam-Webster dictionary, disgust is a transitive verb that means to pro-

voke or to loathe [67]. In other words, an emotional repulsion or aversion. If we consider

disgust in a software engineering context, it can be a software developers’ aversion to

work in a toxic work environment or repulsion towards certain kinds of work. This version

can be due to career concern or lack of risk-taking nature. In addition to this, other factors

also play a crucial role.

3.3 Sentiment Analysis Tools

Sentiment Analysis is a process of extracting sentiment from a text, video or audio by using

different techniques like natural language tokens, natural language processing. In this sec-

tion, an overview of different sentiment analysis tools is given. Most of them are available in

the market and used in this thesis work.

SentiStrength

SentiStrength is an automatic sentiment analysis tool that can analyse texts up to 16000

English words per second [43]. It can also analyse sentiment on texts written in Arabic,

Spanish, Italian, and Finnish. It has human-level accuracy in scoring the sentiment from a

small web text [43]. The SentiStrength has two types of sentiment strengths: negative and

positive. Apart from that, the scores from SentiStrength can be expressed in different scales.

In the binary scale, it gives a score of either 1 or -1. 1 means positive sentiment and -1

means negative sentiment. SentiStrength also gives a score on a trinary scale. In that case,

the score will be either 1 or 0 or -1. Here, 1 denotes positive sentiment, -1 denotes negative

sentiment, and 0 indicates neutral sentiment. In addition to this, it has also a singular scale

score where the score value ranges from -4 to +4.

The advantages of SentiStrength are as follows,

 SentiStrength is easy to use, and it is easily available from the web.

 SentiStrength comes with a dictionary list of 16000 words with the score. We can

customize that score to fit our context in sentiment analysis.

 Different types of scoring scales which we can use based on our context

23

The disadvantages of SentiStrength are as follows,

 SentiStrength is not available for Linux platforms. It is only available for Windows OS.

 The scoring of the words can be customized so that it can score sentiments as per

the context. For example, a sentiment that is negative in a corporate workplace may

have some positive sentiment in the entertainment industry. Thus, if we have to ana-

lyse sentiments from these industries, we can modify the scores in the dictionary or

add our own words with scores to work as per the context. It makes it quite restricted

as the whole process depends on the presence of words nothing on the overall con-

text.

TextBlob

TextBlob is a python library for processing textual data [44]. Here, textual data means social

media texts or comments, text format data from several online documents and so on. It pro-

vides an API interface for Natural Language Processing tasks which includes parts-of-

speech tagging, sentiment analysis, classification, and so on. In TextBlob, scoring ranges

from -1 to 1. 1 indicates highly positive sentiment or polarity whereas -1 indicates highly neg-

ative sentiment or polarity. 0 means neutral sentiment.

TextBlob has a set of extensive features like noun-phrase extraction, part-of-speech tagging,

sentiment analysis, tokenization, spelling correction, and classification of sentiments using

Naïve Bayes, Decision tree algorithms [44].

The advantages of TextBlob are as follows,

 TextBlob is easy to understand and use for programmers.

 TextBlob is supported by both Python 2 and Python 3.

 Sentiment scoring is better than SentiStrength as wordlist is not limited.

The disadvantages of TextBlob are as follows,

 No neural network integrated into it. As a result, the prediction is not always good.

 The whole analysis process using TextBlob is time-consuming.

 Wordvector (refer to Appendix B) integration is missing [45].

24

Vader

Vader (Valence Aware Dictionary and sEntiment Reasoner) is a lexicon and rule-based sen-

timent analysis tool that is specifically attuned to sentiments expressed in social media [46].

The scoring of Vader is done for each word by summing the valence score, and then ad-

justed according to the rule, later normalized between -1 and +1 [46]. That’s why it is called

Compound Scoring. Here, -1 means extreme negative sentiment whereas +1 means ex-

treme positive sentiment. 0 denotes neutral sentiment. It is also possible to set threshold

scores for sentiments. The threshold scores for different types of sentiment are given below

[46].

Negative Sentiment: Compound Score < -0.5

Neutral Sentiment: Compound Score between -0.5 and +0.5

Positive Sentiment: Compound Score > 0.5

The advantages of Vader are as follows,

 Vader is easy to understand and implement.

 With NLTK, it can work with longer texts.

 The variation score range makes it easier to classify the sentiment of the texts.

The disadvantages of Vader are as follows,

 For longer texts, it is slow to produce results of the sentiment score.

 It is based on social-media texts. Thus, it may not give proper results if we apply that

in the texts created in the context of Software Engineering Team projects.

 As researchers introduce their own set of threshold values for sentiment classification

in Vader, later it may create confusion when the same text creates different senti-

ments in different contexts.

Flair

Flair is a simple natural language module or library that is developed by Zalando Research

Group in collaboration with Humboldt University, Germany [48]. PyTorch is the base of the

Flair as Pytorch is one of the best deep learning frameworks that can handle complex tasks.

25

Flair has several pre-trained models to accomplish the tasks like name entity recognition,

part-of-speech tagging, text classification, and custom training models [47].

An important part of Flair works on Contextual String Embedding. Next, it is described.

Contextual String Embedding

In NLP, Context is very important. To predict the next word or character based on the previ-

ous character or word is the basis of sequence modelling [47]. Contextual String Embed-

dings is done using the concept of a trained character language model that is again based

on sequence modelling. Here’s the overview diagram of contextual string embedding in Fig.

8.

Figure 8: Contextual String Embedding [47]

Advantages of Flair are given as follows,

 Flair has all the strong and robust word embeddings models integrated like GloVe

(refer to Appendix B), BERT (refer to Appendix B), Elmo, and so on [47].

 Flair has also embedded Contextual String Embedding which makes it capable of

predicting the next set of characters or words based on the context.

 Flair supports many languages. Thus, it is not only used for only English language

but also in other languages. Flair is now supporting English, German, Dutch, Arabic,

Finnish, Italian, and French languages [49].

26

Disadvantages of Flair are given as follows,

 Flair has no scale of neutral sentiment. So, it can predict only Positive sentiment and

Negative sentiment.

 For a large set of text classification, Flair takes a huge time. For each text classifica-

tion, it loads the pre-trained model for each run.

 As Flair takes huge time for text classification on large datasets, it is not suitable for

computers with normal CPUs. GPU will be a better option.

There is another sentiment analysis tool developed by Calefato et al. [4] at Politecnico Di

Bari. This tool is Senti4SD. It is built on the base of SentiStrength but by enhancing it by lev-

eraging the benefits of the neural networks [4]. The dataset is from StackOverFlow, which

consists of 3.8 million questions, 5.9 million answers, and 11.6 million comments [4]. After

labelling the data with gold labels, it is trained by the support vector machine supervised al-

gorithm [4] (refer to Appendix B) to get the sentiment score and its classification for the da-

taset. However, it has a codebase that is old and does not support a higher version of Py-

thon like 3. x. If the whole classifier is running with downgraded versions, other functionali-

ties like classifiers from Sklearn do not work. It has the docker version which has the acces-

sibility issue as the results generated by Senti4SD are only available in the Docker environ-

ment, you cannot share it outside. To avoid this, there is a way around which is to create a

shared directory in a Linux environment and add that path during the docker environment

set-up. This leads to an overhead as Senti4SD creates two files for each type of sentiment.

When the input file size is several megabytes or when a file contains more than 10,000 data

records, then it involves extra manual effort. More importantly, the calculation of sentiment

should be done independently, and it cannot be integrated with any Python or R script due to

the complexities involved. Due to this, it was removed from this sentiment analysis study.

3.4 Emotion Analysis Tools

Several tools in the market can help us to extract emotion from textual data. These tools

help extract emotion from social media texts, comments from open-source software pro-

jects, texts from online forums and so on. Text2emotion and EMTk are such tools for

emotion analysis from social media or any texts from different online platforms.

Text2emotion

Text2emotion is a python library that helps in extracting emotion from the texts. It is devel-

oped by Gupta et el. [54]. This library right now supports five different emotions: Fear,

27

Sad, Happy, Angry, and Surprise [55]. Text2emotion follows the following steps to bring

out the final emotion from a text [55].

Text Pre-processing

In this phase, all the texts are passed through data cleaning to make them suitable for

any kind of emotion analysis [55]. In this stage, the following actions are observed,

 Removal of unwanted text part from the message.

 Perform natural language processing on the texts.

 Bring out the well-processed texts from the pre-processed texts.

Emotion Investigation

This phase is crucial as it finds all types of emotion in the well-processed texts. The fol-

lowing actions are observed in this phase,

 Find appropriate words that signify emotions or feelings.

 Check the emotion category for each word.

 Storing the count of the emotions relevant to the words found.

Emotion Analysis

This is the final stage where emotion will be produced for a particular text message. The

following events are part of this,

 The output will be in the form of a dictionary.

 The emotion and its corresponding values will be in key-value pair.

 Higher the score of a particular category of emotion, we can deduce that is the

emotion belongs to that message.

Advantages of Text2emotion are as follows,

 Text2emotion is easy to use. For a python novice, this can be a great tool to ana-

lyse emotions.

 The emotion categories and the scores are easy to understand.

 The Python library has great online support as the developers are easily reacha-

ble.

28

 Good for analysing software engineering related texts.

Disadvantages of Text2emotion are as follows,

 Although Text2emotion is easy to use, for critical issues it has no support docu-

ments.

 In the case of emotion categories with the same highest emotion score, the analy-

sis seems to be confusing for some users who are new to this tool. For example, a

sentence can produce two categories of emotion like sad and happy with the

same highest emotion scores. In these cases, any novice developers will be in a

dilemma which is the actual emotion in the sentence.

 Text2emotion does not have fair popularity amongst the Python developer com-

munity as it is quite new to the open-source market. Therefore, support from the

python developer community is sometimes missing. Only the developers who de-

veloped this library can help with this.

EMTk

EMTk is an emotion mining tool kit for training custom sentiment and emotion from the

text [73]. The tool kit has two modules,

 Emotion mining module which is responsible for training custom emotion classifi-

ers from the text. It is mainly based on the 5K posts from the StackOverflow forum

[73]. Thus, it is suitable for emotion classification in software engineering texts.

 Emotion-polarity module which is responsible for the classification of sentiments

on technical corpora from the developer’s communication channel [73].

EMTk is beneficial in the following scenarios,

 If we want to assess the polarity of sentiment without training our own classifica-

tion model.

 If we want to assess the emotion expressed in the technical texts in the software

development domain without training our own classification model.

EMTk is not helpful when,

 We want to assess the emotion expressed in the issue comments as it is mostly

trained for commit comments [73].

 We want to assess the emotion on both issue and commit comments and the da-

taset is large. It is because the codebase in GitHub has an old version of Python

which does not work properly in all environments. Dockerized version can be used

29

in place of that, but a lot of manual tasks are involved in the case of the large data

set. As the files that are generated by the classification model are stored in the

docker environment, they can’t be directly used in the host environment. We need

to copy to and from a shared path. Thus, it makes the process quite time-consum-

ing. Also, the classification model for emotion works on commit comments only.

Thus, efficiency may not be good.

After comparing both the libraries, Text2emotion was chosen due to its ease of binding

with the python code. EMTk is not helpful in this regard because you cannot embed the

EMTk functionalities with a python code at your convenience. EMTk should be executed

independently for just emotion analysis for the commit texts or issue comments. Thus,

there will be overhead when you have to deal with a large dataset and at the same time,

you need to integrate with your codebase. Considering the dockerized version, you can-

not call it from your python code easily. There are indirect ways, for example, making two

docker images of the EMTk and the python codebase respectively then running the single

docker file. However, in this case, too, the optimization of the codebase is needed to call

the EMTk methods from the python script. In addition to this, the codebase of the EMTk is

not supported by the higher Python versions like 3. x or above.

30

4.Overview of Open-Source Software Development

This chapter contains an overview of the Open-Source Software Development Process.

Open-Source Software Development is a process by which a Software’s source code is pub-

licly available. In this Software, all the source codes are available with an open-source li-

cense to study, change, and improve its design [56]. Mozilla Firefox and Libre Office are

some of the most popular Open-Source Software Products [56].

4.1 Open-Source Software Development Lifecycle

Open-Source Software Development is quite a lengthy process like commercial software de-

velopment. It is due to the fact there is no proper rigid method followed in open-source soft-

ware development. Here, the typical waterfall model does not work. Even for each type of

work, the process will be different. That is why an overview of the Open-Source Software

Development lifecycle as stated by Wu et al. [57] is given in Fig.9.

Figure 9: Open-Source software development lifecycle [57]

31

Whereas Haddad et al. [59] described the lifecycle of developing a feature in Open-Source

Software Development. This can help us to get an overall idea of how OSS Feature works.

During any new feature development, a new feature request is raised first. This request is

then visible to all the community members of the project. Based on the type of feature, it is

prioritized after the discussion with all members part of the Software Project. For a particular

feature, a proposal is done who will lead the project [59] and the release date is set. After a

thorough discussion in architecture designing, it must go through several developments,

testing. Generally, during development, several bugs may appear which can be tracked dif-

ferently by bug tracking tools like Jira, GitHub issue tracker and so on. In the present day,

most of the development and testing are associated with continuous feedback. That is why

CI/ CD is quite appropriate for it. Generally, in some OSS projects, a weekly build or nightly

build is made based on the automation build [59]. But this is applicable for only larger pro-

jects, for smaller projects CI/CD feedbacks are generally instant or made within an hour or

two. Once, all the reviews are done and all the tests are passed, it is passed to the next

round of discussion between project contributors and maintainers. Once the feature looks

good and stable, it is released publicly.

However, the lifecycle model that is mentioned by Wu et al. [57] seems to be fair in terms of

understanding the whole process in Open-Source Software Development. The process that

is mentioned by Wu et al. [57] is quite different from Haddad et al. [59]. According to Wu et

al. [57], any developer who wants to upgrade their skill set or is interested in doing some in-

teresting programming looks for a project in any open-source repository. If he or she does

not find that, the person himself or herself start building a project aligned to his or her inter-

est. If he or she does find a project that sparks interest in the person, he or she joins the pro-

ject. After joining, the person tries to communicate with the collaborators using the mailing

list and proposed a bug that she or he wants to work in. Once he or she starts working on a

bug or development, the person involves in the documentation related to the bug or develop-

ment changes. After the development is developed and tested properly, the developer or the

team applies for a model that needs a license. Once the license is provided and official

patches are accepted, the person with the team or person himself or herself decides the re-

lease date for its official launch. Thus, the lifecycle model here is quite generic and simple to

understand. It is not specific to any part of the software; however, it is a BlackBox concept

that a non-technical user also understands.

32

4.2 GitHub Repository

GitHub Inc is a provider of internet hosting for software development and version control us-

ing Git [58]. It has the features of source code management and distributed version control

functionalities that Git provides [58]. It has several features like bug tracking, integrated Kan-

ban Board, Integrated CI/CD facilities with the options for deployment in cloud vendors like

AWS, Azure, Google Cloud, Alibaba Cloud, Heroku, RedHat Openshift, and so on. GitHub

also provides integration facilities with code quality inspection platforms like Sonar Qube,

Embold. It also provides features like security vulnerability detection like detecting .env files

that contains important application credentials and deleting those pull requests which contain

the configuration or environment credentials files.

Apart from the above features, it also provides audit logs that can help any team to check

the history of unauthorized or risky activities that are associated with an open-source soft-

ware project. Now, GitHub is also available from mobile supported by iOS or Android. De-

spite the above-advanced features, GitHub has some serious negative attributes,

 It suffers from security vulnerabilities. Although several features are there to protect

an open-source project repository, there are cases where some projects fail to lever-

age such benefits and, in those cases, GitHub cannot protect such projects from se-

curity breaches. Generally, these cases happen when a team does not have much

knowledge about code vulnerabilities or software security.

 Generally, if someone is contributing to open-source projects, GitHub has free ser-

vices that developers can avail themselves of. But some projects although hosted in

GitHub are not open-source projects, in those cases, to avail the advanced services

like cloud deployment, GitHub unlimited API access, or advanced auditing, unlimited

code scanning comes with a huge price tag. For larger teams, this cost can go up

based on the requirements.

4.3 Different Types of Issues in GitHub

In GitHub, there are different types of issues associated with a project. These issue types

are identified by Labels. Labels indicate different issue categories that can help other team

members to identify the type of the issue. Hence, the team members can be able to know

what to do with the issue. GitHub online documentation states the following labels which are

used quite frequently in any project [60].

33

LABEL DEFINITION

Bug
Bug indicates an unexpected behaviour in the
software. Or an unexpected error that is affect-

ing the software.

Documentation
Documentation label indicates a need for im-
provements or additional details in the form of

documents.

Duplicate
Duplicate indicates similar types of issues or pull

requests.

Enhancement
Enhancement indicates an improvement of an

existing functionality of a software

Feature

The feature is also frequently observed in many
software projects hosted in GitHub. There is a
thin line difference between Enhancement and
Feature. Enhancement denotes an improved
functionality that will be added to the existing
software. Whereas Feature denotes a com-

pletely new part in the software project, it is re-
lated to the existing software but not an im-

provement to the existing functionality. It needs
to be developed independently. However, it

should be useful to the software.

Good First Issue
Good First Issue indicates a good issue for the

first-time collaborators.

Help Wanted
Help wanted indicates that the owner or main-
tainer of the project needs some help on an is-

sue.

Invalid
The invalid label denotes the issue of a pull re-
quest or a discussion that is not relevant to the

project.

Question
The question indicates there are more clarifica-
tion or information needed for an issue or pull

request.

Won’t Fix
WontFix signifies that the issue or pull request
will not continue as it may not have any chance

to work in future.

Table 1: Different labels in GitHub and their definitions

34

4.4 PyGitHub

PyGitHub is a python library that uses GitHub API version 3 [61]. With this library, we can
connect to the GitHub repository and fetch details about it like issue number, its label, prior-
ity, users, collaborators, comments, commits, and so on. Even with this library, we can set
the label of an issue, create an issue. In addition to this, we can raise a pull request related
to an issue using a python script- we just need to import this library.

A small code snippet of PyGitHub initiation in Fig.10,

 Figure 10: Initiation of PyGitHub in a Python program [61]

 Next step discusses the connection to GitHub repositories using PyGitHub in Fig.11.

 Figure 11: Connecting repositories using PyGitHub [61]

The advantages of the PyGitHub library are as follows:

 Easy to install for any novice developer. Also, the syntax is easy to understand.

 With GitHub generated token, it is easy to call.

 Direct interaction with GitHub repositories makes it a viable choice when access to

GitHub is restricted.

35

The disadvantages of the PyGitHub library are as follows:

 Using a single user token, the API data fetch is limited in PyGitHub. To get more data,

premium membership is needed which is costly.

 Developers should be fluent with the all-important methods of PyGitHub otherwise

some crucial utilities will be hard to explore.

 Lots of pre-processing is needed before utilizing the results from PyGitHub as the

data format is not always acceptable in some project environments.

PyGitHub library is one of the building blocks of this thesis work as it helped in extracting is-

sue and commit details for an open-source project from GitHub.

36

5. Research Methodologies

This chapter elaborates on the methodologies that are implemented to carry out the thesis

work. The basis of the thesis is based on Murgia et al. [7], Ortu et al. [9][62], Rath et al. [11],

and Sinha et al. [23]. In addition to that, the approach to find out motivational or de-motiva-

tional factors from different categories were taken from Beecham et al. [3] and Sharp et al.

[14]. The process flow that was undertaken in this thesis work, is shown in Fig. 12.

5.1 Overview of the Mining Process and its Components

 Figure 12: Motivation mining process

Fig. 12 describes the process of connecting to GitHub and then fetching data using

PyGitHub API. The fetched data is then stored in the database. Next, different scripts are ex-

ecuted to generate relevant extracts for the issue and commits in separate CSV files. From

the CSV files, metrics related to motivators or de-motivators are calculated. Finally, the fac-

tors are visualized using the Power BI analytics tool. Power BI analytics tool helps to get in-

sights from the mined data.

In the next sections, the whole process is elaborated in a step-by-step manner.

Preliminary
study on

motivation
mining

Comparative
study of different

sentiment
analysis tools

Study on
emotion analysis

tools

Selection of
tools

Extraction of
issue and

commits from
GitHub using
PyGitHub API
into database

Extraction of
relevant details

of issue and
commits from

database

Running
emotion and

sentiment
analysis on the
comments from

database

Calculation of
motivators and
de-motivators
from the final

dataset

Visualization of
the mined

factors against
sentiment and

emotion

37

5.2 Preliminary Study: Tools Comparison for Sentiment Analysis

Sentiment analysis is one of the most important parts of this thesis work apart from emotion

analysis and data mining (refer Appendix B). The entire motivation calculation depends on

this because whenever developers commit or comment on an issue, they convey their senti-

ment and emotion through this. In section 3.3, the different sentiment analysis tools which

are mentioned, are quite useful in analysing sentiments from social-media texts or online re-

sources. The same tools were used in this thesis paper to observe their performance in the

Software Engineering context. In this case, a basic comparison study was done on four re-

positories with a small test data set with 20 to 30 comments. The repositories were: Apache

Airflow, Apache Sharding, Apache Skywalking, Apache Traffic Version. At first, a set-

up of the token was initiated from GitHub and passed to the PyGitHub module. It fetched all

the issues and their related comments for all four repositories. Then, the results were saved

in a CSV file and then all four libraries were executed on it. Finally, the results were stored in

the same CSV file with a different column.

For the Apache Airflow project, the following results were observed for 29 Issue comments in

Table 2.

Sentiment Analysis Positive Negative Neutral

Flair 17(58.6%)

12(41.37%)

0(0%)

Vader 23(79.31%)

2(6.89%)

4(13.79%)

TextBlob

23(79.31%)

4(13.79%)

2(6.89%)

SentiStrength 23(79.31%)

6(20.68%)

0(0%)

Manual

23(79.31%)

3(10.34%)
3(10.34%)

Table 2: Sentiment analysis on Apache Airflow issue comments

For the Apache Sharding project, the following were the results for 24 Issue comments in
Table 3.

38

Sentiment Analysis Positive Negative Neutral

Flair 16(66.66%)

8(33.33%)

0(0%)

Vader 23(95.83%) 1(4.16%) 0(0%)

TextBlob 23(95.83%) 1(4.16%) 0(0%)

SentiStrength 23(95.83%) 1(4.16%) 0(0%)

Manual 23(95.83%) 1(4.16%) 0(0%)

 Table 3: Sentiment analysis on Apache Sharding issue comments

For the Apache TrafficVersion project, the following details were found for 30 Issue com-
ments in Table 4.

Sentiment Analysis Positive Negative Neutral

Flair

0(0%)

30(100%)

0(0%)

Vader 23(76.66%)

7(23.33%)

0(0%)

TextBlob 20(66.66%) 10(33.33%) 0(0%)

SentiStrength 6(20%) 24(80%) 0(0%)

Manual 21(70%) 5(16.66%) 4(13.33%)

Table 4: Sentiment analysis on Apache TrafficVersion issue comments

For the Apache Skywalking project, the scores for 21 Issue comments were observed in Ta-
ble 5.

Sentiment Analysis Positive Negative Neutral

Flair

3(14.28%)

21(85.71%)

0(0%)

Vader 12(57.14%)

8(38.09%)

1(4.76%)

TextBlob 10(47.61%) 10(47.61%) 1(4.76%)

SentiStrength 14(66.66%) 7(33.33%) 0(0%)

Manual 11(52.38%) 9(42.85%) 1(4.76%)

Table 5: Sentiment analysis on Apache Skywalking issue comments

From the above results, it is seen that the predictions from TextBlob, Vader, SentiStrength

are close to manual review. However, SentiStrength was removed from the list because it

39

has a very restricted set of words that decides the tone of a sentence. A presence of "not, no

or does not" creates a negative sentiment although the sentence is either neutral or positive.

Similarly, the presence of just some happy phrases like "Good!", "Great!" makes a sentence

positive although it has negative connotations. Thus, options were limited to only three tools

Vader, TextBlob, Flair. Flair does not have a neutral sentiment option. However, it is neces-

sary to find out how much sentiment score is varied with the emotion. That is why it was nec-

essary to run the study on a much larger dataset of issue comments to find out which tool

was aligning well with the emotion. Generally, it is observed that negative emotions like

Fear, Sad, Angry associated with negative sentiment. To achieve this, 3.5k issue comments

from 35 repositories were extracted using PyGitHub and then the three tools were executed

on it along with the emotion extraction tool Text2emotion. After the process was over, saving

the scores from each library in a CSV file was done. Then, the average of sentiments from

each library for each emotion had been used. The results are shown in Tables 6 to 8.

Emotion Flair Sentiment Average

Fear 0.942259626
Happy 0.920903065

Sad 0.897981414
Surprise 0.916365338

Angry 0.960987829

Table 6: Average of sentiment score per emotion for Flair

Emotion TextBlob Sentiment Average

Fear 0.077481882
Happy 0.136221241

Sad 0.066983793
Surprise 0.125168405

Angry -0.002980055

Table 7: Average of sentiment score per emotion for TextBlob

Emotion Vader Sentiment Average

Fear 0.372623572
Happy 0.250343136

Sad 0.196813376
Surprise 0.204250204

Angry -0.351539573

 Table 8: Average of sentiment score per emotion for Vader

From the results, it is observed that Flair is giving quite contradicting sentiment for negative

emotions like Fear, Angry, and Sad. The sentiment score is on the highly positive side. Thus,

40

it was set aside from the consideration. Due to this, there were only two options Vader

and TextBlob. For Vader, although the sentiment score for Fear and Sad is not very highly

positive, TextBlob still fits well with all the emotion categories. In TextBlob, Angry is well fit-

ted with a negative sentiment average. Fear and Sad although is on the positive side in sen-

timent average, still is much lower than Vader. In addition to this, using Flair has disad-

vantages related to CPU. Thus, after applying it on a large dataset of 26K Issue comments

and over 6K commit comments took more than 24 hours. Hence, it was not a feasible solu-

tion in the given CPU based environment. Therefore, it was decided to go with TextBlob for

the sentiment scoring along with Text2Emotion to get the overall tone of the developer or

commenter during commenting on an issue. TextBlob has another advantage – it has its

classifier like Naïve Bayes which can help us to build our sentiment classification model [8].

However, the focus was more on the scoring of the sentiments which is why the Text-

Blob module was chosen to determine the sentiment scores of several texts.

5.3 Extraction of Issue Details

After the selection of the Sentiment Analysis tool, the next part was the extraction of issue

details for all the 35 repositories. This concept was taken from Rath et al. [11] where they

created a dataset from Git Commits and Jira Issues for seven open-source software pro-

jects. Using PyGitHub, it was connected to the below 35 repositories in Table 9

apache/spamassassin

apache/groovy-website

apache/cordova-plugin-globalization

apache/openwhisk-runtime-nodejs

apache/dubbo-samples

apache/apisix-website

apache/maven

apache/couchdb-fauxton

apache/submarine

apache/cordova-plugin-camera

apache/cordova-ios

apache/cordova-android

apache/mynewt-core

apache/kylin

apache/fineract

apache/drill

apache/bookkeeper

apache/iceberg

apache/iotdb

apache/couchdb

apache/dolphinscheduler

apache/cloudstack

apache/trafficcontrol

apache/geode

apache/skywalking

41

apache/tvm

apache/arrow

apache/pulsar

apache/shardingsphere

apache/echarts

apache/superset

apache/airflow

bitcoin/bitcoin

facebook/react-native

microsoft/vscode

Table 9: List of repositories for the study

and collected 26566 comments from all the closed issues associated with these repositories.

After that, storing the data in MYSQL tables Issue and Issue_comment was performed.

While fetching the issue details as well as comments, the comments that were made by the

GitHub bot were ignored. It is because the thesis work is centered around human motivation

and emotion. The Issue table has the following columns in Table 10.

Column Name Description

Issue id It is the issue number associated with an issue
also the primary key of the table.

Repo_name This is the repository name with the issue asso-
ciated with it.

Commentid This is the id associated with each comment for
that issue. This is also the primary key of the ta-
ble and is referred to by the Issue_comment ta-
ble.

Title Summary of the issue

Startdate Start date of the issue i.e., when the issue is
created.

Enddate End date of the issue i.e., when the issue is
closed.

Days_needed It is a derived column i.e.; it is created after sub-
tracting the start date from an end date to get
the total time needed to close the issue.

Issuetype It is the label of the issue. Generally, most of the
time, it is observed that any issue in GitHub is
tagged with a label e.g., Bug, Feature.

Assignee Assignee denotes to whom the issue is as-
signed.

Table 10: Issue table structure

Table 11 contains the details of Issue_comment table.

Column Name Description

Commentid It is the id associated with each comment. It is
the primary key as well as the foreign key of the
Issue_comment table.

Comment The actual text string is associated with an is-
sue.

42

User It is the commenter who is commenting on the
issue.

Reactions It is the string of emoticons like thumbs-up,
thumbs-down, heart, and angry face that is as-
sociated with the issue comments.

Table 11: Issue_comment table structure

5.4 Extraction of Commit Details

Once the extraction of the issues and their related comments were extracted into Issue and

Issue_comments tables, the next step was for commit details from all the 35 repositories

mentioned above. Those commits which are in the “Success” state were considered. It is be-

cause the interest was more towards past commits which were complete. Even the

PyGitHub module generally shows details of successful commits. There are a total of 6520

commits from all the repositories. The reason behind extracting commit was to find the emo-

tion in the commit comments from the commit author. Also, it was done to see whether emo-

tion or sentiment has any variation in commits or not. It was stemmed from the idea by Sinha

et al. [23]. All 6520 commits from all the closed issues from the 35 repositories were stored

in the “commit” table. Here are the details of the columns in the “commit” table in Table 12.

Column Name

Description

Commitid This is the hash value of the commit, which is
unique for every commit. It is the primary key of
the table. Every issue has at least some commits
associated with it in GitHub.

Comments This column stores the comments associated
with any commit. This can be null as in several
cases author does not put any comments. There
are cases where a bot in a repository makes au-
tomated comments which were not considered. It
is because the thesis work is interested in human
emotion and related sentiment.

Author This column value indicates the person who is
pushing the commit as well as commenting on
the commit.

Date The date column indicates the date on which the
commit is made.

Files_list This column describes the list of files that are
changed during a specific commit.

No_line_changes This column signifies the total number of line
changes for a commit.

Issue This is the issue number that has a reference to
issueid in the Issue table. It denotes the commit
associated with an issue.

Repo This column signifies the repository name which
contains the commit.

Table 12: Commit table structure

43

Here is the data model of the whole database structure in Fig. 13.

Figure 13: The data model of the extraction process in Issue, Issue_comments, and Commit
tables (Primary keys are shown in bold with letters PK and Foreign keys are shown with let-
ters FK)

In the next section, mapping of the motivators from the literature review with the extracted

details from both Issue, Issue_comments, and Commit tables is shown.

5.5 Mapping of Factors and Metric Calculation

Once the extraction of issues and commits was done in the MYSQL tables, the next task

was to map those data with the motivators and de-motivators that are listed by Beecham et

al. [3]. Beecham et al. [3] listed out 22 motivators and 15 de-motivators that are part of the

lives of Software engineers. In the table below, a listing of the motivators is shown that could

be mapped with the data that was found from GitHub. The details in Table 13 were found af-

ter analyzing the stored data in the Issue and Commit tables. From Beecham et al. [3], tech-

nically challenging work was taken and mapped with the values from the “Files_list”,

“no_line_changes” columns in the Commit table. As per the definitions for technically chal-

lenging work [3][14], it fits well with the complexity of the issue. In this case, “Files_list” and

“no_line_changes” can be the probable factors to calculate the complexity of an issue. On

the other hand, employee participation can be used as a contribution to a project [3]. In case

44

of issue, collaborators can be found from GitHub from the values of “Assignee”, “Commit Au-

thor”, and “User” fields in Issue, Issue_comment, and Commit table respectively. Similarly,

the risk, which is a de-motivational factor, can be of different types in a different context.

Here, in this thesis work, the easiest one to calculate was from the “days_needed” field from

the Issue table in the context of project deadline [2].

Motivators/De-Motivators from Literature Related
datapoint

from Issues

 Related data
point from Com-

mits

Extrinsic/
Intrinsic

Technically challenging work/
The complexity of the task [3]

— Files_list,
no_line_changes

Intrinsic

Employee participation/ Involvement
Or working with others [3]

Assignee,
User

 Author Intrinsic

Risk [3] or Risk related to project delivery time [3] Days_needed --- Extrinsic

Table 13: Mapping of motivators and de-motivators

Next is the metric calculation process which shows how to derive the measurable motivators

and de-motivators. The following assumptions were made to calculate each factor,

Complexity
Software complexity can be analyzed and measured by methods and models of task com-

plexity [15]. However, Claes et al. [12] and Yahya et al. [16] described Lines of Code as one

of the approaches to calculate the complexity of a Software in terms of lines of code. LOC or

Lines of Code is one of the traditional and easiest methods to determine the size of the com-

plexity of a Software.

Assumption

The assumption was made here concerning an issue. It means the complexity was calcu-

lated at the issue level. As there are the lines of code changes for an issue in its commits, it

would measure the code complexity of the issue. It would give the size of the complexity af-

ter multiplication with several file changes in the commit for the issue. Thus, the size of the

complexity was measured from GitHub using the below formula,

Ci = nL * nF ….................. (3)

Where Ci= Complexity of an issue at Code level

nL = Number of lines of changes in the issue

nF = Number of file changes in the issue

45

Risk
According to Raphael [2], the timeline or delivery time is one of the major risks in any Soft-
ware Development project that is following an agile framework. This delay may occur due to
less availability of resources, improper planning of the processes, too much customer in-
volvement.

Assumption

Most of the project repositories that were used to extract data had Kanban like boards to

track the releases in the project. Kanban is a very popular framework in agile-based projects.

Therefore, it was assumed that issue completion time could be considered as a risk at the

micro-level i.e., at the issue level. As most of the projects involve here uses the Kanban ap-

proach and from the literature review it was found that risk was one of the de-motivational

factors in project delivery, issue completion time can be taken as risk. Hence, from GitHub

“Risk” was calculated like below,

Ri = High when Ct > Avg (Ct)………. (4)

 = Low when Ct < Avg (Ct)………. (5)

Where Ri = Risk of an issue, Ct = Completion time of an issue

Thus, Risk is based on the average completion time of an issue. If it is greater than the aver-

age completion time, there is a higher risk associated with it.

Collaboration
Beecham et al. [3] stated that Collaboration is one of the motivational factors that affect soft-

ware engineers when they are working in a team. Based on the team-mates, a software en-

gineer’s motivation varies.

Assumption

Here, it was assumed those people as collaborators who were not only involved in develop-

ing the code but also commenting on the issue to guide the developers or other team mem-

bers who were working with the assignee. A noticeable thing was observed in most of the

cases in GitHub that some issues had assignee value blank, but others were working on the

issue as a commenter only or developer-only or both. Even there were cases, where the as-

signee was there others were working as a developer by committing code changes or com-

menting to guide others. Thus, those people are actual collaborators who are in any of the

roles of Assignee, Commenter or Commit Author. So, the Collaboration was calculated from

GitHub like equation (6),

46

CS = CL-ML ……. (6)

Where CS = Collaboration Score, CL= Number of members in the Collaborators List, ML =

Number of members in the Mentions’ list only. Mentions’ list indicates the list of mentions of

the developers in a comment. If the person is mentioned only but not working in any of the

roles mentioned above, then we can subtract them from the collaborators’ list.

Generally, by this equation (6), Strong collaboration is indicated by positive value and weak

collaboration is indicated by a negative value. If there are more than two issues and if we

see all have a positive score, in that case, we will consider higher positive value as stronger

collaboration. Whereas lower positive value means weaker collaboration.

5.6 Survey Design

Whatever insights were collected using the data mining process, it was needed to verify it

from the Developers who were part of Open-Source projects. Thus, it was decided to have a

survey with the developers who worked on an issue as a developer as well as a commenter.

Using this condition from 35 GitHub repositories, 139 Developers were found. To complete

the process smoothly, the below steps were followed,

 Listing all the developers that were found via mining process and condition given

above when Developer was also commenter i.e., the developer was committing the

issue as well as commenting on the issue discussion. To get such developers’ de-

tails, there is a table created with the name “user” in MYSQL which stores all the col-

laborators’ usernames and corresponding email addresses.

 After that, a list of survey questionnaires was created related to the thesis work (refer

to Appendix A)

 Once the list of questions was compiled, it was sent to the developers in Microsoft

form format.

 Once all the responses were recorded, a qualitative inference had been made to

prove the insights that were gathered from data mining.

47

6.Results and Analysis

After mining 26566 Issue comments with Issue details and 6520 related commits, a total of

1069 records were found where both the developer i.e., commit author and commenter were

the same. So, the presented analysis is from the developer perspective viz. how do the re-

sults vary for developers for different kinds of motivators or de-motivators. From this thesis

work, two motivators Complexity and Collaboration, and one de-motivator Risk were ex-

tracted. For simplification purposes, the issue types are categorized into five main labels or

categories: Bug, Documentation, Enhancement, Feature, and Others. In the category or la-

bel “Others”, all types of issues that do not belong to any of the four categories mentioned,

are considered. The calculation results for the motivator metrics are given in Tables 14 and

15.

Table 14: Average, Minimum, Maximum complexity per issue category with count

Table 15: Average, Minimum, Maximum risk related to completion time per issue category
with count

Once all the results were calculated using the metrics in equations (3),(4),(5), and (6), the

dataset was broken into three complexity categories for each Issue category: High, Low,

non-Complex. Similarly for risk categories: High, Low. In each motivator, categorization was

done by comparing the value of each calculated factor and the average value of the factor in

48

the dataset for each issue category. For the risk factor, the unit of completion time is in

hours.

First, it was started with the motivator Complexity. The following pie-charts give a detailed

insight into when the emotion was extracted from commit comments and issue comments.

Emotion vs Complexity

Figure 14: Overall emotion for all issues via commit comments

In Fig. 14, you can see that 52.1% of developers are showing happy emotion, followed by

27.22% of developers are showing angry emotion. To get into deep, the dataset was broken

into three partitions- highly complex issues, low complex issues, and not complex Issues.

Here are the emotion percentage for each scenario in Fig. 15 to Fig 17.

49

Figure 15: Emotion percentage via commit comments for highly complex issues

The above pie chart (Fig. 15) shows that the percentage of happy developers solving highly

complex issues are quite big which is 66.38%. The next emotion is anger which is 22.41% of

the developers.

50

Figure 16: Emotion percentage via commit comments for low-complex issues

In Fig. 16, the happy developer percentage slashes down to 50.42% but the angry develop-

ers’ percentage gets an increment to 27.89%. There were few comments where no emotion

was detected as they were empty. This “no emotion” is indicated in Fig.16 by the black por-

tion. Next, for not complex issues, pie-chart is Fig.17, the happy developers’ percentage is

lower than developers with fear.

Figure 17: Emotion percentage via commit comments for non-complex Issues

51

In general, when the developer comments on an issue discussion, the overall emotion is like

below in Fig. 18.

Figure 18: Emotion percentage via issue comments for all issues

In Fig.18, we can see 47.52% emotion is happy for developers when they involve in issue

discussion. But, in detail, results give more insights. For highly complex issues,

Figure 19: Emotion percentage via issue comments for highly complex issues

52

the happy emotion is dominant over other emotions (Fig. 19). However, in low-complex

cases (Fig. 20), the developers with happy emotions are much higher than the highly com-

plex issues.

Figure 20: Emotion percentage via issue comments for low-complex issues

Emotion vs Risk (related to Deadline)

When emotion was studied with respect to risk, the following scenarios were considered.

Scenario 1: When the developers’ emotion was taken from issue comments

49.43% of developers are happy with high-risk Issues (Fig. 21). Whereas 46.89% of devel-

opers are happy with low-risk issues (Fig. 22).

53

Figure 21: Emotion percentage via issue comments for highly risk issues

Figure 22: Emotion percentage via issue comments for low-risk issues

Scenario 2: When developers’ emotion is taken from commit comments

54

Figure 23: Emotion percentage via commit comments for low-risk issues

In this case, 48.63% are happy with low-risk Issues (Fig. 23) but 62.64% are happy with

high-risk Issues (Fig.24). One observation is to note that few comments are not associated

with any emotion because they are blank. It is because developers sometimes do not post

any comments during the commit. This is indicated in Fig.23 and Fig.24 with black colour.

55

Figure 24: Emotion percentage via commit comments for high-risk Issues

Emotion and Sentiment vs Collaboration Score

Collaboration score is also an important aspect of motivation as discussed by Beecham et

al. [3]. The following graphs show how emotion and sentiment vary with collaboration scores.

From Fig.25, it is visible that emotions sad, fear, and surprise have a high value of median

and average collaboration score. Whereas happy emotion has a low degree of median and

average collaboration score. However, Fig. 26, which is plotted for sentiment against collab-

oration score has a different insight.

56

Figure 25: Average and Median collaboration score for each emotion from issue comments

Figure 26: Average and Median collaboration score for each sentiment from issue com-
ments

Fig.26 shows that when there is a negative sentiment, the average and median collaboration

scores are high which is around a value of 2. But for neutral sentiment, the collaboration

score is much lower. However, for the positive sentiment, the average collaboration score is

higher than for the negative sentiment. Whereas the median score in the case of positive

sentiment is lower than for the negative sentiment. When the sentiment and emotion are ex-

tracted from commit comments, the below charts (Fig.27,28) are displayed.

57

Figure 27: Average and Median collaboration score for each emotion from commit com-
ments

Figure 28: Average and Median collaboration score for each sentiment from commit com-
ments

58

In the next section, the results are shown after performing a survey with six active develop-

ers from four different open-source projects hosted in GitHub. In the survey, direct questions

related to any emotion were not asked. Instead of that, questions regarding satisfaction and

accomplishment were framed. It is because happiness, joy, or sadness may have a different

meaning for different developers. In the survey, it was assumed that positively motivated or

satisfied developers are synonymous with happy developers.

For the survey part, the following questions were asked, and the below responses were re-

ceived (Tables 16 to 18). The survey was done with only six developers from China, Brazil,

Poland, Germany, and India.

Responses on years of experience in programming, open-source projects, and indus-

try

Parameters Less than 1
year

1-3 Years 3-5 Years More than 5
Years

Programming
Experience

0(0%) 1(17%) 2(33%) 3(50%)

Open-Source
Software Project
Experience

2(33%) 2(33%) 2(33%) 0(0%)

Industry experi-
ence

0(0%) 1(17%) 2(33%) 3(50%)

Table 16: Survey responses on industry, programming, and OSS projects

Responses on employment in software industry

Parameters Yes No

Employed in Software In-
dustry?

5(83%) 1(17%)

Full-Time employment? 5(83%) 0(0%) **

NB**: No response was given

Table 17: Survey responses on employment in software industry

59

Responses on factors related to motivation

Parameters Yes No

Satisfaction in solving com-
plex tasks (number of files
and line changes)

6(100%) 0(0%)

Positive effect on collabora-
tion in issues

6(100%) 0(0%)

Accomplishment on solving
issues where risk is there
with a deadline

6(100%) 0(0%)

Table 18: Survey response on factors related to motivation

Based on the performed research methodologies and their related results, the answers to

the research questions can be given as follows,

RQ1. What are the measurable motivators and de-motivators that can be derived from

GitHub?

After studying several kinds of literature and articles related to motivation mining especially

Beecham et al. [3] and Sharp et al. [14], there are 22 motivators and 15 de-motivators found.

After analysing the stored data in the database tables Issue, Issue_comments, and commit,

it is deduced that on an issue-level to find the motivational factors or de-motivational factors,

we must think of the project-level parameters on a smaller scale viz. on an issue level. The

different fields like “days_needed” in table Issue can help in measuring the risk factor related

to issue completion time. Similarly, fields like “no_line_changes”,” File_list” in the commit ta-

ble help in measuring the complexity of the issue. Then the fields “assignee” in the Issue ta-

ble, “user” in the Issue_comment table, and “author” in the commit table can help us to get

the strength of the collaboration. The same mapping is mentioned in section 5.5.

RQ2. How to derive the measurable motivators and de-motivators from GitHub?

In the section 5.5, the different metric calculation methods are mentioned to derive the

measurable motivators and de-motivators. To measure the risk related to the issue deadline,

we need to consider the “Days_needed” field of the Issue table as it signifies the completion

time of an issue. Then, we need to categorize the type of issues in major categories and

then calculate the average, maximum, and minimum of the “Days_needed” value for each

category. To deduce whether an issue is risky or not, we need to run a check whether the

completion time for the issue is more or less than the average completion time for that issue

category. Now to derive the complexity of the issue we have “no_line_changes”, “File_list”

fields with us. As per the line of codes concept, the number of lines gives the basic complex-

60

ity of the code. It is way inferior to cyclomatic complexity in terms of calculating the complex-

ity of a code [71], but it is easier to measure from the GitHub data. To calculate the complex-

ity of the overall issue, we need to multiply the value of “no_line_changes” and “File_list”. To

derive the collaboration, we need to deal with the collaboration score. It is nothing but the

count of collaborators in the issue minus the number of mentions only. The collaborators can

be commenters, commit authors or assignees associated with the specific issue.

RQ3. How are these measurable motivators or de-motivators influenced by emotion

and sentiment?

In the survey response, 50% of the developers have more than 5 years of programming ex-

perience. In addition to this, 50% of the developers have been working in the industry for

more than 5 years. Among the surveyed developers, 100% of them have positively re-

sponded by saying they are motivated to work on those issues that have risks of crossing

deadline or deadline has been crossed. Another observation is 100% of the developers are

motivated or happy to work on those issues which have complexity related to a huge number

of files and lines of changes. Even all the developers have responded that collaboration has

a positive effect on their work. Moreover, they have responded that they feel motivated or

happy when there is a good collaboration. Now, if we compare the result with the data mined

from GitHub, we can see for highly complex issues and highly risky issues related to the

deadline, developers show happy emotion in most cases (68.38% for highly complex issues,

49.38% for high-risk issues). In the case of Collaboration, the scenario is a bit different, for

happy developers the collaboration score is lower than sad and angry developers.

There are cases of differences in the results between the survey and the data mining. The

reason behind this might be the small dataset from the mining and the much smaller dataset

in the survey. If the dataset was larger, the results could have taken a different turn. Another

difference that is found from this study – risk may not be a de-motivator for all developers. In

the systematic literature review by Beecham et al. [3], risk has been mentioned as a de-moti-

vator which is contradicting the results. However, a larger dataset may clear this contradic-

tion.

61

7.Conclusion

This thesis outlines a method for determining what motivates and demotivates software de-

velopers working on open-source projects. GitHub is chosen as the open-source repository

for this thesis study in order to obtain a variety of data connected to software development

and software developers. It is demonstrated that three factors can be obtained and assessed

from GitHub using the above-mentioned research approaches. Risk, complexity, and collab-

oration score (aka collaboration) are the three elements.

The MOCC Model, PyGitHub API, TextBlob library, Text2emotion library, and MySQL data-

base were used to build the entire framework for this thesis. These five elements were cru-

cial in connecting GitHub to extracting data related to issues and their contributions for this

empirical study, and they helped develop the framework to deduce the motivators and de-

motivators. The data is small at this point, but it may be ramped up to acquire more insights

from GitHub. We might be able to identify more intriguing motivators or de-motivators from

GitHub using the same approach.

In terms of attaining the actual goal, the entire thesis labor is minor. However, it serves as a

starting point for determining a software developer's motivational variables. It can be useful

not only for open-source software development initiatives, but also for international corpora-

tions where software engineers face a variety of challenges on a daily basis. This thesis

work can serve as a framework for multinational corporations that care about their software

engineers and want to keep them by establishing a variety of rules once they've identified

the generic motivational factors that apply to all software engineers.

62

Bibliography

 [1] “Affective Events Theory.", https://en.wikipedia.org/wiki/Affective_events_theory.

 [2] https://www.gratasoftware.com/common-risks-agile-projects-deal/

 [3] Beecham, S., Baddoo, N., Hall, T., Robinson, H., & Sharp, H. (2008). Motivation in Soft-

ware Engineering: A systematic literature review. Information and Software Technol-

ogy, 50(9–10), 860–878. https://doi.org/10.1016/j.infsof.2007.09.004.

 [4] Calefato, F., Lanubile, F., Maiorano, F., & Novielli, N. (2018). Sentiment polarity detec-

tion for software development. Empirical Software Engineering, 23(3), 1352–1382.

https://doi.org/10.1007/s10664-017-9546-9.

 [5] França, A. C. C., & da Silva, F. Q. B. (2010). Designing motivation strategies for soft-

ware engineering teams: An empirical study. Proceedings of the 2010 ICSE Workshop on

Cooperative and Human Aspects of Software Engineering - CHASE ’10, 84–91.

https://doi.org/10.1145/1833310.1833324.

 [6] Hertel, G., Niedner, S., & Herrmann, S. (2003). Motivation of software developers in

Open Source projects: An Internet-based survey of contributors to the Linux kernel. Re-

search Policy, 32(7), 1159–1177. https://doi.org/10.1016/S0048-7333(03)00047-7.

 [7] Murgia, A., Tourani, P., Adams, B., & Ortu, M. (2014). Do developers feel emotions? An

exploratory analysis of emotions in software artifacts. Proceedings of the 11th Working Con-

ference on Mining Software Repositories - MSR 2014, 262–271.

https://doi.org/10.1145/2597073.2597086.

 [8] Graziotin, D., Wang, X., & Abrahamsson, P. (2013). Are happy developers more produc-

tive? In J. Heidrich, M. Oivo, A. Jedlitschka, & M. T. Baldassarre (Eds.), Product-Focused

Software Process Improvement (Vol. 7983, pp. 50–64). Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-39259-7_7.

 [9] Ortu, M., Murgia, A., Destefanis, G., Tourani, P., Tonelli, R., Marchesi, M., & Adams, B.

(2016). The emotional side of software developers in JIRA. Proceedings of the 13th Interna-

tional Conference on Mining Software Repositories, 480–483.

https://doi.org/10.1145/2901739.2903505.

 [10] Rasch, R. H., & Tosi, H. L. (1992). Factors affecting software developers’ performance:

An integrated approach. MIS Quarterly, 16(3), 395. https://doi.org/10.2307/249535.

63

 [11] Rath, M., Rempel, P., & Mader, P. (2017). The ilmseven dataset. 2017 IEEE 25th In-

terna tional Requirements Engineering Conference (RE), 516–519.

https://doi.org/10.1109/RE.2017.18

 [12] Sandros, Claes and Sofia nystedt. “Software Complexity and Project Performance.”

(1999).

 [13] Shahri, A., Hosseini, M., Almaliki, M., Phalp, K., Taylor, J., & Ali, R. (2016). Engineer-

ing software-based motivation: A persona-based approach. 2016 IEEE Tenth International

Conference on Research Challenges in Information Science (RCIS), 1–12.

https://doi.org/10.1109/RCIS.2016.7549312.

 [14] Sharp, H., Baddoo, N., Beecham, S., Hall, T., & Robinson, H. (2009). Models of moti-

vation in software engineering. Information and Software Technology, 51(1), 219–233.

https://doi.org/10.1016/j.infsof.2008.05.009

 [15] Tran, De, Ghislain Lévesque, and Jean Guy Meunier. (2004). Software Functional

Complexity Measurement with the Task Complexity Approach.

 [16] Yahya Tashtoush, Mohammed Al-Maolegi, and Bassam Arkok. (2014). "The Correla-

tion among Software Complexity Metrics with Case Study." International Journal of Ad-

vanced Computer Research 4 (2): 414. https://search.proquest.com/docview/1613205253.

 [17] https://www.statista.com/outlook/tmo/software/worldwide#:~:text=Reve-

nue%20in%20the%20Software%20market,US%24823%2C706m%20by%202026

 [18] https://www.statista.com/statistics/1126677/it-employment-worldwide/

 [19] https://www.psychologytoday.com/us/basics/motivation

 [20] https://www.moneycontrol.com/news/business/cognizant-attrition-hits-record-high-of-

31-company-to-make-100000-lateral-hires-this-year-7244591.html

 [21] https://www.glassdoor.com/Award/Best-Places-to-Work-LST_KQ0,19.htm

 [22] McConnell, S. (1998). Problem programmers. IEEE Software, 15(2), 128.

https://doi.org/10.1109/52.663801.

 [23] Sinha, V., Lazar, A., & Sharif, B. (2016). Analyzing developer sentiment in commit

logs. Proceedings of the 13th International Conference on Mining Software Repositories,

520–523. https://doi.org/10.1145/2901739.2903501

64

 [24] "Motivation in Project Management." . https://eight2late.word-

press.com/2008/08/29/motivation-in-project-management/.

 [25] https://www.managementstudyguide.com/what_is_motivation.htm

 [26] https://www.masterclass.com/articles/what-is-intrinsic-motivation-understanding-the-

definition-of-intrinsic-motivation-and-how-to-use-intrinsic-motivation#what-is-intrinsic-motiva-

tion

 [27] Locke, Edwin A., and Gary P. Latham. "Building a Practically Useful Theory of Goal

Setting and Task Motivation." The American psychologist 57.9 (2002): 705-17. Cross-

Ref. Web.

 [28] https://www.managementstudyguide.com/goal-setting-theory-motivation.htm

 [29] https://www.ambitionbox.com/reviews/amazon-reviews

 [30] Montana, Patrick J., and Bruce H. Charnov. "Management." ISBN 978-0-7641-3931-

4.4th edition (2008) Web.

 [31] https://en.wikipedia.org/wiki/Expectancy_theory

 [32] https://www.managementstudyguide.com/expectancy-theory-motivation.htm

 [33] Isaac, Robert G., Wilfred J. Zerbe, and Douglas C. Pitt. "Leadership and Motivation:

The Effective Application of Expectancy Theory." Journal of managerial issues 13.2 (2001):

212-26. ABI/INFORM Global (Corporate). Web.

 [34] https://www.healthline.com/health/extrinsic-motivation

 [35] https://www.cleverism.com/job-characteristics-model/

 [36] https://www.ckju.net/en/dossier/job-characteristics-model-what-it-is-and-why-it-mat-

ters-more-ever

 [37] https://biznewske.com/hackman-and-oldham-job-characteristics-model/

65

 [38] http://www.geocities.ws/frtzw906/hackmanoldham.htm

 [39] Cropanzano, Russell. Affective Events Theory: A Theoretical Discussion of the Struc-

ture, Cause and Consequences of Affective Experiences at Work WORK-FAMILY CROSS-

OVER: A META-ANALYTIC REVIEW View Project., (2017). Web.

 [40] http://psychology.iresearchnet.com/industrial-organizational-psychology/job-satisfac-

tion/affective-events-theory/

 [41] https://dictionary.cambridge.org/dictionary/english/sentiment

 [42] https://www.collinsdictionary.com/dictionary/english/sentiment

 [43] http://sentistrength.wlv.ac.uk/

 [44] https://textblob.readthedocs.io/en/dev/

 [45] https://www.softkraft.co/python-nlp-libraries-features-us-cases-pros-and-cons/

 [46] https://github.com/cjhutto/vaderSentiment

 [47] https://www.analyticsvidhya.com/blog/2019/02/flair-nlp-library-python/

 [48] https://github.com/flairNLP/flair

 [49] https://github.com/flairNLP/flair/releases

 [50] https://www.merriam-webster.com/dictionary/emotion

 [51] https://www.britannica.com/science/emotion

 [52] https://dictionary.apa.org/emotion

 [53] Shaver, P., Schwartz, J., Kirson, D., & O’Connor, C. (1987). Emotion knowledge:

Further exploration of a prototype approach. Journal of Personality and Social Psychol-

ogy, 52(6), 1061–1086. https://doi.org/10.1037/0022-3514.52.6.1061.

66

 [54] https://shivamsharma26.github.io/text2emotion/

 [55] https://pypi.org/project/text2emotion/

 [56] https://en.wikipedia.org/wiki/Open-source_software_development

 [57] Ming-Wei Wu & Ying-Dar Lin. (2001). Open source software development: An over-

view. Computer, 34(6), 33–38. https://doi.org/10.1109/2.928619

 [58] https://en.wikipedia.org/wiki/GitHub

 [59] Haddad, Ibrahim and Brian Warner. (2011). » The Linux Foundation Understanding

the Open-Source Development Model.

 [60] https://docs.github.com/en/issues/using-labels-and-milestones-to-track-work/manag-

ing-labels

 [61] https://pygithub.readthedocs.io/en/latest/introduction.html

 [62] Ortu, Marco, Bram Adams, Giuseppe Destefanis, Parastou Tourani, Michele Mar-

chesi, and Roberto Tonelli. (2015). Are Bullies More Productive? Empirical Study of Effec-

tiveness Vs. Issue Fixing Time. Piscataway: The Institute of Electrical and Electronics Engi-

neers, Inc. (IEEE).

 [63] https://www.indeed.com/career-advice/career-development/goal-setting-theory

 [64] https://www.ckju.net/en/dossier/job-characteristics-model-what-it-is-and-why-it-mat-

ters-more-ever

 [65] Sánchez-Gordón, M., & Colomo-Palacios, R. (2019). Taking the emotional pulse of

software engineering—A systematic literature review of empirical studies. Information and

Software Technology, 115, 23–43. https://doi.org/10.1016/j.infsof.2019.08.002.

 [66] http://happinessinternational.org/what-is-happiness/

 [67] https://www.merriam-webster.com/dictionary/disgust

67

 [68] https://www.ambitionbox.com/reviews/wipro-reviews

 [69] https://www.ambitionbox.com/reviews/accenture-reviews

 [70] Hasan, Jahid. Employee Performance Motivation a Systematic Literature Review

with Linear Regression Analysis.

 [71] https://www.geeksforgeeks.org/cyclomatic-complexity/

 [72] Novielli, N., & Serebrenik, A. (2019). Sentiment and Emotion in Software Engineer-

ing. IEEE Software, 36(5), 6–23. https://doi.org/10.1109/MS.2019.2924013

 [73] https://collab-uniba.github.io/EMTk/

 [74] Van Eerde, W. & Thierry, H. (1996). Vroom's Expectancy Models and Work-Related

Criteria. Journal of Applied Psychology, 81 (5), 575-586.

 [75] Vroom, V. H. (1964). Work and motivation. Wiley.

 [76] Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic defini-

tions and new directions. Contemporary Educational Psychology, 25(1), 54–67.

https://doi.org/10.1006/ceps.1999.1020

 [77] https://dzone.com/articles/introduction-to-word-vectors

 [78] https://www.geeksforgeeks.org/explanation-of-bert-model-nlp/

 [79] https://nlp.stanford.edu/projects/glove/

 [80] https://www.geeksforgeeks.org/supervised-unsupervised-learning/

68

 APPENDIX A: Survey Questionnaire

 How many years of experience do you have in programming? (E.g. School projects,

Open-Source projects, Industry experience)
 How many years of experience do you have in Open-Source Projects?

 How many Open-Source projects are you currently involved in?

 How many years of experience do you have in industrial software development pro-

jects?

 Are you currently employed in the software industry?

 Are you employed full-time or part-time?

 Does your work include programming?

 Do you typically feel a sense of accomplishment after resolving an issue that took

longer than expected (issue was resolved past deadline)?

 Do you consider other developers collaborating on an issue (by commenting on the

issue or contributing to the code commit) has a positive effect on solving the issue?

 Do you typically feel a sense of accomplishment when you have completed a compli-

cated issue (requiring changes in many code lines and/or in numerous files)?

 Do you feel a particular sense of accomplishment after completing more difficult

tasks?

69

APPENDIX B: Definitions

Data mining

Data mining which is also known as knowledge discovery in data or KDD, is the technique

to uncover patterns and other valuable information from the large data volume. It gives in-

sights into different associations in a large data set amongst different variables, also useful

as input for the different machine learning algorithms.

Word vector

Word vectors are a huge step forward in terms of analysing relationships between words,

phrases, and documents. As a result, it can progress technology by giving machines a lot

more information about words than was previously available with traditional word representa-

tions [77]. Technology such as speech recognition and machine translation are made possi-

ble by the word vector [77].

BERT

BERT is the abbreviated form of Bidirectional Encoder Representations from Transform-

ers. It is a natural language processing model which was proposed by the researchers at

Google Research in 2018 [78]. BERT has a state-of-the-art accuracy on various NLP and

NLU tasks such as:

 Understanding of general language

 Stanford Q/A dataset for the SQuAD v1.1 and v2.0 Processes

 Situation With Adversarial Generations or in other words generative adversarial

network

GloVe

GloVe is the abbreviated form of Global Vectors for Word Representation. It is an unsuper-

vised learning algorithm for obtaining the vector representation of the words [79]. Training

is performed on the aggregated version of global word co-occurrence statistics from a cor-

pus, resulting in the showcasing of various interesting linear structures or substructures of

the word vector space [79].

70

Supervised Learning

As the name implies, supervised learning takes place in the presence of a supervisor or

teacher [80]. Basically, in supervised learning, we teach or train the machine aka machine

learning model using data that are well labelled. This means some data is already tagged

with the correct answer or tag. After that, the machine is provided with a new set of data so

that the supervised learning algorithm analyses the training data and produces a correct

outcome from labelled data which is nothing but the prediction [80].

