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ABSTRACT

Elias Paakkunainen: Coupled Finite Element and Micromagnetic Modeling of Iron Losses in Tape
Wound Magnetic Cores
Master of Science Thesis
Tampere University
Master’s Programme in Electrical Engineering
March 2022

A new model is developed to predict iron losses in tape wound magnetic cores. The model aims
to accurately predict the losses at high excitation frequencies and take into account the geometry
of tape wound cores better than already existing methods. There is a demand for accurate models
of magnetic components at high frequencies, for example, due to the development of power elec-
tronics towards higher switching frequencies. The increased complexity of the developed model is
expected to lead to longer simulation times.

Three different methods are utilized to study relevant phenomena. These include the mod-
els developed in this thesis: the 1D micromagnetic model with eddy currents (1DMMEC) and
the coupled 1D micromagnetic – 2D FE model (1DMMEC–2DFE). Additionally, 3D micromagnetic
simulations with MuMax3 are carried out. The iron losses are determined with all of these meth-
ods. Suitable numerical implementation of micromagnetic theory is also chosen. The 1DMMEC
model introduces an approach where the tape material is modeled with micromagnetic theory,
and the solution of the eddy current problem is approximated using a cosine series. The input to
the model is the magnetic flux density, and the model is derived for a single strip of tape. The
1DMMEC–2DFE model is derived to consider better the cross-section geometry of tape wound
cores. The model couples the 1DMMEC model to a 2D FEM formulation. The resulting model al-
lows expanding the micromagnetic description of the tape material over the cross-section of tape
wound cores.

The 3D micromagnetic simulations with MuMax3 cannot accurately model the iron losses.
Direct simulation of the tape is not possible due to the computational burden, and small-scale sim-
ulations do not give satisfactory results. However, some magnetization processes in the tape can
be examined through 3D micromagnetic simulations. The iron losses predicted with the 1DMMEC
model are in good agreement with similar models from the literature. This motivates to attempt to
couple the model with the 2D FEM to obtain a more general description of tape wound cores. The
iron losses predicted with the 1DMMEC–2DFE model achieve good agreement with measured
losses. In some situations, the predicted losses describe the measurements more accurately than
the 1DMMEC model. The accuracy of the prediction seems to decrease slightly with thinner tape
thicknesses. On the other hand, the simulation parameters were not varied to achieve the best
fit to the measured losses in every situation. The computational burden of the 1DMMEC–2DFE
model is significant with small excitation frequencies.

Keywords: eddy currents, finite element method, iron losses, micromagnetic theory, tape wound
core
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TIIVISTELMÄ

Elias Paakkunainen: Nauhasydämen rautahäviöiden mallintaminen mikromagnetiikan elementti-
menetelmään kytkevällä mallilla
Diplomityö
Tampereen yliopisto
Sähkötekniikan DI-ohjelma
Maaliskuu 2022

Tässä diplomityössä kehitetään uusi menetelmä ohuesta nauhasta rullatun rautasydämen hä-
viöiden laskemiseksi. Malli pyrkii ennustamaan tarkasti suuritaajuuksisten magneettikenttien ai-
heuttamat häviöt. Toisena tavoitteena on huomioida nauhasydämen muoto paremmin kuin mihin
toistaiseksi kirjallisuudessa esitetyt mallit pystyvät. Esimerkiksi tehoelektroniikan kytkentätaajuuk-
sien kasvaminen luo tarpeen tarkemmille magneettisten komponenttien malleille suurilla taajuuk-
silla. Kehitettävän mallin kasvavan monimutkaisuuden oletetaan lisäävän simulointiin kuluvaa ai-
kaa.

Nauhasydämen mallinnukseen käytetään kolmea eri menetelmää. Käytettäviä menetelmiä
ovat tässä työssä kehitettävät mallit: 1D mikromagnetiikka-pyörrevirtamalli (1DMMEC) ja 2D ele-
menttimenetelmään kytketty 1D mikromagnetiikka-pyörrevirtamalli (1DMMEC–2DFE). Edellä mai-
nittujen mallien lisäksi käytetään 3D mikromagneettisia simulointeja, jotka suoritetaan MuMax3-
nimisellä ohjelmalla. Nauhasydämen rautahäviöt määritetään kaikilla kolmella lähestymistavalla.
Työssä kehitettyjen mallien johtamiseen käytetään tilanteeseen soveltuvaa numeerista arviota
mikromagnetiikasta. 1DMMEC-malli soveltaa mikromagneettista teoriaa nauhan materiaaliin, ja
pyörrevirrat nauhan paksuuden yli ratkaistaan kosinisarjaa hyödyntävän approksimaation avul-
la. Mallin sisäänmenosuureena on magneettivuontiheys, ja malli on johdettu yksittäiselle, suoral-
le nauhan palalle. 1DMMEC–2DFE -malli pyrkii ottamaan nauhasydämen rakenteen paremmin
huomioon. Kyseinen malli yhdistää 1DMMEC-mallin 2D-elementtimenetelmään. Yhdistetty malli
mahdollistaa nauhasydämen poikkileikkauksen mallintamisen mikromagneettisen teorian avulla.

MuMax3-ohjelmalla tehtyjen mikromagneettisten 3D simulaatioiden avulla ei voida ennustaa
nauhasydämen rautahäviöitä tarkasti. Riittävän suurta palaa nauhasta ei voida mallintaa suoraan
3D simulaatioiden avulla, koska kyseiset simulaatiot olisivat liian raskaita. Simuloitaessa pienem-
piä systeemejä lasketut häviöt eivät vastaa muilla menetelmillä määritettyjä häviöitä. Pienemmät
systeemit soveltuvat kuitenkin nauhan magnetisaatiodynamiikan tutkimiseen. 1DMMEC-mallilla
lasketut rautahäviöt vastaavat kirjallisuudessa esitettyjen mallien tuloksia. Tämä vahvistaa mal-
lin toimivan oikein, ja se voidaan yhdistää 2D-elementtimenetelmään. 1DMMEC–2DFE -mallilla
lasketut rautahäviöt vastaavat hyvin nauhasydänten mitattuja rautahäviöitä. Joissain tapauksissa
yhdistetty malli on tarkempi kuin 1DMMEC-malli. Yhdistetyn mallin tarkkuus heikkenee, kun nau-
hasydämen nauhaa ohennetaan. Toisaalta simulaatioparametreja ei vaihdeltu eri simulaatioissa
parhaan mahdollisen tuloksen saamiseksi. Laskenta 1DMMEC–2DFE -mallilla on matalilla taa-
juuksilla hidasta.

Avainsanat: elementtimenetelmä, mikromagnetiikka, nauhasydän, pyörrevirrat, rautahäviöt
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1 INTRODUCTION

There is a constant demand for new modeling techniques to push further the frontier of

what is accessible through computer simulations. The demand stems from both academia

and the industry. Novel modeling techniques are a subject of research as themselves,

and they may help reduce the amount of costly and time-consuming prototyping in the

industry. The subject of interest is not only to be able to model bigger and more complex

systems but also to, sometimes only roughly, replicate results with a lower computational

burden.

The system examined in this thesis is a tape wound magnetic core. Tape wound cores

are often one alternative for the core topology of toroidal inductors. Of particular interest

are the power losses in the core when it is subjected to varying magnetic fields. Generally,

these losses are referred to as iron losses. Recent pursuits for energy efficiency and more

compact magnetic components motivate studies of loss mechanisms and more accurate

models.

Using conventional methods to model the iron losses in tape wound cores gives satisfac-

tory results at low excitation frequencies, but the accuracy reduces at high frequencies.

This is problematic, for example, due to the development of power electronics towards

higher frequencies through new switch devices [1]. There exist models utilizing micro-

magnetic theory, which improve the accuracy of estimated losses in the high-frequency

range [2, 3]. However, these models are developed for a single strip of tape instead of an

entire tape wound core.

The aim of this thesis is to create a model for tape wound magnetic cores that couples the

2D finite element (FE) method (FEM) and micromagnetic theory. The model is expected to

be able to take into account the geometry of tape wound cores and utilize micromagnetic

theory in a system conventionally considered too large for micromagnetic description. The

research question is to study the accuracy of the created model compared to measured

results and existing methods. The quantity of primary interest is the predicted iron losses

of the core. Additionally, attention is paid to the computational performance of the model.

The outline of this thesis is the following. Chapter 2 presents general concepts in mag-

netic materials and iron loss modeling. In Chapter 3, the emphasis is on tape wound

cores. Their materials and applications are presented, and general magnetic properties
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are described in more detail for tape wound cores. Chapter 4 presents the mathematical

modeling that was done in this work. The used formulations of the micromagnetic theory

and FEM are also introduced. Chapter 5 presents the results that were obtained with

the methods described in Chapter 4. The results are compared to models presented in

the literature, and their properties are discussed. Chapter 6 sums up the most important

results and observations of this work. Additionally, suggestions are made for future work

on the topic.
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2 MAGNETIC MATERIALS

This chapter introduces some important concepts of magnetism in matter at a general

level. First, magnetism is discussed on a microscopic scale. The second part of this

chapter concentrates on a macroscopic approach to magnetism and discusses power

dissipation in magnetic materials.

2.1 Magnetic domains and domain walls

When observing the magnetic properties of a material on a microscopic scale, the rel-

evant quantity is the magnetization M which describes the magnetic state of the body.

A classical description can be obtained by postulating elementary magnetic moments in

magnetized matter. These magnetic moments can be thought to behave similarly to mag-

netic moments of individual atoms. The magnetization field in the matter is the volume

average of the contributions of the elementary magnetic moments. The magnetization is

continuous and smooth over the volume of the body. [4]

Generally, macroscopic bodies of magnetic material consist of magnetic domains and

domain walls (DW). Separate domains are identified by the different orientations of M .

Inside domains, the magnetization is assumed to be approximately uniform, i.e., pointing

to the same direction at every point. Although originally the existence of domains was

solely theorized, these days direct observation is possible. Figure 2.1 shows an example

of observed magnetic domains in iron.

DWs are the regions separating two different domains. In a DW, the magnetization of one

domain smoothly changes to the magnetization of the neighboring domain. DWs can be

divided into Bloch and Néel types depending on how the magnetization changes from one

domain to another in the 3D space. Also, such DWs exist that cannot be put to either of

these categories. Additionally, DWs can be characterized by the change in orientation of

M between neighboring domains to, for example, 180◦ or 90◦ DWs. Despite taking only a

small fraction of the volume of the body, DWs contribute significantly to the magnetization

dynamics. The effects of the motion of DWs and possible interplay with the structural

disorder are also often observable on the macroscopic scale. The interaction of structural

defects and DWs is known as wall pinning.
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Figure 2.1. Domains in iron observed with magneto-optical methods. Observations from
two surfaces of the sample have been combined to create a 3D appearance. [5]

Domains and DWs exist in magnetic materials because it is energetically favorable. The

driving force behind the formation of these patterns is the pursuit to minimize the energy

of the system, which is dependent on different contributions and phenomena. Factors

contributing to the energy of the system are presented in Chapter 4 alongside introduc-

ing micromagnetic theory. Going further, these phenomena have different dependencies

of the situation to be examined, resulting in the statement that the magnetization of the

body is above all case dependent. For example, the question whether this subdivision to

domains and DWs even happens depends on the size of the body examined. In small

bodies, the magnetization tends to be uniform, whereas with larger systems often sepa-

rate domains appear. [4, 5]

2.2 Magnetization process and iron loss mechanisms

When the power losses due to a change in the magnetic state of magnetic material are

to be determined, the material response to the given excitation has to be known. The

physical origin of this power dissipation is the irreversible processes that occur when the

elementary magnetic moments in the material change their orientation. These losses

are often referred to as iron losses. In practice knowing the material response means

simultaneously knowing the time evolution of the magnetic flux density B and magnetic

field strength H in the material. This can be determined with the material property, or

constitutive relation, of the system. The material property is often presented as B(H),

implying that B can be determined when H is known.

In the following, different possibilities for the B(H) relation are discussed alongside their

properties. The most straightforward approach is to assume a linear dependency be-
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tween the fields

B = µH , (2.1)

where µ is the material permeability. The inverse of µ is called the material reluctivity

ν. The accuracy of (2.1) can be improved by replacing the constant µ with a magnetic

flux density dependent permeability µ(∥B∥). Despite being simplified descriptions of the

actual material behavior, both of the mentioned single-valued permeabilities have their

region of validity. Constant permeability refers to magnetically linear material and can be

useful with small fields and non-ferromagnetic materials. With big fields, however, this

approach is not feasible because it neglects magnetic saturation altogether, which can be

taken into account by using µ(∥B∥). Neither of these approaches is hysteretic, and thus

they cannot predict a hysteresis loop. [6]

In general, the behavior of magnetic materials is hysteretic. With much simplification,

magnetic hysteresis can be seen as a phenomenon in which the instantaneous B is

not merely a function of the instantaneous H but also depends on other factors. Above

all, the history of the former excitation field values and magnetic states of the system is

significant. A typical example of hysteretic behavior is the hysteresis loop: when H is

increased from an initial value to a certain magnitude and then back to the initial value,

B(H) does not return towards its initial value along the same path and is not even guar-

anteed to reach this value. The traces of B with respect to H are referred as hysteresis

loops or alternatively B(H)-loops. The area of a closed hysteresis loop corresponds to

the energy dissipated during the cycle. Figure 2.2 shows a conceptual representation of

a few different possible hysteresis loops. [4]

The hysteresis loops also provide an example of phenomena originating from the mag-

netic microstructure being observable in macroscopic samples. A closer examination of

the traces of B with respect to H reveals that the trace is not smooth but instead behaves

in a step-wise manner. These abrupt changes are referred to as Barkhausen jumps. They

can be explained in terms of the changing energy landscape of the system as an external

field is imposed. As the system attempts to minimize its energy, consecutive jumps to new

local energy minima occur, and M changes accordingly. It needs to be noted that the

global minimum of energy is rarely obtained due to the higher energy values separating

two minima.

More generally, B can be expressed as a function of both H and M

B = µ0(H +M ), (2.2)

where µ0 is the permeability of free space. The complication of this added generality is
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Figure 2.2. Conceptual illustration of hysteresis loops. Two minor loops are depicted
alongside the main loop, which reaches magnetic saturation. Quantities B and H are
used on the axes despite being vector fields. In order to plot B(H)-loops, the fields have
to be expressed with a single value. This can be achieved, for example, through spatial
averages.

that now also M has to be determined. Predicting M in macroscopic bodies of magnetic

material is difficult. In this work, the Landau-Lifschitz-Gilbert (LLG) equation will be used

to determine M . The LLG equation and the methods used to evaluate it will be introduced

in Chapter 4.

When determining the iron losses in magnetic materials, the concept of loss separation is

often used. Loss separation means that the total iron losses can be divided to separate

loss contributions which can be calculated independently. Using loss separation, the

volumetric power loss density p can be expressed as

p = pcl + phy + pex. (2.3)

To introduce the contributions briefly, classical losses pcl are the eddy current losses that

can be calculated from Maxwell’s equations for a macroscopically homogeneous medium.

The hysteresis losses phy originate from the intrinsic rate-independent magnetization pro-

cesses on the fine scale. The excess losses pex account for the intrinsic rate-dependent

processes. Being hard to model, pex is sometimes simply considered as the difference

between the measured losses and the sum of pcl and phy. [4]

Throughout this thesis, the losses will be expressed as volumetric loss densities. The

calculation of total power loss can be carried out by integrating p over the volume of the

magnetic material.
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3 TAPE WOUND MAGNETIC CORES

In this chapter, the theoretical background presented in Chapter 2 is applied to tape

wound magnetic cores. Tape wound cores are presented with some examples of appli-

cations. Additionally, the magnetic domain structure of the tape material and the chosen

approach to loss modeling are discussed.

3.1 Applications

A tape wound magnetic core is constructed by winding a thin tape into a spiral structure.

Separate layers of the core are insulated from each other. An inductor with a tape wound

core can, in principle, be used anywhere where a magnetic component is required. How-

ever, for practical reasons, they prove to be the optimal choice in specific applications.

Figure 3.1 shows an example of a commercial tape wound core.

The magnetic properties of the tape wound core originate directly from the core mate-

rial and dictate the suitable application. From the perspective of core losses, the two

most attractive materials are Co-based amorphous alloys and nanocrystalline alloys. Co-

based alloys are the example case for which ultimately the losses will be modeled in

this work. To be more specific, Co71Fe4B15Si10 and Co67Fe4B14.5Si14.5 will be examined.

Nanocrystalline alloys consist of Fe-Cu-Nb-Si-B, and they are also known by tradenames

FINEMET and VITROPERM. The performance of these materials in terms of losses is

roughly speaking similar. [8, 9]

When comparing the magnetic performance of Co-based amorphous and nanocrystalline

alloys to more conventional materials, the differences become clearer. These materials

perform better than permalloy (Ni-Fe alloy), ferrites, or laminated steels. The usage of

laminated steels is not efficient with frequencies significantly higher than line frequency.

Also, tape wound cores are not manufactured from ferrites, but they are still mentioned

here due to their extensive use as a core material. Ferrite cores are often solid due to the

low conductivity of ferrites. The superior performance over a wide range of frequencies

compared to the ferrite cores makes Co-based and nanocrystalline tape wound cores an

attractive alternative for some applications. Better magnetic properties of the tape wound

core allow reduction of size and weight of magnetic components. Lower core losses

improve efficiency. [8, 10]
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Figure 3.1. Commercial tape wound core and its casing. The picture is taken from the
website of a retailer [7].

The applications of Co-based and nanocrystalline tape wound cores require high effi-

ciency and compact system size. Often, the device operates with high frequency, but also

line frequency applications exist, such as earth leakage circuit breakers and electronic

energy meters. With higher frequencies, multiple possible applications are available in

the different inductors required for switched-mode power supplies. For example, these

include power transformers, common mode chokes, storage chokes, and magnetic am-

plifiers. Additional examples of applications exist in telecommunication and automotive

electronics. [11]

To conclude the practical discussion on tape wound cores, Figure 3.2 presents a sche-

matic of the core cross-section. The schematic exaggerates the layered structure of the

core for demonstration purposes. Also, the coordinate system over the core geometry is

defined and will be used throughout the rest of this thesis. Along with the standard Carte-

sian coordinates, radial and tangential components will be utilized. Angle ϕ is defined as

the angle between an arbitrary position vector and the x-axis.

3.2 Domain structure

Figure 3.3 illustrates the assumed domain structure in the tape of the tape wound core

in this work. A separate Cartesian coordinate system with axes denoted as u, v, and

w is used on the scale of a few domains of the tape. The structure is assumed to be

very regular, with the magnetizations of neighboring domains pointing in the opposite

directions along the axis dictated by material anisotropy. Anisotropy refers to an intrinsic

property of the material, which makes it more favorable for the material to be magnetized

in specific directions. Anisotropy will be discussed in more detail in Chapter 4. Also, for
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Figure 3.2. Illustration of the cross-section of the tape wound core geometry. Additionally,
the coordinate system used in this work is presented.

simplicity, the domain width is assumed to be constant in the tape.

The external field affecting the material is applied perpendicular to the direction of the

anisotropy axis, in the direction of v-axis in the coordinate system of Figure 3.3. Under

the sinusoidally varying external field, the magnetizations of the domains are expected

to oscillate around the anisotropy axis. However, the deviations from the initial positions

are assumed to be small. Particular emphasis needs to be given that the only expected

response to the external field is the rotation of the domain magnetizations. Consequently,

many more general magnetization phenomena are neglected, such as changes in domain

volumes and positions as well as processes including the DWs. In fact, the effects of DWs

are neglected in this work. With these assumptions it is enough to model the dynamic

magnetization over the tape thickness w ∈
[︁
−d

2
, d
2

]︁
in only one point (u, v) of the tape

plane in order to obtain the dynamic magnetization of the whole tape. The thickness of

the tape is denoted with d.

The long list of assumptions in the previous paragraphs can only lead to the conclusion

that the domain structure assumed in this work is very idealized and cannot be valid in

general situations. With this simplified scheme, it has to be accepted that some, not nec-

essarily negligible, phenomena are neglected. Two important aspects will be discussed

further: whether such a simple and regular domain structure can exist in real materials

and whether the DW processes can be ignored.
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Figure 3.3. Assumed domain structure of the tape. The arrows show the orientation of
the magnetization in the domains. (a) Without applied magnetic field strength, (b) with
applied magnetic field strength in the v-direction. Image modified from [2].

The first notion that needs to be made is that for such a regular antiparallel domain pat-

tern to exist, the tape must be very thin, and a large enough anisotropy must be present

in the material. Otherwise, it would not be energetically favorable for all the domain mag-

netizations to point in the direction of the anisotropy axis. Secondly, the magnetization

of the body has a complex dependency of material parameters and previous states of

the system [4]. Particularly this history dependency is utilized when the desired state of

the sample is obtained through annealing, i.e., through suitable treatment of high tem-

perature and external magnetic field. In literature, there are examples where the required

anisotropy and desired domain structure are obtained in thin tapes through annealing [12,

13].

The important aspect of DWs is whether they move due to the varying external field.

DW motion is considered a separate loss mechanism, which the model developed in this

work does not take into account. In the presented domain structure, the DW motion

decreases as a function of external field frequency [14]. As the motion decreases with

high frequencies, it can ultimately be neglected. This can be assumed to happen in the

megahertz range with the materials examined in this work. The relaxation of DW motion

has been experimentally shown through Kerr microscopy. [14, 15]
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3.3 Loss separation

In this work, it is advantageous to write (2.3) as

p = pcl + psd + pdw, (3.1)

where the introduced contributions psd and pdw contain the sum of phy and pex divided dif-

ferently. In (3.1), psd denotes the loss contribution originating from so-called spin damping,

and pdw losses from DW processes. There exist formulae to calculate both phy and pex

but they, in particular pex, are quite phenomenological with dependencies from intrinsic

processes hard to quantify. These formulae will not be presented. According to the con-

siderations in the previous section, pdw can be neglected at high frequencies, and thus

the total losses are assumed to be the sum of pcl and psd.

In the following, different ways to calculate pcl are briefly discussed. The motivation for

this is to show that these approaches, often used as the standard solutions to estimate

the losses, are not applicable to the application of this work. Apart from the fact that

estimating the total losses with pcl neglects psd, there are also other factors affecting

the accuracy of this approximation. The different methods to calculate pcl usually give

different results depending on the used material property. An exception to this rule worth

mentioning is the well-known low-frequency limit equation

pcl =
π2

6
σd2B2

maxf
2, (3.2)

where Bmax and f are the amplitude and frequency of the sinusoidal magnetic induction.

The electric conductivity of the material is denoted with σ. The remarkable thing about

this equation is that the classical losses can be predicted without knowing the material

property at low frequencies. However, the frequencies of interest in this work are too high

for this equation to be used.

The generalized version of (3.2) derived for linear material property is

pcl =
π

2

γB2
maxf

µ

sinh γ − sin γ

cosh γ − cos γ
, (3.3)

where γ =
√︁

πσµd2f [4]. The used material property is present in the formulation

through the presence of µ in the equation. Even though (3.3) is derived assuming a linear

material property and the material property used in this work will be the LLG equation,

the sum of classical and spin damping losses could, in theory, be determined with this

equation. In order to do so, µ(f) would have to be solved from the changed material

property. In [16], a measured µ(f) is used alongside (3.3) to predict the losses in a tape
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wound ring at high frequencies, and a good agreement with measurements is achieved.

However, the losses will ultimately be calculated from the field quantities because defining

the lumped parameter µ in each situation is unnecessary.

If (3.3) would be used with the linear material property, the resulting losses in high fre-

quencies would be greatly underestimated when compared to the measured losses. At

high frequencies, a linear B(H) relationship predicts the loss per cycle to be proportional

to f 1/2 whereas the proportionality according to the measurements is approximately f [2].

This difference is due to the coupling of eddy currents and spin dynamics, which is not

taken into account with the linear material property. In other words, the contribution of psd
is neglected. By using the LLG equation in the constitutive law, this phenomenon is taken

into account, and the high-frequency power loss calculation becomes more accurate [3].

In what follows, the field quantities are denoted with b and h to distinct the fields over the

tape thickness from the corresponding macroscale quantities. The focus is on thin layers

of tape in which the thickness of the tape is small compared to the other dimensions. This

allows us to model the situation in 1D and consider the fields b and h as scalar quantities

facing in the direction parallel to the surface of the tape. The losses containing both eddy

current and spin damping contributions can be expressed as

pcl + psd =
1

T

∫︂
T

hs(t)
db0(t)

dt
dt (3.4)

where hs is the magnetic field strength on the surface of the tape and b0 the average

magnetic flux density in the tape [17]. The time variable is denoted with t, and T is the

period. The time-averaged losses are presented here to express the losses in comparable

form to (3.2) and (3.3). Equation (3.4) allows determining the losses directly from the field

quantities without defining µ. Expressing the losses using these quantities is beneficial in

experimental measurements and, as will be seen, in the chosen modeling approach.

To complete the discussion on loss modeling, a method to obtain b(w, t) and h(w, t) is

presented. The coordinate along the thickness of the tape is denoted with w. In practice,

the fields are obtained by solving an eddy current problem over the thickness of the tape.

When b and h are scalar fields in a thin layer of tape, the eddy current problem can be

solved by solving a 1D diffusion equation [18]

∂2h(w, t)

∂w2
= σ

∂b(w, t)

∂t
. (3.5)

In this work, solution of (3.5) is approximated with a model presented in [18]. The main

idea of the model to be presented is to express b(w, t) and h(w, t) with truncated cosine

series. The cosine series allows to express b(w, t) as a linear combination of coefficients

bn(t) and cosine functions αn(w) which are defined as αn(w) = cos(2nπw
d
). With these



13

b

- d/2

0

 d/2

w

 N
b
 = 3  N

b
 = 10

Figure 3.4. Illustration of the approximation of b(w, t) with a cosine series. The blue
dashed lines are the profile of b(w) towards which the cosine series converges. The
red lines give two examples of the estimated profiles with relatively small Nb. As Nb is
increased, the accuracy of the approximation increases.

definitions, b(w, t) can be expressed as

b(w, t) =

Nb−1∑︂
n=0

bn(t)αn(w), (3.6)

where Nb is the number of cosine terms in the cosine series. Figure (3.4) shows how the

cosine series approximation of b(w, t) converges as Nb is increased. The magnetic field

strength at the surface of the tape can be calculated from

⎡⎢⎢⎢⎢⎢⎢⎣
hs(t)

0
...

0

⎤⎥⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

hs

=
1

d

∫︂ d/2

−d/2

⎡⎢⎢⎢⎢⎢⎢⎣
α0(w)

α1(w)
...

αNb−1(w)

⎤⎥⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

α

h(b(w, t))dw + σd2C
∂

∂t

⎡⎢⎢⎢⎢⎢⎢⎣
b0(t)

b1(t)
...

bNb−1(t)

⎤⎥⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

b

, (3.7)

where h(b(w, t)) is the material property. Until now, the material property has always

been presented as B(H) but the definition of H(B) is equally possible. The matrix

C is a constant matrix with the dimensions of Nb × Nb. The method to evaluate C is

presented in [18]. Equation (3.7) defines the abbreviations that will be used later in this

work for the vectors present in the equation. The column vector containing hs is denoted

as hs, the used cosine functions as α and the cosine series coefficients as b.

In (3.7) as many terms in the series as necessary can be included by increasing Nb.

Apart from the first value, all other entries of hs are 0. The input to (3.7) is either hs or b0,

from which the other possible input variable and the higher-order magnetic flux density

coefficients can be solved. In this work, b0, which corresponds to the average magnetic
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flux density in the tape, is the input for the model. When hs is solved from (3.7), the loss

in the tape material can be calculated by using (3.4).
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4 METHODS FOR MODELING OF IRON LOSSES IN

TAPE WOUND MAGNETIC CORES

This chapter presents three different approaches to model the iron losses in tape wound

magnetic cores. The presented methods are referred to as 3D micromagnetic simula-

tions, the 1D micromagnetic model with eddy currents (1DMMEC), and the coupled 1D

micromagnetic – 2D FE model (1DMMEC-2DFE). Additionally, the used implementations

of micromagnetic theory and FEM are presented.

4.1 3D micromagnetic simulations

In this section, the micromagnetic theory is briefly introduced. The concepts are pre-

sented in general terms, but the emphasis is on the numerical implementations used in

this work which allow us to perform computations. Additionally, determining the losses by

using 3D micromagnetic simulations is discussed.

Returning to the considerations in Chapter 2, the B(H)-relation of the material is known

according to (2.2), when both H and M are known. Micromagnetic theory will provide

the means to approximate M .

4.1.1 Landau-Lifshitz-Gilbert equation

Micromagnetics is a theory that describes magnetism in a length scale between macro-

scopic Maxwell’s equations and quantum mechanical descriptions of systems of atoms.

In a way, micromagnetics combines these two theories by introducing some phenomena

of quantum mechanical origin to an otherwise classical description. Micromagnetics is

a continuum theory, meaning that the observed spatial scale is large enough to neglect

atom level fluctuations in the field quantities. The theory is capable of approximating M

in the volume of the system by attempting to minimize the total energy. The energy of

the system is a sum of different contributions originating from different phenomena. The

theory of micromagnetics was originally presented by Brown [19]. [20]
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One of the core equations of micromagnetics is the Landau-Lifshitz-Gilbert equation

∂M

∂t
= −|γG|µ0

1 + α2
G

M ×Heff − |γG|µ0

1 + α2
G

αG

Ms

M × (M ×Heff) (4.1)

which can be used to obtain the dynamical magnetization, i.e., the time evolution of M .

There exist several mathematically identical versions of the LLG equation. The equation

is constrained with ∥M∥ = Ms, meaning that the amplitude of the magnetization is fixed

and the only possible change is in the orientation. In (4.1), Ms is a material-dependent

constant called the saturation magnetization, γG the electron gyromagnetic ratio, and

αG the phenomenological LLG equation damping parameter (also known as the Gilbert

damping constant). The effective magnetic field strength Heff takes into account the

different phenomena included in the micromagnetic total energy. In this work, Heff is

expressed as

Heff = Hex +Han +Hms +Ha +Heddy (4.2)

meaning that the magnetic field strength contributions of exchange interaction (Hex),

material anisotropy (Han), magnetostatic field strength (Hms), applied magnetic field

strength (Ha), and the field strength caused by the eddy currents induced to the body

(Heddy) are taken into account. These phenomena are discussed in more detail in the

next section. [21]

A visual interpretation of the LLG equation is presented in Figure 4.1. The equation

describes a gradual evolution that results in M and Heff ultimately pointing in the same

direction if Heff is kept constant long enough. A physical meaning can be given to both

terms on the right side of the phenomenological LLG equation. The term proportional

to M × Heff is the classical description of a rotational movement of M around Heff .

The second term proportional to M × (M ×Heff) is responsible for the damping of the

motion, meaning that the sum of these terms is a description of damping precessional

rotation. The strength of the damping is controlled by αG. [20]

4.1.2 Effective magnetic field strength contributions

The different field contributions that are taken into account in evaluating Heff in this work

were already presented in (4.2). In the following, these field contributions are introduced

one by one. It should briefly be remarked that in this description, some phenomena affect-

ing the magnetization M are neglected. For example, effects arising from magnetoelastic

and thermal origins are neglected. It needs to be emphasized that the assumption to ne-

glect structural disorder altogether is significant because, generally, the structural disorder

is essential in the magnetization processes of bulk materials.
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Figure 4.1. Illustration of the LLG equation dynamics. The equation can be interpreted
as a description of a damping precessional time evolution of M towards Heff . Image
modified from [22].

Exchange field

The exchange field is due to the atomic scale exchange interaction, which attempts to

keep neighboring magnetic moments pointing in the same direction. The physical origin of

this quantum mechanical interaction is the coupling of separate electron orbitals and the

requirement to satisfy the Pauli exclusion principle. This results in it being energetically

favorable for macroscopic regions of the material to be uniformly magnetized in the same

direction. [4]

In the case to be modeled, the exchange field Hex over the thickness of the tape can be

expressed as

Hex =
2Aex

µ0M2
s

∇2M , (4.3)

where Aex is the exchange stiffness constant, a material dependent parameter describing

the strength of exchange interaction [2]. ∇2 is the Laplace operator which can also be

written as ∇2 = ∇ · ∇.

Attention needs to be paid to the numerical evaluation of the Laplace operator, i.e., the

numerical evaluation of the second-order spatial derivatives of M . In this work, Hex is

evaluated by using the so-called 6 neighbor approximation, meaning that only the contri-

bution of the closest 6 elements is taken into account in the calculation. In this context,

elements refer to the cells of a finite difference mesh in which the cell size is determined by

the spatial discretization in the direction of the thickness of the tape. When the assumed

domain structure of Figure 3.3 is examined, the approximation reduces automatically to
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take into account only 2 of the neighboring elements. In the plane perpendicular to the

tape thickness, M is constant in the domains, and the spatial (numerical) derivatives are

zero. The second-order derivative of M in the direction of the tape thickness is calculated

by using the value of M in the element for which the calculation is carried out, and the

values of M in the two neighboring elements along the thickness. Neumann boundary

conditions are used on the surfaces of the tape. [23]

Anisotropy field

The anisotropy field Han also originates from quantum mechanical considerations. For

anisotropic materials, it is energetically favorable to be magnetized in specific directions,

commonly referred to as anisotropy axes. The origin of magnetic anisotropy is in the

symmetry properties of the electrostatic field in the material, which originate from the

symmetry properties of the atomic lattice. The interaction of this background field in

the lattice and the individual magnetic moments causes certain directions to have lower

energies for the magnetic moments. [4]

Multiple types of anisotropy exist, the characterizing aspects being the number of an-

isotropy axes and the displayed crystal symmetry. In this work, only uniaxial anisotropy

will be considered. Uniaxial anisotropy is characterized by the presence of only one

anisotropy axis. It needs to be noted that when considering energy minimization, the

direction of the magnetization along the anisotropy axis does not matter. Both directions

along the axis are energetically equally favored, making the domain structure presented

in Chapter 3 more realistic from this perspective. [21]

If a uniaxial anisotropy is assumed along an arbitrary x-direction, the resulting Han has

only the x-component. The field strength can be expressed in terms of M as [2]

Han,x =
2Ku

µ0M2
s

Mx. (4.4)

The parameter Ku in (4.4) is the anisotropy constant which describes the strength of

anisotropic effects. Despite its name, Ku is not strictly speaking a material or geometry

dependent constant because it depends on the annealing treatment prior done to the

sample [8, 12].

Magnetostatic field

The origin of the magnetostatic field Hms is the elementary magnetic dipole moments in

the material. Each magnetic moment causes a field, and Hms is the sum of these fields.

The magnetostatic field is a long-range interaction. The position and orientation of each

magnetic moment affect Hms in every point in the material. Thus, Hms does not only
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Figure 4.2. Magnetostatic field caused by a uniformly magnetized ellipsoidal body. Ex-
ceptionally, Hms is also uniform inside the body under these conditions.

depend on M but also the geometrical shape of the system. The field in an arbitrary

point w0 can be expressed in a general form as

Hms(w0) =
1

4π

∫︂
V

∇ ∇ ·M (r
′
)

∥w0 − r′∥
dr

′ − 1

4π

∫︂
S

∇ ên ·M (r
′
)

∥w0 − r′∥
da

′
, (4.5)

where
∫︁
V
dr

′
is an integral over the volume,

∫︁
S
da

′
an integral over the surface of the

geometry, and ên the normal vector of the surface. [4]

The structure of (4.5) is rather complex. In general situations, the evaluation of Hms

requires by far the most computational resources from the contributions of Heff [21]. In

large simulations, calculation of Hms can be a significant factor in the total computing

time. However, there exist particular situations in which (4.5) takes a simpler form. Under

a uniform M in a system of ellipsoidal shape (e.g. a sphere), Hms is also uniform

and can be evaluated as a product of M and geometry dependent constants. In the

described situation, Hms inside the material points to the opposite direction of M . The

magnetostatic field is often referred to as the demagnetizing field because Hms tends

to oppose M . Figure 4.2 illustrates Hms created by a uniformly magnetized ellipsoid.

Generally, Hms cannot be assumed to be uniform even if M would be. Methods exist

to calculate averaged geometry dependent constants in order to calculate Hms as in

ellipsoidal geometries. For example for rectangular prisms (e.g. a cube) with uniform M ,

analytical expressions exist [24].

When examining a tape wound core, direct evaluation of (4.5) is not feasible. Additionally,

the type of simplifications discussed above are not inherently present in the situation
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despite the assumed simple domain structure of the tape. In this work, some additional

assumptions are introduced to approximate Hms. The goal is to separate M and a

geometry dependent matrix N . The separation ensures that N becomes constant, and

Hms can be evaluated with a low computational burden. The used approximation utilizes

a similar approach to what is used in [2].

Despite modeling tape wound cores, the calculation of Hms is carried out for a single strip

of tape. Effectively, the curvature and neighboring tape layers are neglected. DWs are

not taken into account, and the tape is assumed to consist of opposite-facing domains

with negligible boundaries. With these assumptions, the calculation of Hms along the

tape thickness reduces to a sum of individual domain contributions along the v-axis when

the coordinate system of Figure 3.3 is used. When additionally M is treated as if it were

uniform despite M = M (w), the integral over volume in (4.5) can be neglected because

∇ ·M = 0. The magnetostatic field is written as

Hms(w0) =
1

4π

N∑︂
n=−N

∫︂
Sn

(ên ·M )
w0 − r

′

∥w0 − r′∥3
da

′
, (4.6)

where also the result ∇ 1
∥r−r′∥ = − r−r

′

∥r−r′∥3 is used. When (4.6) is evaluated, the contri-

bution of 2N + 1 domains is taken into account. The description includes N neighboring

domains in both directions along the v-axis, and the domain for which Hms is being eval-

uated. When Hms is calculated over the thickness of the tape, (4.6) eventually reduces

to

Hms(w) = NM (w). (4.7)

Appendix A shows the calculation how matrix N is obtained. According to the approxima-

tions done earlier, (4.7) is evaluated with a non-uniform M (w) despite N is determined

by assuming a uniform M .

In literature, also simpler methods to approximate Hms caused by the domain structure

of the tape are used [3, 25]. In these approximations, the magnetostatic field is assumed

to have only the component in the direction of the tape thickness, and it is calculated as

a product of the parallel component of M and a constant: Hms,w = − constant · Mw.

These approaches assume that the DWs and demagnetizing effects at tape edges can

be neglected [25].

The discussed examples of Hms calculation utilize the simplicity of M to at least ap-

proximately simplify (4.5). In situations with more complex spatial dependency on M , a

different approach is required. A method to calculate Hms in finite difference micromag-

netics by utilizing fast Fourier transforms is briefly mentioned because of its benefits and
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extensive use. The main idea is to accelerate the calculation by evaluating the convolu-

tion structure of (4.5) in the Fourier space. This reduces the computational burden from

O(N2
cell) to O(Ncell logNcell), where Ncell is the number of finite difference cells. More

details on the fast Fourier transform based method can be found, for example, in [21] or

[26]. However, M in the tape exhibits a high amount of spatial symmetry. Consequently,

the approximate analytical method to evaluate Hms (4.7) is used in this work.

External field

The separation of the external field Ha and eddy current field Heddy is a quite vague

concept, as the field caused by Ha inside a conducting medium is a sum of these fields.

Still, this division is used to express both the field in and outside of the tape material.

The external field Ha is sometimes, also in this work, presented as the external magnetic

flux density. These quantities are connected through (2.1) and by using µ = µ0. This

aspect will be covered in the coming sections when the derivation of the developed model

is shown.

According to classical physics, a magnetic moment in an external field tends to align itself

with the field. When the other micromagnetic field contributions are taken into account,

this is not necessarily the case. However, introducing an external field pointing in an-

other direction gives the system potential energy, which affects the micromagnetic total

energy. The energy contribution originating from the external field is often referred to as

the Zeeman energy [20].

Eddy current field

The eddy current field Heddy is created to the conducting medium because of macro-

scopic eddy currents induced by an external field. Generally, Heddy decreases the effect

of Ha inside the material, the effect being stronger deeper in the material. This causes

the resulting field to have a spatial dependency along the material thickness. This effect

is amplified when the frequency of the external field is increased. [4]

Eddy current effects are often modeled with a diffusion equation, for example (3.5) for the

1D case [6]. In this work, however, the eddy current problem is solved with (3.7) following

the discussion of Chapter 3. Heddy is approximated as a scalar field because of the tape

material, which is thin from the perspective of eddy current modeling. In this work, quite

unconventionally in the domain of micromagnetics, the used criteria for the discretization

length along the tape thickness is the accurate modeling of Heddy.
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4.1.3 Time discretization of the LLG-equation

Equation (4.1) needs to be modified slightly in order to solve it numerically. The time

derivative of M needs to be discretized, but the requirement of constant ∥M∥ makes

the process more complicated. Also, attention has to be paid to how the system’s initial

state is determined and how the calculation workflow proceeds.

The constraint of constant ∥M∥ with discrete time-stepping can be satisfied by using

a norm-conserving formalism for the magnetization updating. The adopted method is

based on the Cayley transform and skew-symmetric matrices, and the underlying time

discretization itself is done with the Euler method. A sufficiently small timestep ∆t ∼ 1 ps

should be used to model the LLG dynamics correctly. [2, 27]

In order to solve the time evolution of M , the initial magnetization field alongside many

simulation-specific parameters have to be known. The assumed domain structure of the

tape material gives a good first estimation for the initial M which can further be improved

by using a suitable 1D time-harmonic model presented in [3]. Despite this, a startup tran-

sient is expected when the time-stepping is begun. This is because of the differences be-

tween the time-harmonic and time-stepping models and the lack of micromagnetic energy

minimization procedure after evaluating the 1D time-harmonic model. Often in micromag-

netic software, for example, in MuMax3 [28], there is an energy minimization procedure

implemented to approximate the steady-state in situations where the external field is not

imposed.

When the magnetization field from the previous timestep k − 1 is known, many terms of

the effective magnetic field can be evaluated. The following iteration proceeds through

the entire computation: Hk−1
eff is determined by using M k−1 and then M k is solved from

the LLG equation by using Hk−1
eff . In a way, it can be said that M k is determined by using

the Heff from the previous timestep. The only exceptions for this convention are Heddy

and Ha which are solved for the same step for which the magnetization is being updated

to.

4.1.4 Simulation properties

3D micromagnetic simulations can be carried out relatively easily by using dedicated soft-

ware. In this work, the simulations are performed with MuMax3: a GPU accelerated

micromagnetic simulation program [28]. These simulations aim to provide one additional

method to determine the losses and to observe the spatial variations of M in the tape. In

principle, also the dependency of the DW processes on the excitation frequency can be

studied.

The primary difficulty in carrying out 3D micromagnetic simulations is managing the com-
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putational burden. For example, when the width of the domain is assumed to be in the

range of 100 µm, the tape thickness approximately 10 µm and the tape width is much

greater than the domain width, already the simulation of a single domain is impossible

due to computational burden. MuMax3 is set to discretize the 3D space with a discretiza-

tion length in the range of nanometers leading to a large number of degrees of freedom

to be solved. A point worth mentioning is that MuMax3 discretizes the space with a finite

difference mesh, i.e., all the unit volumes are identical rectangular cuboids. The com-

putational burden is also significantly increased because of the need to use small ∆t in

micromagnetic simulations. Altogether, it can be said that the spatial scale of the tape

is out of the scope of micromagnetic simulations, and some approximations are required

when attempting to study an entire tape wound core.

The chosen approach is to divide the domain structure of the tape material into parts

corresponding to the assumed loss mechanisms. A uniformly magnetized region from

the center of a domain and a region containing a DW are simulated independently. When

simulating a DW, the simulation size has to be set large enough to encapsulate the DW

activity caused by the applied field. The main assumption behind this approach is that

these separately simulated systems can be examined independently, meaning that the

interaction between domains and DWs can be neglected to some extent. In other words,

the assumption is that the DWs do not affect the uniform magnetization in the middle of

the domain and vice versa.

In both of these simulations, periodic boundary conditions (PBC) can be used to reduce

computational burden further. In MuMax3, PBCs are implemented so that the user can

determine how many periodic repetitions of the system are wanted in each direction.

The advantage of using PBCs is that in the directions in which the simulated body is

symmetric, the size of the simulated region can be reduced.

The power losses in the simulation region can be determined by using the simulation

outputs of MuMax3. MuMax3 is capable of outputting the necessary field quantities over

the simulated time. The power losses can be determined by using the equation [29]

p =
1

V

αGµ
2
0 |γG|Vcell

(1 + α2
G)Ms

Ncell∑︂
i=1

(M i ×Heff,i)
2 (4.8)

which can be modified to the form

p =
αG |γG|Ms

(1 + α2
G)Ncell

Ncell∑︂
i=1

(mi ×Beff,i)
2 (4.9)

in order to express the losses in terms of m and Beff , quantities available as simulation

outputs. The relative magnetization m is obtained when M is normalized with respect
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to Ms: m = M
Ms

. The effective magnetic flux density Beff is connected to Heff through

Beff = µ0 (Heff +M ). In (4.8 - 4.9), Vcell is the volume of a discretization cell. Equation

(4.9) gives the instantaneous power loss density which needs to be integrated over an

excitation period in order to obtain the loss per cycle.

4.2 1D micromagnetic model with eddy currents

The approximate solution of the 1D diffusion equation that was presented in Chapter 3 can

be combined with the micromagnetic theory to obtain a model utilizing a micromagnetic

material property. This model can solve the eddy current problem over the thickness of

the tape with the micromagnetic material property. Therefore, it will be referred to as the

1D micromagnetic model with eddy currents.

As the LLG-equation is to be used as the material property, it is convenient to take it as

the starting point of the model derivation. When the time derivative of M is discretized

with the Euler method and some rearranging of terms is done, the equation can be written

as

M k = M k−1 − ∆t |γG|µ0

1 + α2
G

M k−1 ×
(︃(︃

I +
αG

Ms

M k−1×
)︃
Hk−1

eff

)︃
, (4.10)

where I is an identity matrix. Importantly, now the Cayley transform based approach

was not used to discretize the LLG equation. This helps to simplify the model and the

norm conservation is ensured at latter phases of calculation. The effective field can be

expressed as a sum of two subsums, denoted as Hex,an,ms = Hex + Han +Hms and

Ha,eddyêv = (Ha+Heddy)êv, where êv is a unit vector in the v-direction in the coordinate

system of Figure 3.3. Using this notation, the v-component of the magnetization can be

expressed as

Mk
v = Mk−1

v − ∆t |γG|µ0

1 + α2
G

[︃
M k−1 ×

(︃(︃
I +

αG

Ms

M k−1×
)︃
Hk−1

ex,an,ms

)︃]︃
· êv

+
∆t |γG|µ0

1 + α2
G

αG

Ms

(︁
(Mk−1

u )2 + (Mk−1
w )2

)︁
Hk

a,eddy (4.11)

which can be abbreviated to

Mk
v (w) = a(w) + c(w)Hk

a,eddy(w) (4.12)

in order the emphasize the dependency of Mk
v from Hk

a,eddy. The dependencies from w

are added to (4.12) to remind that the quantities vary spatially only along the thickness of
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the tape. The field Hk
a,eddy is the magnetic field strength induced to a body by the effect

of an external field. It can be expressed as

Ha,eddy(w) = ν0α
T(w)b−Mv(w) (4.13)

by utilizing (2.2) and (3.6). The reluctivity of free space ν0 is introduced to slightly simplify

the notation. Finally combining (4.12) and (4.13), and solving for Mk
v we get

Mk
v (w) =

a(w)

1 + c(w)
+

c(w)

1 + c(w)
ν0α

T(w)bk (4.14)

which is the desired result from the considerations starting from the LLG equation.

To obtain the 1DMMEC model, the result above needs still to be combined with (3.7).

Utilizing once more (2.2) and writing the equation for time instance k, the vector hs is

equal to

hk
s =

1

d

∫︂ d/2

−d/2

α(w)
(︁
ν0α

T(w)bk −Mk
v (w)

)︁
dw + σd2C

(︃
∂b

∂t

)︃k

. (4.15)

Combining (4.14) and (4.15) and rearranging the terms, the result can be expressed as

hk
s = V bk + σd2C

(︃
∂b

∂t

)︃k

− 1

d

∫︂ d/2

−d/2

a(w)

1 + c(w)
α(w)dw

− 1

d

∫︂ d/2

−d/2

c(w)

1 + c(w)
ν0α(w)αT(w)bkdw, (4.16)

where matrix V is defined as

V =
ν0
d

∫︂ d/2

−d/2

α(w)αT(w)dw. (4.17)

The time derivatives of the magnetic flux density coefficients are evaluated with Euler

discretization. Equation (4.16) is the 1DMMEC model, and by solving it, an approximate

solution to the eddy current problem with micromagnetic material property is obtained.

The average magnetic flux density b0 is given to the model as an input, and by solving the

time evolution of hs, the power losses can be calculated with (3.4).

It needs to be noted that in order to integrate (4.16) over time, also the LLG equation

needs to be solved for every timestep to obtain the time evolution of M . In comparison to

(4.10) this time the time-stepping is done with the Cayley-formalism mentioned earlier in
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this chapter to ensure the conservation of ∥M∥. After the solution of (4.16) is obtained,

Hk
a,eddy can be calculated and fed forward in order to solve the LLG equation for M k.

4.3 2D finite element method

This section briefly introduces FEM. As the topic is vast, we will limit ourselves to a quick

overview and go only into details in the concepts essential in the model developed in

this work. Plenty of literature exists on the topic. For example, [30] gives a detailed

introduction to FEM, and [31] emphasizes on FEM applied to electromagnetism.

FEM can approximate solutions to partial differential equation (PDE) systems. The solu-

tion domain Ω is discretized into a finite number of elements, and the approximate solu-

tion is expressed in terms of chosen shape functions Wi. This work uses the Galerkin

weighted residual method to carry out the finite element analysis (FEA). Also, we restrict

to 2D FEM, and the modeling domain consists of an axial cross-section of the tape wound

core, the winding conductors, and the surrounding air. Carrying out 2D FEA greatly re-

duces the computational burden compared to full 3D analysis.

FEA is utilized in this work to obtain the magnetic fields over the cross-section of the tape

wound core. The PDE to be solved is obtained from the quasi-static Maxwell’s equations.

It is beneficial to formulate the problem in terms of the magnetic vector potential A which

is defined as

B = ∇×A. (4.18)

Obtaining the solution by using A is particularly attractive in 2D analysis because in such

cases, A reduces to a scalar field.

The solution that is obtained from the system of equations formed with FEM is the nodal

values of magnetic vector potential a. A value is obtained for each defined nodal point

in Ω. The continuous magnetic vector potential field can be expressed in the coordinate

system of Figure 3.2 by using the shape functions as

A(x, y) =

Np∑︂
i=1

Wi(x, y)ai, (4.19)

where Np is the number of nodal points. The shape functions interpolate the value of A

between separate nodal points.

Some simplifying modifications are done to the tape wound core geometry of Figure 3.2

to allow for more computationally efficient FEA. The spiral shape of the geometry is ig-

nored, and instead, it is thought to consist of circular layers of tape. This approximation is
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reasonable when the tape is thin. Additionally, every tape layer is not modeled separately,

but instead, homogenization of the core region is utilized. From the perspective of 2D

FEA, the core region is seen as a solid object. The region is divided into elements larger

than the tape thickness, and the effect of the layered structure is taken into account with

the 1DMMEC model presented in the previous section. The 1DMMEC model is evaluated

in every nodal point of Ω. The effect of tape layers can be taken into account less fre-

quently compared to how many layers exist in the core because hs and b0 are expected

to vary little from one tape layer to the next [32]. Given this, the losses calculated from

(3.4) for the homogenized core are expected to approximate well the losses in the actual

geometry. Homogenization of the core neglects the effects of the insulation between sep-

arate tape layers. Direct modeling of the core with all its tape layers would lead to a poor

computational performance [32].

Because the conductors around the tape wound core are also included in Ω, the conduc-

tor voltages u and currents i have to be solved. The equations governing u and i are

derived from circuit theory. These equations are coupled with the field equations by using

an AVI-formulation and from the solution of the coupled system of equations a, u and

i are obtained. More details on the coupling of field and circuit equations are given, for

example, in [33].

4.4 Coupled 1D micromagnetic – 2D FE model

The 2D FEM and 1DMMEC model from the previous sections can be combined to form

the 1DMMEC–2DFE model. The resulting model approximates the tape wound core in

2D over its cross-section and assumes a micromagnetic material property for the tape

material. In comparison to the 1DMMEC model, this model takes into account the spatial

variation of the fields over the core cross-section. In this section, the 1DMMEC–2DFE

model is presented. Additionally, the method used to solve the resulting system of equa-

tions is discussed.

When shifting the focus from the previous 1D considerations to a 2D modeling domain,

some changes to the modeling approach have to be made. A circulating flux in the cross-

section of the tape wound core cannot be taken into account with a single coordinate

in Cartesian coordinates. However, using radial and tangential coordinates proves to be

beneficial. In the coordinate system of Figure 3.2 the 2D magnetic field strength H can

be expressed as

H =

⎡⎣Hrad

Htan

⎤⎦ . (4.20)

The transformation from Cartesian coordinates to tangential and radial components can



28

be performed with a rotation matrix R. By multiplying R with H in radial and tangential

components, the magnetic field in Cartesian coordinates is obtained

⎡⎣Hx

Hy

⎤⎦ =

⎡⎣cos(ϕ) − sin(ϕ)

sin(ϕ) cos(ϕ)

⎤⎦
⏞ ⏟⏟ ⏞

R

⎡⎣Hrad

Htan

⎤⎦ . (4.21)

The coordinate transformation in the other direction is obtained simply by multiplying the

inverse of the rotational matrix R−1 with H in Cartesian coordinates. The inverse R−1 is

equal to RT.

Due to the circular geometry of the core, magnitudes of tangential components of the

fields are expected to dominate. Also, the tangential magnetic flux density can be con-

sidered as the input for (4.16) when the slight radial shift between separate tape layers is

neglected. The radial field quantities are assumed to be small, and thus, the permeability

of free space is used as the material property in the radial direction.

When (4.16) is used to evaluate the tangential component of the magnetic field strength

at the surface of the tape, Nb magnetic flux density coefficients enter the 2D calculation.

Coefficients bn are solved at every integration point of the 2D geometry. This can be

interpreted as if the spatial distribution of each coefficient bn would create a magnetic

flux density field over the tape wound core cross-section. Each of these fields can be

expressed with a corresponding magnetic vector potential an. The existence of the con-

tributions in the radial direction makes the situation more complicated. Even a small radial

contribution would violate the assumption of scalar field quantities used in the derivation

of (4.16). Additionally, the physical meaning of coefficients bn in the radial direction is un-

clear. A perfectly circulating magnetic flux density in the tape wound core cross-section

would remove the radial effects entirely. As the solution is obtained with numerical meth-

ods, it is concluded that a small magnetic flux density approximated with a cosine series

also exists in the radial direction due to numerical error.

With the help of the considerations above, the equations for FEA in the core region can

be derived. The domain Ω refers explicitly to the core region in the following. When form-

ing the total system matrices, the air and conductor regions are handled with commonly

used FEA practices. The magnetic field strength Hs,m is defined to be a 2D vector field

containing the values of the mth radial and tangential components of the respective 2D

field. The matrix Hs containing the values of all the Nb 2D field terms is assumed to

be structured in a similar way as hs in (4.16): apart from the first row, all the entries are

0. Thus, Hs,0 gives the 2D magnetic field strength at the surface of the tape. Equation

∇ × (RHs,m) = 0 in Cartesian coordinates is taken as the starting point, and its weak
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form can be written as

ram =

∫︂
Ω

W · [∇× (RHs,m)] dΩ = 0, (4.22)

which can further be expressed as

ram =

∫︂
Ω

(∇×W ) ·RHs,m dΩ (4.23)

by using Green’s theorem and assuming that inhomogeneous Neumann conditions are

not present [31]. The weak form is written in terms of vector W containing the shape

functions Wi. This can be done because the Galerkin method is used. Notation ram is

used to denote that the presented equations express a part of the total residual r that

originate from the mth magnetic vector potential field. Equation (4.23) can be written as

ram =

∫︂
Ω

DTRHs,m dΩ, (4.24)

when the 2D discrete curl operator D is introduced [18]

D =

⎡⎢⎢⎣
∂W1

∂y

∂W2

∂y
. . .

∂WNp

∂y

−∂W1

∂x
−∂W2

∂x
. . . −

∂WNp

∂x

⎤⎥⎥⎦ . (4.25)

Now Hs,m,tan can be calculated from (4.16) and Hs,m,rad from the corresponding radial

component of the magnetic flux density. When some rearranging of terms is done and

short-hand notation used, the result can be written as

ram =

∫︂
Ω

DTR

⎛⎝Nb−1∑︂
n=0

⎛⎝⎡⎣ν0δmn 0

0 Vmn +
σd2

∆t
Cmn −Gmn

⎤⎦⎡⎣Bk
n,rad

Bk
n,tan

⎤⎦⎞⎠−

⎡⎣ 0

Fm

⎤⎦⎞⎠ dΩ

(4.26)

where Bk
n,rad and Bk

n,tan are the radial and tangential components of the nth magnetic flux

density field at timestep k. Vector F contains the terms independent of Bk
n,rad and Bk

n,tan,

and δmn is the Kronecker delta. The matrix G is short-hand notation for

G =
ν0
d

∫︂ d/2

−d/2

c(w)

1 + c(w)
α(w)αT(w)dw. (4.27)

The subscript m in matrices V , C and G, and vector F expresses explicitly that the mth
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row is substituted to (4.26). Indexing with n selects the nth entry of a vector regardless if

the vector is a row or a column vector.

Quite remarkably, the derived residual vector is linear with respect to B, or alternatively to

a because Bm = Dam, and could be solved directly. However, the system of equations

is solved with Newton-Raphson iteration to allow utilizing some previously made code

that is available. When solving a linear system with numerical iteration, the computational

burden of the solution increases. After the first round of iteration, a second iteration has

to be executed until convergence is observed.

The Newton-Raphson iteration is carried out as

xi+1 = xi − J(xi)
−1r(xi) (4.28)

where x is a vector of the quantities to be solved, in this case x =
[︂
a u i

]︂T
. In

order to carry out the iteration, the Jacobian matrix J contributions from the core region

need to be determined. When (4.26) for the mth vector potential field is differentiated in

respect to an the corresponding contribution to the total Jacobian reads

Jaman =

∫︂
Ω

DTR

⎡⎣ν0δmn 0

0 Vmn +
σd2

∆t
Cmn −Gmn

⎤⎦RTDdΩ. (4.29)

For completeness, below are expressed the total residual vector and Jacobian matrix from

which the system of equations can be solved by using (4.28). The total residual reads

r =
[︂
ra0 ra1 . . . ram ru ri

]︂T
, (4.30)

in which ru and ri are the residuals corresponding to the circuit equations. The Jacobian

matrix can be expressed as

J =
∂r

∂x
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ja0a0 Ja0a1 . . . Ja0am Ja0u Ja0i

Ja1a0 Ja1a1 . . . Ja1am 0 0
...

...
...

...

Jama0 Jama1 . . . Jamam 0 0

Jua0 0 . . . 0 Juu Jui

J ia0 0 . . . 0 J iu J ii

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.31)

The submatrices Jau, Jai, Jua and J ia result from the coupling of the field problem to the

circuit equations which depend only on a0. The higher-order a terms do not contribute to
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the circuit equations. Differentiation with respect to higher-order magnetic vector potential

fields evaluates to 0, and effectively J is zero-padded to a square matrix from these parts.

The degrees of freedom corresponding to boundary nodes of the finite element mesh

have to be modified to include the desired boundary conditions.
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5 RESULTS AND DISCUSSION

This chapter presents the results that are obtained with the methods of Chapter 4. The

emphasis is on the predicted iron losses, but also other topics are discussed according

to the properties of each approach. Comparisons are made between the different ap-

proaches and results presented in the literature to evaluate the performance of the used

methods.

5.1 3D micromagnetic simulations

The domain and DW in the domain structure of the tape material (see Figure 3.3) are

simulated separately with MuMax3. First, the simulation of the domain region is exam-

ined. Figure 5.1 presents the simulated power dissipation, losses determined with a 1D

time-harmonic model [3], and the measured losses for a Co71Fe4B15Si10 tape wound core

with tape thickness of 17 µm [2]. The simulated losses were calculated with (4.9) using

the material parameters of Co71Fe4B15Si10 [2]. The same material parameters were used

with the 1D time-harmonic model. The used 1D time-harmonic model is quite similar to

the 1DMMEC model that was presented in Chapter 4. Both models solve the eddy current

problem in 1D over the thickness of the tape and take into account a micromagnetic mate-

rial property. The 1D time-harmonic model is an analytical approach with some additional

simplifying assumptions and does not require time-stepping to solve the system.

The simulated part of a domain was set to be over the entire tape thickness, whereas

on the surfaces, a very small part of the actual domain surface was considered. On the

domain surface, a large number of periodic repetitions were used in both directions on

the plane. It was observed that the dissipated power depends on the number of periodic

repetitions used. The used value in this work is a compromise between computational

performance and keeping the geometric shape of the system similar to the actual domains

of the tape.

Figure 5.1 shows that the simulated losses are lower than the losses predicted by the

1D time-harmonic model and the measured losses. However, all the presented losses

increase as a function of frequency, and the difference between the simulated result and

the other plots decreases with increasing frequency. The consistently lower losses are

expected because the eddy current related phenomena are neglected due to code re-
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Figure 5.1. Comparison of simulated losses, measurements, and 1D time-harmonic
model results for 17 µm thick Co71Fe4B15Si10. The simulated losses consider only the
domain region and neglect eddy currents. Consistently lower simulated losses are as-
sumed to be caused by the missing eddy current contribution and neglected structural
disorder.

strictions. There exists an external library [34] that can be used to take eddy currents into

account with MuMax3, but in this work, this library was not used. The lack of structural

disorder in the simulations is expected to reduce the simulated losses. In a study on mag-

netic friction, the losses in thin magnetic tapes were found to increase already with small

introduced structural disorders [35]. Additionally, possible contributions coming from DWs

are neglected. This should not have a significant effect because it is assumed that the

losses due to magnetization rotations in domains dominate over DW processes at high

frequencies.

When a DW is simulated, the simulation approach has to be changed. Now, quite a large

area has to be simulated on the tape surface to include all the DW activity. Combining

this with trying to simulate the entire tape thickness, the simulation size becomes too

large. The adopted solution to this problem was to simulate different tape thicknesses.

The idea is to extrapolate the results to the actual thickness by gradually increasing the

simulated thickness. Despite the varying simulated tape thicknesses, material parameters

of Co71Fe4B15Si10 and a constant αG are used consistently in the DW simulations. It

needs to be noted that the simulated DW regions are very small, less than 1% of the

assumed domain volume. In this simulation case, PBCs can be used in the direction

of the material anisotropy. Apart from the DW, small parts of the surrounding domains

are also simulated. The surrounding domain areas are only a small part of the actual
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Figure 5.2. Simulated DW motion during one period of an external field with amplitude
of 5mT and frequencies of 10MHz and 500 kHz. Particularly the inset presents how
the DW motion decreases with increasing frequency. Each line represents the averaged
magnetization profile of mu at a certain time. The coordinate system is chosen as in
Figure 3.3, and material parameters of Co71Fe4B15Si10 are used.

domains, and effectively the assumption is made that only these nearest parts of the

domains determine the behavior of the DW.

Figure 5.2 shows the motion of a DW during one period of an externally applied field with

two different frequencies. It can be seen that with the simulated frequencies, the DW

motion decreases as the frequency of the external field is increased. This observation is

in agreement with the considerations on DW movement in Chapter 3. When analyzing

the simulation results, it was noted that the DW magnetization profile varies on different

layers along the thickness of the tape. In order to simplify the presented figure, the DW is

presented in every time instance with its averaged magnetization profile. In this way, the

motion can be better observed compared to drawing all the magnetization profiles. The

simulated region was approximately 12 µm wide around the DW in the v-direction, and

the tape thickness was approximately 1.0 µm.

From the perspective of loss modeling, the DW simulations were not successful. The

losses were also calculated using (4.9) in the DW simulations. The resulting losses ob-

tained through extrapolation were several magnitudes bigger than the losses of a uniform

magnetization. The DW losses were expected to be several magnitudes smaller than the

domain region losses [2, 14]. Consequently, calculation of the combined losses was not

attempted because it would have been entirely dominated by the DW loss and resulted in
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total losses magnitudes bigger than the measured results. Most likely, the reason for the

inaccurate DW losses lies in the used modeling approach. A simple linear extrapolation

of the loss to the actual thickness might not be feasible. Also, the long-range interactions

of the DW with the other DWs and domains cannot probably be neglected.

As a separate notion, special attention should be paid to the time over which the system is

simulated. It was noted that with MuMax3, several periods of excitation were required be-

fore a steady state was achieved, and sometimes this amounted to tens of periods. As a

final point on 3D micromagnetic simulations, a brief comment is made about the workflow

when doing simulations with MuMax3. Doing these simulations is time-consuming due to

the computational burden and the steps apart from the simulation itself. These steps in-

clude preparing the simulation input files and post-processing the results, which are often

done in different programs. Consequently, creating an automated simulation environment

is complicated and time-consuming, and often, as in this work, there remains some un-

necessary manual work in the workflow. Though not used in this work, one possibility

to improve the simulation process could be the Ubermag project which aims to bring the

whole workflow into one computational environment [36].

5.2 1D micromagnetic model with eddy currents

The results calculated from (4.16) will be compared to the results of the 1D time-harmonic

model and the results of a similar 1D FE model [2]. The 1D FE model is conceptually very

close to the derived 1DMMEC model. The main difference between these models is that

the 1D FE model uses 1D FEA to solve the distribution b(w) over the thickness of the tape,

whereas the 1DMMEC model utilizes the cosine series approximation. An advantage of

the 1DMMEC model is the possibility to use b0 instead of hs as the model input. Often, it

is interesting to examine the losses as a function of the magnetic flux density.

Because of having only minor differences between the 1D models, a good agreement of

the calculated losses is expected. This will be presented in this section mostly for the

sake of validation of the 1DMMEC model. Also, the effects of some newly introduced

simulation parameters, such as the number of cosine series terms Nb and the quantities

of the modified magnetostatic field calculation, are studied in order to see the effect of

these parameters to the model outputs.

Figure 5.3 shows the losses as a function of frequency calculated with the 1DMMEC,

the 1D FE and the 1D time-harmonic model. After solving hs from (4.16), the losses are

calculated with (3.4) when using the 1DMMEC model. A good agreement between the

developed model and the other models is observed. The simulations were carried out for

a 17 µm thick tape of Co71Fe4B15Si10 with a LLG damping parameter value αG = 0.2 [2].

When the effect of Nb to the predicted losses was examined, a trend of increasing losses
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Figure 5.3. Simulated losses as a function of frequency for a 17 µm thick tape of
Co71Fe4B15Si10. The losses predicted by the developed 1DMMEC model are in good
agreement with the 1D FE model and the 1D time-harmonic model. The simulations were
carried out with an applied field amplitude of 5mT.

with increasing Nb was observed. Saturating effect of the losses is observed with higher

values of Nb. The saturation can be roughly said to begin with Nb values higher than

20. The value Nb = 20 was used in the simulated results in this section. When the

parameters related to the calculation of Hms were examined, the emphasis was on the

number of domains N . The effect of domain width changes was not examined in this

work. Also, as a function of N , the losses saturate with increasing N . However, this time

the losses decrease when N is increased. A dependency of the saturation on the external

field frequency was observed. Approximately N = 20 is enough to achieve saturation in

the gigahertz range, whereas, with tens of megahertz, a value up to N = 100 is required.

A similar dependency from frequency was not found when examining the effect of Nb. In

the simulated results, a value of N = 100 was used.

5.3 Coupled 1D micromagnetic – 2D FE model

In order to perform calculations with the 1DMMEC–2DFE model, the 2D finite element

mesh needs to be chosen. The entire cross-section of the tape wound core does not

have to be modeled, but instead, a small sector of the core is enough because of the

circular symmetry of the geometry. In this work, the calculations were carried out for a

sector corresponding to an angle of approximately 5◦. Figure 5.4 presents the mesh that

was used. The core region was set to the width of 10 tape layers and an outer diameter of
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Figure 5.4. The used mesh of the cross-section of the toroidal inductor with a tape wound
core. Only a small sector of the geometry is modeled because of symmetry considera-
tions, and a coarse mesh in a small modeled area reduces the computational burden
significantly. The mesh contains 93 nodes and 136 linear elements.

19mm. Using quite a coarse mesh reduces the computational burden of the calculation.

The conductors of the inductor are modeled as a solid stranded conductor, meaning that

eddy current effects are neglected in the conductor region. Effectively, this emulates a

tightly wound inductor with thin conductors. The resulting B is almost entirely contained

in the core, and only small regions of surrounding air have to be modeled. Suitable bound-

ary conditions are imposed on the edge nodes of the mesh. On the sides of the sector,

periodic boundary conditions ensure that the solution has circular symmetry. A homo-

geneous Neumann boundary condition is used along the inner radius, and a Dirichlet

boundary condition sets all Am to 0 along the outer radius.

Figure 5.5 shows the comparison between the losses predicted by the 1DMMEC–2DFE

model, the 1D FE model, and measurements for 17 µm thick Co71Fe4B15Si10 [2]. Based

on Figure 5.3, the choice of which 1D model is used in the comparison is arbitrary. When

calculating the losses with the 1DMMEC–2DFE model, (3.4) is evaluated in x and y-

directions of the 2D plane, and the contributions are summed to obtain the total losses.

A good agreement between all the plotted losses is observed. The 1DMMEC–2DFE

model can predict the losses more accurately than the 1D FE model at high frequencies.

When the frequency is lowered, the model predictions coincide and begin to describe the

measured losses less accurately. This is because the assumption to neglect pdw is no

more valid at low frequencies.
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Figure 5.5. Losses as function of frequency for 17 µm thick Co71Fe4B15Si10. The am-
plitude of the applied field is 5mT. The losses predicted by the 1DMMEC-2DFE model
and the 1D FE model are compared to measurements. Both the models are in good
agreement with the measurements, the performance of the 1DMMEC–2DFE model be-
ing slightly better at frequencies higher than 1MHz. At lower frequencies, the models
predict similar losses.

Despite the good results in Figure 5.5, some discussion is needed on the chosen simula-

tion parameters. Now the losses decrease as a function of Nb and saturate quicker when

compared to the 1DMMEC model. The value Nb = 3 was used in the simulations. The

losses were observed to have a similar dependency of N in the calculation of Hms as

with the 1DMMEC model, and the value N = 100 was used.

A surprisingly strong effect of ∆t was observed. Figure 5.6 presents how the predicted

losses vary in the 1DMMEC–2DFE model with different values of ∆t. In the worst case,

the losses differ by multiples when simulations with ∆t = 0.2 ps and ∆t = 2 ps are com-

pared. The losses are consistently higher with a larger timestep. With lower frequencies,

the dependency on ∆t decreases. This feature was already used in Figure 5.5 to re-

duce the computational burden of simulations with lower frequencies. Simulations with

frequencies higher than 5MHz were carried out with ∆t = 0.1 ps, whereas with lower

frequencies ∆t = 2 ps was used. A similar dependency of ∆t was not observed with

the 1DMMEC model. The described behavior of the model with different values of ∆t

may indicate a problem in the modeling approach and should be studied further. Another

possible cause is a bug in the code implementation.

In the simulations with the 1DMMEC–2DFE model, a relatively low value αG = 0.04 was

chosen. For comparison, the value was αG = 0.2 in the 1D simulations of the previous
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Figure 5.6. The dependency of losses on ∆t for 17 µm thick Co71Fe4B15Si10. The dif-
ference in the predicted losses with ∆t values 0.2 ps and 2 ps is highlighted in the figure.
Using a smaller ∆t leads to better agreement with the measured losses. The amplitude
of the applied field is 5mT

section. The predicted losses increase as a function of αG, meaning that with higher

values than αG = 0.04 the 1DMMEC–2DFE model would give higher losses than the

measurements. Different values of the damping parameter are used in the literature. In

[2], αG varies between 0.15−0.22 and the analysis of [25] suggests αG ∼ 0.1−0.2, both

for Co-based alloys. In both of these studies, αG is assumed to increase as a function

of the material thickness. For 20 µm thick FINEMET ring samples, [3] uses the value

αG = 0.04 and [37] αG = 0.06. To some extent, αG can be seen as a fitting parameter

for which the previous works give an order of magnitude. Unconventional choice of αG

can also lead to overfitting which might hide model inaccuracies.

In order to test for possible overfitting, the losses are also calculated for different mate-

rials than 17 µm thick Co71Fe4B15Si10. The simulation parameters are mostly kept the

same apart from some changes in the material parameters. Figure 5.7 shows the calcu-

lated losses for 6.1 µm and 13 µm thick Co67Fe4B14.5Si14.5, and Figure 5.8 for 20 µm thick

Co67Fe4B14.5Si14.5 with material parameters from [2]. In the simulations αG = 0.04 was

used. There is a fairly good agreement between the losses with all the tape thicknesses.

However, the results in Figure 5.5 are clearly better. Additionally, the better accuracy of

the 13 µm and 20 µm thick tapes compared to the 6.1 µm tape leads to the conclusion that

with these parameters the 1DMMEC–2DFE model works the better the closer the tape

thickness is to 17 µm. A possible explanation to this is that αG was kept constant despite

changing the tape thicknesses. However, in order to obtain higher losses in the 6.1 µm
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Figure 5.7. Losses as function of frequency for 6.1 µm (left) and 13 µm (right) thick
Co67Fe4B14.5Si14.5. The losses predicted by the 1DMMEC–2DFE model and the 1D FE
model are compared to measurements. The losses are calculated with the 1DMMEC–
2DFE model starting from 10MHz with an applied field amplitude of 10mT. Timestep of
∆t = 0.2 ps was used. Different meshes had to be used due to changing core dimen-
sions. A core with a thickness of 10 tape layers was simulated in both cases.

case, αG would have to be increased which contradicts the notion of increasing αG as a

function of thickness presented in [2] and [25].

The 1DMMEC–2DFE model can also be used to determine the hysteresis loop for the

cross-section of the tape wound core. Spatial averages of the relevant field quantities

are required in order to be able to plot single loops. The mean value of the tangential

magnetic flux density B0,tan can be directly averaged over the cross-section of the core.

Averaged Hs,0,tan is obtained through a spatially averaged magnetomotive force, similarly

to what is done in [38]. The spatially averaged field quantities are denoted as ⟨B0,tan⟩
and ⟨Hs,0,tan⟩. Figure 5.9 presents examples of hysteresis loops under applied field fre-

quencies of 10MHz and 100MHz. The simulations were carried out with the mesh of

Figure 5.4 and with the same parameters as in Figure 5.5. The increasing area of the

hysteresis loop as a function of frequency demonstrates the increasing losses with higher

frequencies.

Examining the fields obtained by solving the 1DMMEC–2DFE model allows us to check

on some previously made assumptions. The reluctivity of free space ν0 was used as the

material property in the radial direction with the assumption that radial components of the

fields are small. Also, the higher-order terms in the cosine series of Hs are expected to
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Figure 5.8. Comparison of losses as function of frequency for 20 µm thick
Co67Fe4B14.5Si14.5. The losses are calculated with the 1DMMEC–2DFE model starting
from 10MHz with an applied field amplitude of 10mT. As in Figure 5.7, timestep of
∆t = 0.2 ps was used and the calculations were carried out for a core with a thickness of
10 tape layers.
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Figure 5.9. Hysteresis loops predicted by the 1DMMEC–2DFE model. The spatially av-
eraged fields ⟨B0,tan⟩ and ⟨Hs,0,tan⟩ produce one hysteresis loop for the entire geometry.
The simulations were carried out for 17 µm thick Co71Fe4B15Si10 under applied sinusoidal
external field with an amplitude of 5mT and frequencies of 100MHz and 10MHz.
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Figure 5.10. Magnitudes of the different cosine series terms of Hs over the core geom-
etry. The unit on the color bars is A/m. The simulation was carried out for 17 µm thick
Co71Fe4B15Si10. As assumed, Hs,0,tan dominates over the other terms. Note the varying
upper limit of the color bars. The vertical lines plotted in the core are not the tape layers
but the contours of the fields.

be 0, a property originating from (3.7). A simulation was carried out with Nb = 3, and

Figure 5.10 shows instantaneous magnitudes of all the different cosine series terms of

Hs over the core geometry. As assumed, Hs,0,tan dominates over all the other terms.

Small Hs,0,rad indicates that the radial effects are small, and the assumption of zero-

valued higher-order terms is reasonably well satisfied. The relatively small deviation from

zero with the other terms can be considered numerical error dependent on the number

of elements in the mesh. A denser mesh is expected to reduce the magnitudes of the

higher-order terms.

As a final point, the computational performance of the 1DMMEC–2DFE model is dis-

cussed. Throughout the derivation of the model, simplifying assumptions have been made

to reduce the computational burden. These assumptions are necessary because the 3D

micromagnetic simulations proved that general micromagnetic simulations in large sys-

tems are not computationally feasible. To briefly recap these assumptions: a simple M

neglecting the DW processes was assumed in the tape, which reduced the micromag-

netic description to 1D over the thickness of the tape. The cosine series approximation

for the eddy current problem was evaluated with only a few terms with the 1DMMEC–
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2DFE model and the Hms calculation was simplified. Modifications were done to the

cross-section geometry, and homogenization was utilized to allow for a coarser mesh.

Additionally, only a small sector of the geometry was modeled, and the radial field quan-

tities were expressed with a simple constitutive law.

The remaining computational burden can be examined through the time required to com-

pute one timestep and the total number of timesteps in the simulation. The calculation

of a single timestep is quite fast. Even with a single core of old hardware (Intel Core

i5-4300U), the time required for one step is on average 15ms when Nb = 3 and mesh of

Figure 5.4 are used. If the Newton-Raphson iteration would be removed from the code

implementation, a speed-up by approximately the factor 2 is expected. Parallelization of

the computation is not expected to significantly accelerate the calculation of individual

timesteps.

The total number of timesteps required increases at lower frequencies. This is further

amplified by the need to use also from the perspective of micromagnetics small ∆t as

was demonstrated in Figure 5.6. The possibility to increase ∆t at low frequencies helps

to some extent, but this idea was not studied for values over ∆t = 2 ps. Even with

∆ t = 2 ps, at f = 50 kHz simulation over 3 periods requires 30 million timesteps. The

sheer number of timesteps at low frequencies makes the calculation slow. On the other

hand, the calculation times remain reasonable at high frequencies. As each timestep de-

pends on the values of the previous timestep, parallelization of the calculation is difficult.

The computation was observed to scale linearly with an increasing number of timesteps

when an adequate amount of memory was available.
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6 CONCLUSION

This thesis is concluded by summarizing the results obtained from the different modeling

approaches. The developed models for tape wound magnetic cores: the 1DMMEC model

and the 1DMMEC–2DFE model, are emphasized. Suggestions for future work on the

topic are made based on the obtained results.

6.1 Discussion on the results

The 3D micromagnetic simulations with MuMax3 could not be utilized to model the iron

losses of tape wound cores accurately. The computational burden of these simulations

makes it impossible to directly simulate a piece of tape large enough to include all the

magnetization processes. An attempt to simulate domains and DWs separately and com-

bine their contributions did not give satisfactory results. Simulations carried out with Mu-

Max3 proved to be more insightful with systems of smaller size than individual domains in

the tape. Simulations of a single DW could be used to observe the reducing DW motion

with higher excitation frequencies.

The 1DMMEC model introduces a micromagnetic model which approximates the solution

of the eddy current problem over the tape thickness in terms of a cosine series. Contrary

to existing models, the model input is the magnetic flux density. The predicted iron losses

are in good agreement with models already presented in the literature. The developed

model introduces some new parameters through the cosine series approximation and the

magnetostatic field Hms calculation whose roles in the predicted losses were studied.

The 1DMMEC model and the reference models are all derived for a single strip of tape

and do not take into account the geometry of tape wound cores.

The 1DMMEC–2DFE model couples the 1DMMEC model to 2D FEM. The combined

model utilizes a micromagnetic description for the tape material over the entire cross-

section of the core. The losses predicted with this model show good agreement with

measured iron losses. The model shows even potential to predict the measurements

more accurately than the previously mentioned models derived for a single strip of tape.

The accuracy of the predicted losses decreases slightly when the thickness of the tape is

decreased. On the other hand, the simulation parameters were not modified to achieve

the best fit with the measured losses in every situation.
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The 1DMMEC–2DFE model simulations were planned carefully to manage and reduce

the computational burden. The solution of the system is fast in individual time steps. How-

ever, the large number of time steps at low excitation frequencies makes the calculation

slow. The unexpectedly strong dependency on the timestep length ∆t further increases

the computational burden because small values of ∆t have to be used.

6.2 Suggestions for future work

Based on the results presented in this thesis, the 1DMMEC–2DFE model has been shown

to predict iron losses highly accurately in some cases. Future work could concentrate on

showing that the model accuracy applies more generally. In order to achieve this, the role

of some model parameters could be investigated further.

The role and suitable values of the LLG-equation damping parameter αG could be stud-

ied. It was noted that when moving from the 1DMMEC model to the 1DMMEC–2DFE

model, the value of αG needs to be reduced significantly. It is not clear whether the

geometry of the system can affect the value of αG. If αG would be used as a fitting

parameter, an increasing αG with thinner tape thicknesses would have to be used to fit

better the iron losses presented in this work. However, this contradicts some literature

where increasing αG with thicker tapes is suggested.

The approximate calculation of Hms could be improved. A method that better considers

the geometry of tape wound cores is expected to improve the description of the system.

On the other hand, more accurate evaluation of Hms can increase the computational

burden of the model. The suitable amount of domains and tape layers which are taken

into account in evaluating Hms would have to be determined for the improved method.

There are multiple possibilities to reduce the computational burden of the 1DMMEC–

2DFE model. Further study on the time step length ∆t can help find optimal values for

smaller frequencies. Also, changing the forward Euler discretization to a method with

better convergence properties could allow increasing ∆t. Modifying the code implemen-

tation to remove the unnecessary Newton-Raphson iteration is expected to reduce the

computational burden to some extent. One interesting alternative would be to attempt

a time-harmonic approach over the tape wound core cross-section. The computational

performance of such a model would be superior to time-domain methods.
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A CALCULATION OF THE GEOMETRY DEPENDENCY

OF THE MAGNETOSTATIC FIELD

This appendix presents how the geometry dependent matrix N of (4.6) is obtained. In

other words, the steps between (4.6) and (4.7) are presented. To recap, (4.6) expresses

the magnetostatic field as

Hms(w0) =
1

4π

N∑︂
n=−N

∫︂
Sn

(ên ·M )
w0 − r

′

∥w0 − r′∥3
da

′
. (A.1)

In order to evaluate the surface integral term, a coordinate system needs to be chosen.

The coordinates are chosen as in Figure 3.3 and the origin is set to the center of a

domain. The surface of the domain consists of 6 rectangles named after the coordinate

which stays constant as u+, u−, v+, v−, w+ and w−. The dimensions of the domain are

denoted as ∆u, ∆v and ∆w. The magnetostatic field is evaluated along the w-axis at

point w0 =
[︂
0 0 w0

]︂T
. Equation (A.1) can be written as

Hms(w0) =
1

4π

N∑︂
n=−N

Mu

∫︂
u+
n

w0 − r
′

∥w0 − r′∥3
da

′ −Mu

∫︂
u−
n

w0 − r
′

∥w0 − r′∥3
da

′

+Mv

∫︂
v+n

w0 − r
′

∥w0 − r′∥3
da

′ −Mv

∫︂
v−n

w0 − r
′

∥w0 − r′∥3
da

′

+Mw

∫︂
w+

n

w0 − r
′

∥w0 − r′∥3
da

′ −Mw

∫︂
w−

n

w0 − r
′

∥w0 − r′∥3
da

′
,

(A.2)

which can be further expressed as
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Hms(w0) =
1

4π

N∑︂
n=−N

Mu

∫︂ vmax,n

vmin,n

∫︂ ∆w/2

−∆w/2

[︂
−∆u/2 −v

′
w0 − w

′
]︂T

∥
[︂
−∆u/2 −v

′
w0 − w

′
]︂T

∥3
dw

′
dv

′

−Mu

∫︂ vmax,n

vmin,n

∫︂ ∆w/2

−∆w/2

[︂
∆u/2 −v

′
w0 − w

′
]︂T

∥
[︂
∆u/2 −v

′
w0 − w

′
]︂T

∥3
dw

′
dv

′

+Mv

∫︂ ∆u/2

−∆u/2

∫︂ ∆w/2

−∆w/2

[︂
−u

′ −vmax,n w0 − w
′
]︂T

∥
[︂
−u

′ −vmax,n w0 − w
′
]︂T

∥3
dw

′
du

′

−Mv

∫︂ ∆u/2

−∆u/2

∫︂ ∆w/2

−∆w/2

[︂
−u

′ −vmin,n w0 − w
′
]︂T

∥
[︂
−u

′ −vmin,n w0 − w
′
]︂T

∥3
dw

′
du

′

+Mw

∫︂ ∆u/2

−∆u/2

∫︂ vmax,n

vmin,n

[︂
−u

′ −v
′

w0 −∆w/2
]︂T

∥
[︂
−u

′ −v
′

w0 −∆w/2
]︂T

∥3
dv

′
du

′

−Mw

∫︂ ∆u/2

−∆u/2

∫︂ vmax,n

vmin,n

[︂
−u

′ −v
′

w0 +∆w/2
]︂T

∥
[︂
−u

′ −v
′

w0 +∆w/2
]︂T

∥3
dv

′
du

′
.

(A.3)

Equation (A.3) demonstrates the integral in all its details. Dependency on n is found in

the integration limits in the v-direction, and the v-coordinate of surfaces v+ and v−. For

every n holds that vmax,n−vmin,n = ∆v. Also M depends on n. When the domain n = 0

is set to have a positive Mu, the u-component of the magnetization is Mu in domains with

n even or 0 and -Mu with n odd. The v-component of the magnetization does not change

from domain to domain, and Mw is assumed behave as Mu. Due to the length of (A.3),

further simplifications are done in parts. The part proportional to Mu can be written as



51

1

4π

N∑︂
n=−N

Mu

∫︂ vmax,n

vmin,n

∫︂ ∆w/2

−∆w/2

[︂
−∆u 0 0

]︂T
∥
[︂
−∆u/2 −v

′
w0 − w

′
]︂T

∥3
dw

′
dv

′

= Mu

0,even∑︂
n=−N,...,N

1

4π

∫︂ vmax,n

vmin,n

∫︂ ∆w/2

−∆w/2

[︂
−∆u 0 0

]︂T
∥
[︂
−∆u/2 −v

′
w0 − w

′
]︂T

∥3
dw

′
dv

′

−Mu

odd∑︂
n=−N,...,N

1

4π

∫︂ vmax,n

vmin,n

∫︂ ∆w/2

−∆w/2

[︂
−∆u 0 0

]︂T
∥
[︂
−∆u/2 −v

′
w0 − w

′
]︂T

∥3
dw

′
dv

′

= MuNu. (A.4)

Respectively, the part proportional to Mv can be expressed as

Mv

N∑︂
n=−N

1

4π

∫︂ ∆u/2

−∆u/2

∫︂ ∆w/2

−∆w/2

[︂
−u

′ −vmax,n w0 − w
′
]︂T

∥
[︂
−u

′ −vmax,n w0 − w
′
]︂T

∥3

−

[︂
−u

′ −vmin,n w0 − w
′
]︂T

∥
[︂
−u

′ −vmin,n w0 − w
′
]︂T

∥3
dw

′
du

′

= MvN v, (A.5)

and the part proportional to Mw as
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Mw
1

4π

0,even∑︂
n=−N,...,N

∫︂ ∆u/2

−∆u/2

∫︂ vmax,n

vmin,n

[︂
−u

′ −v
′

w0 −∆w/2
]︂T

∥
[︂
−u

′ −v
′

w0 −∆w/2
]︂T

∥3
dv

′
du

′

−
∫︂ ∆u/2

−∆u/2

∫︂ vmax,n

vmin,n

[︂
−u

′ −v
′

w0 +∆w/2
]︂T

∥
[︂
−u

′ −v
′

w0 +∆w/2
]︂T

∥3
dv

′
du

′

−Mw
1

4π

0,odd∑︂
n=−N,...,N

∫︂ ∆u/2

−∆u/2

∫︂ vmax,n

vmin,n

[︂
−u

′ −v
′

w0 −∆w/2
]︂T

∥
[︂
−u

′ −v
′

w0 −∆w/2
]︂T

∥3
dv

′
du

′

+

∫︂ ∆u/2

−∆u/2

∫︂ vmax,n

vmin,n

[︂
−u

′ −v
′

w0 +∆w/2
]︂T

∥
[︂
−u

′ −v
′

w0 +∆w/2
]︂T

∥3
dv

′
du

′

= MwNw. (A.6)

Using the results from (A.4-A.6), (A.3) can be written as

Hms(w0) = MuNu +MvN v +MwNw. (A.7)

Despite writing the geometry dependent parts Nu, N v and Nw, as vectors, numerical

examination shows that they can be approximated with confidence as scalars. To con-

clude, Hms is approximated as

Hms(w0) = NM =

⎡⎢⎢⎢⎣
Nu 0 0

0 Nv 0

0 0 Nw

⎤⎥⎥⎥⎦M . (A.8)
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