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Abstract: Efficient optical excitation of hybridized plasmon modes in nanoantennas is vital to
achieve many promising functionalities, but it can be challenging due to a field-profile mismatch
between the incident light and the hybrid mode. We present a general approach for efficient
hybrid-mode excitation by focusing the incident light field in the basis of cylindrically polarized
vector beams of various higher-order spiral phases. Such basis vector beams are described
in the higher-order polarization states and Stokes parameters (both defined locally in polar
coordinates), and visualized correspondingly on the higher-order Poincaré spheres. The focal
field is formulated exclusively in cylindrical coordinates as a series sum of all focused beams of
the associated high-order paraxial beams. Our focal field decomposition enables an analysis of
hybrid-mode excitation via higher-order vector beams, and thus yields a straightforward design
of effective mode-matching field profile in the tightly focused region.

© 2020 Optical Society of America

1. Introduction

Hybridized plasmon modes, arising from optical near-field coupling in plasmonic nanoparticle
assemblies [1, 2] are attractive for a variety of applications because of their unique spectral
and radiation characteristics [2–4]. Effective hybrid-mode excitation is crucial in achieving
functionalities that rely on characteristics of such modes, which can be challenging as it sometimes
requires a specially engineered incident light field when the conventional ones do not work. For
instance, the bonding and antibonding modes are formed in nanorod dimers [2], and the former
can be efficiently excited by a plane wave at normal incidence, whereas the latter’s excitation
is symmetry-forbidden for the same illumination but allowed by an obliquely incident plane
wave [5], a localized emitter [6], or a tightly focused pulsed laser beam [7]. Another example is
the use of cylindrical vector beams for the excitation of dark modes in nanorod trimers [8] or
in other plasmonic clusters [9]. In general, to efficiently excite a hybrid mode, it is essential to
shape the field profile of the incident light so that it effectively matches the hybrid mode’s profile,
which can have a significant space-varying polarization distribution over the sub-wavelength
range around the nanoparticles.
Vector beams (VBs) [10, 11] with tuned spatial distributions of the polarization state add

new ingredients into the light-matter interaction. Recently, they have found a considerable
amount of applications in diverse research fields, including optical microscopy [12–14], optical
communication [15–18], trapping [19,20], surface plasmon polaritons [21–23], and nonlinear
nano-optics [24–28]. Typical examples are the radially and azimuthally polarized VBs, where
the electric field vectors point into the radial and azimuthal directions in the beam cross section,
respectively [10]. They are usually regarded as two fundamental zeroth-order instances of more
general higher-order cylindrical VBs that can be geometrically illustrated on the higher-order
Poincaré (HOP) spheres [29]. Compared with the standard Poincaré sphere, every point on the
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HOP sphere corresponds to a higher-order VBwhich can possess an extra helical phasemodulation
in addition to the spatially inhomogeneous polarization distribution. General cylindrical VBs
with arbitrary higher-order polarization states have been recently extensively investigated, as they
have become experimentally accessible [30–34].
Here, we investigate the shaping of the incident light with an effective mode-matching field

profile through a decomposition into higher-order, cylindrically polarized VBs. We adopt
the concepts of higher-order polarization states, Stokes parameters, and HOP spheres in polar
coordinates on the basis of higher-order radial and azimuthal polarization states. Regarding
this adoption, each individual higher-order basis VB has a locally identical polarization with
respect to polar coordinates. Moreover, the same points on the adopted local HOP spheres of
different higher-orders represent a group of higher-order VBs of locally identical polarization
but distinct helical phase distributions. This is in contrast to the recently introduced HOP
sphere [29, 34] which is defined with respect to globally orthonormal circular polarization states,
where polarization distributions of the same order are generally not cylindrically symmetric and
polarization distributions associated with the same points on HOP spheres of different orders are
not the same either. Our higher-order VBs thus form a simple and natural basis for effectively
engineering the desired field profile and, in turn, this VB decomposition enables an analysis of
hybrid-mode excitation via VBs of various higher-orders polarization states.
In addition to the match of polarization and phase distributions, an efficient concentration

of the input power on the sub-wavelength plasmonic nanoparticles is also important from a
practical point of view. In this regard, the constructed incident beam needs to be tightly focused
and the corresponding focal field is formulated exclusively in cylindrical coordinates as a series
sum of focused VBs of the associated high-order cylindrical VBs on the local HOP spheres.
By doing so, we trace clearly the transfer of each polarization component and the evolution
of each higher-order polarization state on the local HOP sphere during tight focusing. More
importantly, such a focal field formulation provides an analysis tool of the focal field profile in
higher-order polarization states and it permits a forward design of mode-matching field profile
with the input power effectively focused on nanoantennas. We then demonstrate that using VBs of
radial polarization states of various orders is necessary to match the polarization distributions of
different hybrid modes for our example of a radial plasmonic tetramer, some of which are barely
coupled with radially polarized VBs of the fundamental order used in previous works [8, 9, 27].
The interaction between the tightly focused VBs and the tetramer is efficiently simulated by the
boundary element method, because the focal fields are evaluated merely on the nanoparticles’
surfaces.

2. Vector beams on local HOP spheres

We consider a monochromatic VB with harmonic time dependence 4−ilC , where l is the angular
frequency. The field is assumed to propagate along the I-axis and its (transverse) complex electric
field amplitude at the waist plane can be written in polar coordinates (A, q) as

Einc (A, q) = �A (A, q)Â + �q (A, q)q̂. (1)

Above �A (A, q) and �q (A, q) are the radial and azimuthal field amplitudes with Â and q̂ denoting
the radial and azimuthal unit vectors, respectively. We assume that the amplitudes can be
decomposed as �@ (A, q) = �1 (A)%@ (A, q) with @ ∈ {A, q}, where �1 (A) is a common beam
profile shared by both field components and %@ (A, q) is a (complex) pupil function for phase
and/or amplitude modulations of the corresponding field component. Upon choosing specifically
the pupil functions, a VB with certain spatially varying polarization state can be engineered.
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Each pupil function has an azimuthal expansion [35]

%@ (A, q) =
+∞∑

==−∞
2
(=)
@ (A)4i=q , (2)

where the order = is an integer and the A-dependent expansion coefficient is

2
(=)
@ (A) =

1
2c

∫ +c

−c
%@ (A, q)4−i=qdq. (3)

It is convenient to introduce specific nonuniform or spatially varying polarization-state
distributions for the description of VBs. Particularly relevant ones are the unit amplitude,
radially and azimuthally polarized field distributions 7A and 7q obtained from Eq. (1) with
�A = 1, �q = 0 and �A = 0, �q = 1, respectively. The basis functions 7A and 7q represent
polarization states that are locally orthonormal [36,37]. They enable us to construct, for example,
the locally orthonormal right-hand circular polarization state7+ and left-hand circular counterpart
7− via 7± = (7A ± i7q)/

√
2. We further introduce the higher-order basis polarization states of

unit amplitude as
7 (=)A = 4i=q7A and 7 (=)

q
= 4i=q7q , (4)

which possess an extra spiral phase shift =q, as compared to their fundamental zeroth-order
counterparts. Their linear combination forms a higher-order polarization state of the general form

7 (=) = 0 (=)A 7 (=)A + 0 (=)q
7 (=)

q
, (5)

where 0 (=)A and 0 (=)
q

are the complex amplitudes associated with the corresponding =th-order,
radial and azimuthal basis states, respectively, which can be radius-dependent. In terms of
higher-order polarization states defined in Eqs. (4) and (5), the VB in Eq. (1) can be rewritten as

Einc (A, q) =
+∞∑

==−∞

[
2
(=)
A (A)7 (=)A + 2 (=)q

(A)7 (=)
q

]
�1 (A) =

+∞∑
==−∞

7 (=)�1 (A), (6)

with the amplitudes 0 (=)A = 2
(=)
A (A) and 0 (=)q

= 2
(=)
q
(A) being functions of the radius. Such

radius-dependent amplitudes permit the construction of distinctive polarization states for each
individual higher-order = at different A-values across the entire beam cross section, and summing
up all higher-order VBs yields the desired field profile. On the other hand, polarization states at
the same A-value are always locally identical, i.e., the ratio between the radial and azimuthal field
amplitudes is fixed and thus the polarization distributions on an annulus are the same with respect
to polar coordinates. If the ratio 2 (=)A (A)/2 (=)q

(A) is independent of the radius, in particular, the
vector fields across the entire transverse plane share the same higher-order polarization state at
the order =.
For the polarization state of a fixed order =, we can introduce the Stokes parameters with

respect to the higher-order basis states 7 (=)A and 7 (=)
q

as

S (=)0 = |0 (=)A |2 + |0 (=)q
|2, (7)

S (=)1 = |0 (=)A |2 − |0 (=)q
|2, (8)

S (=)2 = 2Re{[0 (=)A ]∗0 (=)q
}, (9)

S (=)3 = 2Im{[0 (=)A ]∗0 (=)q
}, (10)
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Fig. 1. The local HOP sphere representation for VBs with local polarization states
of orders = = 0,−1, 2 (from inner to outer columns). All linear polarization states
are located on the periphery of the S (=)1 S

(=)
2 -plane. The points +S (=)1 and −S (=)1

represent the =th-order, radial and azimuthal states 7 (=)A and 7
(=)
q

, respectively. The

point +S (=)2 marks a linear state 7 (=)
3

with equal radial and azimuthal field components.
The north pole (+S (=)3 ) denotes the locally right-hand circular state 7 (=)+ and south
pole (−S (=)3 ) for its left-handed counterpart 7 (=)− . The rest of the points are occupied
by elliptical states 7 (=)4 . The instantaneous fields are indicated by blue arrow heads.
From the temporal viewpoint, the initial phases of the states with = = −1 advance by an
amount of q phase with respect to the corresponding states of = = 0, whereas the states
of = = 2 lag behind by 2q phase.

where Re and Im are the real part and imaginary part, respectively, and the asterisk denotes
the complex conjugate. The Stokes parameters in Eqs. (8)–(10) can be used for a geometric
illustration of the =th-order polarization state 7 (=) that represents a beam with spatially varying
but cylindrically symmetric polarization distribution, on an adopted Poincaré sphere of radius
S (=)0 (as visualized in Fig. 1). This is in contrast to the traditional Poincaré sphere representation
which holds for uniformly polarized beams, and it is called the local HOP sphere in this work.

We remark that the basis polarization states of various orders defined in Eq. (4) only differ in
their instantaneous field amplitudes and, as a result, identical sets of Stokes parameters of various
orders represent a group of states that have the same spatial polarization distribution with respect
to the local polar coordinates but distinct (delayed) temporal behaviors. As it can be seen in Fig. 1,
polarization states at the same points on the local HOP spheres of various orders are represented
by polarization ellipses with locally identical orientation and shape (shown as red lines, circles,
or ellipses with arrows). From a temporal point of view, on the other hand, the initial phases
of =th-order states 7 (=) lag (for = > 0) or advance (for = < 0) by an amount of |=q| phase with
respect to the corresponding 0th-order states 7 (0) , as the instantaneous fields are indicated by the
relative positions of the blue arrow heads on the polarization ellipses (states of the same order are
shown in the same column in Fig. 1). Here, the higher-order polarization states, Stokes parameters,
and local HOP sphere provide an alternative approach for describing cylindrically symmetric VBs
with great simplicity and clarity by using locally identical polarization distributions, as compared
with the recently introduced HOP sphere [29, 34] in which the higher-order polarization states
are defined with respect to globally orthonormal circular polarization states.

3. Tight focusing of vector beams

We consider the tight focusing of VBs by a high numerical aperture (NA) aplanatic lens of focal
length 5 shown in Fig. 2(a). The objective is represented by a reference sphere shown as a
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light blue spherical cap. The focal field at an arbitrary point R 5 near the focus in cylindrical
coordinates (d, i, I) can be obtained from the Richards–Wolf formalism [38–40] by integrating
the reference field E∞ (q, \) over the aperture,

E 5 (d, i, I) = −
i:
2c

\max∫
0

2c∫
0

E∞4ik·R 5 sin \dqd\, (11)

where k is the wave vector, k ·R 5 = −:d sin \ cos(q−i) + :I cos \ (see Fig. 2), and wave number
is : =

√
k · k = = 5 :0 with = 5 being the refractive index after the reference sphere and :0 the

vacuum wavenumber. The maximum angle subtended by the aperture is \max = arcsin
(
NA/= 5

)
with NA = = 5 sin \max, and we assume the beam fills the whole aperture.

(a) (b)

Fig. 2. Tight focusing of a vector beam in an aplanatic system. (a) The incident beam
Einc is mapped to the reference field E∞ (on the light blue spherical cap with its radius
being equal to the focal length 5 ), the unit vectors Â and \̂ are in the same meridional
plane, and q̂ and \̂ are tangential to the reference sphere. The refractive indices before
and after the reference sphere are =8 and = 5 , respectively. The focal field E 5 is sought
at a point R 5 near the focus, where (d, i, I) form the cylindrical coordinates and d̂
and î are the associated unit vectors. (b) The field components Â · E∞ and q̂ · E∞ are
projected into the cylindrical coordinates (d, i, I). The unit vectors Â and d̂ make an
angle q − i. The wave vector k measures an angle \ with respect to the I-axis and its
transverse projection k⊥ makes a q + c angle to the G-axis.

In refraction at the aplanatic lens, following Richards and Wolf [39], the reference field
amplitude vector writes as E∞ (\, q) = 5

√
=8/= 5

√
cos \

(
�A \̂ + �q q̂

)
where =8 is the refractive

index before the reference sphere, and the sine condition and energy conservation are used. In
the column vector representation in the basis [Â , q̂, Î] the reference field reads as

Â · E∞ (\, q)

q̂ · E∞ (\, q)

Î · E∞ (\, q)


= L(\)


�A ( 5 sin \, q)

�q ( 5 sin \, q)

 , (12)
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where the relations A = 5 sin \ and \̂ = Â cos \ + Î sin \ are used, and

L(\) =


!AA (\) !A q (\)

!qA (\) !qq (\)

!IA (\) !Iq (\)


= 5

√
=8

= 5

√
cos \


cos \ 0

0 1

sin \ 0


(13)

can be understood as the matrix representation for the refraction at the aplanatic lens. The matrix
element !B@ (\) with B ∈ {A, q, I} and @ ∈ {A, q} denotes the field amplitude transfer from the
@-component of the incident VB to the B-component of the reference field.
To perform the integration in Eq. (11), the reference field needs to be expanded in the same

basis as the focal field. A convenient choice is the basis [ d̂, î, Î], in which the column vector
form of Eq. (11) becomes

d̂ · E 5 (d, i, I)

î · E 5 (d, i, I)

Î · E 5 (d, i, I)


= − i:

2c

\max∫
0

2c∫
0


d̂ · E∞ (\, q)

î · E∞ (\, q)

Î · E∞ (\, q)


4ik·R 5 sin \dqd\. (14)

Above the vector form of E∞ (\, q) in the basis [ d̂, î, Î] is connected to its representation in the
basis [Â , q̂, Î] through 

d̂ · E∞ (\, q)

î · E∞ (\, q)

Î · E∞ (\, q)


= T(q, i)


Â · E∞ (\, q)

q̂ · E∞ (\, q)

Î · E∞ (\, q)


(15)

with the connection matrix

T(q, i) =


)dA )dq )dI

)iA )iq )iI

)IA )Iq )II


=


cos(q − i) − sin(q − i) 0

sin(q − i) cos(q − i) 0

0 0 1


, (16)

obtained by recognizing, from Fig. 2, the relations of field components

d̂ · E∞ = Â · E∞ cos(q − i) − q̂ · E∞ sin(q − i) (17)

and
î · E∞ = Â · E∞ sin(q − i) + q̂ · E∞ cos(q − i). (18)

The matrix element )?B (q, i) with ? ∈ {d, i, I} and B ∈ {A, q, I} characterizes the focal field’s
?-component that arises from the B-component of the reference field.
Substituting Eq. (12) into Eq. (15), as well as using Eqs. (1) and (6), the focal field in vector

form in the basis [ d̂, î, Î] writes as
d̂ · E 5 (d, i, I)

î · E 5 (d, i, I)

Î · E 5 (d, i, I)


= − i:

2c

\max∫
0

2c∫
0

T(q, i)L(\)
+∞∑

==−∞


2
(=)
A ( 5 sin \)

2
(=)
q
( 5 sin \)

 4i=q

× �1 ( 5 sin \)4−i:d sin \ cos(q−i)4i:I cos \ sin \dqd\. (19)
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Performing the integration of the q-dependent portion at a given order =, we can write

−i:
2c

2c∫
0

T(q, i)4i=q4−i:d sin \ cos(q−i)dq = 4i=i (−i)= :
2


(�=−1 − �=+1) −i(�=−1 + �=+1) 0

i(�=−1 + �=+1) (�=−1 − �=+1) 0

0 0 2�=


= 4i=i


Θ
(=)
dA Θ

(=)
dq

Θ
(=)
dI

Θ
(=)
iA Θ

(=)
iq

Θ
(=)
iI

Θ
(=)
IA Θ

(=)
Iq

Θ
(=)
II


= 4i=i�(=) , (20)

where �= = �= (:d sin \) denotes the =th order Bessel function with argument :d sin \ for brevity,
the =th-order matrix �(=) (\, d, i) and its elements are introduced such that the above equation
holds, and we have used the integral representation of the Bessel function∫ 2c

0
4i=U4−iG cos UdU =

∫ 2c

0
4i=U4iG cos(U+c)dU = 2c (−i)= �= (G) . (21)

Expressing the remaining integration over \ for a given order = compactly, we introduce

�
(=)
? (d, I) =

\max∫
0

∑
B,@

Θ
(=)
?B (\, d, i)!B@ (\)2 (=)@ ( 5 sin \)�1 ( 5 sin \)4i:I cos \ sin \d\, (22)

with the subscripts ? ∈ {d, i, I}, B ∈ {A, q, I}, and @ ∈ {A, q}. Overall, the focal field becomes,

E 5 (d, i, I) =
∑
=

E(=)
5
=

∑
=

[� (=)d (d, I)7 (=)d + � (=)i (d, I)7 (=)i + � (=)I (d, I)4i=i Î], (23)

where the =th-order transverse field is expanded on the higher-order basis states 7 (=)d = 4i=i7d

and 7 (=)i = 4i=i7i with 7d and 7i being the unit-amplitude, radially and azimuthally polarized
field distributions with respect to the cylindrical coordinates (d, i, I). The tightly focused
field also acquires a longitudinal component that has the same helical phase variation as the
transverse focal field. Compared with the fundamental order longitudinal field (so-called optical
needle [26, 41]), the higher-order ones may have profound impacts in applications such as
second-harmonic generation [24, 42] and single emitter probing in microscopy [13].

For hybrid-mode excitation of in-plane nanoantennas, we can consider only the transverse focal
field whose spatially varying polarization distributions can be studied with the Stokes parameters
introduced in Eqs. (7)–(10), where the associated complex amplitudes are 0 (=)d = �

(=)
d (d, I) and

0
(=)
i = �

(=)
i (d, I). In addition, the incident field at the =th-order polarization state [in Eq. (6)]

is converted to the focal field at the polarization state of the same order = [in Eq. (23)]. This
implies that the incident VB and the transverse part of the focal field have the same amount of
helical phase or, in other words, the same orbital angular momentum. But, the transverse focal
field generally does not preserve the same local polarization distributions as the incident VB.
This results from energy exchanges between the radial and azimuthal field components in the
focusing process due to the presence of nonzero elements Θ(=)iA and Θ(=)

dq
for = ≠ 0. Furthermore,

the polarization distributions are both d- and I-dependent according to Eq. (22). Consequently,
the transverse field near the focus generally does not have a pure radial or azimuthal polarization
distribution except for the fundamental zeroth-order.
A typical example of paraxial VBs is a cylindrically polarized Laguerre-Gaussian (CPLG)

beam [43], where the common beam profile �1 (A) = exp−g2/2 is a Gaussian with g =
√

2A/F

7



and F being the radius of the beam waist. For this beam, the =th-order expansion coefficient in
Eq. (2) takes the following explicit form:

2
(=)
@ (A) = �(=)@ g=∓1!=∓1

< (g2), (24)

with �(=)@ being the amplitude of the corresponding field component, !=∓1
< the generalized

Laguerre polynomials, < the radial index, and = ∓ 1 the azimuthal index. For the fundamental
order when = = 0, the plus sign should be used in the power and azimuthal order so that
2
(0)
@ (A) ∝ g!1

< (g2) yields a null field on the optical axis where the phase has a singularity. We
use the explicit form of the expansion coefficients in Eq. (24) and choose the “+” sign for all
simulations in this paper.

Fig. 3. Amplitude and polarization distributions of 7 (3)A and its focused VBs. Field
amplitudes are shown in greyscale colormaps for (a) the incident radial |�A |, (b) the
focused radial |�d |, (c) the focused azimuthal |�i |, and (f) the focused longitudinal
|�I | components, respectively. The polarization distributions are shown in (d) for the
paraxial and (e) the focused transverse fields, where the phases of the radial components
are indicated in blue to red colormaps. The blue or red ones imply locally in-phase
instantaneous fields and the light green ones indicate out-of-phase cases.

Figure 3 illustrates the field amplitude and polarization distributions of a 7 (3)A beam and
its focused counterpart. In detail, the incident VB has a waist radius of F = 0.4 mm at the
wavelength _ = 1060 nm, the radial index is < = 0, the azimuthal index is = + 1 = 4, and the
azimuthal field amplitude �(3)

q
is set to zero. In addition, the objective has an NA of 0.8 and

the focal length is 5 = 1 mm. The radial field amplitude |�A | of the 7 (3)A beam is shown in
greyscale in Fig. 3(a), and its polarization distribution is shown in Fig. 3(d) on which the phase
distribution of the radial field arg(�A ) is also superimposed in a blue to red colormap. Radial
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and azimuthal field amplitudes |�d | and |�i | in the focal plane generated in tight focusing are
shown in Fig. 3(b) and (c), respectively. As indicated by the greyscale colormaps, the azimuthal
and radial field amplitudes depend differently on the radius and, for some radii, the azimuthal
amplitudes even exceed its radial counterparts. Consequently, the transverse focal field is in
general polarization state as shown in Fig. 3(e). Nevertheless, the order of polarization states
remains unchanged throughout the focusing process. In other words, the field in Fig. 3(d) shares
the same higher-order radial polarization state that is represented at the point +S (3)1 on the local
HOP sphere. By contrast, the polarization states of the transverse focal fields in Fig. 3(e) spread
over the local HOP sphere of the same order. As the radius d increases, the point on the local
HOP sphere representing the polarization state of the transverse focal field shifts along the
meridian from the north pole +S (3)3 (the third-order right-hand circular polarization) to the south
pole −S (3)3 (the third-order left-hand circular polarization) via the point −S (3)1 (the third-order
azimuthal polarization), and then back to the north pole +S (3)3 via the point +S (3)1 (the third-order
radial polarization). At last, a significant longitudinal field in the focal region is also shown in
Fig. 3(f). Such a strong longitudinal component twists the major axes of the polarization ellipses
out of the focal plane onto a Möbius strip [44] at a given A-value.

4. Efficient hybrid mode excitation from plasmonic nanoantennas

In this section, we proceed to show that focused VBs can efficiently excite distinct hybrid
modes in plasmonic nanoantennas by providing not only matching polarization distributions
but also strong incident field on the nanoparticles. Compared with the previous works that
used cylindrical VBs (of the fundamental order when analyzed in terms of the higher-order
polarization states) [8, 9, 27], here we demonstrate the importance of using VBs in higher-order
polarization states to interact with a number of hybrid modes. As an example, we theoretically
study light scattering from a plasmonic tetramer consisting of four identical, radially oriented gold
nanorods. Each individual nanorod supports a dipole-like localized surface plasmon mode that is
associated with the rod’s long axis and can be excited by a matching, linearly polarized plane
wave or Gaussian beam. In the radial tetramer, a number of hybridized modes of cylindrically
symmetric polarization distributions emerge from near-field coupling among the dipolar modes.
We compare the excitation efficiencies of various hybrid modes in the tetramer when illuminated
by paraxial VBs on the fundamental zeroth-order, first-order, and second-order radial polarization
states, as well as the corresponding focused beams. The excitation efficiencies are characterized
by the total powers scattered from the tetramer, which are numerically calculated by the boundary
element method [45, 46]. We use the formulations given in the previous sections to calculate the
focal electric fields. The associated magnetic fields in the focal region are readily obtained by
replacing E 5 with H 5 and E∞ with H∞ = (1// 5 ) (k/:) × E∞ in Eq. (11) [38], where / 5 is the
wave impedance after the reference sphere. From a computational point of view, the boundary
element method is very efficient for modeling the interaction between tightly focused beams and
plasmonic nanoantennas, since the excitation focal fields are evaluated only on the surfaces of the
nanoparticles. In detail, only the electric and magnetic fields in the embedding medium at nodes
defined in the Gaussian quadrature rules are calculated for the evaluation of the surface integral
in Eqs. (5.27) and (5.28) of the reference [46]. In all simulations, the same parameters as in
Fig. 3 are used. In addition, the middle plane of the tetramer coincides with the focal plane where
I = 0. Each constituent nanorod has a width of 35 nm, thickness of 20 nm, and length of 165 nm.
Each pair of opposite nanorods has an end-to-end separation of 35 nm, and the smallest distance
of every neighboring nanorods are then 17.5 nm between rounded corners. The nanorods are
embedded in a medium of effective refractive index = 5 = 1.26, and the refractive index of gold
nanorods is taken from the tabulated data [47].
The radial field amplitude distributions of the paraxial 7 (0)A , 7 (1)A , and 7 (2)A VBs are shown
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Fig. 4. The radial field amplitude distributions of the paraxial 7 (0)A , 7 (1)A , and 7
(2)
A

VBs are shown in (a) and (b), and the focused counterparts denoted by symbols E(0)
5

,

E(1)
5

, and E(2)
5

, respectively, are displayed in (c) and (d). The vertical dashed lines in
(b) and (d) mark the nanorod’s center.

in Fig. 4(a) for a radius range from 0 to 600 µm, as well as in Fig. 4(b) for the radius range
around the nanorods with A ∈ [0, 240] nm. Each paraxial VB has a unit peak-field amplitude
and its energy is mainly distributed around 200 − 400 µm away from the optical axis. The field
amplitudes on the nanorods [as the nanorod’s center is indicated by the vertical dashed line in
Fig. 4(b)] become very weak; they drop down to ∼ 10−4, 10−7 and 10−10 V/m for the paraxial
7 (0)A , 7 (1)A , and 7 (2)A VBs, respectively. The focused radial fields of the paraxial 7 (0)A , 7 (1)A , and
7 (2)A VBs are plotted in Fig. 4(c) and (d) for the radius ranges of [0, 2] µm and [0, 240] nm,
separately. It is seen that the focused VB’s energy concentrates down to the wavelength scale, and
the field amplitudes around the nanorods are ∼ 102 V/m which are several orders of magnitude
higher than those of paraxial counterparts.

The polarization distributions of the paraxial 7 (0)A , 7 (1)A , and 7 (2)A VBs are shown in Fig. 5(a)–
(c), and the phase distributions are visualized in blue to red colormaps. The paraxial VBs are in
the polarization states represented by the points +S (0)1 , +S (1)1 , and +S (2)1 , respectively, on the
local HOP spheres of the corresponding orders, and their electric fields are all radially polarized
that match individually with the localized surface plasmons along the nanorod’s long axes. The
instantaneous electric fields of the fundamental 7 (0)A VB on all nanorods are in phase (drawn
as blue arrows). It yields an excitation of a hybrid mode that features two pairs of in-phase,
antibonding localized surface plasmons with a blue-shifted resonant wavelength at ∼ 760 nm
[see the blue solid curve in Fig. 5(g)], as compared to the plasmon resonance of an independent
nanorod at ∼ 860 nm (the black dashed curve). For the first-order 7 (1)A VB, the instantaneous
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Fig. 5. The excitation of hybrid modes in the radial tetramer. The polarization
distributions around the tetramer (solid black lines) in the focal plane are shown in
(a)–(c) for the paraxial VBs and (d)–(f) for the focused VBs. The phases of the
radial fields are visualized in blue to red colormaps. The radial field amplitudes on
nanorods’ centers (crossed by black dashed curves) are 7.8 × 10−4 in (a), 3 × 10−7

in (b), 9.2 × 10−11 in (c), 52 in (d), 330 in (e), and 51 V/m in (f). The total powers
scattered from the tetramer are plotted in the blue, yellow, and red curves in (g) when
illuminated by the paraxial 7 (0)A , 7 (1)A , and 7 (2)A VBs of unit-amplitude peak field or (h)
the corresponding focused E(0)

5
, E(1)

5
, and E(2)

5
VBs, respectively. The power spectra

of a single independent nanorod (monomer) is plotted as a reference in the black dashed
curve. The absolute power values are obtainable when multiplied by the factors near
each spectral peak.

fields on opposite nanorods are c out-of-phase which are visualized by either blue to light
green arrows or dark green to yellow arrows. The hybrid mode excited by the 7 (1)A VB has
a red-shifted resonance at ∼ 930 nm [the yellow curve in Fig. 5(g)], arising from a bonding
localized surface plasmon that rotates, as a function of time, between two pairs of opposite
nanorods. In the case of the second-order 7 (2)A VB, the neighboring nanorods experience c
out-of-phase instantaneous fields, and two pairs of out-of-phase, antibonding localized surface
plasmons emerge and contribute to a hybrid mode whose resonance is red-shifted to ∼ 970
nm [the red curve in Fig. 5(g)]. The paraxial VBs, when their polarization distributions are
appropriately tuned, are able to excite various hybrid modes that possess distinct spectra with
well-separated resonant wavelengths. However, the corresponding excitation efficiencies are
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extremely low, as indicated by the multiplication factors (5.3×10−11, 1.0×10−17, and 1.4×10−24

on the blue, yellow, and red spectral curves, respectively) for obtaining the absolute values of the
total scattered power. The low efficiencies are attributed to the weak incident field amplitudes
effectively exerted on the nanorods, regardless of the perfect matches of polarization distributions
between the incident fields and the localized surface plasmons of the hybrid modes. In detail, the
field amplitudes on the nanorods’ centers are only 7.8 × 10−4, 3.0 × 10−7, and 9.2 × 10−11 V/m
[see the factors around the dashed circles in Fig. 5(a)–(c)] for the paraxial 7 (0)A , 7 (1)A , and 7 (2)A

VBs, separately.
The situation is significantly improved when the paraxial VBs are tightly focused. Figure 5(d)–

(f) display the polarization distributions of the transverse fields and the phase distributions of
the radial fields of the E(0)

5
, E(1)

5
, and E(2)

5
VBs that are tightly focused from the paraxial 7 (0)A ,

7 (1)A , and 7 (2)A VBs, respectively. The factors close to the dashed circles mark the radial field
amplitudes on nanorods’ centers, which are 52, 330, and 51 V/m for the focused E(0)

5
, E(1)

5
, and

E(2)
5

VBs, separately. The strong, effective radial fields of the focused VBs significantly elevate
the excitation efficiencies of the associated hybrid modes by approximately 10, 18, and 23 orders
of magnitude, as seen from Fig. 5(g) and (h).
The focused E(0)

5
VB’s transverse field is in the polarization state that is represented by the

same +S (0)1 point on the local HOP sphere as its paraxial counterpart except for field concentration
and enhancement (i.e., the local HOP sphere’s radius S (0)0 increases) on the nanoscale tetramer.
Therefore, it interacts with the same hybrid mode as its paraxial counterpart except for yielding
significantly high efficiency. For both the focused E(1)

5
and E(2)

5
VBs, the azimuthal field

components emerge from the nonzero �
(1)
i (d, 0) and �

(2)
i (d, 0) in Eq. (23). Furthermore,

the ratios � (1)d (d, 0)/� (1)i (d, 0) and � (2)d (d, 0)/� (2)i (d, 0) are radius-dependent. Therefore, the
polarization states of their transverse fields become elliptically or even circularly polarized [see
the polarization ellipses in Fig. 5(e) and (f)] which can be represented by points near the north
poles +S (1)3 and +S (2)3 on the corresponding local HOP spheres. Since the azimuthal fields barely
couple to the hybrid modes whose localized surface plasmons have dominant radial polarizations,
they can be ignored here. The plasmon mode along the short axis of each individual nanorod,
nevertheless, can be excited by the azimuthal field component, but its resonant wavelength is
below 800 nm which is outside the spectral window we are considering in this work. On the
other hand, the remaining transverse fields are in radial polarization states at the +S (1)1 , and
+S (2)1 points on the local HOP spheres with much larger radii S (1)0 and S (2)0 , i.e., enhanced field
amplitudes on the tetramer, than those of the paraxial counterparts. This explains the increases in
excitation efficiencies for the corresponding hybrid modes. It is also worth noticing that there is
actually no phase singularity for the central field of the focused E(1)

5
VB and a nonzero field on

the optical axis [see the yellow curve in Fig. 4(d)] manifests itself during the tight focusing. It
also implies that we could have chosen the “−” sign in Eq. (24) for the paraxial 7 (1)A VB. Even
in that particular choice for the paraxial 7 (1)A VB where the radial field would have a peak in
the center, the hybrid-mode excitation efficiency would be still a few orders lower than in the
situation of using the focused VB. Therefore, tight focusing of the paraxial VBs is needed in
general for obtaining high hybrid-mode excitation efficiencies.

To further emphasize the importance of higher-order VBs in hybrid-mode excitation, we next
study light scattering from a radial plasmonic dimer that is formed by removing one pair of
opposite nanorods from the tetramer. The calculated scattering spectra are shown in Fig. 6,
with a comparison to the tetramer’s spectra. The canonical anti-bonding and bonding modes
in the radial dimer are discernable from the blue-shifted and red-shifted resonant wavelengths,
respectively, in the scattering spectra (see the dashed blue and yellow curves in Fig. 6). Similar
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modes are formed in the tetramer as indicated in solid blue and yellow curves. However, a third
type of hybrid mode (see the solid red curve in Fig. 6) in the tetramer is revealed when it is
excited by the focused E(2)

5
VB. This marks a significant difference with the anti-bonding mode

in either the dimer or the tetramer when illuminated by the focused E(0)
5

VB, and the necessity of
using higher-order VBs to match both the polarization and phase distributions in hybrid-mode
excitation.

500 600 700 800 900 1000

wavelength [nm]
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4
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Fig. 6. Total powers scattered from the radial plasmonic dimer, tetramer, and monomer.
The spectra of the dimer when illuminated by the focused E(0)

5
and E(1)

5
VBs are plotted

in the dashed blue and yellow curves, respectively. The solid blue, yellow, red, and
black curves represent the same spectra of the tetramer and monomer as in Fig. 5 (h).

Although we have only demonstrated the efficient excitation of hybrid modes in a radial
plasmonic tetramer and dimer by using tightly focused VBs of various higher-order radial
polarization states, the developed framework for shaping and analyzing the focused VB’s higher-
order polarization states is readily extended to cases involving hybrid modes in other plasmonic
tetramers or other oligomers aggregated of nanorods or nanoparticles of other shapes. For
instance, if the constituent nanoparticles are of disk shape, focused VBs of higher-order circular
polarization states can be of paramount importance, because the modes in each nanodisk are
symmetric that will be excited by both the radial and azimuthal field components and one would
expect different hybridization in plasmon modes.

5. Conclusions

We investigated a general approach to engineer tightly focused VBs that can efficiently and
selectively couple with various hybrid modes in plasmonic nanoantennas. We used higher-order
radially and azimuthally polarized VBs as a natural basis to construct the paraxial VB of
desired field profile, which was then tightly focused to effectively deliver the input power on a
sub-wavelength nanoantenna where the focal field is still effective mode-matching. The desired
field profile was obtained in the paraxial VB by superposing higher-order VBs and tuning the
radius-dependent expansion coefficients. We adopted the concept of higher-order VBs on local
HOP spheres, whose polarization distributions are cylindrically symmetric that have locally
identical polarizations but distinctive instantaneous electric fields as a manifestation of the helical
phase distributions. This description provides a clear understanding of the polarization transfers
from the incident paraxial VBs into the focused ones, and thus the modification in the field profile
was traced during focusing. Furthermore, it permits a backward optimization or inverse design to
alleviate unnecessary polarizations in the focal field. We theoretically examined the efficient
excitation of hybrid modes in a radial plasmonic tetramer by radially polarized paraxial VBs
of various higher-orders and their focused counterparts. We explained, via our developed VB
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analysis in higher-order polarization states, that the corresponding focused VB shares a significant
field component in the same polarization distribution as the paraxial one which permits a much
higher efficiency for the associated hybrid mode. This example demonstrates the importance
of higher-order VBs for the efficient, selective hybrid-mode excitation and it also indicates the
great potential of tightly focused vector beams for tailoring light scattering from plasmonic
nanoantennas through controlled hybrid-mode excitation.
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