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The growing range of possibilities provided by the proliferation of commercial unmanned

aerial vehicles, or drones, raises alarming safety and security threats. Efficient mitigation of these

threats depends on authorities having defence systems to counter both accidentally trespassing

and maliciously operated drones. To effectively counter such drones, the defence systems need

to be able to detect a new drone entering a restricted airspace, locate its position, identify its

purpose, and, should the identification procedure mark it as a threat, neutralize it. The operations

within these stages are illustrated in Fig. 1. Each of them can be realized through various sensors

and methods, which conventionally have been controlled by handcrafted algorithms. However,

continuous advances in machine learning (ML) could be the key for an endless improvement of

counter-drone systems’ techniques and abilities, providing them with an advantage that makes

them virtually unbeatable in the field.
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Fig. 1: Counter-drone operations illustrated through the observe–orient–decide–act (OODA) loop,

which originates from the defence sector but fits to explain the counter-drone procedures also

in civilian and commercial contexts.

ML already plays an important role in extracting relevant data from various sensors in computer

vision and speech recognition, among other operations. Typically, ML systems rely on artificial

neural networks (NNs) that have been vaguely inspired by biological NNs and are trained to

relate some type of inputs to another type of outputs as illustrated in Fig. 2, by considering a vast

number of examples instead of specifically programming explicit rules. Usually, a handcrafted

algorithm is better optimized for any task than a NN. However, the learning ability of NNs

can significantly relax the engineering workload that is otherwise required for solving problems

with a large number of inputs and outputs, thus making the overall system design process more

efficient. Additionally, NNs might be able to detect features in the data that an engineer might

have missed or that are not perceivable for a human.

It is therefore not surprising that ML algorithms, and NNs in particular, are increasingly

considered as key constituents of drone security systems in recent research efforts. In fact, a

substantial number of surveillance systems relying on NNs have been successfully implemented

and commercialized. In addition to analyzing data from any given sensor, ML methods might

prove crucial in aggregating data obtained from multiple sensors of different types through sensor

fusion, which leads to enhanced situational awareness.

In this article, we discuss how NNs are used to enhance the four stages of drone mitigation,

provide references to bibliographic surveys devoted to counter-drone security systems featuring

NNs, and draw attention to potential research opportunities we envision in this field — hopefully
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Fig. 2: An example of a convolutional neural network that we used in our earlier study on drone

classification from radio spectrograms, together with illustrations on its basic building blocks.

spurring on forward-thinking students to participate in novel and high-impact research on NNs

in counter-drone systems.

DETECTING DRONES

The first step towards risk assessment and mitigation is detecting the threatening drone.

Detection can be performed in radio, radar, audio, or visual domains as illustrated in Fig. 3,

because they typically rely on radio signals for communications with ground control, their

moving rotor blades have distinguishable radar signatures, the rotors create an audible noise,

and they become more visible as they approach the observer.

From these options, radio and radar typically offer the longest detection range. Furthermore,

since radar signals need to travel both ways and small drones are weak radar targets, drones

are typically detectable at even longer distances through radio signals than with radars. As a

result, radio detection is often considered as the main method for drone discovery. However, if

a target drone is completely autonomous and not transmitting anything, then detection needs to

be performed in other domains.

Radio Detection

The goal of drone detection from radio data is to recognize and classify drone signals in

the radio spectrum. A typical approach is to transform the received signals to a time–frequency
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Fig. 3: Drone detection — a counter-drone system detects a new target using its radio analyzer,

radar, microphone, and camera.

representation known as spectrogram, and then use NNs to detect and classify different signals

from those images, similarly to how NNs are used for object recognition from photographs in

computer vision.

However, radio spectrograms are inherently complex-valued entities, which calls for revising

the conventional methods that operate on real-valued color photographs. One approach, although

not yet as well studied, is to use complex-valued NNs directly on the received signals. This way,

intrinsic information potentially available in both amplitude and phase of the signal can be

leveraged for detection purposes. Further research should be done into developing complex-

value-based NNs and studying their benefits and performances at different tasks.

Overall, recent experiments have shown good performance when using NNs to detect and

classify the drone models from a radio signal. Detecting drones from radar signals also falls

under this category. However, as radars inherently include ranging, this is covered in more detail

in the next section on locating and tracking drones.

Video and Audio Detection

ML has been leading the way for computer vision and speech recognition solutions for some

time. Therefore, as would be expected, NNs show promising results in both video- and audio-

based drone detection as well — NNs are capable of detecting and classifying between numerous

different types of commercial drones with very high accuracy based on just visual or audio data.
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A disadvantage in video- and audio-based methods is that they are expected to be adversely

affected by environment conditions, such as weather and urban noise. However, these methods

are essential to developing robust counter-drone systems that can handle radio-silent operations

or drones that use wireless communications that are not typically characteristic to them, such as

mobile networks. Additionally, vision-based methods provide an easy way for human operators

to interpret and understand the threat situation.

Research Opportunities

Drone detection from different sensors using NNs is a relatively well researched topic. Further-

more, NNs have been reported to achieve high accuracy even when a large variety of consumer

drones have been used during the training phase. However, the detection of drones outside of the

learning dataset, especially with radio signals, is an open research question — how to detect and

classify drones that use unknown signal types in a crowded radio spectrum? This is especially

important, since new signal protocols with diverse uses are developed rapidly. Would such signals

get classified incorrectly as another drone or be discarded as noise?

LOCATING AND TRACKING DRONES

After detecting an appearing drone, finding out its geographical location and subsequently

tracking its movements becomes important to assess the potential threat that the drone poses,

and to support identification and neutralization of the drone as illustrated in Fig. 4.

Similarly to drone detection, locating and tracking of drones can be based on various sensors,

ideally relying on sensor fusion for best results. However, locating and tracking operations do

not often rely on NNs, since these operations are quite well established and do not involve any

immediately intuitive classification problems. Regardless, several examples of using NNs for

improving accuracy and performance have been reported.

Radio and Radar Localization

When countering malicious drones, it is often essential to locate not only the drone itself, but

also the drone operator. In most conditions, radio-based sensors provide the most straightforward,

if not the only, option for tracking both the drone and its remote control operator.

Locating radio signal sources is typically achieved by combining multiple direction-of-arrival

(DoA) detectors into a triangulation system, or by combining multiple time-synchronized sensors
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Fig. 4: Drone localization and tracking — often it is also essential to locate the drone operator.

into a time difference-of-arrival (TDoA) system. It is also possible to use a single DoA detector

together with a path-loss model and knowledge about transmitted signal power to estimate the

distance of the transmitter from the received signal’s power. If the sensor’s receiver does not

have a line-of-sight to the transmitter, then the accuracy of these methods are usually quite poor.

Several works have considered the use of ML for simplifying the implementation or improving

the accuracy of locating and tracking radio emitters. This is especially important, as conventional

DoA estimation algorithms, such as MUSIC, are computationally expensive. As such, NNs have

been applied for estimating the direction of a radio emitter from noisy measurements with

notable accuracy by employing even a single DoA detector. It is also noteworthy that radio-

based drone locating methods are amongst the leading candidates to be used in counter-drone

unmanned aerial vehicles. That is because elevating radio sensors can significantly improve their

performance when locating and tracking drones, especially in urban scenarios.

A drone’s micro-motions impart changes to radar echo signals and since targets with differing

physical builds, such as different drone models, each have micro-motions which are characteristic

to that build, those changes to radar signals become distinguishable and are called micro-Doppler

signatures. Classifying these signatures is especially suitable for NN applications.

However, NNs also have the potential to aid modelling drone movement and thus tracking

the drone. Initially, Kalman filters were designed for tracking single targets and revolutionized

this area by providing the possibility to use complex tracking models. More recently, NN-based

methods have been proposed for handling maneuvering targets or multiple targets with clutter.
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Such NN methods have the potential to become a key enabling technology for cognitive radars

to track and predict the movement of multiple drones. As a testament to that, NNs have been

considered for collision avoidance on-board of drones in order to avoid other aircraft.

Video and Audio Localization

Visual tracking is one of the most prominent topics in the field of computer vision, wherein the

goal is to automatically estimate the states of the target object in the subsequent frames. Recently

it has been shown, that conventional particle filter and sliding window-based motion models

can be outperformed by NN-based motion models for trajectory prediction in visual tracking

applications. Similarly, it has been shown that NN implementations are able to accurately track

suspicious airborne targets and even combine feeds from multiple cameras to track a single

target. After all, NNs have already been proposed for controlling the movements of drones and

it is natural to use the same technology to anticipate their behavior.

Propeller sound coming from the drone can be used in a similar way as with radio-based

methods to extract location and track movements of a drone. The benefit of audio-based methods

compared to radio-based ones is arguable, but sensor fusion is useful in scenarios with strong

interference or when the target does not transmit radio signals.

The main weakness of the audio-based approach is that the propellers of the drone are usually

rather quiet and the ambient noise present in any real environment can easily mask the sound

of the drone from any meaningful distance. Yet, drone DoA estimation using acoustic arrays

is an interesting topic and similarly to radio-based DoA estimation, NNs can be exploited for

improved pinpointing of acoustic sources in noisy conditions.

Research Opportunities

From a security point of view, one of the most alarming developments considering the rapidly

evolving capabilities of drones is their ability to operate in a completely autonomous way. For

counter-drone purposes, this will make detecting and locating the drone and its operator using

radio-based methods more difficult if not impossible, as the drone will not require continuous

communication with the operator. It has already been shown that using multiple camera feeds to

track a single drone using NNs is feasible. However, can NNs be extended to take advantage of

sensor fusion and track a drone not only from multiple same type sensors but using sensors of
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completely different types? For example, would combining thermal imaging and regular cameras

help overcome some of the weather induced difficulties in visual tracking?

IDENTIFYING DRONES

After detecting and locating a drone in the area, it becomes essential to assess the risk that

the drone poses. It has been proposed that all drones are required to carry a transponder that

transmits the drone’s and its owner’s information, such as the drone’s location, licence number,

and the owner’s name and contact information. Thus, if a drone is flying with its transponder

off, it could be immediately classified as a potential threat or a malfunctioning transponder.

Alternatively, if a drone with an active transponder is unknowingly approaching a restricted

area, its owner could be contacted and the risk mitigated. However, other methods of extracting

useful information from non-cooperative drones exist as shown in Fig. 5.

Transmitter Chip Identification

In signal classification field, NNs have proven to be able to recognize and categorize different

signal modulations and communication protocols. This information could potentially be used to

identify the radio chip models, which are used by the drone and its remote controller.

Various drones might be constructed using the same chipset, so knowing the protocol is not

necessarily enough information to identify the drone model. However, knowledge about the

specific components used in the advancing drone obtained from several sensors, sources, or

algorithms, can be combined and used in a database search to evaluate the drone’s capabilities

(e.g., transmitter output power, flight speed, payload capacity) and thus assess the risk posed by

the drone, or assist in locating and tracking the drone.

Radio and Radar Fingerprinting

In any radio transmitter, the analog electronics components within the signal transmission path

(e.g., digital-to-analog converters, band-pass filters, frequency mixes, and power amplifiers) have

slight imperfections that impose unique distortions on their transmit signals. Numerous works

have studied the possibility of fingerprinting various radios (e.g., WiFi and Internet-of-Things

devices) based on those imperfections from a device population of hundreds to thousands of

devices using NNs. The results from these works have been highly encouraging, as NNs have

been shown capable of identifying specific radios from moderately large device populations based
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Fig. 5: Drone identification — the threat level and affiliation of the drones is determined based

on extracted information.

on the hardware imperfections. However, such identification accuracy depends on the signal-to-

interference-plus-noise ratio of the received signal and the distortions caused by the wireless

channel, including all elements in the signal path from source to destination.

Radar-based identification is based on the unique distance–Doppler profile generated by the

drone and its different moving parts. Such methods can be used to discover the number of

propellers, their length and rotation speed. It might be possible to acquire the radar cross section,

as well as whether the drone is carrying a payload. Consequently, such information can be used

to estimate the drone model, but if various models share the same characteristics, it can lead to

ambiguity. Regardless, the drone class can be estimated from this information.

Audio and Video Profile Identification

Speaker recognition has been studied for long before drones became a security concern and

ML approaches are successful at recognizing individual speakers from audio. More recently,

NNs have also been successfully applied for distinguishing drones using the acoustic signatures

that the rotors generate. This solution seems to provide good identification performance, but

since the drones are not very loud and the noise situation can vary drastically, the range and

reliability of this method can be quite poor.

Image processing with NNs can also give a definite answer about the specific model of the

drone, as well as whether it conveys a payload and of which size (e.g., if the drone is carrying

a camera or an explosive device). However, for visual identification methods to work, the drone

must be in clear line-of-sight view from the camera, which limits the method’s coverage and

functionality in adverse environmental conditions.
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Research Opportunities

Drone identification will be essential when distinguishing between drones belonging to regular

users, law enforcement, and malicious users. As such, accurate identification could be used to

determine the threat posed by a drone, or even as forensic evidence in hindsight. NNs are already

showing good results in identification tasks.

However, perhaps the biggest challenge for NN-based identification is scalability. What kind

of NN architectures are required to identify specific units amongst very large device populations

— what are fundamental limits of robust fingerprinting? Also, what kind of impact will realistic

channels have on identification accuracy, how to overcome those channel effects, and can such

identification methods be guaranteed to be non-cheatable? Another open question is if NN-based

methods can also be used to identify the threat carried by the drone, e.g., whether the drone is

carrying a surveillance camera or an explosive device?

NEUTRALIZING DRONES

After a drone has been identified as a potential threat, the risks it poses need to be minimized.

The possibilities range from aggressive methods, like firing projectiles or nets, to more subtle

methods, like control channel or satellite navigation jamming. A visualization of the latter can

be seen in Fig. 6.

The concept behind jamming is to transmit a powerful signal in the same frequency band

as the one used by the drone, making it difficult for the drone to demodulate the signal it is

receiving. Most of the public research is concerned in detecting and mitigating jamming using

NNs, whereas research into leveraging NNs for jamming is limited. However, several aspects of

improving jamming through ML can be and indeed have been considered.

Waveform Adaptation

The signal waveform used for jamming the drone’s remote control or satellite navigation

receivers has a great impact on the jammer’s performance. Therefore, the jamming waveform

is a prime candidate for modification to increase efficiency. The adjustable parameters could be

the center frequency, bandwidth and idle time of a noise-type signal.

Should the jammer be able to observe the drone’s response to jamming, adjusting the jamming

waveforms parameters accordingly can be considered as a reinforcement learning operation, for

which NNs are well suited. By using ML, a jammer that does not have any prior knowledge
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Fig. 6: Drone neutralization — NN-enhanced waveform and transmitter power adaptation together

with beamforming can reduce collateral damage.

about the transmitter’s algorithm, can effectively reduce or deny the transmitter’s throughput

compared to random or even sensing-based jamming.

Transmit Power Adaptation

In addition to adapting the waveform, it can also be advantageous to modify the transmitted

jamming power. The idea is to minimize the power of the transmitted signal to a level where

the jamming just works and the defence system transmits the least amount of energy needed to

disable the target device.

Transmit power minimization is important to mitigate the collateral damage caused by the

operation to nearby authorized actors using the same frequency band, as well as to hide the

jamming operation from others, and to simply conserve energy. Similarly to modifying the

waveform through reinforcement learning, the transmit power could be adapted to changing

conditions in the scenario as a function of the perceived jamming efficiency.

Adaptive Beamforming

To further limit the unwanted collateral damage caused by jamming, and to increase power

efficiency, the radiation pattern of the jamming antenna should be aimed to direct the signal

only at the targeted drone(s). Beamforming can be performed by adjusting a directional antenna

with electric motors, or through signal processing with an antenna array. For beamforming to

be effective, the location of the drone needs to be accurately known.

January 26, 2022 FINAL



12

In previous sections, we have already discussed how various sensors enhanced with NN-

based methods can be used for locating and tracking drones. Such systems are essential for

directing the jamming energy towards the targeted drone. A NN could be given a task of deciding

inputs to classic beamforming algorithms, or to directly adapt the antenna element weights, but

whether such a system brings any meaningful benefit over traditional methods is an open research

question.

Research Opportunities

A jammer equipped with artificial intelligence could maximize the jamming performance while

minimizing the collateral damage caused by it, and even more so if so-called full-duplex radio

technology was used to enable simultaneous radio transmission and reception. It might even be

possible to hijack a flying drone by utilizing a learning jammer that mimics the control signaling

or GPS while observing the drone’s movement, thus moving it away from a critical location.

Surprisingly or not, the rapid rise and dependence on NNs in drone applications themselves

might open another trail for countering them, should some forward-thinking researcher explore it.

Despite its enormous success in many computer vision, signal classification, and signal tracking

applications, ML itself is exceedingly vulnerable to adversarial attacks. For example, radio signal

modulation classification performance can be significantly reduced even with small perturbations

of the input signal. As such, these adversarial attacks can be significantly more powerful than

classical jamming attacks, which raises security and robustness concerns in the use of ML

algorithms for wireless physical layer. It is plausible that as NN-based applications find more

use in drones, the counter-drone solutions will benefit from targeting the underlying NNs.

CONCLUSION

Rogue consumer/prosumer drones pose a significant threat to both civilian and military security

and therefore need to be counteracted with efficient defence systems. Such systems need to

operate through multiple stages: detecting, locating, assessing, and eliminating threats. In this

article, an overview of the most prominent methods belonging to those stages has been given

along with discussions on how neural networks could improve them. Indeed, neural networks

have already been shown capable of enhancing many of these methods, yet ample research

opportunities remain open. The current counter-drone systems are far from invincible, however,

that is a worthy target to pursue and we believe that neural networks are crucial in its realization.
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