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Machine learning is a field of artificial intelligence which can be utilised in image recognition 

applications. By means of machine learning, software capable of solving complex tasks can be 
developed. In this work, a convolutional neural network was used as the machine learning 
method. The feasibility of using convolutional neural networks in masonry brick classification was 
studied in this Master’s thesis. The aim was to discover the most efficient network model by testing 
different network structures. 

According to the preliminary development plan, the classification of brick types can be done in 
the brick factory. This is conducted by imaging bricks with a machine vision camera while the 
bricks are moving on a conveyor belt. After the imaging, a machine learning algorithm identifies 
different brick classes from the images. The bricks are sorted into different classes at the end of 
the production line, using conveyor belts and industrial robots. 

The content of the Master’s thesis can be divided into three sections: the theoretical part, the 
image acquisition part and the results achieved with the network model. At first, topics related to 
the camera model, image formation and optics are covered. This is followed by the theory part, 
regarding machine learning and neural networks. Also, the network model used is presented. 
After the theoretical part, the equipment and the methods used in image acquisition are intro-
duced. Finally, the results obtained with the network model are presented, and the suitability of 
the model for brick classification is evaluated.  

The bricks were pre-divided into three classes at the brick factory, based on different quality 
requirements. The imaging of the bricks was done in a laboratory, where 1105 bricks were imaged 
three times. A machine vision camera and lighting system were assembled on a conveyor belt. 
By using this system, each brick was imaged from the top, bottom and side surfaces. The machine 
vision camera used was controlled by vision software. With this equipment, the images were cap-
tured automatically as the bricks moved along the conveyor belt. 

After the image acquisition, the image data was modified into a suitable format for the machine 
learning algorithm. Two image datasets were used to test the convolutional neural network. The 
original dataset included 1800x1500 pixel size images. The second dataset included the same 
images. Additionally, in the second dataset images, the excessive background areas around the 
bricks were cropped. Both datasets contained 1105 images, consisting of the three brick classes. 

A pretrained VGG16 convolutional neural network was chosen as the network model. A trans-
fer learning method was utilised with this network model. In transfer learning, pretrained network 
parameter values are used. Pretrained parameters were obtained for the VGG16 by training the 
network with the ImageNet database. Generally, network performance in a classification task can 
be improved by using transfer learning. This is especially the case when the number of images 
to be used in a classification task is limited. 

According to the results obtained using two different image size datasets, it can be concluded 
that the convolutional neural network is well suited for the classification of brick images. When 
performing image acquisition in factory conditions, it is important to keep the ambient lighting 
conditions constant during shooting. Acquiring a high-quality image dataset is an essential part 
of developing the classification system. 
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Koneoppiminen on tekoälyyn sisältyvä osa-alue, jota voidaan hyödyntää kuvantunnistukseen 

liittyvissä sovelluksissa. Koneoppimisen avulla voidaan kehittää ohjelmistoja, jotka ovat kykene-
viä ratkaisemaan monimutkaisia tehtäviä. Tässä työssä käytettiin koneoppimismenetelmänä kon-
voluutioneuroverkkoa. Diplomityössä tutkittiin, soveltuuko konvoluutioneuroverkko tiiliskivien luo-
kitteluun. Testaamalla erilaisia verkkorakenteita pyrittiin löytämään mahdollisimman tehokas 
verkkomalli.  

Kehitysvaiheessa olevan suunnitelman mukaisesti, tiilityyppien luokittelu voidaan toteuttaa tii-
litehtaalla, kuvaamalla liukuhihanalla kulkevat tiiliskivet konenäkökameran avulla. Kuvauksen jäl-
keen koneoppimis-algoritmi tunnistaa erityyppiset tiiliskivet valokuvien perusteella. Tiiliskivet laji-
tellaan eri laatuluokkiin linjaston loppupäässä, hyödyntäen liukuhihnoja ja teollisuusrobotteja. 

Diplomityön sisältö voidaan jakaa kolmeen osaan: teoriaosuuteen, valokuvien hankintaan 
sekä verkkomallilla saatuihin tuloksiin.  Työssä käsitellään ensin kameran mallinnukseen, kuvan-
muodostukseen sekä optiikkaan liittyviä aiheita. Tämän jälkeen käydään läpi koneoppimiseen ja 
neuroverkkoihin sisältyvää teoriaa, sekä esitellään työssä käytetty verkkomalli. Teoria-osuuden 
jälkeen esitellään käytetyt laitteistot ja menetelmät, joilla valokuva-aineisto kerättiin. Lopuksi kä-
sitellään verkkomallin avulla saatuja tuloksia ja arvioidaan mallin soveltuvuutta tiiliskivien tunnis-
tukseen. 

Tiiliskivien valokuvaus suoritettiin laboratoriossa, jossa 1105 kpl tiiliskiviä kuvattiin kolmeen 
kertaan. Tiiliskivet oli valmiiksi jaoteltu tehtaalla kolmeen luokkaan erilaisten laatuvaatimusten 
perusteella. Valokuva-aineiston keräämiseksi, konenäkökamera ja valaistusjärjestelmä asennet-
tiin liukuhihnalle. Kuvausjärjestelmän avulla jokainen tiili kuvattiin yläpuolelta, alapuolelta sekä 
sivusta. Kuvaukseen käytettyä konenäkökameraa ohjattiin siihen liitetyllä ohjelmistolla. Laitteiston 
avulla valokuvaus tapahtui automaattisesti, tiiliskivien kulkiessa liukuhihnalla. 

Valokuvien keräyksen jälkeen, aineistoa muokattiin sopivaan muotoon, jotta valokuvia pystyt-
tiin syöttämään koneoppimis-algoritmiin. Konvoluutioverkon testauksessa käytettiin kahta eri va-
lokuvakokoelmaa. Alkuperäinen kuvakokoelma sisälsi 1800x1500 pikselin kokoisia valokuvia. 
Toinen kuvakokoelma sisälsi samat valokuvat, joista ylimääräiset taustat tiiliskivien ympäriltä oli 
leikattu pois. Molemmat kokoelmat sisälsivät 1105 kpl valokuvia, jotka koostuivat kolmesta eri 
tiililuokasta.  

Verkkomalliksi valittiin esiopetettu VGG16-konvoluutioneuroverkko, jonka avulla hyödynnettiin 
siirto-oppimiseen liittyvää menetelmää. Siirto-oppimisessa käytetään esiopetettuja parametriar-
voja, jotka VGG16 verkon osalta oli saatu opettamalla verkkomalli ImageNet-valokuvakokoel-
malla. Menetelmällä voidaan yleisesti parantaa verkon luokitustulosta, erityisesti jos tunnistuk-
sessa käytettäviä valokuvia on saatavilla rajoitetusti. 

Kahdella eri kuvakokoelmalla saatujen tulosten perusteella voidaan todeta, että konvoluu-
tioneuroverkko soveltuu hyvin tiiliskivien luokitteluun. Valokuvattaessa tunnistettavia tiiliskiviä teh-
dasolosuhteissa, on tärkeää pitää ympäristön valaistusolosuhteet vakioina kuvauksen aikana. 
Hyvälaatuisen valokuvakokoelman hankinta on oleellinen osa toimivan tunnistusjärjestelmän ke-
hittämistä.  
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1. INTRODUCTION 

Bricks belong to the oldest building elements in the world. The earliest findings of bricks 

can be dated to 7000 BC in southern Turkey, near the city of Jericho. Ancient bricks were 

made by hardening mud bricks in sunlight, in the warm regions of the world. The usage 

of fired bricks started in about 3500 BC, which also made it possible to manufacture 

bricks in cooler climate regions [1]. 

The objective of this thesis was to examine the quality of masonry bricks, with an appro-

priate machine learning model. The topic of this thesis was suggested by a local engi-

neering company, which received a commission from a brick factory to improve the de-

fect detection of masonry bricks. The plan was to implement quality inspection from high 

quality images, captured by a machine vision system. The research questions were firstly 

to examine whether a quality inspection can be conducted using machine learning. Sec-

ondly, if a feasible model was found, the challenge was to create a useful application. 

Also, guidelines for appropriate imaging setup were to be planned, to be able to collect 

images for inspection. 

In factory facilities, masonry bricks are inspected manually by an operator and then di-

vided into three different categories. There is growing interest in upgrading the automa-

tion level in the brick factory to enable more efficient production. In the factory in ques-

tion, there are over 10 brick colour options to choose from. Additionally, the brick size 

varies, and the outer surface can have five different patterns. One brick type was chosen 

for examination. The plan was to train the learning model using one brick type and then, 

if successful, it would be easy to train other types with the same model.  

The early plan for the final implementation is illustrated in Figure 1. The configuration 

consists of robots, conveyor belts and an imaging system on the production line. A robot 

arm would pick a single brick at a time from the pile, as it is discharged from the oven. 

This is followed by an imaging setup including line scan cameras, where bricks are im-

aged from three directions (Figure 1). The three images are combined into one image, 

which is processed by a learning algorithm. Eventually, the brick is sent to the correct 

conveyor, according to the brick’s classification result.  
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Figure 1. Factory layout plan consists of an imaging setup, robots and conveyor 
belts. A robot arm picks bricks to the conveyor, one at a time. Cartesian robots stack 
bricks onto another conveyor, according to their class. 

 

During this thesis work, different kinds of tasks were conducted. The main stages of the 

work are listed as follows: 

- An imaging setup was built by imaging 2400 kg of bricks three times. A dataset 

was collected, consisting of 3315 images representing the three classes. 

- The images were arranged in the right order, and excessive data samples were 

removed. Only three images per single brick were stored. 

- A custom-made program was used to crop external, white background areas from 

the original images. 

- Two Python programs were implemented to combine three brick images into one 

image. The first program was used to combine the original size images, with large 

background areas. Another program was used to combine the cropped size im-

ages. 

- A convolutional neural network (CNN) model for the classification was imple-

mented, using the Python programming language. 

- Cross-validation and oversampling algorithms were implemented in Python to 

evaluate the CNN model’s performance. 

 

This thesis is divided into three main parts. Chapters 2 and 3 cover topics related to the 

camera model, image formation, optics and machine learning. Methods for image acqui-

sition and the equipment used in imaging are introduced in the test implementation chap-

ter. At the end of the thesis, in Chapters 5 and 6, the results of the image classification 

tasks are covered.  
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2. IMAGE ACQUISITION 

In this chapter, the pinhole camera model and camera parameters are introduced. There 

will be an explanation of the formulas related to the matrix representation of the camera 

parameters. This is followed by a section which describes the two common distortion 

types affecting image quality. At the end of the chapter, some machine vision camera 

and optics related topics are introduced. 

2.1 Pinhole camera model 

With a pinhole camera model, image formation from a 3D space to a 2D image plane 

can be represented. This simple camera model was introduced by Brunelleschi early in 

the fifteenth century [2]. The model assumes that a single ray of light that goes through 

the camera aperture at one time connects points between the image plane and the 

scene. In fact, a cone of light rays forms an object in the image plane. This simplified 

pinhole model, sometimes called a central perspective projection model, is often accu-

rate enough to approximate the imaging process mathematically [2]. An image of the 

object lying in the 3D space is projected to the 2D image plane, as shown in Figure 2.  

 

 

Figure 2. Image formation in a pinhole camera model [2]. 

 

A virtual plane can be placed at an equal distance from the camera’s aperture as the 

image plane, but in front of the aperture. This way the image is represented in the same 

direction as the actual object in space (virtual image in Figure 2). The preceding proce-

dure makes matrix calculations easier to compute. In the following section, the image 

plane is assumed to be in front of the camera.   
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In an ideal pinhole camera model, it is assumed that the camera coordinate system is 

aligned with world coordinates, and the camera’s centre is at the world coordinate origin. 

In Figure 3, point X in the 3D space is mapped to point x in the camera’s 2D image plane, 

described by the line going through the camera centre. The distance from the image 

plane to the camera centre is called the focal length f . The line passing perpendicularly 

from the camera centre to the image plane is called the principal axis, and it meets the 

image plane at the principal point p [3]. 

 

Figure 3. Projection in a pinhole camera model [3]. 

 

With two triangles formed, shown on the right side of Figure 3, it is possible to compute 

the mapping from the 3D space to the 2D image plane. The mapped image point loca-

tions x and y can be presented as a relation, which is called mapping between the ℝ3 

Euclidean space and ℝ2 Euclidean space [3]. In Equation 1, the image point x is marked 

as fX/Z and y as  fY/Z:  

(X, Y, Z)T → (
fX

Z
,

fY

Z
)

T
.     (1) 

 

While making this Euclidean mapping from 3D to 2D (also called projective transfor-

mation), one dimension and some information is lost. The object's size in the image plane 

depends on the distance to the camera. In the image, the lines’ length and angles are 

not preserved, but lines’ straightness is preserved. By using homogeneous coordinates 

with transformations, matrix calculations become easier. In homogeneous coordinates, 

n-dimensional position vectors are presented as (n+1)-dimensional homogeneous vec-

tors [4].  



5 
 

In Equation 2, the image point {x1, x2} is expressed by multiplying the 3x4 projection 

matrix by the world point {X1, X2, X3} in the homogeneous coordinates: 

 

[
x1

x2

1
] =  [

f 0 0 0
0 f 0 0
0 0 1 0

] [

X1

X2

X3

1

] .     (2) 

 

Equation 2 can be written in a more compact way, where the camera properties are 

represented by the camera projection matrix P . This describes the effects of the camera 

on the projection (Equation 3). The 2D point in the homogeneous coordinates is denoted 

as vector x, the 3D point in the homogeneous coordinates is denoted as vector X and 

matrix P is a 3x4 homogeneous projection matrix [3]: 

x = PX .       (3) 

2.2 Camera parameters 

There are two different coordinate systems: camera coordinates and world coordinates. 

With an ideal pinhole camera, the camera’s origin is placed at the world coordinates’ 

origin and the two are aligned with each other. In practice, when a photo of an object is 

taken from space, there can be rotation and translation between these coordinate sys-

tems. It is useful to divide the camera matrix P into two matrices, one describing transla-

tion and rotation between coordinates and the other matrix describing the camera’s in-

trinsic parameters: 

P = K[R|t] = [
f 0 px

0 f py

0 0 1

] [

r1 r2 r3 t1

r4 r5 r6 t2

r7 r8 r9 t3

] ,    (4) 

 

where K is a camera calibration matrix, describing the camera’s intrinsic parameters, 

such as lens distortions, pixel dimensions and focal length. The properties of matrix K  

depend on the hardware. Different camera models have their own unique parameters. 

Parameter f in Equation 4 denotes focal length, which is the distance of the image plane 

to the pinhole. The pixel values px and py indicate the principal points’ transition along 

the x and y coordinates, respectively, from point {0,0} on the image plane. In an ideal 

pinhole model, the principal point is mapped to coordinate {0,0}. 
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The parameters in matrix K are referred to as internal camera parameters. Additionally, 

focal lengths and principal point transitions along the x and y directions can be presented 

in pixel coordinates instead of world coordinates: 

K = [
mx 0 0
0 my 0

0 0 1

] [
f 0 px

0 f py

0 0 1

] = [
αx 0 x0

0 αy y0

0 0 1

] ,   (5) 

where parameters αx =  fmx and  αy =  fmy represent the focal length coordinates in 

pixels. K-matrix elements, x0 =  mxpx and  y0 =  mypy represent the principal points’ tran-

sition in pixels. In some cases a skew parameter s is added to the element in row 1 

column 2 in matrix K, denoting that the axes of the image plane are not perpendicular 

[5], [3]. Extrinsic parameters due to the coordinate system translation and rotation are 

expressed by translation vector t and rotation matrix R, respectively. In Equation 6, the 

rotation matrix R element values α, β and ɣ indicate rotation around the Z, Y and X axes, 

respectively [5]. From the rotation matrix R values, it can be interpreted in which direction 

the camera is pointing in the real world: 

R = Rz(α)Ry(β)Rx(γ) = 

[
cos α − sin α 0
sin α cos α 0

0 0 1
] [

cos β 0 sin β
0 1 0

−sin β 0 cos β
] [

1 0 0
0 cos γ −sin γ
0 sin γ cos γ

] = [

r11 r12 r13

r21 r22 r23

r31 r32 r33

] .      (6) 

       

The translation vector t expresses the movement of the camera and world coordinates’ 

origins with respect to each other. The homogeneous transformation matrix containing 

rotation and translation (Figure 4) is also used in robotics, when estimating the translation 

and rotation of the robot end effectors from the robot’s world coordinate origin, which is 

usually located on the robot’s mounting plane. 

 

Figure 4. Translation t and rotation R in world coordinate system. 
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Finally, the mapping of the point {X1, X2, X3} in the 3D world to the camera’s 2D image 

plane {x1, x2} in homogeneous coordinates becomes: 

[
x1

x2

1
] =  [

αx 0 x0

0 αy y0

0 0 1

] [

r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

] [

X1

X2

X3

1

] .   (7) 

A pinhole camera model approximates an actual camera, and the model can be used to 

describe real cameras’ properties. The procedure to define a camera’s intrinsic and ex-

trinsic parameters is called camera calibration [6]. 

2.3 Distortions 

In practice, an ideal pinhole camera model does not take into account light ray distortions 

caused by the lens. In the model it is assumed that the lens is attached perfectly to the 

camera. When a lens gathers light coming from the environment, radial and tangential 

distortions may occur. Radial distortion can be divided into barrel and pincushion distor-

tion. 

Barrel distortion distracts pixels in the image away from the image’s centre, while pin-

cushion distortion moves the object’s pixels towards the image centre (Figure 5). These 

effects cause straight lines to look bent, and this phenomenon is proportional to the dis-

tance from the image origin. At the outer edges of the image, straight lines look like they 

are more bent. Corrected pixel values can be calculated with the following formulas [3]: 

 

x̂ =  xc + L(r)(x −  xc)     (8) 

ŷ =  yc + L(r)(y −  yc)     (9) 

  r2 = (x − xc)2 + (y − yc)2 ,    (10) 

 

where {x̂, ŷ} denote corrected pixel values and {x, y} denote original distorted pixel val-

ues. Point {xc, yc} is the centre of radial distortion, which is usually assumed to be at the 

principal point. The distortion function L(r) is dependent on the radial distance r. Param-

eter r indicates the radial distance of distorted values x and y from the centre of radial 

distortion [3], [6]. Another disturbance type is tangential distortion, which can occur in 

situations when the camera lens is not parallel to the image plane [4]. This can cause 

the image to look tilted, with some parts of the object closer to the camera than others.  
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Figure 5. Pincushion and barrel distortions [6]. 

 

2.4 Machine vision camera 

The first stage in this thesis work was to acquire an image dataset, consisting of several 

hundred images. This was done with a specially constructed machine vision system, 

comprising a conveyor belt, machine vision camera and a lighting arrangement. In this 

section, the basic properties of the vision system and optics are covered.  

When choosing a machine vision camera, two commonly used types available are line 

scan and area scan cameras. The area scan camera captures a square form area from 

a scene, and a matrix of pixels constitutes an image. Area scan cameras are the most 

popular, and these types are suitable for situations when the target is stationary or the 

whole object fits in the camera’s field of view at one time. When imaging non-moving 

objects using an area camera, system implementation is usually easier compared to a 

line scan camera [7], [8]. 

Images are formulated in a different way in a line scan camera, where the sensor con-

sists of a single row of pixels. Multiple pixel lines are captured from the target, and a two-

dimensional image can be formed by combining these rows of pixels. To be able to cre-

ate a 2D image, either the target or the camera must move with respect to one other. In 

cases when the observed target at a scene is constantly moving in some direction, or 

when the whole object does not fit into the camera’s field of view at one time, a line scan 

camera may be more suitable. 

Line scan cameras can be used in high-speed applications and camera type resolution 

is determined by means of the camera’s scan rate. Compared to area scan cameras, 

higher resolution can be achieved by using the line scan technique. A typical application 

of a line scan camera is the inspection of a rolling cylinder. Also, line scan cameras can 

be installed to observe a continuous material flow [8].  
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Figure 6. Machine vision system consisting of optical parameters [9]. 

A camera’s field of view (FOV) determines the area which can be seen by a vision system 

(Figures 6, 7). The area marked 1 illustrates the size of an object in the scene. Rotated 

and translated, the same object is shown as 2, describing the object’s possible move-

ment while imaging. When the size of the object and possible movement have been 

taken into account, a dotted square marked 3 in Figure 7, can be drawn. There must also 

be some margins to ensure that objects remain in the field of view, when considering 

image processing and camera installation. The area marked 4 indicates the necessary 

field of view. After taking the camera’s aspect ratio into account, the FOV is determined 

as 5 in Figure 7 [7]. 

 

Figure 7. Determining a camera’s field of view [7]. 

There is a relation between the camera’s focal length and field of view. Using a shorter 

focal length gives a wider FOV, but objects appear shorter in the image plane. A longer 

focal length enables bigger magnification, and in this case the field of view becomes 

narrower. The distance between the camera’s lens and the object in the environment is 

determined as the working distance (WD) [8].  
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The next stage in image acquisition is to define the proper camera resolution. Regarding 

resolution, three concepts can be differentiated (Table 1). Camera sensor resolution is 

the number of pixels in a physical image sensor. This value is expressed in pixels. Spatial 

resolution refers to how an object in the scene is mapped to a camera’s image sensor 

and the value is given in mm/pixel. Spatial resolution depends on the camera’s resolution 

and field of view. In cases when the image sensor’s pixels are not square, spatial reso-

lution must be calculated along the x and y directions differently. Measurement accuracy 

is the size of the smallest feature which can be observed. When determining adequate 

resolution, the number of pixels necessary to present this smallest feature must also be 

examined. The system’s total measuring accuracy depends on the spatial resolution, the 

software algorithms used and the image contrast. It is easier to spot features needed for 

recognition from high contrast images [7]. 

 

Table 1. Parameters used to calculate resolution for a camera application [7]: 

 

 

When the smallest feature size and the number of pixels needed to map the smallest 

desired feature are known, spatial resolution can be defined by: 

Rs =  
Sf

Nf
 .       (11) 

The relation between the field of view (FOV) and spatial resolution (Rs) defines the cam-

era resolution, which must be calculated along horizontal and vertical directions: 

Rc =  
FOV

Rs
 = FOV ×  

Nf

Sf
 .     (12) 

Name  Variable Unit 

Camera resolution  Rc pixel 

Spatial resolution  Rs mm/pixel 

Field of view  FOV mm 

Size of the smallest feature  Sf mm 

Number of pixels to map the smallest feature  Nf pixel 
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2.5 Optics 

The amount of light passing through the lens to an image plane is controlled by the cam-

era’s aperture. A larger aperture size allows more light rays to travel to the sensor; this 

enables the camera to be used in low lighting conditions. Conversely, in bright lighting, 

a smaller aperture can be applied. The aperture’s functionality can be compared to the 

pupil in the human eye. The aperture size is defined as the f − number, also called the 

f − stop. 

The f − number is defined as f/d, where f means the focal length and d the diameter of 

the aperture. The value of the f − number is inversely proportional to the aperture size: 

a lower f − number indicates a larger aperture. The relation between the f − number and 

the focal length f is usually presented as the f/f − number, as shown in Figure 8. When 

the focal length value is divided by the f − number, the calculation gives the aperture 

diameter [10].  

Another method for controlling brightness is varying the exposure time. The shutter 

speed (exposure time) is related to the amount of time that the camera’s sensor is ex-

posed to light rays. While imaging high speed objects in a scene, a fast shutter speed is 

required to avoid blurry images. Shutter speed is usually given in fractions of a second 

(e.g. 1/125 s, 1/250 s).  

As the aperture’s area increases by a factor of 2, the ratio between the focal length and 

the aperture diameter, the f − number, increases by a factor of √2. The same amount of 

light can be given to an image plane by multiplying the exposure time by 2 [10]. 

 

Figure 8. Effect of increasing the f-number on the aperture size.  

 

A camera’s ability to focus on a target in multiple distances must be considered, and this 

is defined as the depth of field (DOF). This parameter indicates how much the working 

distance may increase or decrease while still able to produce a focused image without 

blur. The depth of field is affected by the values of focal length, aperture size and working 

distance. A narrow depth of field can be used in situations when focusing on a certain 
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object in the scene, and when background information is not essential. When the aper-

ture size becomes smaller, the value of the f − number is increased, and the depth of 

field becomes wider. Also, by changing the size of the focal length, the DOF can be con-

trolled. By decreasing the focal length, the depth of field becomes wider. A long depth of 

field can be used, for example, when taking an image of scenery. The working distance 

also affects the camera’s DOF: when imaging a target at further away, the depth of field 

becomes wider [8].  

There are several geometrically formed lens types available, and a camera lens can be 

a combination of different lens types. In most cases, the lens is spherically curved. When 

the lens surface is bent toward the centre, it is called a concave lens. When the lens 

surface is bent away from the lens centre, the lens is called convex [11]. 

Basic image formation can be modelled by a thin converging lens, where thin means that 

the lens’s focal length is considerably greater than its width. In a converging lens, the 

light rays viewed parallel with respect to the optical axis towards the lens, are bent 

through the lens. The light rays are converged behind the lens, on the focal point (beam 

2 in Figure 9) [6].  

Also, light which is pointed through a focal point comes out of the lens parallel to the 

optical axis (beam 3 in Figure 9). The centre of the lens is called the optical centre while 

the distance from the focal point to the optical centre is defined as the focal length [6]. 

By means of the thin lens equation (Equation 14), the focal length can be calculated. In 

Equation 14, g represents the object’s distance, and b the image plane’s distance from 

the lens centre along the optical axis. This model is an approximation of light refraction 

from the centre of the lens, and the model can be used in automated inspection tasks 

[6]. Image formation in the case of a biconvex, converging lens is presented in Figure 9. 

 

Figure 9. Image formation with a thin lens [6]. 



13 
 

A light ray reflected from the object and passing through the lens at its optical centre 

goes through without changing direction (beam 1 in Figure 9). This light ray is not re-

fracted and is called the principal ray. The relation between the object’s distance in space 

and the image’s distance from the optical centre can be written as [6]:  

G

g
 =  −

B

b
 ,      (13) 

where G represents the object point’s height and g the distance to the middle of the lens 

along the optical axis. The image point’s height is indicated as B and the distance to the 

lens centre as b. When using the thin lens equation, certain sign conventions must be 

taken into account. Positive values are given in the following conditions [6]: 

- The object’s horizontal distance g to the principal point is on the left side of the 

lens. 

- The object point G is located vertically above the optical axis. 

- The image’s horizontal distance b to the principal point is located on the right side 

of the lens. 

- The image point B is located vertically above the optical axis. 

- The image-side focal point is located on the right side of the lens. 

As the positions of the image and the object with respect to the lens are taken into ac-

count with the sign rules above, the relation between the focal length f, the object’s dis-

tance g and the image’s distance b from the lens centre can be written as follows: 

1

f
 =  

1

g
 +  

1

b
 .      (14) 

The magnification of the lens system V is written as follows [6]: 

V =
B

G
 = −

b

g
 = −

f

g−f
 .     (15) 

Greater magnification can be achieved when the object’s distance g remains constant 

with respect to the lens with longer focal length f values. 
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3. MACHINE LEARNING 

At the beginning of this chapter, different types of machine learning are presented. This 

is followed by a brief introduction to neural networks, and to the procedure used in net-

work training. Also, the VGG16 neural network model and transfer learning method are 

introduced. At the end of the chapter, data augmentation and the performance metrics 

used in deep learning are described. Machine learning can be categorized into different 

types, depending on the task to be solved. The types of learning are supervised learning, 

unsupervised learning, semi-supervised learning and reinforced learning.  

3.1 Types of machine learning 

The most frequently used type of machine learning is supervised learning [12]. In this 

type of learning, the input datapoints are labelled as belonging to a certain category, for 

example, the CIFAR-10 dataset consisting of 60000 32x32 pixel colour images [13]. Da-

taset images are categorised into 10 classes, with 6000 images per class. One class 

contains only images of cats, dogs, cars, ships etc. An algorithm is trained with data 

consisting of input images with known labels. The model is required to learn patterns 

from the images representing different classes. Eventually, in the test phase, an unla-

belled image is fed as a model input. The algorithm is required to correctly predict the 

class of the unlabelled input image.  

The input data can be expressed in a vector format, such as feature vector x . A learning 

algorithm’s output Y can be expressed as the function Y = f(x). This function can be im-

proved by updating the model parameters in the training phase to find the best solution 

[14]. Supervised learning can be divided into classification or regression tasks. In a clas-

sification problem, all input datapoints are labelled in advance as belonging to a certain 

discrete category [14]. This is the case with the previous example concerning the CIFAR-

10 dataset, where 60000 images are labelled as belonging to different classes. Typical 

classification algorithms are k-nearest neighbours, support vector machines (SVM), lo-

gistic regression, decision trees and naive bayes. 

Another type of supervised learning problem is regression. In this case, an algorithm tries 

to predict a numerical output for a continuous variable, using given input variables. An 

example of a regression problem would be estimating the price of a vehicle. The data, 

which is given to the model, can be the year of construction and the number of kilometres 

driven. In a classification task, an input is predicted to belong to a certain discrete class. 
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In the case of a regression problem, the algorithm gives a numerical estimate of the 

output, based on the input values [15]. 

 

 

Figure 10. Linear regression tries to predict Y values, with given values of X [16]. 

 

In a basic linear regression model, the relation between the input variable vector x ∈ ℝn 

and output scalar value y ∈ ℝ is assumed to be linear (Figure 10). Functions that predict 

the output are marked as ŷ and the parameter vector is defined as w ∈ ℝn. After adding 

a bias parameter b, the linear regression model can be written as:  

ŷ = wTx + b .      (16) 

Every element in a vector w is multiplied by the rows of vector x and summed up. The 

values of vector w are called weights. A greater magnitude of a certain weight has a 

bigger effect on the prediction [15]. This linear model concept is also applied in neural 

networks and discussed in the following sections. 

After having estimated n pieces of ŷ training samples, a procedure to measure model 

efficiency can be performed. In the case of a supervised learning problem, correct values 

for each training samples are given, marked as vectors yGT. Model performance can be 

measured by comparing the difference between correct values and predicted values with 
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an error function. This function is also known as a cost function. Mean squared error, 

expressed as: 

MSE =  
1

n
 ∑ (ŷi  −  yi

GT)2n
i=1 ,    (17) 

is one of the loss functions used, which measures the Euclidean distance between the 

estimated and ground truth values [15]. 

In unsupervised learning, only data samples are given to the algorithm, without 

knowledge of the correct output labels. While having only an input vector x and no cor-

responding true values, the learning algorithm is assumed to be able to find associations 

from the data structure by itself.  

In general, when the quantity of features (dimensions) in the data is increased, the effi-

ciency of a learning algorithm decreases. The technique that aims to prevent the phe-

nomenon is called a dimension reduction. A typical feature reduction technique is the 

unsupervised method known as principal component analysis (PCA). In PCA, data is 

converted to lower dimensions, to visualise the dimension with the most variance in the 

data structure [17]. 

In clustering, the aim is to discover similarities from the input data. By means of these 

same properties, data can be divided into groups, called clusters [18]. 

The reduction of the data dimensionality usually takes place before clustering [19]. In K-

means clustering, data is divided into k clusters. An example of a clustering-algorithms 

output is illustrated in Figure 11. Another used unsupervised algorithm is the self-organ-

ising map (SOM), which can be used for dimension reduction. 

Semi-supervised learning (SSL) is a combination of supervised and unsupervised learn-

ing. Only a certain amount of data is labelled, as in supervised learning. Labelling of data 

in advance can be expensive and the data can be hard to obtain, especially when the 

number of examples is extensive. A vast amount of unlabelled data is faster and cheaper 

to obtain. Semi-supervised leaning can be utilised in learning tasks such as speech 

recognition or classification. Because the unlabelled part of the data contains less infor-

mation, a lot of unlabelled data is needed to improve SSL algorithm accuracy [20]. 

In reinforced learning, an agent explores its surroundings with actions. The goal is to 

maximise a reward signal while moving in a defined space called an environment. No 

instructions are given in advance to the agent on how to solve the problem. The agent is 

assumed to be able to learn, based on feedback from the performed actions. After per-

forming a correct action, a reward is received. This reward can be achieved by one ac-

tion, or by combinations of several actions. 
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Figure 11. Data divided into three groups [21]. 

A reinforced learning system can be referred to as a trial-and-error type of learning. The 

system has the ability to gain a reward based on the correct actions [22]. The agent’s 

current state defines which actions must be made to gain the maximum reward. Cases 

when the performed actions do not help to receive a reward will give negative feedback 

to the agent. When repeating multiple actions in various states, the agent is assumed to 

be able to learn. These series of actions can constitute the maximal reward.  

One challenge regarding reinforced learning is how to exploit a past successful experi-

ence to gain new rewards. New explorations must be made to receive more knowledge 

and better results. Balancing between the exploration of an environment and exploitation 

of already received experiences must be made to find the optimal solution [22]. As in 

unsupervised learning problems, there are no correct answers given to a reinforcement 

algorithm. Nevertheless, these learning concepts differ from each other. The unsuper-

vised approach aims to predict the structure of the data, whereas a reinforced learning 

algorithm tries to achieve the maximal reward [22]. 

An example of how to solve problems with reinforced leaning is a robot moving in a room 

comprising corridors and obstacles. The robot receives information from the surround-

ings and improves its performance while moving around. The goal could be to find an 

exit door, which is placed in one corner of the room. By gaining new experiences from 

the surroundings, the robot eventually learns to find a way out. 
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3.2 Neural networks 

Neural networks (NN, and also artificial neural networks ANN) are powerful computa-

tional models used in machine learning applications. The first model of a neural network 

was introduced in 1943 by McCulloch and Pitts. Influenced by their earlier study, Rosen-

blatt later (1958, 1962) introduced the concept of a perceptron, which enabled a model 

to learn [15], [23]. The development of a neural network has been inspired by the func-

tionality of nerve cells (neurons) in the human nervous system. A network neuron model 

can be said to be a very simplified version of a biological neuron [24]. 

There are three typical structures related to neural networks. Firstly, the number of lay-

ers, and the quantity of neurons in each layer. Secondly, the learning system applied to 

update the weights of the neurons. Finally, different activation functions can be used in 

a network [25].  

A neural network consists of an input layer and an output layer. In between there are 

hidden layers, sometimes called black boxes. NN layers are fully connected, which 

means that every neuron is connected to every neuron in the next layer. The strength of 

each connection is called the weight. When altering the number of layers and the number 

of neurons in each layer, these modifications affect the model efficiency. 

 

Figure 12. Fully connected layers. Each circular neuron is connected to every neu-
ron in the following layer [26]. 

 

The NN structure as shown in Figure 12 is a feedforward neural network (multilayer per-

ceptron or MLP). The data, which is fed to the input layer, propagates through the net-

work in only one direction. There are only connections in the forward direction, with no 

feedback connections to previous layers. A network structure where feedback connec-

tions also exist is called a recurrent neural network [15]. 
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A single computational unit in a network layer is a neuron, as illustrated in Figure 13. 

Neurons are connected to previous layer neurons with inputs. The output value is con-

nected to the input of the next layer’s neurons. Every input has its own weight value, and 

this value corresponds to how much a certain input activates a single neuron. The weight 

value indicates how important a certain input is with respect to the neuron’s output.  

 

 

Figure 13. Model of a single neuron. Input value strength is marked as weight and a 
bias term is added. After the activation function, output y is formed. 

 

Inputs x and weights w are presented in a vector format as X = [x1, x2, xn] and W =

[w1, w2, wn]T. The sum of dot products between these vectors’ elements is calculated, 

and a single bias term is added to the neuron. By summing a single neuron’s weight and 

bias values, a neuron can be presented as a linear model:  y = ∑ wi ∗ xi +  b.  

In the next phase, a nonlinear activation function is applied to produce a neuron output 

y: 

y =  φ(∑ wi xi 
n
i=1 + b) .     (18) 

By adding a nonlinear activation function, a linear model is transformed into nonlinear 

form. Without this nonlinearity, a whole network of connected neurons would be de-

scribed as a single linear regression model [27]. An activation function determines how 

the output of a neuron in produced. It enables a model to be used to learn complex 

structures. 

In Equation 18, the activation function is marked as φ, and w denotes weight values, 

which are multiplied by input data values x and added with bias b. The number of inputs 

and corresponding weights w connected to the neuron is represented as index i. When 

starting to train a multilayer neural network, usually small initial weight values from uni-

form distribution are randomly selected [28]. 
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There are several activation functions used in feedforward networks. The first perceptron 

model was introduced by Rosenblatt in 1958, where a single layer neuron output was 

formulated as a step function. This function can be used only in linear separable binary 

classification tasks, and the output is determined with a single threshold value. If the 

threshold value is 0, the activation rule can be written as:    

f (x) = {
0, if x ≤ 0
1, if x > 0

 .      (19) 

Nowadays in advanced networks, other subsequent activation functions are applied. The 

logistic sigmoid function resembles a step function, but it has a wider decision boundary. 

The structure is like a smoothed step function, as illustrated in Figure 14. Function output 

values are in the range of [0,1] instead of only 0 or 1. High negative values are converted 

to 0, and high positive values are converted to 1. A sigmoid is used to predict probabilities 

in binary classification problems. The SoftMax activation function (Equation 20) is a mul-

ticlass generalized version of a sigmoid [14]. It is usually applied to the last layer in a 

network, with a multiclass classification task. SoftMax computes the probability distribu-

tion over different classes [29], [15]: 

softmax(x)i =  
exp (xi)

∑ exp (xj)j
 ,     (20) 

where xi is the network’s output value for a certain class, and ∑ exp (xj)j  is the sum of all 

output values. SoftMax calculates a probability value for a certain class  xi. 

   

Figure 14. A step function (Heaviside function) and a logistic sigmoid function. 

The hyperbolic tangent (tanh) activation function is a scaled version of a sigmoid and 

centred to zero, with the output varying in the range of [-1,1] [23]. The advantage when 

using a tanh function instead of a sigmoid is a zero-centred output. This improves the 

backpropagation in the training phase [29]. The tanh activation function is illustrated in 

Figure 15. 
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Figure 15. On the left, an output of the tanh function. On the right side, ReLU (blue) 
and Leaky ReLU (red) activation functions. 

A rectified linear unit (ReLU) is a commonly used activation function. The output is set to 

zero with negative input vales, and a positive input results in a linear output. Due to the 

function’s simple structure, it is fast to compute, and the function’s performance is high. 

Rectified linear units have been applied in Alexnet by Krizhevsky et al. in [30]. In their 

study, the ReLU activation function turned out to be several times faster in training com-

pared to tanh activations.  

A vanishing gradient problem is a phenomenon where a gradient value becomes smaller 

when backpropagation is performed in the training phase (section 3.3). A gradient value 

decreases in hidden layer neurons, when moving backwards from the output to the input 

layer. This causes an early layer’s neurons to learn more slowly, while gradient values 

become smaller [23]. 

One benefit concerning ReLU activation is that the function works better with a vanishing 

gradient problem while training, as compared for example to sigmoid, where an output 

is saturated with high positive or negative input values. This sets the gradient values in 

sigmoid close to zero. ReLU sets positive inputs as a linear output and a gradient exist. 

With negative values, the neuron is not activated [23]. The ReLU activation function is 

defined in: 

ReLU(x) = {
x, if x > 0
0, if x ≤ 0

 .    (21)  

A modified version of ReLU is the Leaky ReLU, where a low slope is added for input 

values less than zero (Figure 15). With a traditional ReLU, high negative values are set 

to zero. This can cause a dying ReLU problem, because of the zero gradient in the train-

ing phase. A leaky ReLU also sets a small output for a negative input value [31]. This 

prevents the whole neuron from dying while training. 
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3.3 Training of neural networks 

After having introduced the basic structures of a neural network, the principles of NN 

learning are covered in this section. To enable a neural network algorithm to learn, the 

objective is to minimise the value of a loss function in the training phase. By tuning weight 

vectors w parameters and biases b, the error between a correct input value yGT and an 

estimated value ŷ can be minimised. At the beginning of training, the network weights 

can be initialised to random values. Alternatively, uniquely designed weight initialisation 

methods can be used to improve network performance [32].  

In the next phase, a forward pass to the training data is performed. As a result, the output 

values for the weights are generated. Then by means of a cost function, the error be-

tween a true and an estimated value is calculated. Different cost functions can be applied 

to calculate the cost. Commonly used cost functions are mean squared error (section 

3.1, Equation 17) or mean absolute error, defined as: 

MAE =  
1

n
 ∑ |ŷi  − yi

GT|n
i=1  ,     (22) 

where yGT is a correct value and ŷ is an estimated value. The index of the test sample is 

marked as i. Another type of error function is a binary cross-entropy, which is used to 

solve binary classification tasks. In the case of a multiclass classification task, a categor-

ical cross-entropy error function can be used. The cross-entropy error function is defined 

in Equation 23 [14], where yGT is a ground truth value and ŷ is an estimated value: 

CE =  − ∑ { yi
GTn

i=1 ln ŷi + (1 − yi
GT) ln(1 − ŷi)} .   (23) 

 

Optimisation algorithms are used to minimise the cost function; one commonly used al-

gorithm is a gradient descent (GD). The next procedure is to find the negative gradient 

of this cost function, which describes how the weights and biases must be changed to 

minimise the cost function. The gradient is a vector value, indicating the direction where 

a function grows fastest. The goal is to minimise the gradient of the error function value 

to zero by taking a small step (learning rate) towards the negative gradient. Backpropa-

gation is a method for calculating these gradients. The partial derivatives with respect to 

each weight in a training set are calculated. Gradient values are computed from output 

layers to input layers for each weight, and the chain rule in derivative calculus is utilised. 
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Figure 16. Optimiser algorithm reaches the global minimum point [33]. 

 

After the gradients are calculated, every weight parameter on each layer in the network 

is updated according to: 

wi_new =  wi − α
dE

dwi
 ,      (24) 

 

where α denotes the learning rate, indicating the step size in the parameter update pro-

cedure, dE/dwi is the partial derivative of the cost function with respect to the corre-

sponding weight and wi  is the weight parameter to update.  

In a batch gradient descent algorithm, all training samples are used to calculate a single 

weight update. In contrast, in a stochastic gradient descent (SGD) algorithm, only one 

randomly selected training sample at a time is used to evaluate the cost function and 

weight update after one iteration. This makes the training process more efficient. Fur-

thermore, when a certain set of training samples are used at a time to update the weights, 

the algorithm is called a minibatch gradient descent [34].  

In Figure 16, the cost function is reduced by a parameter optimisation. This process is 

repeated until the global minima of the cost function is reached. An optimal learning rate 

hyperparameter can be selected by tuning this parameter in the training phase. When 

the learning parameter is set too small, model learning can be slow [15]. By setting the 

learning rate too high, an algorithm may not reach the minimum point, as the valley bot-

tom shown in Figure 16. Another learning parameter is an epoch. One epoch is per-

formed when all training samples have been used once. Weights are updated and back-

propagation is continued until the model error reaches the desired level or another stop-

ping criterion occurs.  
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3.4 Convolutional neural networks 

Early development of a convolutional neural network (CNN) was based on studies by 

LeCun et al. in [35], where handwritten digits were detected using a backpropagation 

algorithm. Later LeCun and his colleagues introduced an enhanced method to recognize 

handwritten digits with CNN [36]. CNN is commonly used in the field of computer vision, 

in object detection and classification tasks. 

The basic structure of NN architecture is also exploited in convolutional neural networks 

(Figure 17), where one or several fully connected layers are replaced with convolutional 

layers. A CNN model requires less computational power compared to NN. In a CNN 

model, only a small part of adjacent layers are fully connected at one time. 

 

 

Figure 17. An example structure of CNN, input image size 28x28x1 (1 colour chan-
nel input image) [37]. 

 

 A CNN takes an image as input and represents convolutional layer neurons in three 

dimensions: width, height and depth. A convolutional layer receives values from only a 

certain region at a time from the previous layer, instead of all pixel values as in the case 

of a fully connected layer [26]. 

In a convolutional layer, a two-dimensional surface area from an input image is called 

the receptive field, which also takes the image’s depth dimension into account, for ex-

ample, a 6x6x3 region where 3 represents the input image’s dimensions in 3 RGB chan-

nels. All 108 pixel values of this volume are fully connected to each neuron in a convo-

lutional layer [38].  
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An input image can be interpreted as a matrix containing the pixel values. In the case of 

an RGB image, 3 matrices, one for each colour channel, are used. A square-shaped 

receptive field called a kernel slides (convolves) horizontally over the rows of the input 

volume, until the whole input has been walked through with this window (Figure 18). 

Simultaneously with element-wise multiplication, the sum of dot products between the 

kernel and the corresponding input image region is calculated [39]. This operation cre-

ates a feature map, also called a channel. For example, the first convolutional layer in 

VGG16 consists of 64 different feature maps. 

Different filters can learn various features from an input image. As we go deeper into the 

CNN, the features of previous layers are combined in deeper layers. Filters in deeper 

layers will construct more complex features, learned by the network. Also, the number of 

filters is increased as we go deeper into the network. The primitive features of the early 

layers can be presented with fewer filters. Complex features are presented with more 

filters, deeper in the network. 

 

 

Figure 18. A kernel slides over one colour channel input image, with a stride of 1. 

 
 

There are some hyperparameters which quantify the size of the output volume in a con-

volution layer: depth, stride and zero padding. By determining a depth value, the number 

of filters to be used in a convolutional layer can be chosen. Every filter looks for a different 

kind of feature from an input image. To make CNN more effective, the number of network 

parameters is reduced with parameter sharing. This is done by keeping the kernel weight 

values constant within the same feature map [26]. 

The stride value determines how many pixels at a time a kernel window moves on each 

slide. The stride value affects the output. Higher stride values  produce fewer overlapped 

kernels while sliding, and a smaller spatial image is formed as output [38]. 
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A stride is used with a padding to adjust the kernel movement along the input. Hyperpa-

rameter zero padding is a method to determine the spatial size of the output volume. By 

setting zero values (Figure 19) around the input volume, the output size can be adjusted 

[26]. As a kernel movement with a certain stride must fit in the spatial frame, zero values 

can be added. No zero values are added in a valid padding, and a part of the original 

image may be cropped. This occurs when the kernel movement does not fit the input 

size. 

 

   

Figure 19. On the left, a stride of 1 and a zero padding of 1 are used. The kernel is 
marked as a red area. On the right, max pooling and average pooling operations. 

 

The basic layer structures in CNN are:  

- A pooling layer makes a down-sampling operation and shrinks an image along 

its height and width. As a result, it produces a down-sampled image, as shown in 

Figure 19. Average pooling calculates the average value of an input window area. 

Max pooling calculates the maximum value from the same region. 

- In a dropout layer, a set of neurons are dropped from the training phase with a 

specified probability value (e.g. 0.5). By adding a dropout layer to a network, 

overfitting can be reduced. 

- A rectified linear unit (ReLU) activation function layer converts all negative values 

to zero and has no effect on the input volume size [26]. 

- A fully connected layer type is similar to regular NN, in that every neuron in this 

layer is connected to every output at the previous layer [26]. The classifier part at 

the end of the network consists of fully connected layers. 

- At the final output layer of CNN, the image is represented as a single vector con-

taining scores for every class. Final probability scores for each class can be cal-

culated by using the SoftMax activation function. 
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3.5 VGG16 model 

VGG16 is a deep convolutional neural network introduced in a publication [40] by Karen 

Simonyan and Andrew Zisserman from the University of Oxford. The model achieved 

high rankings in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 

2014, achieving over 92 percent top-5 accuracy with a test dataset. The ImageNet clas-

sification dataset applied in the ILSVRC contest (2014) included 1000 varied classes 

with 12.8 million training, 50 000 validation and 100 000 test images [41].   

A few different versions of the VGG16 structure are presented in [40], with the main 

differences between the versions concerning the structure of the convolutional layers. 

The CNN version, consisting of 16 weight layers was applied in the experiments of this 

thesis. The network is presented in Figure 20. The network receives an image size of 

224x224 pixels as an input, followed by two adjacent convolutional layers. These layers 

have a small receptive field of 3x3 pixels, and the kernel performs a stride of 1, resulting 

in 64 channels.  

As we go deeper into the network structure, a stack of convolutional layers is followed 

by a max-pooling layer, which performs spatial pooling over an area of 2x2 pixels oper-

ated with a stride value of 2 [42]. Additionally in all the hidden layers, the Rectified Linear 

Unit (ReLU) is used as the activation function (not visible in Figure 20). The classifier 

part, consisting of two fully connected layers including 4096 channels, and the final 

dense layer with 1000 channels are predicted by a SoftMax layer. 

In the brick quality inspection experiments, the last fully connected layer size (Figure 20) 

was modified to 2 or 3, to maintain the brick type class-wise comparison. During the 

classification tests with Python programming, different-sized input images were also 

tested. This was enabled by changing the last max-pooling layer into a global average 

pooling layer. 

 

Figure 20. The layer structure of the VGG16 CNN model [40]. 
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3.6 Transfer learning 

Developing a CNN classifier from scratch can be a challenging task. This may be due to 

the size of the dataset, computation power or time required to train the model. Transfer 

learning is a design approach associated with machine learning to overcome these chal-

lenges. 

There may be a certain task related to supervised learning, for example an image clas-

sification with a deep learning model. Additionally, a domain can be defined as the origin 

of the data e.g. ImageNet. Transfer learning can be used in a situation where the aim is 

to exploit knowledge gained from a certain task for another similar task in a new domain 

[43]. In the thesis case, the weights of VGG16 pretrained by ImageNet were exploited in 

brick quality detection. 

The differences between a source and a target domain affects the usability of transferred 

features. Despite the differences, by using transferred features, the network’s generali-

zation performance can be improved as compared to random weight initialization [44], 

[45]. In this case, the brick data and the ImageNet data domains are not assumed to be 

very similar. A fine-tuning method was performed to alter the weights in the pretrained 

VGG16 layers. 

CNN early layer filters are closer to the input image, and these weights represent easily 

interpretable basic features. These feature maps consist of horizontal and vertical edges, 

lines, and combinations of these added with different colours. As we go deeper into the 

network, the features become more complex, as combinations of weights learned by the 

previous layers [46], [47]. 

Concerning the masonry brick data, the images consist of basic features like blobs, 

cracks and edges with colour variations. In the early convolutional layers in pretrained 

VGG16, the layers are assumed to have more valuable information regarding the brick 

classification task. Complex feature maps in the deeper part of the network are assumed 

to be less important for brick classification.  

The classifier part at the end of the original VGG16 is presumed not to have very usable 

weights, because of the difference between the training images in the brick data and 

ImageNet data. The thesis classification experiments were conducted with two scenar-

ios. These were opening only the classifier part of VGG16 for training, and alternatively 

opening all layers for training with the brick data. 
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With Python programming, the Keras framework can be applied to develop a deep learn-

ing model. In relation to transfer learning, there are several pretrained models available 

in Keras. Table 2 lists some of these pretrained models.  

Top-1 accuracy is used to evaluate classifier performance. This indicates how many test 

samples are correctly classified out of a certain dataset. Nevertheless, in some cases 

datasets can have multiple class instances in the same test image, for example, a dog 

and a cat in the same image. Top-1 accuracy gives only the highest prediction with a 

single class. Top-5 accuracy represents the top five predictions, which are present in the 

test image, also revealing multi-class instances from the test image. The classification 

result is considered to be true if the correct class is included in the top-5 predictions [48]. 

Top-5 accuracy marked in Table 2, is achieved with the ImageNet dataset. 

 

Table 2. Examples of deep learning models available in Keras [49]. 

 

 

The feature visualization tool used to generate Figure 21 was the Deep Dream technique 

in the Matlab Deep learning toolbox [50]. The feature maps learned by the VGG16 net-

work are visualised in Figure 21. The CNN was pre-trained with the ImageNet database. 

Layers between the input and output layers are referred to as hidden layers. By visual-

izing feature maps of different layers as plotted images, we can examine what kind of 

patterns and features each filter in the different layers is looking for. The idea is to pro-

duce a certain image, which corresponds to the activation on each feature map. 

Model 
Size 

(MB) 

Top-5 

Accuracy 
Parameters 

Depth 

(Layers) 

Time (ms) / 

inference 

step (GPU) 

MobileNetV2 14 0.901 3,538,984 88 3.83 

VGG16 528 0.901 138,357,544 23 4.16 

InceptionV3 92 0.937 23,851,784 159 6.86 

Xception 88 0.945  22,910,480 126 8.06 

InceptionResNetV2 215 0.953 55,873,736 572 10.02 



30 
 

Using this technique enables the visualization of what kind of features the network has 

learned to recognise in different layers of CNN. Deeper layers will construct more com-

plex features, learned by the network. Figure 21 is formed by visualising four feature 

maps, 92-95, in the 4th, 7th, 10th and 13th convolutional layers. A brick image was used 

as the VGG16 network’s input image. 

 

 

 

Figure 21. The features learned by VGG16, feature maps 92-95 in the 4th, 7th, 10th 
and 13th convolutional layers. From left to right, the top row presents convolutional 
layers 4 and 7, and the lower row presents layers 10 and 13. Matlab Deep learning 
toolbox was used to generate this image, representing the activation of different fea-
ture maps. 
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3.7 Data augmentation 

Essential factors when building a CNN model are the quality and quantity of the images 

in the dataset. On many occasions, the number of images available to be exploited in a 

learning process is limited. By applying more diverse items to a training dataset, aug-

mentation can improve the classifier’s performance with a better generalization ability 

[51]. Data augmentation is a technique for artificially expanding the size of the training 

dataset at hand. This is done in an image classification task, by altering the properties of 

the original images. Slightly varied versions of the original images are added to the train-

ing dataset.  

Images can be processed for example by flipping horizontally or vertically, translating in 

certain directions, rotating with various angles, altering a colour channel’s RGB values, 

cropping a part of the image away or alternatively adding some Gaussian noise to the 

image [52]. The Keras deep learning library contains the ImageDataGenerator -class, 

which has various augmentation parameters available. The augmentation methods used 

in the thesis tests were rotations (lower row in Figure 22) and flips in horizontal and 

vertical directions. Rotations in both directions were used only with the original image 

size. The cropped image size could not be rotated since part of a brick would have been 

outside the image frame. Neither colour variations by altering the brightness of the brick, 

or shear range modes were used, to avoid brick misclassifications. 

 

         

   

Figure 22. Top row, a cropped image augmented with horizontal and vertical flips.  
Below, the same brick with the original image size, rotations applied. 
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3.8 Performance metrics and overfitting 

Model accuracy is a frequently used metric for evaluating the performance of a learning 

algorithm. Accuracy indicates the ratio between the correct predictions and all predic-

tions, calculated as: 

Accuracy =
True Positive+True Negative

Number of predictions
 .    (25) 

Precision, recall and F1 − score are other estimation metrics which can be exploited re-

garding machine learning model evaluation. Depending on the machine learning task, a 

certain kind of error type may become more important than others. 

An example of a confusion matrix in a binary classification task is presented in Figure 

23. Predicted labels are marked as the matrix columns, and the rows represent the actual 

labels. Correctly classified observations are indicated in dark green on the confusion 

matrix diagonal. In a situation where the classifier output is positive, and the actual label 

is negative, the prediction is defined as a false positive. Similarly, when the classifier 

predicts the output as negative with a true positive observation, the prediction is a false 

negative [53]. 

 

Figure 23. A confusion matrix in a binary classification task. 

 

Precision is a metric revealing the ratio of how many true positive predictions are esti-

mated out of all positive predictions: 

Precision =
True Positive

True Positive+False Positive
 .    (26) 

 

Precision is useful in situations where a false positive prediction is harmful. An example 

of a false positive is when a patient is examined for a disease and gets a positive test 

result although the person is healthy. 
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Recall (also, true positive rate or TPR) is used to indicate the ratio of true positives com-

pared to actual positive and false negative predictions: 

Recall =
True Positive

True Positive+False Negative
 .      (27) 

In occasions where a false negative prediction must be avoided, recall is a useful metric. 

As in the patient health examination example, a false negative occurs when a patient 

receives a negative test result, although they still have a disease. 

Precision and recall can be combined into one performance metric: the F1 − score which 

indicates the harmonic mean of these metrics. The F1 − score can be calculated as fol-

lows: 

F1 − score = 2 ∗
Precision∗Recall

Precision+Recall
 .     (28) 

In situations when either the precision or recall value is more important, the Fβ − score 

can be used. If setting a β-value of 1, the metric is used as the F1 − score (Equation 28). 

When using a lower β-value (e.g. F0.5), precision is considered more important. Alterna-

tively, with a higher β-value such as F2, recall is given more weight [54]. The Fβ − score 

is formulated as follows:  

Fβ − score = (1 + β2) ∗
Precision∗Recall

(β2∗Precision)+Recall
 .   (29) 

 

Overfitting is a problem related to supervised machine learning. When considering a 

classification task, a model may obtain good performance in the training phase. Con-

versely, when the same model fails to classify unseen datapoints correctly in the test 

phase, overfitting may have occurred. An overfitted model is too complex and learns 

details from the training data. The model also learns noise, instead of only the essential 

signal. An overfitted model suffers from an inability to generalize, which leads to poor 

performance with the new datapoints in the test phase. The objective in the training of a 

machine learning model is to achieve a model with a good generalization ability. In the 

case of a classification task, good generalization enables the model to classify correctly 

unseen datapoints in a test set also. Procedures to avoid overfitting in machine learning 

include cross-validation, regularization and the usage of dropout layers. Also, adding 

more datapoints to the dataset and an early stopping of training before the model overfits, 

can be used to reduce overfitting [55], [56]. 
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4. TEST IMPLEMENTATION  

The objective of this thesis was to study the feasibility of a machine learning application 

in brick quality inspection. A brick manufacturing company were interested in improving 

the detection of quality differences in various brick types. If a suitable detection method 

could be found, the manufacturer would also be interested in increasing the degree of 

automation in the production. The plan was to implement quality inspection with a ma-

chine vision system and detect defects from the images of the bricks. A convolutional 

neural network was chosen as the most suitable machine learning method to evaluate 

images collected by automated image capturing. 

4.1 Initial steps to gather data  

The first goal was to collect a uniform, high-quality dataset of images. It was desirable 

that the lighting conditions should remain constant during the imaging of multiple bricks.  

A visit to the brick manufacturer production facilities was made to start planning the im-

age data acquisition. The conditions at the production location did not allow the collection 

of a set of high-quality images. This conclusion was drawn because there was no proper 

conveyor belt where a machine vision camera could be installed. Other options for suit-

able data collection implementation were then studied. 

One option was to build an imaging box, where all the bricks would be placed one by 

one for shooting. This approach would enable uniform lighting conditions during the im-

aging. The downside of this system was that it would be very time-consuming. All bricks 

had to be imaged from three different directions and changing the position of the bricks 

and triggering the camera would have to be done manually. 

The second option to collect images was to build a test arrangement in a laboratory and 

transport a set of bricks there for imaging. This approach turned out to be the best option. 

Suitable test equipment was found at the Satakunta University of Applied Sciences 

(SAMK) RoboAI laboratory, where the brick imaging was performed.   

After choosing the data collection equipment and the location, the next thing to decide 

was the brick type, and the quantity of bricks to be transported for imaging. There were 

over 10 brick colour options with different sizes, and additionally there were five options 

for the bricks’ outer surface. The outer surface (which is visible after masonry) can vary 

from smooth to rough with different variations. Dark brown bricks with dimensions of 
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285x85x60 mm (WDH) were chosen for imaging; the weight of each brick was about 2.1 

kg. 

In image classification tasks implemented with CNNs, there is usually a vast number of 

images in the datasets. For example, in the CIFAR-10 dataset, there are 6000 images in 

each class. Choosing the number of bricks for the examination was a challenging task, 

because there had to be enough imaging data for the learning algorithm. Another aspect 

was, that all bricks would be manually processed on the conveyor belt three times. This 

made restrictions for the number of bricks to be imaged. In the case of too few gathered 

test samples, data augmentation was planned for the collected images. Augmentation 

can be used to artificially generate more images by rotating, flipping and zooming the 

original images.  

Bricks are sorted into three different categories in production: class 1 represents only 

good quality items and class 2 contains bricks having minor defects. Class 3 bricks have 

such major defects that these low category products are not used, and the items are 

sorted for recycling. Class 2 category products can be used for masonry but are sold at 

a lower price. Different class images are presented in Figures 24, 25 and 26. 

 

 

 
 

Figure 24. A class 1 brick imaged from top, bottom and outer side surface. 
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Figure 25. Class 2 brick. 
 
 
 
 

 
 

Figure 26. Class 3 brick. 
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The objective was to collect enough data from all three brick classes. Finally, the decision 

was made to collect 250 bricks from classes 1 and 2, with an additional 500 bricks from 

class 3, to have more items representing the major defects. The plan was to image all 

the bricks from three different sides: top, bottom and from the side surface. (Figures 24, 

25, 26). If a small defect were at the end (the smallest side) of the brick, the end side 

would be visible only when the brick was placed at the corner of a wall. In that case the 

brick can be rotated before masonry.  A situation where both ends would have defects 

is very rare. The bricks are packed in strings at the production site, each string made up 

of 128 individual bricks. The delivered brick shipment consisted of 2x128 class 1 bricks, 

2x128 class 2 bricks and 5x128 class 3 bricks. 

4.2 Test equipment 

Imaging took place in the SAMK RoboAI laboratory and was started on 29th July, with 

the last set of images collected on 20th August 2021. Data acquisition was performed 

over 14 different days. The imaging setup consisted of a machine vision camera, a laptop 

with Halcon imaging software, a lighting module, a power source and a conveyor belt, 

as shown in Figure 27.  

 

Figure 27. The conveyor belt with installed camera. The dome lighting’s power 
source, tuned to imaging settings. 
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There were several machine vision cameras available in the laboratory for use for imag-

ing, and IDS area camera model UI-3590CP-C-HQ was chosen to collect the data. This 

18 MP resolution area camera is equipped with a CMOS colour sensor and a rolling 

shutter. A colour sensor was chosen because colour difference was one of the defect 

types to be inspected. 

The goal was to build a lighting arrangement where the amount of light would remain 

constant during the shooting procedure, regardless of the environment’s lighting condi-

tions. When starting to plan the lighting arrangement, two options were possible. One 

option was a setup with frontal lighting, where a set of LEDs would be installed above 

the conveyor. This approach would have required a box around the camera, to keep the 

lighting conditions stable. The second option was to use diffused dome LED illumination, 

where a dome structure efficiently blocks reflections from the surroundings. Eventually, 

the dome option was selected for testing. One advantage with using this setup was that 

there was no need to build an external imaging box around the camera. 

After several aluminium support frame installations, the correct height for the dome was 

tuned (Figure 27). The ideal height was set to the level where a single brick would be 

able to move under the rails in all shooting positions. Additionally, some free space 

needed to remain between the rail and the brick. That was for the case of a bent class 3 

brick, which also had to be able to move freely under the rails. 

The next phase was to install the camera in the correct position. The vision camera was 

mounted at the same level as the hole on top of the dome, and test imaging was then 

performed. The inspection of test images revealed that there were blue reflections in the 

images (Figure 28). This occurred due to a led string light, pointing towards the camera 

sensor. To solve this reflection problem, the camera position was shifted 3 cm above the 

top hole of the dome (Figure 29). This procedure helped to get rid of the blue dots in the 

images. There were also noticeable reflections in the test images caused by the indoor 

fluorescent lighting at the laboratory. It was possible to switch off the room top lighting 

during the imaging, and in this way the amount of extra light caused by the environment 

was minimised.  

The conveyor belt used in this setup could be run in both directions, with multiple speed 

values. Images were captured mainly by running the conveyor in the same (forward) 

direction. Occasionally, when being imaged the bricks cracked into two pieces, or with 

other less common defects, both conveyor directions were used to obtain multiple 

images. 
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Figure 28. In the test shooting, a low camera installation position incurred blue re-
flections in the image. Also, indoor fluorescent lighting caused yellow reflections in 
the image, visible at both ends of the brick. 

 

 

 

Figure 29. Camera installed above the dome light, with overhead lighting switched 
off during shooting. 
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The camera was controlled by Halcon machine vision software. The code used for 

imaging and the camera parameters was tuned to be suitable for the bricktype used. The 

Halcon program controlled the image capturing with several parameters. The shape of 

the detected brick and the colour were supposed to be within certain limits to trigger the 

camera automatically. The number of images to be captured while a single brick passed 

through the camera’s field of view was also one adjustable parameter. At first, all bricks 

were imaged once from three directions. Later, after all 3 classes had been imaged, 

some extra images were captured with a multiple image capturing program. This was 

made to collect more data on the already imaged bricks, for possible later usage. 

Especially when imaging class 3 (rejected quality) bricks, in some cases the brick colour 

on one of the three sides was too light, and the image was not captured. The same effect 

occurred if the program’s area parameter was not fulfilled because a large part of the 

brick was missing. In these situations, bricks were shifted to the side and marked. 

Afterwards the program parameters were also changed to collect images of these bricks. 

 

 

Figure 30. The imaging setup in the laboratory, and a pile of approximately 500  
imaged bricks. From the 10th row upwards, the pile is filled with class 1 bricks, and 
the lower rows consist of class 2 bricks. The colour hue difference between the two 
classes is noticeable. 

 

The imaging procedure was as follows. A pallet stacked with bricks was transported to 

the left side of the conveyor. An empty pallet for imaged bricks was placed at the right 

side of the conveyor. Bricks were fed one at the time, through the camera’s field of view 
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on the conveyor, while the belt speed and direction remained constant. After passing the 

camera, a brick was manually picked up, rotated to the other side, and fed again to the 

conveyor. This picking sequence was repeated twice per brick to collect data from all 

three sides. Then the brick was placed on the right side pallet (Figure 30) and so on. 

When processing multiple bricks at the lab, there was a constant need to clean the 

conveyor belt several times every day. This was an attempt to keep the backgound 

colour in the images constant. Also, the floor and the camera lens needed to be cleaned 

occasionally. Usage of the same kind of dome lighting in the factory would need an extra 

cover to prevent dust spreading inside the dome. Additionally, a proper air blowing 

mechanism could be used to avoid dust disruption.   

4.3 Collected data 

The total amount of collected images is presented in Table 3 and all the imaged bricks 

are shown in Figure 31. At the first stage, all bricks were fed to the conveyor for imaging. 

Some of the bricks were not captured by the vision system, because all the camera 

program triggering parameters (e.g. colour hue, shape) were not fullfilled. In the second 

stage, the program parameters were changed to also capture images of light-coloured 

bricks. The third stage of shooting consisted of light-coloured bricks, and also cracked 

bricks with one end missing. During the third shooting, the camera program parameters 

also needed to be altered, to gain images of different-shaped bricks.  

After the data acquisition, the images of all the classes were inspected, duplicate images 

were deleted and the data was fixed in the right order. At the end of the inspection, in 

the class data folder there were only three photos for the same brick in the right order. 

The two first images presented the upper and underside of the brick (sides with holes), 

and the third photo was from the side surface.  

Python 3.8 software was implemented to concatenate three images together, resulting 

in one image of each brick. File paths to find the images to be combined and saved were 

given to the program. The order of the images to be combined had to be correct in the 

data folder. The program combined three images arranged in ascending numeric values 

at the end of the image name. In cases where the number of images in the data folder 

were not divisible by three, the additional images remained in the original shape and 

were not combined. 
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Table 3. The total number of images acquired in each phase. 

 

 

 

 

Figure 31. Bricks were piled on pallets after imaging. The two left pallets are filled 
with class 3 bricks, and the right-side pallet is stacked with class 2 bricks (9 lower 
rows), with class 1 bricks on top. 

 

There were several damage types in brick classes 2 and 3 (Figure 32). The main defect 

to differentiate a class 2 brick from a class 1 brick was the difference caused by the 

lighter colour hue. Also, some minor chips and cracks were noticed in class 2 bricks. In 

several cases, a class 2 brick resembled a class 1 brick so much that there was no 

noticeable difference between the classes. This caused challenges for classification, 

Class 

1st  stage 

captured 

images 

2nd stage 

captured 

images 

3rd stage 

captured 

images 

Images 

after 

inspection 

Final 

combined 

images 

1 768   768 256 

2 765  6 768 256 

3 1820 79 94 1779 593 
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which is covered in the following chapters. After inspection of class 2 and class 3 bricks, 

the overall defect types can be listed as follows: 

- difference in colour 

- minor chipping 

- part of brick missing 

- minor cracks 

- whole brick cracked 

- bent brick 

- twisted brick. 

When looking at a brick from above or underneath, black holes can be seen. If a minor 

crack occurs in between two holes, the brick can be categorised as class 1. However, if 

the minor crack extends between three holes, for durability reasons the brick is catego-

rized as class 3. A black colour in the brick images indicates that the brick was exposed 

to a high temperature in the oven. In this case, the brick may also be twisted or bent. 

 

 

     

Figure 32. Defect types: the two images on the left represent class 2, with chipping 
and a colour error. Other images: class 3 with a major crack, a bent/colour error, 
and a part of the brick missing with a colour error. 
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4.4 Modifications to collected data 

At this stage, the image data consisted of 256 classes 1 and 2, and 593 class 3 TIFF 

format images, with a resolution of 1800x1500 pixels. There were large white back-

ground areas in the images, some of them having fine-grained brick dust in the back-

ground. The next procedure was to cut off the majority of the white areas from each 

original and discrete 600x1500 pixel size images. Then three cropped images were com-

bined to represent one individual brick. 

The CNN model VGG16 was used in this thesis work for classification. The input image 

was resized to 224x224 pixels in the network. The goal was to test the network’s perfor-

mance with the combined original size and the combined cropped size images. 

Image cropping was performed with a tailor-made tester program, implemented by a 

local engineering company using C++ programming language. In the program, the orig-

inal image is first turned into grayscale, and convolved with a Sobel kernel to highlight 

the edge features. Strong enough edges are taken through the Hough transform to find 

the most dominant linear lines, both (nearly) horizontally and vertically. These four edges 

of the brick are then offset by some pixels, to make sure no actual brick area is touched 

(Figure 33). Then the original colour image is clipped and straightened by using the in-

tersection points of the edges. 

A new combining program was implemented, and three cropped images were combined 

into one image, as earlier. The size of the cropped images varied because the size of 

the bricks was not exactly uniform. To preserve the original brick image aspect ratio, in 

the program the maximum height value of three images was detected. Then the images 

were combined from left to right, and the empty space below was filled with a white colour 

(Figure 34). The resolution of the combined images varied by a small amount. The overall 

combined image size was about 1150x1300 pixels.  

By cropping the original size brick images, the situation where the CNN would be able to 

learn features from the background was eliminated. In the dataset images in this thesis 

the background was relatively clean, due to the constant cleaning of the conveyor belt in 

the laboratory. In factory conditions, there would be more brick dust in the background, 

and image cropping would be advisable. Another aspect is that the cropped images were 

also rectified vertically as compared to the original photos. 
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Figure 33. Cropping program interface. Detected original image was cropped along 
the green lines.   

 

 

In the combined images (Figure 34), the brick side surface photo seems to be longer 

than the other sides. This is due to the camera’s projective transformation in the imaging 

phase. The side surface of the brick was closer to the camera when imaging the brick on 

the conveyor belt.  
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Figure 34. Cropped and combined class 3 brick. 
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5. CLASSIFICATION TEST RESULTS 

The next phase in the thesis work was to examine the ability of a convolutional neural 

network to categorize different brick classes by means of the collected data. In this chap-

ter, the results of three different tests are presented. The Python programming language 

was chosen to be used in this project to develop a machine learning model. Initially, 

Anaconda open-source distribution with Python version 3.8, TensorFlow and Keras 

frameworks were installed on a Windows PC. Anaconda comes with the Jupyter and 

Spyder programming interfaces, which were used during the code development. 

The training phase in a neural network demands a lot of computational power, so it is 

useful to operate with a GPU (Graphics Processing Unit) rather than a CPU (Central 

Processing Unit). The necessary GPU drivers were installed in the system from the Ten-

sorFlow website [57]. During the tests, as expected, the GPU computation turned out to 

be several times faster compared to only CPU operation. 

At the beginning of the CNN design phase, several approaches were available. One 

option was to design the network all the way from the beginning to the end and update 

the network structure with the help of the results received from the test runs. Initial tests 

were made with this method, by changing the network’s layer structure and parameters. 

Having a relatively small amount of image data, a need for more effective ways to 

achieve a powerful classifier arose. 

The transfer learning method was exploited to achieve more efficient results for brick 

classification. In this learning procedure, pretrained network weights can be used as fea-

ture extractors and only the fixed classifier part at the top of the network is trained with 

new data. Also, a fine-tuning method can be used to alter the weights in the base model’s 

convolutional layers [58]. In the Keras framework, there are CNN models with pretrained 

weights available for use with transfer learning. A VGG16 pretrained CNN model was 

chosen to be used in the thesis experiments.  

5.1 Cross-validation and oversampling  

Cross-validation is a technique used in machine learning to evaluate model performance 

more reliably. The basic idea in cross-validation is to divide an available dataset into 

different train/test splits with several allocations. By altering the division of training and 

test samples in the dataset, more robust results can be achieved. In K-fold cross-valida-

tion, the dataset is randomly divided into K-folds. K-1 divisions are used in training and 
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one group is used for testing at a time. If K is chosen to be 5, four different groups at a 

time are used in training and one group is used for testing (Figure 35) [14]. 

 

Figure 35. K-fold cross-validation, where K=5 [14]. 

 

Uneven class distribution can have a harmful effect on the classification with CNNs, but 

the imbalance can be improved with oversampling or undersampling procedures. In over-

sampling, a certain class has fewer samples than the others. The number of data sam-

ples in this class is increased to have an even amount of data, as compared to the other 

classes. Also, by performing undersampling, the amount of data points in the majority 

classes can be reduced. As a downside of undersampling, by removing samples from 

the majority class, valuable information can be lost. 

In a systematic study by Buda et al. [59], the conclusions were that oversampling does 

not cause overfitting when applied in a CNN model. Oversampling can be performed by 

randomly adding copies of existing datapoints to the minority classes. A more progres-

sive oversampling technique is the Synthetic Minority Oversampling Technique 

(SMOTE), where new datapoints are constructed synthetically for the class. 

In the SMOTE technique, the feature vectors of oversampled class datapoints are visu-

alised and the k-nearest neighbours of these datapoints are spotted. A new datapoint is 

created on a line between the original and the k-nearest datapoint in the feature space. 

A synthetic datapoint is created by multiplying the difference between the datapoints by 

a number between 0 and 1 and adding this value to the original sample [60]. 

Oversampling was implemented to maintain an even class distribution between the train-

ing samples in classes 1-3. A separate code was created to make copies of class 1-2 

data samples, and a cross-validation method was also performed before the over-

sampling. The procedure was as follows: 

- Count the random cross-validation by 50/50 data division between the training 

and test set folder images, concerning all classes. At this stage, 128 images were 
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in the class 1 and 2 training folders. The class 3 training folder contained 297 

images. 

- Oversample class 1 and class 2, by making copies of all 128 datapoints. Then 

randomly choose 41 more training samples, to achieve even class distribution in 

the training set images. At this stage, 297 images were in the class 1, 2 and 3 

training folders.  

- The class 1 and 2 test folders contained 128 images. The class 3 test folder con-

tained 296 images. 

- Perform training 10 times. After 10 runs, calculate the test accuracy mean and 

standard deviation (Tables 4, 6, 8). Also, calculate the other performance metrics 

from the 10 test runs (Tables 5, 7, 9). 

When performing training of the network, the training set was divided by 50/50 division 

into training and validation sets. In the results listed further on in this chapter, over-

sampling was performed for the training set, and cross-validation was performed before 

the oversampling.  

5.2 Results 

During the development of the CNN structure, several tests were performed by altering 

the hyperparameters of the network. Different learning rates, batch sizes, epochs, image 

pre-processing methods and layer structures in the classifier part of the network were 

tested. Also, many variations were examined concerning the training/validation/test divi-

sions. Different input image sizes and data augmentation techniques were also tested. 

No data augmentation (except oversampling), was applied to the image data concerning 

the results in this chapter. 

10 tests were performed between classes 1 and 2, 1 and 3, 2 and 3 and for all classes 

1-2-3. Experiments were conducted with the original size 1800x1500 pixel images and 

with the cropped image size dataset. In the VGG16 model, these different-sized input 

images were resized to 224x224 pixels. Section 5.4 covers the tests where all convolu-

tional layers were frozen during training, and only the classifier part was open for training. 

The tests covered in sections 5.3 and 5.5 were conducted with all VGG16 layers open 

for training. 

Network parameters were set to constant during the tests to achieve comparable results. 

The loss function used during the tests was categorical cross-entropy. Stochastic gradi-

ent descent (SGD) was utilised as an optimiser, with a learning rate of 0.0001. 
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5.3 Original image size with all layers open 

The results in this section present experiments where the original size images were used 

as input images. Pretrained VGG16 weights were utilised, and every layer in the VGG16 

model was opened for training. By opening the convolutional layers for training, high 

accuracy scores in all class-wise tests were achieved (Table 4). The reason for this is 

assumed to be the difference between pretrained ImageNet images and the brick data 

images. Adjusting the weights also in the convolutional layers improved the model’s per-

formance. The whole network was trained with the brick data and the training was per-

formed with 15 epochs. 

 

Table 4. Training, validation, test accuracies and standard deviations (SD) of 10 
class-wise tests, with the original 1800x1500 image size. 

 

The results in Table 4 indicate, that 89 percent accuracy was achieved in the tests where 

all three classes were used. Class-wise 1-2 tests achieved almost the same accuracy. 

Class-wise tests between two classes, which were conducted with class 3 images, 

achieved over 90 percent accuracy. The training curve in Figure 36 is rather smooth, so 

the model is not assumed to have improved learning after 15 epochs. In the performance 

metrics shown in Table 5, F1 score values indicate that class 3 brick images were the 

easiest to classify. In the same table, class 2 bricks received the lowest F1 score values. 

10 

Testruns 

Training 

accuracy 

Training 

SD 

Validation 

accuracy 

Validation 

SD 

Test 

accuracy 

Test 

SD 

Classes 

1-2-3 

0.99 0.02 0.94 0.04 0.89 0.06 

Classes 

1-2 

0.99 0.01 0.99 0.02 0.90 0.02 

Classes 

1-3 

1.00 <0.01 0.95 0.02 0.95 0.01 

Classes 

2-3 

1.00 <0.01 0.96 0.02 0.94 0.01 



51 
 

 

Figure 36. Model learning curves with the original image size. Accuracy and loss as 
a function of epoch. The graph concerns one training phase between classes 1-2-3. 

 

In Figure 36, the learning curve presents a single 15 epoch training run between classes 

1-2-3. In the test set, there was over twice the amount of test samples in class 3, as 

compared to classes 1-2. This can be noticed in the images column in Table 5.  

 

Table 5. Class-wise model performance metrics as the mean of 10 tests of 1-2-3 
classification; 15 epoch training conducted before each test. 

 

 

10 Testruns Precision Recall F1 score Images 

Class 1 0.84 0.93 0.88 128 

Class 2 0.82 0.86 0.84 128 

Class 3 0.98 0.89 0.93 296 
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5.4 Cropped image size 

The results in this section present experiments where cropped size images were used 

as the input images. VGG16 model weights were utilised, and only the classifier part of 

the pretrained model was opened for training. Layers 1-19 were frozen during training. 

The classifier part of the network was trained with the brick data and the training was 

performed with 15 epochs. 

 

Table 6. Training, validation, test accuracies and standard deviations (SD) of 10 
class-wise tests, with the cropped image size (approximately 1150x1300 pixels). 

 

The results in Table 6 indicate, 85 percent accuracy in the test where all three classes 

were used. Class-wise 1-2 tests achieved almost the same accuracy. The best class-

wise tests between two classes, which were conducted with class 3 images, achieved 

94 percent accuracy. The training curve in Figure 37 is rather smooth, therefore the 

model is not assumed to have improved learning after 15 epochs. In the performance 

metrics shown in Table 7, F1 score values indicate that class 3 brick images were the 

easiest to classify. In the same table, class 2 bricks received the lowest F1 score values. 

 

10 

Testruns 

Training 

accuracy 

Training 

SD 

Validation 

accuracy 

Validation 

SD 

Test 

accuracy 

Test 

SD 

Classes 

1-2-3 

0.99 0.02 0.92 0.02 0.85 0.02 

Classes 

1-2 

0.98 0.02 0.98 0.02 0.84 0.03 

Classes 

1-3 

1.00 <0.01 0.95 0.02 0.94 0.02 

Classes 

2-3 

1.00 <0.01 0.92 0.01 0.90 0.02 
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Figure 37. Model learning curves with the cropped image size. Accuracy and loss 
as a function of epoch. The graph concerns one training phase between classes 1-
2-3. 

 

In Figure 37, the learning curve presents a single 15 epoch training run between classes 

1-2-3. In the test set, there was over twice the amount of test samples in class 3, as 

compared to classes 1-2. This can be noticed in the images column in Table 7. 

 

Table 7. Class-wise model performance metrics as the mean of 10 tests of 1-2-3 
classification; 15 epoch training conducted before each test. 

 

 

 

 

10 Testruns Precision Recall F1 score Images 

Class 1 0.77 0.86 0.81 128 

Class 2 0.71 0.78 0.74 128 

Class 3 0.98 0.87 0.92 296 
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5.5 Cropped image size with all layers open 

The results in this section present tests where cropped size images were used as the 

input images. Pretrained VGG16 model weights were utilised, and every layer in the 

VGG16 was opened for training. High accuracy scores in all class-wise tests were 

achieved by opening convolutional layers for training too (Table 8). The reason for this 

is assumed to be the difference between pretrained ImageNet images and the brick data 

images. Adjusting the weights also in the convolutional layers improved the model’s per-

formance. The whole network was trained with the brick data and the training was per-

formed with 15 epochs. 

 

Table 8 Training, validation, test accuracies and standard deviations (SD) of 10 
class-wise tests, with the cropped image size (approximately 1150x1300 pixels). 

 

The results in Table 8 indicate 89 percentage accuracy in the test where all three classes 

were used. Class-wise 1-2 tests achieved approximately the same accuracy. The best 

class-wise tests between two classes, which were conducted with class 3 images, 

achieved 96 percent accuracy. The training curve in Figure 38 is rather smooth, the 

model is not assumed to have improved learning after 15 epochs. In the performance 

metrics shown in Table 9, the F1 score values indicate that class 3 brick images were 

the easiest to classify. In the same table, class 2 bricks received the lowest F1 score 

values. 

 

10 

Testruns 

Training 

accuracy 

Training 

SD 

Validation 

accuracy 

Validation 

SD 

Test 

accuracy 

Test 

SD 

Classes 

1-2-3 

1.00 <0.01 0.95 0.02 0.89 0.02 

Classes 

1-2 

1.00 <0.01 1.0 <0.01 0.90 0.03 

Classes 

1-3 

1.00 <0.01 0.96 0.01 0.96 0.01 

Classes 

2-3 

1.00 <0.01 0.94 0.03 0.92 0.05 
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Figure 38. Model learning curves with the cropped image size. Accuracy and loss 
as a function of epoch. The graph concerns one training phase between classes 1-
2-3. 

 
 

The learning curves shown in Figure 38, and the confusion matrix in Figure 39 present 

a single training (Figure 38) and test run (Figure 39) between classes 1-2-3. In the test 

set, there was over twice the amount of test samples in class 3, as compared to classes 

1-2. This can be noticed in the images column in Table 9. Also, the amount of class-wise 

test samples is marked in the rows in the confusion matrix. 

 

Table 9. Class-wise model performance metrics as the mean of 10 tests of 1-2-3 
classification; 15 epoch training conducted before each test. 

 

 

10 Testruns Precision Recall F1 score Images 

Class 1 0.86 0.91 0.88 128 

Class 2 0.75 0.85 0.80 128 

Class 3 0.99 0.89 0.94 296 
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Figure 39. Confusion matrix after 128 class 1-2 and 296 class 3 test set   
images. 

 

5.6 Discussion of the results 

The final tests were performed with the original (1800x1500) and the cropped (about 

1150x1300) pixel image sizes. The input images were resized in the VGG16 model to 

224x224 pixels. In earlier tests in the designing phase, the VGG16 structure was modi-

fied to resize the input images to bigger sizes (e.g. 448x448 or 440x500 pixels). These 

procedures did not give better results, so the original 224x224 resize value was main-

tained. 

All of the tests were performed 10 times to achieve more reliable results. Mean and 

standard deviations were calculated from the accuracy scores (Tables 4,6,8) and the 

mean of the other performance metrics (Tables 5,7,9). 

When analysing the class-wise images, it is noteworthy that several class 2 brick images 

resembled class 1 bricks (Figure 40). When inspecting these difficult cases manually, 

the correct classification could not even be made by the naked eye. These similar data-

points probably had a detrimental influence on the accuracy scores. In general, when 

comparing class 1 and class 2 brick images, the colour hue difference was the main 

difference between these classes.  
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Figure 40. Class 2 brick on the right, resembling class 1 brick on the left. 

 

When interpreting the accuracy test results in Tables 4, 6 and 8, no major differences 

were observed. Class 3 images were the easiest to classify with all test combinations. 

This can be noticed from the class-wise tests (Tables 4, 6, 8). In all two-class compari-

sons, class 3 bricks were detected with at least 90 percent accuracy. The best perfor-

mance, 96 %, was achieved with a class-wise 1-3 comparison and a cropped image size, 

when all layers were opened for training.  

Class 3 images were easily recognised, also with the naked eye. Obvious colour differ-

ences with cracks and chips were typical features in class 3 brick images. Additionally, 

there were more than twice as many images in class 3 as compared to the other classes. 

This also contributed to better class 3 detection results. 

Class-wise 1-2-3 and 1-2 accuracy tests gave approximately the same results within the 

same test table. This can be noticed in the top two rows in Tables 4, 6 and 8. When 

comparing these two class-wise tests, about 90 per cent top accuracies were obtained. 

These were achieved with the tests where all the network layers were opened for training 

(Tables 4 and 8). 

The class-wise 1-2 test achieved the lowest accuracy scores of all the two-class com-

parisons (Tables 4, 6 and 8). According to the accuracy tests, class 2 images were the 

hardest to classify correctly. In the accuracy tests both the original image and cropped 

image sizes with all layers open gave the best results. This leads to the conclusion that 

it is advisable to open the whole network for training. 
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The F1 score indicates the harmonic mean of precision and recall. The F1 score can be 

described as a combination of precision and recall metrics. The precision, recall and F1 

score performance metrics are listed in Tables 5, 7 and 9. In all tables, the metrics indi-

cate the highest values for class 3 images.  

In all of the tests (Tables 5, 7 and 9), class 1 bricks achieved a better F1 score than class 

2. Class 2 brick images achieved the lowest F1 scores in all tests. The performance 

metric results led to the same kind of conclusion as with the accuracy scores. Class 3 

brick images were the easiest to classify, and class 2 images were most likely to be 

confused with other classes.  

To summarise the results above, the original and cropped image sizes with all layers 

open provided the best results. Overall, the cropped image size tests are assumed to be 

more reliable when estimating classification performance. This is because of the more 

detailed input image. An important aspect is that the classification results are likely to be 

improved by having more data samples of all classes. 
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6. CONCLUSIONS 

The convolutional neural network turned out to be an effective learning model for finding 

different defects from the brick images. Additionally, the usage of transfer learning gave 

improved results regarding classification performance. According to the results obtained 

using two different image size datasets, it can be concluded that the convolutional neural 

network is suitable for the classification of brick images. 

Diverse CNN models from scratch were tested during the development. However, the 

usage of the VGG16 model with the transfer learning concept gave the best results. The 

usage of pretrained weights speeded up the training process. The same method is also 

recommended for use in future design. According to the classification test results, further 

development of the detection system is advisable, with certain considerations. 

In this project, the amount of datapoints available to be exploited with deep learning 

model was rather low. The main reason for the limited dataset was that there was no 

proper conveyor installed at the factory facilities. Therefore, gathering the image data 

was a quite challenging task. Approximately 2400 kg bricks were manually processed 

three times in the laboratory to collect the whole dataset.  Overall, it can be assumed 

that by having more data samples, the classification test results can be improved. 

Concerning data collection in these particular factory conditions, over 10 colour options 

with several brick sizes and five outer brick surface options are available. Every brick 

type must be taught once to the detector. It is reasonable to perform this alongside the 

normal handmade, class-wise separation in production.  

The proposed option is to construct a conveyor, equipped with an imaging box, where 

cameras image the bricks from three directions. By building a solid imaging box around 

the camera setup, harmful effects caused by the brick dust can be minimised. The fol-

lowing procedure is to combine three images into one in a specific program, as in the 

thesis work. Frontal LED lighting is preferable as a light source, instead of the dome 

lighting used in the laboratory conditions. 

In the factory setup, at the beginning of the production line, a robot arm would pick each 

brick one by one and place it onto the conveyor. Only the teaching phase would require 

manual brick handling by an employee. The operator would choose the correct brick 

class by pressing the corresponding button on the control panel. Then the operator would 

feed the brick along the conveyor through the image capturing box. Different class im-

ages would be stored in separate directories in the computer used.  
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After enough images have been stored out of all the classes, the CNN application could 

be used to detect various brick classes. Three conveyors and two cartesian robots are 

required after the detection system to manage the brick separation.  

The number of collected images would be at first 1000 images per class, and once 

stored, the brick data can be reused. Additionally, extra images may be added to the 

data directory later to gain a more comprehensive and efficient dataset. 

The input image is resized to 224x224 pixels in the VGG16 model. When the cropped 

image size is used as input, more detailed defects from the brick surfaces can be repre-

sented. It is recommended to use a cropped image size in the actual implementation. 

By using the cropped image size, the background effects of the conveyor belts on the 

learning process can be minimised. When using large background images, brick dust or 

broken brick pieces may disrupt the learning. Image cropping can be made with the pro-

gram used in this thesis, or also a CNN-based R-CNN object detection methods can be 

developed.  

A subject for future code design would be to develop the VGG16 model classifier part 

that was used, by altering its dense layer structures. Other experiments to be conducted 

could be to test brick classification with other pretrained CNN models available in Keras. 

When designing a camera set-up for factory conditions, the spreading of fine-grained 

brick dust must be considered. Brick dust can easily be propagated on the brick surfaces 

or on the camera lens. The lighting conditions should remain constant, and also dust 

propagation on the lights must be prevented. It is recommended to install a pneumatic 

blower or dust hoover in the system. A line scan camera with an RGB sensor is a valid 

type for imaging. Resolution and other camera specifications can be chosen after a more 

detailed set-up design.  

According to the examinations described in this thesis, it is possible to exploit a CNN-

based classification system for brick quality inspection. More reliable results can be 

achieved by having additional image data for the classifier. If different class images are 

very similar even to the naked eye, correct class detection accuracy will be limited. In 

the image acquisition phase, it is important to provide clearly separable class-wise im-

ages for the classifier.  
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