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Summary  The classical elastic theory of layered beams is used for the analysis of cross-
laminated timber (CLT) beams. A brief introduction of the theory is given and followed by 
examples. The theory of layered beams offers a widely studied and well-established method for 
the analysis the CLT beams including displacements and stresses of each layer of the beam. It is 
shown that the theoretical basis of the widely used Shear Analogy is the same as the theoretical 
basis of the theory of layered beams. The results are compared to test results and to results of 
the finite element calculations. It is seen that the deflections and strains are in 10 % fractals in 
mean in the considered cases. The theory of layered beams seems to be suitable method in the 
analysis of the CLT beams at the elastic phase.   
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Introduction 

Cross-laminated timber (CLT) is an innovative engineering wooden panel, made of at 

least three layers of strength graded boards (typically C14–C30) that are laminated by 

gluing with structural adhesives. Since CLT has illustrated its potentials and 

competences of using as dominant building materials for mid- and high-rise timber 

buildings, a series of studies have been focused on the structural behaviour of CLT 

structures during last 30 years. 

The grain directions of all the boards in every layer are the same. Thicknesses and 

orientations of the layers of CLT can vary, but typically the grain directions of adjacent 

layers are orthogonal. There can be 3–9 layers and thicknesses of the layers can vary in 

the range 20–60 mm. The total thickness of the product varies in the range 60–500 mm 

and CLT panels can be up to 4.8 m wide and up to 30 m long Ref. [4]. Each CLT 

manufacturer has own standard thicknesses and strength classes. Similarly, the cross-

section and the orientation of its layers differ from manufacturer to manufacturer.  
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Before 1990’s some constructions were completed with CLT, especially in relation 

to timber bridge decks. In 1990’s, some intensive research activities regarding CLT 

started in Graz, Austria Ref. [5], see also Ref. [27]. Both references include an excellent 

state-of-the-art of CLT structures with a comprehensive list of references. The first 

European standard for CLT was introduced in 2015, Ref. [17]. It regulates production 

and construction, but a uniform design procedure is lacking. The design procedure can 

be found in some national annexes to the European standard, Refs. [14], [50], although 

it is not included in the European standard for timber structures, Ref. [16]. Engineers 

use various technical regulations and manufacture-issued specifications for CLT-related 

calculations. Examples of regulations are Refs. [43], [48], as well as manuals for 

Canadian, Ref. [19], US, Ref. [28] and Scandinavian, Ref. [4] markets. 

 CLT panels act in-plane or out-of-plane or both. In this study the out-of-plane 

loading is considered restricting to the beams in the elastic phase. The layers of the 

cross-section resist bending loads with axial and shear stresses. The stresses are 

distributed to the layers based on the shear moduli and the Young’s moduli of the 

layers. The glue is supposed to be as strong and as ductile as the layers and no slip is 

assumed at the glue. The most important moduli in the beam design are the Young’s 

modulus parallel to the grain direction E0, the Young’s modulus perpendicular to the 

grain direction E90, the shear modulus G0 (Longitudinal/Radial LR, Ref. [21]) and the so 

called rolling shear modulus G90 (Tangential/Radial TR). The rolling shear describes 

one critical failure mode of the wood. The shear strength and modulus of the cross-layer 

where the grain direction of the layer is perpendicular to the beam axis, is weak in 

tangential/radial (TR) plane. The modulus G90 and the rolling shear strength have been 

identified as key issues in the CLT panel for out-of-plane bending applications, Ref. [2].   

 It was shown in Ref. [44] for red oak, Douglas-fir and western hemlock species, 

that there were no significant differences between Young’s moduli in tension and in 

compression. There were also no indications that Young’s moduli were function of 

either stress level or strain rate. Differences between dynamic flexural moduli were less 

than 3% from static tensile moduli. The measurement of the Young’s modulus can be 

completed by static tension or compression and in bending using the dynamic test as 

described in Ref. [30]. Based on this and similar studies for graded timbers, same 

Young’s modulus is given for compression, tension and bending, depending on the 

grain direction, e.g., E0 and E90. According to Ref. [15], the Young’s modulus of the 

layer must be set zero if the boards are not edge glued. Totally different values of 

tensile, compressive and bending Young’s moduli are reported in Ref. [29], in which the 

tensile modulus was two times greater than the compressive modulus of the same 

specimen. The bending modulus was between those two. 

In Ref. [18] are given approximations for the shear moduli: G0 = E0/16 and G90 = 

G0/10. In Ref. [4] is given for the frequently used grade C24 the value G90 = 50 MPa. 

The rolling shear strength and modulus have been defined based on bending tests and 

based on compression shear tests of Ref. [42]. In the bending tests the shear strains of 

the cross-layers are measured using strain gauges. The compression shear test is defined 

in Ref. [17]. In Ref. [42] were tested Canadian hemlock CLT panels. The mean rolling 

shear strengths and moduli were in the bending tests 1.57 MPa (standard deviation SD = 

0.07 MPa) and 234 MPa (SD = 14.97 MPa). In the compression shear tests the results 
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were 1.28 MPa (SD = 0.20 MPa) and 53.13 MPa (SD = 19.13 MPa). The most possible 

reason which has an obvious impact on the rolling shear strength is a size effect, Ref. 

[32]. The rolling shear modulus, the results calculated by strain measurements at the 

edge of shear constant areas in the bending tests, are more than four times of the value 

from the compression shear tests, 234 MPa and 53.13 MPa. Apparently, the rolling 

shear modulus of small compression shear specimens is much lower than that of a 

structural element. Apart from the size effects, the possible reason for the large 

difference is, that the adjacent parts of the testing area in bending shear specimens make 

large contributions to the bearing shear loads, while the specimen in the compression 

shear test has no “helpers”, Ref. [42]. 

 CLT beams have been analysed using general purpose finite element (FE) 

programs. The FE-models have been done with FE-shell model in two dimensions, Ref. 

[35], FE-shell model in three dimensions, Ref. [34], and many more, see e.g. Ref. [1]. In 

this study analytical methods are considered. Various theories have been proposed for 

the analysis of CLT beams. The key issue of the theories is, including the FE-models, 

how the shear deformations of the cross-layers are considered? Three methods are 

widely used in bending problems: Gamma Method, Ref. [36], Shear Analogy, Ref. [31] 

and Timoshenko Method, Ref. [47]. A comparison of these theories outlining their 

individual advantages and disadvantages is given in Ref. [3]. 

The Gamma Method is probably the most common approach in Europe, and it is 

given in Ref. [16] and in Ref. [4]. The Gamma Method can be implemented with the 

Euler-Bernoulli beam element as no shear deformations are considered, but it takes into 

account them indirectly by calculating the effective bending stiffness based on the 

efficiency of the connection between the longitudinal layers. This connection is 

provided by the shear stiffness of the cross-layers. The effective bending stiffness is 

calculated by summing the individual bending stiffnesses of the layers and adding the 

Steiner term with a factor Gamma. The factor Gamma includes the effective length, that 

is the length of the beam between two zero-moment points, inflection points. This 

means that the use of the Gamma Method means an iterative approach, because the 

moment distribution may be dependent on the bending stiffness. It is also limited to 

sinusoidal and parabolic moment distributions in Ref. [16].  

The Shear Analogy and the Timoshenko Method can be applied in case of any 

number of layers and for multi-span beams with arbitrary loads. The Shear Analogy is 

motivated by considering two separated beams, which are coupled to deflect the same 

amount, Ref. [3]. This leads to a group of differential equations. In Appendix A is 

shown that this group of differential equations leads to a sixth order differential 

equation, which in fact, is the basis of the elastic theory of layered beams.  

The most simplified method for the analysis of the CLT beam is the Bernoulli–Euler 

beam theory supposing the cross-section of the beam homogenous. The quantities 

MOR, MOE and FV defined by tests are used. A lot of full-scale bending tests have 

been completed to CLT beams, eg. Refs. [6], [7], [8], [49], [42], [11], [22]. In many of 

those studies the scope has been to define so called modulus of rupture (MOR) and the 

modulus of elasticity (MOE). MOR reflects the maximum load-carrying capacity of a 

member in bending and it describes the maximum axial stress of the top layer. In the 

referred test publications MOR is calculated using one, two or all three theories Gamma 
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Method, Shear Analogy and Timoshenko Theory based on the measurements. MOE is 

the Young’s modulus of the entire cross-section of the CLT beam. One, two or three 

theories are used frequently to calculate MOE based on the measured displacements. 

The difference is made between the global MOE and the local MOE. The global MOE 

is defined based on maximum deflection of the specimen and the local MOE is defined 

based on deflection at the shear force free area in four-point bending. In some tests the 

scope has been to define the shear resistance of the entire cross-section of the CLT 

beam, noted as FV. So, MOE, MOR and FV depend on the theory by which they are 

calculated based on experiments.  

In most of the referred test studies the nominal sizes of specimens are used, 

dimensions were measured in Ref. [6]. The most important properties E0, E90, G90 are 

not typically measured. One reference, Ref. [42] include the measurement of all these 

three values. One reference, Ref. [22], includes the measured values of E0 and E90 of the 

boards and one, Ref. [8], includes the measured value of E0. In many tests are used 

visually graded wood and in the calculations are used the standard values of that wood 

grade. Deflections are given typically in graphs including the whole test data. In one 

reference, Ref. [22], are given the deflections in a numeric table. In some references the 

deflections are not given, but they are embedded in the MOE calculations. Two 

references include the use of strain gauges in the bending tests and in Ref. [7] the strains 

are given in a graph and in Ref. [42] the strains are embedded in the MOE calculations. 

The comparisons with the test results are possible using the given deflections, and in 

some cases with the measured strains. 

The scope of this study is to use the well-known elastic theory of layered beams in 

the analysis of the CLT beams. The theory was developed originally in 1940’s for 

nailed layered wooden beams and shear walls, but after that, it has been widely used for 

sandwich structures, Refs. [45], [13].  

The research question of this paper is to study how well the theory of layered beams 

simulates the behaviour of the CLT beams. In what follows, the theory of layered beams 

is outlined briefly followed by numerical examples including comparison to 

experimental as well as numerical solutions. 

Theory of layered beams 

In the theory of layered beams, the underlaying assumptions are: 

1. For faces, the Euler-Bernoulli bending theory can be used, meaning that 

shear deformations of the faces are neglected when deriving the equations. 

2. The cores connect the faces, and the cores are assumed to be continuous and 

resist elastically only shear. 

3. The cross-section and stiffnesses of the faces and the cores are constant 

along the beam axis. 

4. The deflections of all the faces are the same along the beam axis. 

5. Generalized Bernoulli’s hypothesis is valid: The centroids of the faces 

remain on the line when the beam bends. This hypothesis was introduced to 

the theory in Ref. [40]. 
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 The last assumption is true for the cross-section with two faces and for the 

symmetric cross-section with three faces. The hypothesis is valid also in some other 

special cases. Thus, the theory is valid only approximatively for the beams with another 

cross-sections. The exact method where the Generalized Bernoulli’s hypothesis is not 

fulfilled, leads to the of the group of differential equations and these solutions can be 

derived approximatively, Refs. [41], [26]. Based on the abovementioned five 

assumptions, the differential equations of layered beams were derived in Refs. [38], [9], 

[25], [20] and [40]. In Ref. [9], the focus was in shear-walls and in Ref. [25], the focus 

was in sandwich structures. Many similar theories have been presented dealing with 

e.g., steel-concrete composite beams.  

 The theory leads to the solutions of fourth or sixth order differential equations. In 

Refs. [45] and [13] are given many exact solutions for the equations with different 

boundary conditions and with different loading cases. An approximate finite element 

method for layered beams was derived in Ref. [46]. This FEM uses a cubic spline for 

the lateral deflection of the beam and trapezoidal splines for the axial displacements of 

the faces. This ensures that the FEM converges to the exact solution when the lengths of 

the finite elements are reduced. The exact finite element method formulations (the term 

“direct-stiffness method” is used in Ref. [12] instead of the term “exact FEM”) for the 

layered beams are given in Ref. [24] and in Ref. [13]. The theory has been known over 

70 years, so it can be called as the classical theory of layered beams. 

Consider the general cross-section of the beam, which consists of i (1, …, n) faces 

and j (1, …, n–1) cores between the faces, see Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Cross-section of the layered beam, n = 5. 

If the beam is statically determined, i.e., the moment distribution M(x) is known 

along the beam axis x based on the equilibrium equations, then the governing fourth 

order differential equation of the deflection v(x) is, Ref. [45] 
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 ,                         (1) 

where k is the shear factor of the layered beam, B0 is the sum of bending stiffnesses of 

the faces Bi, (i = 1,…, n), Bs is the Steiner term of the faces with respect to the elastic 

centroid of the cross-section, and B is the sum of B0 and Bs. 

More general sixth order differential equation is given in Ref. [24]: 

 ,                          (2) 

where p(x) is the loading intensity along the beam. The general equation is given in Ref. 

[24] including a distributed load, an axial force, an angular velocity, and a Winkler 

foundation. 

It can be seen, that setting B0 = 0 (thin faces) in Eq. (2) the result is of the same form 

as the differential equation for the well-known Timoshenko-beam. The exact FEM for 

the Timoshenko-beam has been presented in Ref. [12] and the dynamic case has been 

studied in Ref. [10]. The exact finite element discretization of Eq. (2) including the axial 

force and thermal loading is presented in Ref. [37]. The vibration case is considered in 

Refs. [33], [23]. The homogenous characteristic equation of Eq. (2) leads to the solution 

of the third order equation and its analytic solution is given in Ref. [24]. 

Different complementary boundary conditions can be given Refs. [13], [24] and in 

Ref. [24] are given for Eq. (2) 

,     (3) 

,     (4) 

,     (5) 

where * means a known value. The angle γ measures the slip between the centroids of 

the faces. The needed equations for the boundary conditions are 

,     (6) 

,   (7) 

, (8) 

,      (9) 

,            (10) 

where Q0 is the sum of the shear forces of the faces, Qs is the shear force of the cores, 

M0 is the sum of the bending moment of the faces, Ms is the sum of the bending 

moments of axial forces of the faces. 

In Ref. [40] is proposed, that the shear factor k is calculated using the same shear 

stiffness intensities kj for all cores j = 1, …, n–1. In Ref. [39] is proposed, that the shear 

factor k is calculated assuming the same elastic modulus for all faces i = 1, …, n. Here 

is used the following expression for the shear factor, Ref. [24] 

,    (11) 

where 

                                                              ,                                                (12) 
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and yi is the coordinate of the elastic centroid of the face i and kj is the shear stiffness 

intensity of the core j, see Appendix B. If the core j is made of periodical connectors 

with spacings lsj having a shear stiffness kvj of one connector, then kj = kvj/lsj. The shear 

stiffness intensity of the layer j of the CLT beam is 

 ,                 (13) 

where bj is the width of the layer j and hj is the height of the layer j. 

The elastic centroid of the cross-section is defined as that point at which if u’ = 0 (u 

being the axial displacement) then N = 0. It follows that 

, (14) 

where Ei is the Young’s modulus of the face i and Ai is the area of the face i. This 

formulation is used because here can be used the dimensions aj which are known 

without calculations of the coordinates at his stage. The bending stiffnesses are 

,  (15) 

and Ii is the second moment of the face i with respect to zi. 

As an example, consider a simply supported beam of span L with one concentrated 

load F acting at x = e and ε = e/L, see Figure 2. At the simply supported ends the sliding 

is free to occur between the faces. When the sliding is free to occur between the faces 

then the boundary condition is M0 = 0. When the sliding is prevented then the boundary 

condition is γ = 0, see the complementary conditions (5). 

 

 

 

 

 

 

 
Figure 2. One span beam loaded with concentrated load. 

The solution is given in Ref. [45] and it is using the notation ξ = x/L 

 

, (16) 

and 

 

, (17) 

where index 1 is valid for 0 ≤ ξ ≤ ε and index 2 is valid for ε ≤ ξ ≤ 1. The bending 

moments and the shear forces are 

,    (18) 

,   (19) 
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,  (20) 

           ,            (21) 

,    (22) 

,    (23) 

,   (24) 

,   (25) 

where index 1 is valid for 0 ≤ ξ ≤ ε and index 2 is valid for ε ≤ ξ ≤ 1. Here are used the 

notations 

      ,        (26) 

The shear stress τj of the core j is 

,    (27) 

where Tj = kjajγ = kjajQs/k is the shear flow on the core j. The maximum value of the 

component τi of the shear stress of the face i is, assuming the parabolic shear stress 

distribution over the face 

.     (28) 

The axial stress of the face i is 

,  (29) 

where yi is the local coordinate of the face i, see Figure 1. 

3-, 5- and 7-layer beams 

In Ref. [22] are given test results of 3-layer and 5-layer CLT beams, which are 

fabricated using Nr.2-grade Canadian black spruce lumber. Long beams (bending tests) 

are tested with four-point bending and short beams (shear tests) with three-point 

bending. Totally ten 3.3 m long 3-layer beams and ten 4.8 m long 5-layer beams were 

tested. Totally ten 0.68 m long 3-layer beams and ten 1.0 m long 5-layer beams were 

tested in the shear tests.  

The widths of all beams were 310 mm. The measured Young’s moduli of the boards 

were E0 = 10925 MPa in parallel to grain and E90 = 993 MPa in perpendicular to grain 

directions, and the compression strengths were 28.7 MPa and 5.8 MPa, respectively. 

The average densities were 490 kg/m3 for 3-layer panels and 486 kg/m3 for 5-layer 

panels. The 3-layer panel was made of three 35 mm thick layers, the total height being 

105 mm. The 5-layer panel was made of 35, 25, 35, 25 and 35 mm thick layers, the total 

height being 155 mm. The loading and support conditions for the long and short beams 

are shown in Figure 3. 
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a) 

 

 

 

 

 

 

 

b) 

 

 

 

 

 
Figure 3. Loading and support conditions in the tests for 5-layer beams, Ref. [22], a) long 

beams, b) short beams. 

The shear stiffness intensity kj and the shear factor k are calculated for the transverse 

direction (layer where the grain direction is perpendicular to the beam axis) using the 

equations (11) – (13). Using the approximation of Ref. [18] the shear moduli are G0 = 

10925/16 = 683 MPa and G90 = 683/10 = 68.3 MPa. All the CLT panels considered in 

Ref. [22] were edge glued. If the Young’s moduli E90 in the perpendicular directions are 

set to zero, then the 3-layer beam can be considered as a layered beam with two faces 

and the 5-layer beam as a symmetric layered beam with three faces. These cross-

sections are such, that the centroids of the faces remain at the line in bending, and the 

Generalized Bernoulli’s hypothesis is automatically fulfilled. The theory of layered 

beams can be used for the considered cases using the theory with three faces to the 3-

layer beams and with five faces to the 5-layer beams. This means that the Young’s 

moduli in the transverse directions are considered when calculating the bending 

stiffness. The shear factor is calculated only for the transverse directions also in this 

case. By these means the basic assumption number 2 of the theory is violated and the 

theory is applied only approximatively. The quantities needed in the analysis using the 

theory of layered beams are given in Table 1. The load level is chosen so, that the 

beams are at the elastic phase. 

The deflection v and the stress resultants M and Q of the long 3-layer beam can be 

calculated by summing the effects of two concentrated loads from the equations (16) – 

(25) by setting ε = 0.4014 and 0.5986. The deflections and the moments and the shear 

forces are given in Figures 4–6. The Young’s modulus is E90 = 0 MPa for the transverse 

direction. 
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Table 1. Input for analysis of layered beams. The value E90 = 0 MPa indicates that the Young’s 

modulus of transverse layers are not considered and the value E90 = 993 MPa indicates that they 

are considered. 

Property Long 3-layer beam Long 5-layer beam Short 3-layer beam Short 5-layer beam 

Span 

(mm) 

3195 4645 575 845 

Distance 

of load 

from 

support 
(mm) 

1282.5 1857.5 287.5 422.5 

Total 

load 

(kN) 

13.49 14.8 30 60 

E90 

(MPa) 

0 993 0 993 0 993 0 993 

Bi 

(Nmm2) 

1.210E+10 1.210E+10 1.210E+10 1.210E+10 1.210E+10 1.210E+10 1.210E+10 1.210E+10 

B0 

(Nmm2) 

2.420E+10 2.530E+10 3.630E+10 3.710E+10 2.420E+10 2.530E+10 3.630E+10 3.710E+10 

Bs 
(Nmm2) 

2.904E+11 2.904E+11 8.535E+11 8.673E+11 2.904E+11 2.904E+11 8.535E+11 8.673E+11 

B 

(Nmm2) 

3.146E+11 3.157E+11 8.898E+11 9.044E+11 3.146E+11 3.157E+11 8.898E+11 9.044E+11 

kj 

(N/mm2) 

605 605 846 847 605 605 846 847 

k (N) 2963406 2963406 6096150 6096150 2963406 2963406 6096150 6096150 

α 0.083 0.087 0.043 0.043 0.083 0.087 0.043 0.043 

β 0.010 0.010 0.006 0.007 0.296 0.296 0.196 0.199 

λ 36.798 36.053 61.460 60.800 6.623 6.488 11.181 11.060 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Deflections of long 3-layer beam. 
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Figure 5. Bending moments with total load 13.48 kN of long 3-layer beam. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Shear forces with total load 13.48 kN of long 3-layer beam. 

In Figure 5, it can be seen that the moment Ms carries the larger part of the total 

moment M than the moment M0. In Figure 6, it can be seen that the shear force Q0 

(faces) decreases when approaching the supports, and this can be seen in the shear 

stresses of the faces. Figures 7–9 show the shear stresses, Eq. (28), the axial stresses, 

Eq. (29), and the axial strains ε = σ/E of the 3-layer beam. 

The shear stresses of the top and bottom layers are the major parts of the total 

stresses at the loading point because these layers carry mainly the concentrated loads. 

These stresses are decreasing when approaching the supports, and this can be seen in the 

shear force Q0 distribution in Figure 6. In Ref. [35] has been shown similar results using 

the Shear Analogy and the results are compared to the results of the FE-model. 

However, the used FE-model did not give such major parts of the shear stresses near the 

loading point, because the concentrated load in the FE-model was distributed to the 

entire cross-section of the beam. 
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Figure 7. Shear stresses of long 3-layer beam, E90 = 0 MPa. 

The axial stresses and strains are calculated both using E90 = 0 MPa (With 2 faces) 

and E90 = 993 MPa (With 3 faces). The axial stresses are a little bit larger at the loading 

point, than at the mid-point of the beam.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. Axial stresses at load point of long 3-layer beam. 

 

 

 

  

 

 

 

 

 

 
Figure 9. Axial strains at load point of long 3-layer beam. 
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It is seen in Figures 8 and 9 that the differences of the axial stresses and strains are 

not large at the outmost layers between “With 2 faces” and “With 3 faces”. Using the 

theory “With 3 faces” the tensile stress in the transverse direction, which may be critical 

in many cases, can be simulated. It is seen in Figure 9 that the Bernoulli’s hypothesis is 

not fulfilled, as was found in Ref. [35], too. However, the generalized Bernoulli’s 

hypothesis is valid, as is assumed in the theory of layered beams. 

Similar distributions were found for the deflections and for the stress resultants of 

the long 5-layer beam. The stresses and the strains of the long 5-layer beam are given in 

Figures 10–12. Figures 13 and 14 show the moments and the shear forces of the short 5-

layer beam. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. Shear stresses of long 5-layer beam. 

 

 

 

 

 

 

Figure 11. Axial stresses at load point of long 5-layer beam. 
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Figure 12. Axial strains at load point of long 5-layer beam. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 13. Bending moments with total load 60 kN of short 5-layer beam. 

 

Figure 14. Shear forces with total load 60 kN of short 5-layer beam. 
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Figure 15. Shear stresses of short 5-layer beam. 

Similar distributions were got for the short 3-layer beam. The shear stresses, axial 

stresses and axial strains for the short 5-layer beam are shown in Figures 15–17. In this 

case, the shear stresses vanish at the loading point in the layers 2 and 4, because the 

shear force Qs is zero at this point, see Figure 14. The shear force Qs = 0 due to 

symmetry and the shear angle γ = 0 at the mid-point of the beam. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 16. Axial stresses at mid-point of short 5-layer beam. 

 

 

 

 

 

 

 

 

 

 

 
Figure 17. Axial strains at mid-point of short 5-layer beam. 



158 

 

The deflections and the maximum loads in the tests are given in Table 2. The given 

values of the tests are the mean values of ten tests. In Table 2 are given the deflections 

using the Timoshenko theory for comparisons. 

 
Table 2. Deflections and maximum loads of the cases Ref. [22]. 

 Long 3-

layer beam 

Long 5-

layer beam 

Short 3-

layer beam 

Short 5- 

layer beam 

Load (kN) 13.49 14.8   30 1 60 

Deflection in tests (mm) 26.7 34.6      1.2 1, 2   2.2 2 

Deflection, present theory (mm), E90 = 0 MPa 30.0 34.9 1.2 2.4 

Deflection (mm), E90 = 993 MPa 29.9 34.3 1.2 2.4 

Deflection (mm), Timoshenko theory 27.8 32.6 1.8 3.6 
1 Nine tests, 2 Measured from the figure. 

 

It is seen that the theory of layered beams gives about same deflections to the short 

beams and to the long 5-layer beams than the tests, but not so good results to the long 3-

layer beam. The deflection using the theory of layered beams is larger than the 

measured deflection in this case.  

In Table 3 are compared the results of the theory of layered beams to test results. 

The test results are the means of 3–10 measurements. The load level is chosen to the 

elastic phase. All cases are calculated by considering the bending stiffnesses in the 

transverse directions. 

It is seen that the axial strains of the bottom layers can be simulated well using the 

theory of layered beams compared to the tests, although there were found only five 

samples to the comparisons. The ratios of the calculated maximum deflections to the 

observed test values are in the mean 1.10 in 18 cases. The minimum ratio is 0.98 and 

the maximum ratio is 1.29. When considering the design, the deflection based on the 

theory of layered beams is on the safe side in almost all 18 cases. 

Unsymmetric beam 

Comparisons of the results of the layered beam theory are done with the results of the 

FE-models using program Autodesk Robot Structural Analysis Professional, Version 

33.0.6930 (x64). The reason for using finite element model for comparison is due to the 

fact, that the layered beam theory assumes Bernoulli hypothesis to hold for the parallel 

layers and parabolic distribution for the shear and the Generalized Bernoulli hypothesis 

to the entire cross-section. Square four node plane stress elements with an orthotropic 

material are used. Consider an unsymmetric cross-section, Figure 18, similar as is 

shown in Ref. [4]. This case introduces the structure, where the Generalized Bernoulli’s 

hypothesis is not presumably valid. The cross-section is composed of five faces (the 

elastic modules in the transverse direction are taken into account) and the shear factor is 

defined considering two layers in the transverse direction, see Figure 18. The face is the 

layer which bending stiffness is taken into account in the analysis using the theory of 

the layered beam. The core is the layer which shear deformation is considered, see also 

the basic assumptions 1 and 2. 
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Table 3. Comparisons with test results. 

Reference, case Origin of modulus 
E0 and E90 

Total 
load 
(kN) 

Measured 

deflection 

(mm) 

Calculated 

deflection 

(mm) 

Measured 

axial strain 

of bottom 

layer 

Calculated 

axial strain 

of bottom 

layer 

[7], 3-layers, span 1.8 m, 

four point bending 

[4] 5 7 8.7 0.0068 0.0067 

[7], 3-layers, span 1.8 m, 

three point bending 

[4] 15 29 31.1 0.0028 0.0037 

[6], 5-layers, span 1.71 m, 

four point bending 

[4] 60 16 18   

[8], 3-layers (20 mm), span 

1.44 m, four point bending 

E0 measured, 

others [4], C16 

20 14.5 15.8   

[8], 5-layers (20 mm), span 

2.40 m, four point bending 

E0 measured, 

others [4], C16 

20 16.7 18.5   

[8], 3-layers (40 mm), span 

2.88 m, four point bending 

E0 measured, 

others [4], C16 

20 14.6 15.8   

[8], 3-layers (20 mm), span 

0.72 m, four point bending 

E0 measured, 

others [4], C16 

40 - 3.9   

[8], 5-layers (20 mm), span 

1.20 m, four point bending 

E0 measured, 

others [4], C16 

40 - 2.2   

[8], 3-layers (40 mm), span 

1.44 m, four point bending 

E0 measured, 

others [4], C16 

40 4 3.9   

[42], 3-layers, span 1.26 m, 

four point bending 

Measured also 

G90 

20 3 3.1 0.00061 0.00057 

 

[42], 3-layers, span 1.89 m, 

four point bending 

Measured also 

G90 

20 8 10.3 0.00106 0.00112 

[42], 3-layers, span 2.52 m, 

four point bending 

Measured also 

G90 

20 21 23.8 0.00161 0.00167 

[11], 3-layers (19 mm), span 

1.026 m, four point bending  

[4] 20 9.6 9.7   

[11], 3-layers (19 mm), span 

0.513 m, four point bending 

[4] 20 - 1.9   

[11], 3-layers (44 mm), span 

2.34 m, four point bending 

[4] 20 10.4 11.1   

[11], 3-layers (44 mm), span 

1.188 m, four point bending 

[4] 20 - 2.2   

[11], 7-layers, span 5.4 m, 

four point bending 

[4] 20 9.9 11.0   

[11], 7-layers, span 2.7 m, 

four point bending 

[4] 20 - 2.4   

[49], 5-layers, span 3.15 m, 

four point bending 

US standard E0 

= 1800000 psi, 

E90 [4] 

20 9.0 9.7   

[49], 5-layers, span 3.15 m, 

four point bending, rotated 
90o from pervious 

US standard E0 

= 1400000 psi, 
E90 [4] 

10 16.6 19.5   
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Figure 18. Unsymmetric cross-section of the beam, dimensions in mms. 

The dimensions of the cross-section are shown in Figure 18, including the location 

of the elastic centroid. The elastic properties of the grade C24 are as they are given in 

Ref. [4]: parallel direction E0 = 11000 MPa, transverse direction E90 = 370 MPa and G90 

= 50 MPa (rolling shear). A simply supported beam of the span 3 m is considered with a 

concentrated load 15 kN located at 1 m from the left support. The moments and the 

shear forces using the theory of layered beams are shown in Figures 19 and 20. 

 

           

 

 

 

 

 

 

 

 

 

 

 

  

  

 
Figure 19. Moments with load 15 kN of unsymmetric beam. 



161 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 20. Shear forces with load 15 kN of unsymmetric beam. 

The maximum deflection of the beam was 10.6 mm using the theory of layered 

beams.  

The FE-model was done with the data of one test in Ref. [42], 3-layers, span 1.89 m, 

four-point bending, see Table 3. The half of the beam was modelled using the FEM. 

Rectangular four node elements were used with 5 elements per layer using the elements 

sizes of 7 mm x 7 mm, see Figure 21 a). 

 

a) 

 

 

 

 

 

 

 
b) 

 

 

 

 

Figure 21. FEM models, a) 3-layer four point bending model, b) unsymmetric beam 

The maximum deflection using the FEM was 8.3 mm and the axial strain of the 

bottom surface at the mid-span was 0.00110 extrapolated to the nodes. These values fit 

rather well to the measured values 8.0 mm, and 0.00106, respectively. The similar 
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model was used for the unsymmetric beam, see Figure 21 b). The element size was of 5 

mm x 5 mm. The shear modulus of the unsymmetric beam for the parallel layers was G0 

= 690 MPa and the Poisson’ ratio in both FEM cases was 0.3 both in the parallel 

direction and in the transverse direction. The concentrated load 15 kN was given as five 

nodal loads 3 kN each, distributed to 20 mm at the top surface, to prevent the high local 

stresses at the loading point. 

The maximum deflection using the theory of layered beams was 10.6 mm and using 

the FEM 9.6 mm. The axial stresses at the loading point are given in Figure 22. 

                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 22. Axial stresses at load point of unsymmetric beam at the loading point. 

In Figure 22 can be seen, that the axial stresses at the lower part of the cross-section 

fit rather well using the theory of layered beams to the FEM results, the maximum 

tensile stresses being 12.3 MPa and 12.0, respectively. Using the FEM, the stresses of 

the top surface are larger due to the stress concentration near the loading point.  

A refined mesh (FEM_2) using the element size of 2.5 mm x 2.5 mm was used, too. 

The concentrated load was given as 9 nodal loads distributed to 20 mm. Displacements 

and axial stresses did not change compared the results using the element size of 5 mm x 

5 mm. The shear stresses of the FEM are taken 10 mm from the theoretical point load, 

i.e., at the section where the last nodal force is acting.  
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Figure 23. Shear stresses at load point of unsymmetric beam at the loading point, left side. 

The mesh size had a considerable effect to the shear stresses near the top surface, as 

can be seen in Figure 23, FEM_2. The shear stresses of other layers did not change 

when changing from FEM to FEM_2. The shear stresses in the transverse direction are 

near FEM results using the theory of layered beams, but the shear stresses of two lowest 

parallel layers are larger than FEM results.  

The theory of layered beams gives the values of the considered design properties, 

when comparing to the FEM results, to the same range of validity than those, which are 

compared to the test values in Table 3. 

Conclusions 

The classical elastic theory of layered beams is used for the analysis of the CLT beams. 

The introduction of the theory is given including the governing differential equations 

and the boundary conditions. One solution of the differential equation is given for the 

simply supported beam with the concentrated load. The results of the numerical 

examples are given, and the comparisons are done with the test results and with the 

FEM results. 

The ratios of the calculated maximum deflections to the observed test values are in 

the mean 1.10 in 18 cases. The minimum ratio is 0.98 and the maximum ratio is 1.29. 

When considering the design, the deflection based on the theory of layered beams is on 

the safe side in almost all 18 cases. The calculated axial strains are also near by the 

tested values. One beam with the unsymmetric cross-section was modeled using the 

plane stress FE-model. The calculated deflections and the maximum axial stresses were 

near by the FEM results. The shear stresses in the transverse direction were near by the 

FEM results. The shear stresses of the parallel layers were larger than the results given 

by the FEM analysis, but at the top layer due to the stress concentration near the point 

load. 
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It was shown that the Shear Analogy and the theory of layered beams include the 

same differential equation, which means that their theoretical bases are same, although 

the derivations of the methods are quite different. The comparisons, which are available 

in the literature dealing with reliability of the Shear Analogy, the Gamma Theory and 

the Timoshenko theory in the analysis of the CLT beams, can be used to comparisons 

by compensating the Shear Analogy by the theory of layered beams. In Ref. [3] are 

analyzed many cases using the three methods including one-span and multi-span beams 

in different loading cases. The most reliable method in those cases compared to the 

FEM results was the Shear Analogy, so this is true also for the theory of layered beams. 

The theory of layered beams offers a widely studied, well established method for the 

analysis the CLT beams at the elastic phase including displacements and stresses of 

each layer of the beam. A lot of analytical solutions can be found in the literature, and 

more can be computed using the related exact finite element formulations. The authors 

consider the theory of layered beams more straightforward in practical applications than 

the Shear Analogy. 
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Appendix A. Shear Analogy 

At the turn of the last millennium Kreuzinger Ref. [31] designed a calculation method 

called the Shear Analogy. The Shear Analogy is based on the following assumptions: 

1. The structural behavior is presented by two overlapping beams which are 

coupled by the common deflection. 

2. The bending stiffness of beam A corresponds with the moments of inertia 

of the layers, whereas the beam B corresponds with the Steiner terms. 

3. Beam A is supposed to be rigid in shear, while the shear flexibility of the 

beam B results from the flexibility of the cross-layers. 

The physical interpretation of the method is: Two beams A and B which are 

connected with vertical hinge-ended stiff bars located infinitely densely. 

The differential equation of the beam A is got from Eq. (2) by setting the shear 

factor k to infinity and setting the bending stiffness as B0. The result is 

,    (A.1) 

where q is the load distribution of the connecting vertical bars. The differential 

equation of the beam B is got from Eq. (2) by setting B0 = 0. The result is 

 .                                       (A.2) 

Solving the function q from Eq. (A.1) and substitution to Eq. (A.2) leads to the sixth 

order differential equation (2). It can be concluded that the theory of the Shear Analogy 

is the same as the theory of layered beams. This conclusion has not been found in the 

literature.  

The differential equations (A.1) and (A.2) are solved as coupled. Analytical 

solutions are given in Ref. [A1]. Numerical solutions are given based on the physical 

interpretation given above. The beam A and the beam B are modelled using a plane 

frame program by setting the distance of vertical bars short enough Ref. [3]. 

Appendix A reference 

[A1] A. Scholz. Ein Beitrag zur Berechnung von Flächentragwerken aus Holz. 

Dissertation TU München, 2004. 
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Appendix B. Shear Factor 

Consider rotations of the layered beam in Figure B.1. 

 

 
 

Figure B.1. Rotations of the layered beam. 

The slip dj at the level of the centroids of the faces i and i + 1 is 

.                                                                (B.1) 

It is supposed that the core resists linearly this slip and the shear stiffness intensity of 

the core is kj, so the shear flow Tj of the core is 

.                                                       (B.2) 

Consider next the free body diagram of the length dx in Figure B.2. 

 

Figure B.2. Free body diagram. 

The moment equilibrium implies 

 

.                                 (B.3) 

By assuming that there is no longitudinal surface loading summation of equations (B.3) 

gives 
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.                                             (B.4)

 
The faces are acting as Bernoulli-Euler beams so Mi = –EiIiv’’ and the shear flow Tj is 

following (B.2), then 

,                            (B.5)

 

where is used the notation (11) for the shear factor k. 
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Appendix C. 3- and 5-layer beams using Timoshenko Theory 

Consider the maximum deflections of 3- and 5-layer short and long beams, see Figure 3. 

The maximum deflections are calculated using the equation of the virtual work 

 

                       (C.1)

 

where M1 and Q1 are the moment and the shear force of the load and M2 and Q2 are the 

moment and the shear force of the unit load at the mid-span of the beam, L is the span 

of the beam, B is the bending stiffness of the beam and κGA is the shear stiffness of the 

beam considering all layers. The shape factor κ = 0.2 is used for the layers of the CLT 

beams Refs. [4], [11]. 

The maximum deflection of the long beam with the total load F is 

   
                              (C.2)

 

 

and for the short beam 

                                              (C.3)
 

The data of the calculations is shown in Table C.1. 

Table C.1. Data of the Timoshenko theory. 

Property Long 3-layer 

beam 

Long 5-layer 

beam 

Short 3-layer 

beam 

Short 5-layer 

beam 

L (mm) 3195 4645 575 845 

a (mm) 1282.5 1857.5 287.5 422.5 

F (kN) 13.49 14.8 30 60 

bi = bj (mm) 310 310 310 310 

Height of layers (mm) 35/35/35 35/25/35/25/35 35/35/35 35/25/35/25/35 

E0 (N/mm2) 10925 10925 10925 10925 

E90 (N/mm2) 993 993 993 993 

G0 (N/mm2) 683 683 683 683 

G90 (N/mm2) 68.3 68.3 68.3 68.3 

B (Nmm2) 3.157E+11 9.044E+11 3.157E+11 9.044E+11 

∑κjGjAj (N) 148211 211730 148211 211730 

v(L/2) bending (mm) 27.5 32.3 0.4 0.8 

v(L/2) shear (mm) 0.3 0.4 1.4 2.7 

v(L/2) total (mm) 27.8 32.6 1.8 3.6 

 


