
Distributed Algorithms for Verifying and Ensuring Strong Connectivity
of Directed Networks

Made Widhi Surya Atman and Azwirman Gusrialdi

Abstract— This paper considers the problem of distributively
verifying and ensuring strong connectivity of directed networks.
Strong connectivity of a directed graph associated with the
communication network topology is crucial in ensuring the
convergence of many distributed algorithms. Specifically, in-
spired by maximum consensus algorithm, we first propose a
distributed algorithm that enables nodes in a networked system
to verify strong connectivity of a directed graph. Then, given
an arbitrary weakly connected directed graph, we develop a
distributed algorithm to augment additional links to ensure
the directed graph’s strong connectivity. Both algorithms are
implemented without requiring information of the overall
network topology and are scalable (linearly with the number of
nodes) as they only require finite storage and converge in finite
number of steps. Finally, the proposed distributed algorithms
are demonstrated via several examples.

Index Terms— Distributed algorithms, finite-time, strongly
connected digraph, max-consensus.

I. INTRODUCTION

Distributed algorithm plays an important role in estima-
tion, optimization, and control of networked systems [1]–[5].
In contrast to centralized algorithms where all computations
are performed at a control center, computations in distributed
algorithms are locally performed at individual system by
exchanging information with a subset of other systems via a
communication network. As a result, distributed algorithms
have several potential advantages such as scalability to
system’s size, robustness with respect to failure of individual
system, and preservation of data privacy. Strong connectivity
of the graph associated with the communication network
topology is crucial in ensuring the convergence of the above
mentioned distributed algorithms. Most of the work on
distributed estimation, optimization, and control algorithms
take for granted (assume) that the communication network
topology is strongly connected. However, in practice the
communication network topology of a networked systems
may not always be strongly connected. Therefore, it is
necessary to first verify and further ensure (e.g., by adding
new links) strong connectivity of a given communication
network topology before executing the distributed estima-
tion/optimization/control algorithms. In addition, verifying
and ensuring strong connectivity of a communication net-
work topology needs to be performed in a distributed manner
to comply with the feature of distributed algorithms that will
be deployed in the networked system.

The work was supported by the Academy of Finland under Academy
Project decision number 330073.

M. W. S. Atman and A. Gusrialdi are with Faculty of Engineering and
Natural Sciences, Tampere University, Tampere 33014, Finland. Emails:
widhi.atman@tuni.fi and azwirman.gusrialdi@tuni.fi

The problem of verifying a strongly connected directed
graph (digraph) can be translated into the problem of com-
puting strongly connected components of the given digraph
using e.g., Tarjan [6], [7], Kosaraju–Sharir [8], or Gabow [9]
algorithm, which are based on depth-first-search approach,
as well as the relation-transitive-closure-based Warshall al-
gorithm [10]. Likewise, the problem of ensuring strong
connectivity of a directed graph is often described as strong
connectivity augmentation problem, which was initiated by
[6], [7] and followed by subsequent research in [11], [12]
emphasizing that the problem is solvable in polynomial time.
Despite the aforementioned approaches, most of the solutions
focus on centralized computation and rely on the assumption
that information of the overall network topology is known
beforehand. A fully distributed approach to solve the prob-
lems are scarce in literature, with notable examples are [5],
[13] which focuses on maintaining strong connectivity of a
digraph after link removals. Nonetheless, the algorithm in
[5], [13] still requires the initial graph before link removal
to be strongly connected. To the authors’ knowledge, there
is still no work in the literature which focuses on verifying
and ensuring strong connectivity of a directed network in a
distributed manner.

The main contribution of the paper is development of
distributed algorithms for verifying and ensuring strong con-
nectivity of a digraph. Specifically, we propose a distributed
algorithm to verify the strong connectivity of a directed
graph, inspired by the maximum consensus algorithm [14].
In addition, we propose a distributed algorithm, together
with its optimality gap, to turn a weakly connected graph
into a strongly connected digraph by adding new links. The
proposed algorithms require finite storage and converge in
finite time, which increase linearly with the number of nodes.
This feature allows the proposed algorithm to be easily
implemented before executing any distributed algorithms
whose convergence require strong connectivity property of
the network.

The remainder of this paper is organized as follows. In
Section II, we review the basic notions from graph theory
and provide the problem settings. Section III presents the dis-
tributive algorithm to verify whether a given directed network
is strongly connected. The distributed algorithm for ensuring
strong connectivity of a weakly connected directed graph
is then presented in Section IV. Illustrative examples are
presented throughout this paper to demonstrate the proposed
algorithms. Finally, Section V presents concluding remarks.
Due to space limitation, the proof of lemmas are omitted and
will be included in the extended version of this paper.

II. PROBLEM FORMULATION

In this section, we recall some basic notions from graph
theory and we define the problem settings within this paper.

A. Notation and Graph Theory

Information exchange between nodes in a network can be
modeled by means of directed graph (digraph). A directed
graph is denoted by G = (V, E) with a set of nodes V =
{1, 2, . . . , n} and a set of edges (links) E ⊆ V ×V . A graph
G1 = (V1, E1) is a subgraph of G = (V, E) if V1 ⊆ V and
E1 ⊆ E . Existence of an edge (i, j) ∈ E denotes that node
j can directly obtain information from node i, or node i is
directly accessible to node j. Here, node i is said to be an
in-neighbor of node j while node j is the out-neighbor of
node i. The set of all in-neighbors of node i is denoted by
N in

i = {j ∈ V | (j, i) ∈ E} while N out
i = {j ∈ V | (i, j) ∈

E} denotes the set of all out-neighbors of node i.
A path is a sequence of nodes (i1, i2, . . . , ip), p > 1, such

that ij is an in-neighbor of ij+1 for j = 1, . . . , p − 1. An
elementary path is a path in which no nodes appears more
than once. A path is closed if ip = i1. A cycle is a closed
path such that i1, i2, . . . , ip−1 are all distinct. A graph is
acyclic if it has no cycles. A graph is said to be strongly
connected if there is a path between any pair of distinct nodes
and it is called weakly connected if the graph obtained by
adding an edge (i, j) for every existing edge (j, i) in the
original graph is strongly connected. A strongly connected
component (or SCC) of directed graph G is a subgraph of G
that is strongly connected and maximal, as such no additional
edges or vertices from G can be included in the subgraph
without breaking its property of being strongly connected.

Within this paper, let R be the set of real numbers and
Z≥0 be the set of non-negative integers. By 1n ∈ Rn and
0n ∈ Rn, we denote the all ones vector and zeros vector in
n-dimension, respectively. For a given set N , |N | denotes
the number of elements in this set. Vectors are denoted as
boldface letters and matrices are denoted as capital letters
in boldface. Finally, the state for node i ∈ V is represented
by subscript operator, for example state a ∈ Rb, b > 1 for
node i is shown as ai and the j-th element of vector ai

(with j ≤ b) is denoted by ai,j .

B. Problem Settings

In this paper, we consider a network of n nodes whose
communication network topology can be represented by a
directed graph G0 = {V, E0}. Furthermore, it is assumed
that there exists no isolated nodes or group of nodes in G0.
Here, we introduce the following assumptions.

Assumption 1: Assume that
1) The information of the overall network topology G0

is not available and each node i only knows the
information on N in

i , N out
i , and n.

2) Each node is equipped with its own computational re-
sources and is assigned with a unique identifier that can
be mapped to its vertex number, i.e., i ∈ {1, . . . , n}.

Note that the unique identifier is a standard assumption
commonly used in designing distributed algorithm which can

be realized, e.g., by using MAC address, see for example [3].
In addition to Assumption 1, we consider a discrete-time case
and it is also assumed that the communication between nodes
occur in a synchronous manner that may either be defined
by a clock or by the occurrence of external events.

This paper’s objective is to develop distributed algorithms,
under assumption 1, for solving the following problems:

Problem 1: Verify in a distributed manner if directed
graph G0 is strongly connected.

Problem 2: For a weakly connected graph G0, add addi-
tional edges ∆E+ in a distributed manner to ensure that the
resulting graph Ḡm = {V, E0 ∪∆E+} is strongly connected.

III. DISTRIBUTED VERIFICATION OF A
DIRECTED GRAPH’S STRONG CONNECTIVITY

In this section, we present a distributed algorithm to verify
whether a given network is strongly connected. Here, for
each node i ∈ V , we introduce state xi[t] ∈ Rn to estimate if
node i is reachable from any other nodes and state fi[t] ∈ R
for locally verifying if graph G0 is strongly connected. The
variable t ∈ Z≥0 denotes the t-th time step or the t-th
communication event. Furthermore, for notation convenience
and readability, it is assumed that t resets to zero when
executing new update law.

To this end, each node updates its state xi[t] for n
iterations according to the following rule

xi,k[t+ 1] = max
j∈N in

i ∪{i}
xj,k[t] (1)

whose initial condition is chosen as

xi,j [0] =

{
1, if j = i

0, otherwise.
(2)

Update law (1) is based on the maximum consensus algo-
rithm in [14]. Given the initialization in (2), this approach
allows each node i to estimate the existence of paths from
any node j to itself when the value of xi,j [n] = 1, otherwise
xi,j [n] = 0 [5]. The n iterations is selected to ensure xi reach
its steady state. We then have the following result which
establishes the relationship between xi[n] and the strong
connectivity of directed graph G0.

Theorem 1: Given a digraph G0 and each node executes
(1) for n iterations whose initial values as in (2), the graph
G0 is strongly connected if and only if xi[n] = 1n, ∀i ∈ V .

Proof: We start by showing the necessity (⇒). Since
the graph G0 is strongly connected, under update law (1),
which is a maximum consensus algorithm [14], each element
in xi namely xi,j will converge to maxi xi,j [0] = 1 for all
i, j ∈ V . The required number of communication to reach
maximum consensus is the maximum of the elementary path
between any pair nodes in the graph, i.e., n− 1 in the worst
case. Thus, xi[n] = 1n is fulfilled for all i ∈ V . Next,
we show the sufficiency (⇐) through contradiction. We first
assume that graph G0 is not strongly connected, i.e., there
exists no path from a certain node i to j. However, as we have
xi,j [n] = 1 under update law (1) for all j-th row in xi[n]
and for all nodes i in the network, this means that there exist

Algorithm 1 Distributed Algorithm for Solving Problem 1

Require: network size n, in-neighbor set N in
i

1: initialize each element of xi[0] as in (2)
2: for each k-th element of xi (k ∈ {1, . . . , n}), execute

update law (1) for n iterations.
3: assign fi[0] as in (4)
4: execute update law (3) for n iterations
5: node i knows that graph G0 is strongly connected when
fi[n] = 0 and not strongly connected when fi[n] = 1.

path from any node j to any node i. Hence the graph G0 is
strongly connected, which contradicts the assumption.

Finally, to verify whether xi[n] = 1n for all i ∈ V , each
node updates its state fi[t] for n iterations according to

fi[t+ 1] = max
j∈N in

i ∪{i}
fj [t] (3)

whose initial value is chosen as

fi[0] =

{
0, if xi[n] = 1n

1, otherwise.
(4)

Note that fi[0] = 0 also means that node i is reachable to
all nodes in V . We then have the following result,

Theorem 2: Given a digraph G0 and each node executes
in sequence update rule (1) and (3) for n iterations each,
with each initial values as in (2) and (4). The graph G0 is
strongly connected if and only if fi[n] = 0 for any i ∈ V .

Proof: Let us divide all nodes into set V0 := {∀i ∈ V |
fi[0] = 0} and V1 := {∀i ∈ V | fi[0] = 1}. Then, we can
rewrite Theorem 1 as graph G0 is strongly connected if and
only if V0 = V and V1 = ∅, equivalently fi[n] = 0, ∀i ∈ V .

For a non-strongly connected graph G0, under update law
(3), the value of fi will converge to maxi fi[0] = 1, ∀i ∈ V
(weak maximum consensus) if for any node i ∈ V0 there
exists path ending in i and starting in j ∈ V1 [14]. Note that
this condition is satisfied as any node i ∈ V0 is reachable
from all nodes. This ensures that fi[n] = fj [n],∀i, j ∈ V .

The pseudo code of distributed verification algorithm for
solving problem 1 is summarized in Algorithm 1, which
finishes in 2n iterations i.e., its computational complexity
is equal to O(n).

The following examples illustrate the proposed distributed
verification algorithm.

Example 1: Consider a strongly connected graph in Fig.
1a. All nodes are mutually accessible, hence xi[8] =
18, ∀i ∈ V . All nodes then initialize fi[0] = 0 and it will
remain 0 for 8 iterations. Thus, fi[8] = 0,∀i ∈ V and each
node knows that the graph is strongly connected.

Example 2: Consider a weakly connected graph as shown
in Fig. 1b with n = 10 and let us add edge (6, 4) to the
existing graph. This results to an example where there exist
nodes, namely nodes 4 and 7, which can retrieve information
from all nodes. After 10 iterations in step 2, the state for node
k ∈ {4, 7} become xk[10] = 110, while the state for the rest
of node l ∈ {V\k} is xl[10] 6= 110. Hence, node k initializes
fk[0] = 0 and node l initializes fl[0] = 1. However, during

4 7

2

5

3

1
6

8

(a)

3 8

5

10

1

79

2

6 4

(b)

Fig. 1: Examples of (a) a strongly connected graphs and
(b) a weakly connected graph with its strongly connected
components: source-sccs (green regions), sink-sccs (blue
regions), and non-assigned SCC (gray region)

the next 10 iterations in step 4, the node k’s state will be
changed into fk[10] = 1, for example through the influence
of node l, i.e., node 1, 6 or 9. Thus, fi[10] = 1,∀i ∈ V and
all nodes know that the graph is not strongly connected.

IV. DISTRIBUTED ALGORITHM FOR ENSURING
STRONG CONNECTIVITY OF DIRECTED GRAPH

Assume that after running Algorithm 1, all nodes verify
that the graph G0 is not strongly connected, i.e., G0 is
a weakly connected digraph. In this section, a distributed
algorithm is proposed to add new edges to G0 so that the
resulting graph becomes strongly connected.

The problem can be reduced to a simpler one by con-
verting G0 into a directed acyclic graph G′0 which contains
one node for each strongly connected component (SCC) of
G0. The resulting node in G′0 with no entering edge is called
a source, and a node with no exiting edge is called a sink.
Finally, the new edges to strongly connect G′0 can be selected
by connecting the existing sink to source following a certain
ordering, as shown in [6], [7]. However, the computation for
the solution in general is centralized in which information
of the overall network topology is required.

In the following, we describe the high-level distributed
strategy inspired by [6], [7]. First, each node distributively
identifies SCC which corresponds to the sinks and sources
in G′0. New edges are then added by connecting a node in
the corresponding sink’s SCC to a node in the corresponding
source’s SCC. These steps are performed iteratively until the
resulting graphs become strongly connected. All the compu-
tations are performed in a distributed manner and without
requiring information of the overall network topology G0.

Before proceeding, we introduce the following definitions.
Definition 1: source-scc is a SCC with no entering edge

and at minimum one exiting edge.
Definition 2: sink-scc is a SCC with at minimum one

entering edge and no exiting edge.
An illustration of SCCs is shown in Fig. 1b. Note that a SCC
which is neither sink-scc nor source-scc can exist within a
weakly connected graph, e.g., the nodes 9 and 10 in Fig. 1b.

A. Distributed Estimation of Strongly Connected Component

In order to add a new edge distributively, each node i
needs to distributively estimate the set of SCC it belongs to,
namely set Ci, as well as to determine whether its own SCC
is a source-scc or sink-scc. Additionally, we define set Pi

as a set of all nodes outside Ci which can reach any node
in Ci. Let us also define the information number of node i,
denoted as ζi, as the number of nodes whose information
can be accessed by node i, including his own.

In the following, we propose a distributive approach for
the estimation of SCC by utilizing the maximum consensus
algorithm. For each node i ∈ V , let us assign states ci[t] ∈
Rn, si[t] ∈ Rn, and oi[t] ∈ Rn. State ci[t] is used to collect
the information number from all other accessible nodes to
determine Ci and Pi. Identification of an entering edge to
node i’s SCC will rely on Pi, and it will be shared through
state si[t] for source-scc determination. Finally, states oi[t]
is used to identify the exiting edges from node i’s SCC to
determine sink-scc.

Noting that the existence of a path from node j to i is
reflected by xi,j [n] = 1, node i’s information number can
then be calculated as ζi = 1T

nxi[n]. In order to estimate
other nodes’ information number, each node updates its state
ci[t] for n iterations according to the following rule

ci,k[t+ 1] = max
j∈N in

i ∪{i}
cj,k[t] (5)

whose initial condition is chosen as

ci,j [0] =

{
ζi, if j = i

0, otherwise.
(6)

After n iterations, the information number of all nodes j that
can reach node i will be reflected in the entry of ci,j [n].

We then have the following results on information number:
Lemma 1: If node i is reachable from node j (i.e.,

ci,j(n) > 0) and nodes i and j have the same information
number (i.e., ci,j(n) = ζi), then nodes i and j are belong to
the same SCC (mutually reachable to each other).

Lemma 2: For each node i, the other nodes in the set Pi

have a smaller (positive) information number compared to
all nodes in Ci.

Lemma 3: The SCC that comprises of all nodes in the set
Ci has no entering edges if and only if Pi = ∅.

As a direct result from Lemma 2, it is clear that the i-th
element of ci[n], i.e. ci,i[n] = ζi, always has the highest
number. By Lemma 1, each node i can estimate the set Ci
or Pi by identifying all nodes which have the same or lower
information number with itself, respectively. Namely,

Ci := {∀j ∈ V | ci,j [n] = ci,i[n]}, (7)

Pi := {∀j ∈ V | 0 < ci,j [n] < ci,i[n]}. (8)

Here, ci,j [n] = 0 represents the case where the information
of node j is inaccessible to node i. Note that node i’s local
estimation of Ci and Pi are identical to all other nodes in
the same SCC (i.e. Cj = Ci and Pj = Pi for all j ∈ Ci).

Then, by Lemma 3, each node i can then determine
whether its own SCC (set Ci) has no entering edge, namely
when Pi = ∅. As this information is crucial in identifying
the source-scc, each node needs to update its state si[t] for
n iterations according to the following rule

si,k[t+ 1] = max
j∈N in

i ∪{i}
sj,k[t] (9)

whose initial condition is chosen as

si,j [0] =

{
1, if j = i and Pi = ∅
0, otherwise.

(10)

The state si[n] collects the information from all nodes k ∈
Pi ∪ Ci whether node k’s SCC has no entering edges.

Finally, to estimate whether exiting edges exist from its
own SCC, each node updates its state oi[t] for n iterations
according to the following rule

oi,k[t+ 1] = max
j∈N in

i ∪{i}
oj,k[t] (11)

whose initial condition is chosen as

oi,j [0] =

{
1, if j = i and ∃k ∈ N out

i (k /∈ Ci)
0, otherwise.

(12)

The state oi[n] collects the information from all nodes k ∈
Pi ∪ Ci whether there exist an edge from node k to a node
located outside of node k’s SCC (set Ck).

We can then establish the following result to distributively
determine source-scc and sink-scc.

Proposition 1: Given a digraph G0 and each node executes
in sequence the following update law (1), (5), and (9)-(11)
for n iterations each, then each node i can determine the
following about its strongly connected component (set Ci):

1) All nodes in the set Ci is a source-scc if and only
if Pi = ∅ (equivalent to si,j [n] = 1, ∀j ∈ Ci) and
∃j ∈ Ci, oi,j [n] = 1.

2) All nodes in the set Ci is a sink-scc if and only if Pi 6=
∅ (equivalent to si,j [n] = 0, ∀j ∈ Ci) and oi,j [n] =
0, ∀j ∈ Ci.

3) Graph G0 is strongly connected if and only if Ci =
V, ∀i ∈ V . Equivalently, Pi = ∅, si,j [n] = 1, and
oi,j [n] = 0 for all i, j ∈ V .

Proof: The first two statements follows directly from
Definition 1-2. The term Pi 6= ∅ denotes that there exist
at least one node in Pi that can reach a node in Ci, hence
the existence of at least an entering edge to node i’s SCC.
Contrarily, the absence of entering edge is denoted by Pi =
∅. The existence of at least an exiting edge is denoted by
oi,j [n] = 1 for at least a single node j ∈ Ci, otherwise
oi,j [n] = 0, ∀j ∈ Ci. Finally, the only SCC in a strongly
connected graph is the graph itself, hence Ci = V, ∀i ∈ V
as stated in the final statement. The later term denotes that
there is no entering and exiting edges from G0.
The pseudo code for the proposed distributed estimation
of SCC is presented in Algorithm 2, which finishes in 3n
iterations i.e., its computational complexity is equal to O(n).

Below is an example to illustrate the proposed algorithm.

Algorithm 2 Distributed Estimation of SCC

Require: network size n, neighbor sets N in
i and N out

i

1: initialize each element of xi[0] as in (2)
2: for each k-th element of xi (k ∈ {1, . . . , n}), execute

update law (1) for n iterations
3: initialize each element of ci[0] as in (6)
4: for each k-th element of ci (k ∈ {1, . . . , n}), execute

update law (5) for n iterations
5: estimate Ci and Pi by (7) and (8), respectively
6: initialize elements of si[0] and oi[0] as in (10) and (12)
7: for each k-th element of si and oi (k ∈ {1, . . . , n}),

execute update law (9) and (11) for n iterations:
8: node i can determine whether all nodes in Ci is a source-

scc, sink-scc, or neither (Proposition 1).

Example 3: Let us consider the weakly connected graph
in Fig. 1b and focus on inspecting the states of node 7.
At the end of step 4 in Algorithm 2, node 7 can use
c7[10] = [1 1 3 9 3 0 9 3 7 7]

T to determine
C7 = {4, 7} and P7 = {1, 2, 3, 5, 8, 9, 10}. The fact that
there exist entering edge from outside of the set C7 (node 1
and 9) is reflected in P7 6= ∅. With N out

7 = {4}, node 7 has
no exiting edge outside of C7. Thus, the values of s7,7[0] and
o7,7[0] is initialized to 0. Then, at the end of step 7, node 7

will have s7[10] = [1 1 1 0 1 0 0 1 0 0]
T and

o7[10] = [1 1 0 0 1 0 0 0 1 0]
T . By inspecting

the value of s7[10] and o7[10], node 7 can determine that its
SCC is a sink-scc as P7 6= ∅ and s7,k = o7,k = 0, ∀k ∈ C7.

B. Distributed Link Addition Algorithm

Next, we present distributed algorithm to strongly connect
a weakly connected digraph G0 by iteratively identifying and
connecting the sink-sccs to source-sccs.

The decision for new link to be added is computed by each
representative node in the sink-scc. For a sink-scc containing
multiple nodes, the representative node can be selected by
following a predefined rules or by locally communicating
among the nodes that belong to the same sink-scc. Consider
the new edge to be added as (i∗, j∗), with node i∗ denotes
the vertex number of the sink-scc’s representative node. Node
i∗ then determines a set Si∗ ⊆ Pi∗ containing all nodes in
source-sccs that are accessible to i∗.

Lemma 4: For each node i, the set of all nodes in source-
sccs that is accessible to node i is denoted by

Si := {∀j ∈ Pi | si,j [n] = 1}. (13)
Note that it is not possible to categorize specific source-
sccs within Si∗ based on the existing information. Thus, for
the candidate of new edge (i∗, j∗), the node j∗ is selected
randomly from Si∗ . Once all the new edges are augmented,
the whole procedure is repeated by identifying the new sink-
scc and calculate new edge candidate from existing sink-scc
to source-scc until the graph becomes strongly connected.
The pseudo-code of algorithm for distributed link addition
is presented in Algorithm 3.

Algorithm 3 Distributed Algorithm for Solving Problem 2

Require: network size n, neighbor sets N in
i and N out

i

1: run Algorithm 2 {for G0 = {V, E0}}
2: while not strongly connected, i.e. Ci 6= V do
3: if i is within sink-scc then
4: determine representative node within Ci
5: end if
6: if i is representative node then
7: estimate the set Si by (13)
8: randomly select target node candidate j from Si
9: add j into N out

i and establish new link (i, j) {add
i into N in

j and conceptually add (i, j) into ∆E+}
10: end if
11: run Algorithm 2 {for Ḡm = {V, E0 ∪∆E+}}
12: end while

Now, let us consider the case where weakly connected
digraph G0 initially has v0 number of sink-sccs and w0

number of source-sccs, and the nodes distributively perform
Algorithm 3 which results in |∆E+| new edges. Furthermore,
let us denote ∆∗ as the optimality gap between |∆E+| and
the minimum number of links needed to strongly connect
G0. We then have the following main result.

Theorem 3: Given a weakly connected digraph G0 =
{V, E0}, then Algorithm 3 results in a strongly connected
graph Ḡm = {V, E0 ∪ ∆E+} by adding at most v0w0 new
edges. Furthermore, Algorithm 3 will finish in the worst case
of 3n(w0 + 1) iterations whose optimality gap ∆∗ is upper-
bounded by ∆∗ ≤ v0w0 −max{v0, w0}.

Proof: Each new link (i∗, j∗) from Algorithm 3 creates
a cycle containing all SCCs within the elementary path from
j∗ (a source-scc) to i∗ (a sink-scc), combining them into a
single SCC. Hence, each new link reduces the total number
of SCCs and ensures that the number of sink-sccs and source-
sccs are not increasing at each while-loop. Thus, the while-
loop in Algorithm 3 will eventually reach a single SCC, i.e.
strongly connected graph Ḡm, in a finite number of loop.

Maximum number of new links: For each while-loop
in Algorithm 3 (step 3 to 11), the number of the added
links is equal to the number of sinks-sccs, with v0 as the
maximum. Then, the worst case scenario is for all sink-
sccs to coincidentally select nodes from the same source-scc
at each while-loop. Hence, the maximum number of while-
loop is the original number of source-sccs, i.e., w0, and the
number of new links will be upper-bounded by v0w0.

Computational complexity: The Algorithm 2 in step 1
and 11 runs in 3n iterations, while the rest of the steps
(step 3-10) can be done instantaneously. As the maximum
number of while-loop is w0, then by simple calculation, the
Algorithm 3 requires 3n(w0+1) iterations in the worst case.

Optimality gap: The minimum number of links
to strongly connect a weakly connected digraph is
max{v0, w0}, as shown in [6], [7]. As the maximum number
of added link is v0w0, the optimality gap ∆∗ is upper-
bounded by v0w0 −max{v0, w0}.

3 8

5

10

1

79

2

6 4

(a) Sub-optimal solution

3 8

5

10

1

79

2

6 4

(b) Optimal solution

Fig. 2: Example of solutions to problem 2. The red, green,
and blue arrows respectively represent the augmented edges
for the 1st, 2nd, and 3rd additions.

Corollary 1: Given a weakly connected digraph G0 with a
source-scc (v0 = 1) or a sink-scc (w0 = 1), then Algorithm
3 results in an optimal solution with minimum link addition.

Proof: When v0 = 1 or w0 = 1, we can rewrite
the optimality gap in Theorem 3 as ∆∗ = max{v0, w0} −
max{v0, w0} = 0, i.e., number of links obtained from
Algorithm 3 is minimum.

Below is an example to illustrate the proposed algorithm.
Example 4: Consider the weakly connected digraph used

in Example 3 (Fig. 1b), which initially has two sink-sccs,
namely {6} and {4, 7}. In this example, we consider a
predetermined rule to select sink-scc’s representative, namely
by selecting the node with highest vertex number. Both
sink-scc representatives, node 6 and 7, then estimate all
accessible nodes that belong to source-sccs by each in-
specting s6[10] = [0 1 1 0 1 0 0 1 0 0]

T and
s7[10] = [1 1 1 0 1 0 0 1 0 0]

T . This results in
S6 = {2, 3, 5, 8} and S7 = {1, 2, 3, 5, 8}. New links are then
selected towards a random node in S6 and S7.

Let us consider a sub-optimal solution as illustrated in Fig.
2a. In the first loop, both node 6 and 7 select nodes from
the same source-scc, proceeding with (6, 3) and (7, 5). This
merges all nodes except the remaining source sccs {1} and
{2} into a single sink-scc with node 10 as the representative.
Then, a single link is added in each subsequent loop to
connect the remaining source-sccs. Here, the algorithm finish
in 120 iterations and with optimality gap ∆∗ = 1 which
has upper-bound of 3 from Theorem 3. Theorem 3 also
guarantees to provide at maximum v0w0 = 6 new edges,
much less than the possible new edges that can be selected,
which are n(n− 1)− |E0| = 77 edges. As a comparison, an
optimal solution is illustrated in Fig. 2b, where the algorithm
finishes in 90 iterations.

Remark 1 (Privacy Preservation): All information that
each node collects through Algorithm 1, 2 and 3 are the
existence of path from other nodes to itself (state xi), the
general notion of the strong connectivity (state fi), the other
nodes information number (state ci), and the information of
other SCCs’ entering and exiting edges (state si and oi).
This information is not sufficient for each node to reveal the
global topology, thus preserving privacy in terms of overall
network’s topology.

Remark 2 (Implementation): An implementation of Algo-
rithm 1, 2 and 3 in python language is available in http://

github.com/TUNI-IINES/dist-strong-connectivity

.

V. CONCLUSIONS AND FUTURE WORK
This paper proposes two distributed and finite time al-

gorithms to verify strong connectivity of a directed graph
and to strongly connect a weakly connected graph. The
strategy is inspired by maximum consensus algorithm which
is known to have finite computation time. The proposed
strategies provide the solutions without requiring knowledge
of the overall network topology and further preserve the
privacy within the network. Strong connectivity is a graph
property that is commonly assumed or required in many
distributed systems and is crucial in guaranteeing conver-
gence of many distributed estimation/optimization/control al-
gorithms. Hence, the proposed distributed strategy has broad
applications. Future work includes extending the distributed
link addition algorithm for general directed graphs.

REFERENCES

[1] A. Gusrialdi and Z. Qu, “Distributed estimation of all the eigenval-
ues and eigenvectors of matrices associated with strongly connected
digraphs,” IEEE Control Systems Letters, vol. 1, no. 2, pp. 328–333,
2017.

[2] V. S. Mai and E. H. Abed, “Distributed optimization over directed
graphs with row stochasticity and constraint regularity,” Automatica,
vol. 102, pp. 94–104, 2019.

[3] L. Sabattini, C. Secchi, and N. Chopra, “Decentralized estimation
and control for preserving the strong connectivity of directed graphs,”
IEEE Transactions on Cybernetics, vol. 45, no. 10, pp. 2273–2286,
2014.

[4] Z. Qu and M. A. Simaan, “Modularized design for cooperative control
and plug-and-play operation of networked heterogeneous systems,”
Automatica, vol. 50, no. 9, pp. 2405–2414, 2014.

[5] A. Gusrialdi, “Distributed algorithm for link removal in directed
networks,” in International Conference on Complex Networks and
Their Applications. Springer, 2020, pp. 509–521.

[6] K. P. Eswaran and R. E. Tarjan, “Augmentation problems,” SIAM
Journal on Computing, vol. 5, no. 4, pp. 653–665, Dec. 1976.

[7] S. Raghavan, “A note on eswaran and tarjan’s algorithm for the
strong connectivity augmentation problem,” in The Next Wave in
Computing, Optimization, and Decision Technologies, ser. Operations
Research/Computer Science Interfaces Series, B. Golden, S. Raghavan,
and E. Wasil, Eds. Boston, MA: Springer US, 2005, pp. 19–26.

[8] M. Sharir, “A strong-connectivity algorithm and its applications in data
flow analysis,” Computers & Mathematics with Applications, vol. 7,
no. 1, pp. 67–72, Jan. 1981.

[9] H. N. Gabow, “Path-based depth-first search for strong and bicon-
nected components,” Information Processing Letters, vol. 74, no. 3,
pp. 107–114, May 2000.

[10] Z. Wang, Y. Wu, Y. Xu, and R. Lu, “An Efficient Algorithm to
Determine the Connectivity of Complex Directed Networks,” IEEE
Transactions on Cybernetics, pp. 1–8, 2020.

[11] T. Watanabe and A. Nakamura, “Edge-connectivity augmentation
problems,” Journal of Computer and System Sciences, vol. 35, no. 1,
pp. 96–144, Aug. 1987.

[12] K. V. Klinkby, P. Misra, and S. Saurabh, “Strong connectivity augmen-
tation is FPT,” in Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms (SODA), ser. Proceedings. Society for Industrial
and Applied Mathematics, Jan. 2021, pp. 219–234.

[13] A. Gusrialdi, Z. Qu, and S. Hirche, “Distributed link removal using
local estimation of network topology,” IEEE Transactions on Network
Science and Engineering, vol. 6, no. 3, pp. 280–292, July 2019.

[14] B. M. Nejad, S. A. Attia, and J. Raisch, “Max-consensus in a max-
plus algebraic setting: The case of fixed communication topologies,” in
2009 XXII International Symposium on Information, Communication
and Automation Technologies, Oct. 2009, pp. 1–7.

