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Quantum corrections to a spin-orbit-coupled Bose-Einstein condensate
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We study systematically the quantum corrections to a weakly interacting Bose-Einstein condensate with spin-
orbit coupling. We show that quantum fluctuations, enhanced by the spin-orbit coupling, modify quantitatively
the mean-field properties such as the superfluid density, spin polarizability, and sound velocity. We find that
the phase boundary between the plane wave and zero momentum phases is shifted to a smaller transverse
field. We also calculate the Beliaev and Landau damping rates and find that the Landau process dominates
the quasiparticle decay even at low temperature.
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I. INTRODUCTION

The spin-orbit coupling, arising due to the interaction of a
particle’s spin with its motion in an electric field plays a cru-
cial role in various branches of physics, including topological
insulators [1,2], topological semimetals [3,4], and Majorana
fermions [5]. In bosonic systems, the interplay of the inter-
particle interaction and spin-orbit coupling gives rise to exotic
Bose-Einstein condensates, which have been investigated in
a rich variety of systems, including magnons [6–8], exci-
tons [9–12], exciton-polaritons [13–18], and ultracold atoms
[19–22].

For a weakly interacting Bose-Einstein condensate, the
mean-field theory provides a reliable description of various
physical properties [23]. To reveal beyond mean-field effects,
one method is to reach the strongly interacting regime, which
can be achieved in exciton-polaritons because of the strong
coupling between the exciton and photon [13,24–27], and for
ultracold atoms strong interactions are accessible by means
of Feshbach resonances [28–30]. However, strong interactions
reduce the lifetime of Bose-Einstein condensates significantly.
Another method is to fine tune the interaction parameters such
that the mean-field interactions almost cancel out [31–35],
making the quantum fluctuations unmasked. The spin-orbit
coupling provides an alternative way to enhance interaction
effects due to the increased density of states [36]. However,
only a handful of theoretical studies have addressed the
beyond mean-field effects [37–41], and a thorough analysis
of the quantum fluctuations in spin-orbit coupled bosonic
systems is still lacking.

In this paper, we systematically investigate the quantum
corrections to a spin-orbit coupled Bose-Einstein condensate.
We study a model system that is simple and general, po-
tentially realizable in various platforms, and already imple-
mented with ultracold atom experiments [19–21]. The model
shows three novel condensation phases [19,42], namely the
stripe, plane wave, and zero momentum phases. To demon-
strate the interplay between interaction and spin-orbit cou-
pling, we focus on the zero momentum phase, which is the

simplest case capturing the essential physics of spin-orbit
coupling and interactions.

We calculate quantum corrections to a number of physical
properties, including the superfluid density, spin polarizabil-
ity, and sound velocity. The superfluid density at the mean-
field phase transition point between the plane wave and zero
momentum phases becomes nonzero due to quantum fluctu-
ations, and as a result, the phase transition point is shifted
towards a smaller transverse field. The spin polarizability
diverges at the corrected phase transition point but remains
finite at the mean-field phase boundary, which seems to be
consistent with a recent experiment [20]. The sound velocity
also acquires quantitative corrections, which may be detected
in current ultracold atom experiments and provides a way to
explore the beyond mean-field effects. Finally, we obtain an
analytical result for the Landau decay rate of phonons at low
temperature. Unlike the Beliaev decay predicted in Ref. [41],
the Landau damping is not suppressed in the direction of
spin-orbit coupling, making it the dominant mechanism for
the quasiparticle decay.

II. MODEL SYSTEM

We consider a generic model of a spin-1/2 Bose gas with
spin-orbit coupling, described by the single-particle Hamilto-
nian (we set h̄ = m = 1)

h0 = (px − k0σz )2 + p2
y + p2

z

2
+ �

2
σx, (1)

where σi with i = x, y, z are the 2 × 2 Pauli matrices. The
one-dimensional spin-orbit coupling, characterized by k0, ap-
pears in many realistic systems, including ultracold gases
[19–21,43,44] and semiconducting nanowires [45–47]. The
model applies to several systems but to compare with experi-
ments, we consider the cold atom setup where k0 is given by
the momentum transfer from the two Raman laser beams and
� is the Rabi frequency of the Raman beams. The interaction
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between the particles can be written as

Hint = 1

2

∑
σσ ′

∫
d3r gσσ ′nσ (r)nσ ′ (r), (2)

where nσ is the density of particles with spin σ =↑,↓, and
gσσ ′ = 4πaσσ ′ are the interaction strengths in different spin
channels, with aσσ ′ being the corresponding s-wave scattering
lengths in case of ultracold quantum gases. In the following
we assume g↑↑ = g↓↓ ≡ g and g↑↓ ≡ g′, and correspondingly,
a↑↑ = a↓↓ ≡ a and a↑↓ ≡ a′. It is convenient to define in-
teraction parameters G1 = g+ρ and G2 = g−ρ with g± =
(g ± g′)/2 and ρ = N/V being the total particle density. In
recent experiments [19–21], 87Rb atoms are employed and
the interaction is almost SU (2) invariant, with G2/G1 ≈ 10−3.
The typical interaction parameter is G1 ≈ 0.24k2

0 with the
peak density ρ ≈ 0.57k3

0 [20]. The dimensionless parameter√
a3ρ ≈ 0.004 is small, ensuring that the condensate is in the

weakly interacting regime and the perturbation calculations
are controlled.

The mean-field phase diagram of this model has been
extensively investigated, for a review see Ref. [36]. For small
Rabi frequency, the condensate wave function is a superposi-
tion of two plane waves with different momenta, characteriz-
ing the stripe phase with density modulations in the ground
state. In this phase, both the translational and U (1) symme-
tries are broken, and therefore there are two branches of gap-
less excitations. Increasing the Rabi frequency �, the system
enters the plane wave phase, in which the bosons condense in
a single plane wave state. There is only one branch of gapless
excitations in this phase and the energy dispersion contains
a roton minimum at finite momentum. Further increasing the
Rabi frequency such that � > �c,mf ≡ 2k2

0 − 2G2, the system
enters the zero momentum phase, where the roton minimum
disappears and the phonon excitation spectrum resembles that
of a Bose-Einstein condensate without spin-orbit coupling.
To reveal the essential effect of interactions, we focus on
the simplest zero momentum phase to reduce the effect of
nontrivial mean-field energy dispersions in the plane wave and
stripe phases.

The ground-state wave function for the zero momentum
phase is described by a spinor ψ = √

ρ/2[1,−1]T . To charac-
terize excitations on top of the condensate, we introduce phase
and number fluctuations, and write the spinor field as

ψ = eiφ

√
2

[ √
ρ + ζ1eiϕ

−√
ρ + ζ2e−iϕ

]
, (3)

where φ is the total and ϕ is the relative phase fluctuations of
the condensate, and ζ1 and ζ2 are the density fluctuations for
spin-up and spin-down particles, respectively.

We use the imaginary time path integral formalism. The
Lagrangian density is obtained through the Hamiltonian as

L = ψ†(∂τ + h0 − μ)ψ + g+
2

(ψ†ψ )2 + g−
2

(ψ†σzψ )2,

(4)
with μ being the chemical potential. It is convenient to
introduce the density and spin fluctuations, ζ+ = (ζ1 + ζ2)/2
and ζ− = (ζ1 − ζ2)/2, which are conjugate to φ and ϕ, respec-
tively. We then expand L in terms of the new variables, and up

FIG. 1. Feynman diagrams for diagonal elements of the mean-
field Green’s function.

to the second order, we get the mean-field Lagrangian density

Lmf =
(

G1 + k2
0 − �

2
− μ

)
ζ+ − μρ + g+ρ2

2

+ 1

2
[φ, ζ+, ϕ, ζ−]G−1

0 [φ, ζ+, ϕ, ζ−]T , (5)

where the mean-field Green’s function in the momentum and
frequency representation is

G−1
0 (iωn, q) =

⎡
⎢⎣
A(q) −ωn 0 −ik0qx

ωn B(q) ik0qx 0
0 −ik0qx C(q) −ωn

ik0qx 0 ωn D(q)

⎤
⎥⎦, (6)

where ωn = 2πnT is the Matsubara frequency (we set kB =
1), A(q) = ρq2, B(q) = q2/(4ρ) + g+, C(q) = ρq2 + 2�ρ,
and D(q) = q2/(4ρ) + g− + �/(2ρ). The chemical potential
is determined by requiring 〈ζ+〉 = 0, and at the mean-field
level we find μ = G1 + (k2

0 − �)/2, so the first-order term
of ζ+ vanishes and the mean-field Lagrangian density is
quadratic. The diagonal elements of G0 are represented by
Feynman diagrams shown in Fig. 1.

III. MEAN-FIELD RESULTS

Before studying the beyond mean-field corrections, we first
present the mean-field predictions of the physical properties
we are interested in. These results are readily obtained from
the mean-field Green’s function.

The mean-field excitation energy is determined by
det G−1

0 = 0. In the low momentum limit, we find the gapless
phonon dispersion to be

εph = c0

√
q2 − 2k2

0q2
x

� + 2G2
= c0q

√
1 − 2k2

0 cos2 θ

� + 2G2
≡ cθq,

(7)

where c0 = √
G1 and cθ is the sound velocity, which depends

on the angle θ between the directions of the momentum q
and the x axis. The mean-field sound velocities cy and cz

are the same as the usual Bogoliubov sound velocity c0.
An intriguing feature is that the mean-field sound velocity
in the x direction, cx, vanishes at the phase transition point
between the plane wave and zero momentum phases. Besides
the gapless phononic mode, there also exists a gapped mode,
which is dominated by spin excitation, with the mean-field
gap given by �0 = √

�(� + 2G2).
The density and spin response functions are given by the

Green’s functions Gζ+ζ+ and Gζ−ζ− , respectively. From the
spin response function, the spin polarizability [48,49] can be
obtained, and at the mean-field level, we get

χM = G0,ζ−ζ− (qx → 0)/ρ = 2

� − �c,mf
, (8)

which diverges at the mean-field phase transition point.
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FIG. 2. Feynman diagrams for interaction vertices.

An important quantity characterizing superfluidity is the
superfluid density, which governs the total phase fluctuations.
To get the superfluid density, we integrate out the ϕ, ζ−, and
ζ+ fields and obtain an effective theory of φ (see Appendix A).
In the low-energy and long-wavelength limit, we find

Leff = (
Kω2

n + ρiq
2
i

)|φ|2, (9)

where K is the zero momentum static density response func-
tion with its mean-field value being 1/g+, and ρy = ρz =
ρ, ρx = ρ[1 − 2k2

0/(� + 2G2)] are the mean-field superfluid
densities. From the effective Lagrangian, we see that the
sound velocity is related to the superfluid density through
ci =

√
K−1ρi.

Note that the superfluid density in the x direction vanishes
when � = 2k2

0 − 2G2. Formally, for smaller �, the superfluid
density becomes negative, which means that a state with
nonzero phase gradient, i.e., the plane wave phase, is energet-

ically more favorable. In other words, a vanishing superfluid
density indicates a second-order phase transition from the zero
momentum phase to the plane wave phase.

In Ref. [50], the superfluid density ρx is calculated from
the current-current correlation function, which can be written
in terms of the transverse spin polarization 〈σx〉 and the
excitation gap � as ρx = ρ(1 + 2k2

0�〈σx〉/�2). Substituting
the mean-field values � = �0 and 〈σx〉 = −1, we obtain from
this the same result as given by the effective theory method
above. Note that if the gap becomes larger or σx is not fully
polarized, the superfluid density ρx will increase.

IV. BEYOND MEAN-FIELD CORRECTIONS

To study the lowest order (one-loop) beyond mean-field
corrections, we expand the Lagrangian density up to the fourth
order of the fields,

Lfluct = ζ+
2

[(∇φ)2 + (∇ϕ)2] + ζ−∇φ∇ϕ − �ρ

3
ϕ4 + �ζ+ϕ2 − �

2ρ
ζ 2
−ϕ2 − �

2

(
ζ+ζ 2

−
2ρ2

− ζ 2
−ζ 2

+
2ρ3

− ζ 4
−

8ρ3

)
,

− ζ+[(∇ζ+)2 + (∇ζ−)2]

8ρ2
− ζ−∇ζ+∇ζ−

4ρ2
+ (ζ 2

+ + ζ 2
−)[(∇ζ+)2 + (∇ζ−)2] + ∇ζ 2

+∇ζ 2
−

8ρ3
. (10)

The Feynman diagrams corresponding to the vertices are
given in Fig. 2. Without the spin-orbit coupling, the one-loop
corrections can be calculated analytically, and the results are
given in Appendix B. In the main text we focus on the
more interesting situation with nonzero spin-orbit coupling
and calculate the one-loop corrections numerically. Since the
parameter G2 is small, we take it to be zero unless otherwise
mentioned.

A. Quantum depletion

Due to the quantum fluctuations, the condensate is depleted
by a fraction of the total density. Up to the lowest order, the

quantum depletion is given by (see Appendix B)

δρ = ρ(〈φ2〉 + 〈ϕ2〉) + 〈ζ 2
+〉 + 〈ζ 2

−〉
4ρ

. (11)

Figure 3 shows the quantum depletion as a function of the
interaction strength and spin-orbit coupling for different trans-
verse fields. The quantum depletion increases with the interac-
tion strength. We find that it also increases with the spin-orbit
coupling strength, which is consistent with previous results
[37,38]. As Fig. 3 shows, the quantum depletion increases
with decreasing �, which means that the quantum fluctuations
are enhanced as the system approaches the phase transition
point.
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FIG. 3. The quantum depletion as a function of (a) the interaction
and (b) spin-orbit coupling for different Raman fields �. The solid
lines correspond to the mean-field phase transition between the zero
momentum and plane wave phases.

B. Lee-Huang-Yang correction and chemical potential shift

We study the correction to the mean-field energy density,
which is known as the Lee-Huang-Yang (LHY) correction
[51] ELHY, and can be viewed as the zero point energy of the
excitations [52]. With increasing k0, the phonon mode softens,
and therefore the zero point energy decreases. Figure 4(a)
shows this behavior clearly. Remarkably, we find that ELHY

becomes negative for large enough spin-orbit coupling. This
leads to a nonmonotonic dependence of ELHY on G1: If we
fix k0 and increase G1 from zero, then for small G1 (large
k2

0/G1), the LHY correction decreases from zero to negative;
increasing G1 further, the LHY correction will increase since
it becomes positive for small k2

0/G1. The nonmonotonic be-
havior of ELHY is most clearly seen at the phase transition
point, see Fig. 4(b).

We then calculate the correction to the chemical potential,
which is given by the tadpole diagrams shown in Fig. 5. The
numerical results of δμ are shown in Figs. 4(c) and 4(d). As
the LHY correction, the chemical potential shift decreases
with increasing of k0 and depends nonmonotonically on G1.
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FIG. 4. (a), (b) The LHY correction and (c), (d) the chemical
potential shift as a function of the spin-orbit coupling and interaction
for different Raman fields �. The value � = 2k2

0 corresponds to the
mean-field phase transition.

FIG. 5. Feynman diagrams that determine the chemical potential
shift δμ. These tadpole diagrams are canceled by the chemical
potential shift and therefore do not contribute to the one-loop self-
energy. For notation see Fig. 1.

This is expected, because the chemical potential shift can also
be obtained as the first-order derivative of the LHY energy
with respect to the density.

C. Superfluid density, phase boundary shift, and spin
polarizability

To get the correction to the superfluid density, we first
calculate the one-loop self-energy and then integrate out the
massive fields ϕ, ζ−, and ζ+ to get the effective Lagrangian
of the total phase fluctuations. The superfluid density in the x
direction is found to be

ρx = ρ

[
1 − 2k2

0

� + 2G2 − 2ρ�ζ−ζ− (0)

]
, (12)

where �ζ−ζ− (0) is the self-energy at zero frequency and
momentum. There is no correction to ρy and ρz at zero
temperature, consistent with the general result of superfluid
density in Galilean invariant superfluids [53].

Our numerical calculations show that �ζ−ζ− (0) is nonzero
at the mean-field transition point. Consequently, the superfluid
density also becomes nonzero at � = �c,mf , see Fig. 6(a).
Physically, this can be explained by the decrease of the
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FIG. 6. (a) The superfluid density, (b) the deviation of the trans-
verse spin polarization, (c) and the spin excitation gap at the phase
transition point. (d) The phase boundary shift as a function of k2

0/G2

for different G2/G1. Here δ�c = �c,mf − �c, with �c being the cor-
rected phase boundary. The solid lines show the results determined
by the one-loop superfluid density, and the dots present the results by
minimizing the ground-state energy Emf + ELHY. The crosses denote
the mean-field critical k0,c below which the plane wave phase is
preempted by the stripe phase [42].
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transverse polarization 〈σx〉 and the increase of the spin gap
�. Because of the spin-orbit coupling, the spin of excited
particles is not perfectly along the x direction, and therefore
the magnitude of the transverse spin polarization is reduced.
Up to the lowest order, the deviation of spin polarization is
(see Appendix B)

δ〈σx〉 = 2〈ϕ2〉 + 〈ζ 2
−〉

2ρ2
. (13)

We plot the numerical result of δ〈σx〉 in Fig. 6(b). Another
quantity that determines ρx is the excitation gap. We obtain
from the one-loop self-energy the correction to the mean-field
gap and find it is positive, see Fig. 6(c). Combining the
behavior of δ〈σx〉 and �, the nonmonotonic dependence of
ρx on k2

0 can be explained: The superfluid density increases
with increasing δ〈σx〉 and �, and with increasing k0, δ〈σx〉
increases but � decreases. As a result, the superfluid density
first increases and then decreases with increasing the spin-
orbit coupling strength.

As we have explained before (see also Appendix C), the
phase transition between the zero momentum and plane wave
phases is characterized by the vanishing superfluid density, so
Eq. (12) means that the phase transition point is shifted by
quantum fluctuations. The new phase boundary is determined
through

�c + 2G2 − 2ρ�ζ−ζ− (0) = 2k2
0 , (14)

where �ζ−ζ− (0) should be evaluated at �c. The solid lines in
Fig. 6(d) show the relative phase transition shift as a function
of k2

0/G1 for different G2/G1. The shift becomes larger with
decreasing k2

0/G1 and reaches its maximum at a critical spin-
orbit coupling strength k0,c, below which the plane wave
phase is preempted by the stripe phase [42]. We plot the
phase boundary shift for k0 larger than the mean-field critical
value k0,c = √

2G2(1 + G2/G1) [42]. It is possible that the
mean-field critical spin-orbit coupling strength is shifted by
quantum fluctuations, but this is beyond the scope of this
paper and we expect that it does not change the results pre-
sented in Fig. 6(d) qualitatively. We also calculate the phase
boundary by minimizing the ground-state energy Emf + ELHY.
The technical details are given in Appendix C, and the phase
boundary shifts obtained in this way are presented by the dots
in Fig. 6(d). As can be seen, the two methods predict the same
results. The self-energy �ζ−ζ− (0) also gives a correction to the
spin polarizability,

χM = 2

� − �c,mf − 2ρ�ζ−ζ− (0)
, (15)

which diverges at the corrected phase boundary but becomes
finite at the mean-field phase transition point. We have
checked numerically that around �c, the dependence of the
self-energy �ζ−ζ− (0) on � is weak, and therefore χM diverges
as 1/(� − �c) close to the phase boundary, as predicted
by the mean-field theory. The spin polarizability has been
measured [20], and it seems that our one-loop result agrees
better with the experimental data than the mean-field theory,
see Fig. 7. However, the current experimental data cannot lead
to a decisive conclusion and future experiments are required
to verify our prediction.
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FIG. 7. The spin polarizability as a function of �. The experi-
mental data are taken from Ref. [20]. To simulate the experiment,
we use k2

0 = 4.2G1,
√

g3+ρ = 0.2, and G2/G1 = 10−3 in the one-loop
calculation.

D. Sound velocity and damping rate

Using the one-loop results for the static density response
K−1 and the superfluid density ρx, we obtain the quantum
corrected sound velocity in the x direction, cx =

√
K−1ρx.

At the corrected phase transition point, the sound velocity cx

vanishes because of the vanishing superfluid density ρx. This
is different from the result in Ref. [54], where a nonzero sound
velocity at the phase boundary has been predicted within the
Hartree-Fock-Bogoliubov-Popov approximation.

Since the sound velocity goes to zero slower than the
superfluid density, it is easier to detect the beyond mean-field
effects through the measurement of the sound velocity. In
Fig. 8 we plot the cx against

√
δ�/k0, with δ� = � − �c,mf .

For typical experimental parameters [19–21], the one-loop
prediction deviates clearly from the mean-field behavior when

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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FIG. 8. The sound velocity cx along the x direction (c0 =√
G1). Here δ� = � − �c,mf is the deviation of � from the mean-

field phase transition value. The experimental data are taken from
Ref. [21], and the parameters we use to calculate the one-loop
result are k2

0 = 5.2G1,
√

g3+ρ = 0.18, and G2/G1 = 10−3, which
correspond to the experiment in Ref. [21].
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√
δ�/k0 < 0.1. The sound velocity has been measured [21],

but the parameters are not close enough to the phase transition
point. However, our prediction should be observable with
current experimental methods.

Finally, we calculate the damping rate of phonons, for
details see Appendix D. At zero temperature, the damping
is due to the Beliaev process [55], i.e., an excitation decays
into two with lower energy. In the small momentum limit

(qy, qz � √
G1 and qx �

√
� − 2k2

0), we find

γB = 3q5

640πρ

[
1 − 2�k2

0 cos2 θ

(� + 2G2)2

]2
√

1 + 2k2
0 sin2 θ

� − �c,mf
, (16)

which coincides with the result obtained in Ref. [41]. The
Beliaev damping is strongly suppressed along the direction
of the spin-orbit coupling.

At finite temperature, the Landau damping [56] arises
because the phonon couples to thermal excitations. The Lan-
dau damping is experimentally more relevant since it is
responsible for damping in trapped Bose gases [57–59]. In
the low-temperature and small-momentum limit (cθq � T �
� − 2k2

0), we obtain

γL = 3π3qT 4

40ρc4
θ

[
1 − 2�k2

0 cos2 θ

(� + 2G2)2

]2
√

1 + 2k2
0 sin2 θ

� − �c,mf
. (17)

Because of the extra cθ dependence, the Landau damping rate,
unlike the Beliaev decay, is not suppressed in the direction of
spin-orbit coupling, which means that the Landau process is
the dominant damping mechanism even for uniform systems
at very low temperature.

V. CONCLUSIONS

We calculate systematically the one-loop corrections to
a spin-orbit coupled Bose-Einstein condensate. We find that
quantum fluctuations cause quantitative modifications to the
superfluid density, spin polarizability, sound velocity, and
damping rate. The quantum depletion increases while the
LHY energy decreases with the transverse field in the zero
momentum phase. The phase boundary between the plane
wave and zero momentum phases is shifted to a smaller
transverse field. The superfluid density vanishes and the spin
polarizability diverges at the one-loop phase transition point.
But at the mean-field phase boundary, the spin polarizability
remains finite, consistent with an experimental measurement
[20]. We also point out that the beyond mean-field corrections
may be detected through the measurement of the sound veloc-
ity, and give the parameter regime in which the deviation from
the mean-field behavior is visible. We calculate the Beliaev
and Landau damping rates and identify the Landau damping

as the dominant mechanism of quasiparticle decay. Our results
show that the spin-orbit coupling leads to, even for moderate
interactions, quantum fluctuations strong enough to make
detectable modifications to the properties of a macroscopic
quantum state such as a Bose-Einstein condensate. The results
can be readily tested in ultracold quantum gases, and in
the future, in spin-orbit coupled Bose-Einstein condensates
realized in other systems.
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APPENDIX A: MEAN-FIELD RESULTS

In this section we present the mean-field results of the
excitation energy, density and spin response function, and
superfluid density with some detailed derivations.

1. Excitation energy

The excitation energy is determined by det G−1
0 = 0, which

gives

ε2
ph(q) = a(q) −

√
a2(q) − b(q)

2
, (A1)

ε2
sp(q) = a(q) +

√
a2(q) − b(q)

2
, (A2)

where a(q) = A(q)B(q) + C(q)D(q) + 2k2
0q2

x , b(q) =
4[A(q)D(q) − k2

0q2
x ][B(q)C(q) − k2

0q2
x ], εph is the gapless

phonon mode, and εsp is the gapped mode, which is dominated
by spin excitations. In the small momentum limit,

εsp = �0 + q2

2msp
, (A3)

εph = cθq + dθq3, (A4)

where

�0 =
√

�(� + 2G2), (A5)

m−1
sp = (G2 + �)(2G2 + �) + 2k2

0 (� + G1 + 2G2) cos2 θ√
�(2G2 + �)3/2

,

(A6)

cθ = c0

√
1 − 2k2

0 cos2 θ

� + 2G2
, (A7)

dθ = 1

8cθ

(
1 − 4k2

0

[
(� + 2G2)(�2 + (G1 + 3G2)� + 2(G1 + G2)2) cos2 θ − k2

0 (� + 2(G1 + G2))2 cos4 θ
]

�(� + 2G2)3

)
, (A8)

with c0 = √
G1 being the usual Bogoliubov sound velocity for a weakly interacting single component Bose-Einstein condensate.

In the absence of spin-orbit coupling, the sound velocity is the same as c0. In the presence of spin-orbit coupling, it depends
on θ , which is the angle between the momentum q and direction of the spin-orbit coupling. When � = 2k2

0 − 2G2, the sound

023619-6



QUANTUM CORRECTIONS TO A SPIN-ORBIT-COUPLED … PHYSICAL REVIEW A 100, 023619 (2019)

velocity along the x direction becomes zero, and the phonon dispersion along the x direction becomes quadratic,

εph =
√

G1q2
‖ + 1

4
q4

‖ + G2q4
x

4G2 + 2�
− (G1 + G2)[2(G1 + G2) + �]

2�(2G2 + �)
q2

‖q2
x , (A9)

with q2
‖ = q2

y + q2
z .

Knowing the low-energy dispersion relation of the
phonons, we can define the momentum region in which the
dispersion is linear. When the momentum is along the x
direction, by requiring cxqx  dxq3

x , we find the condition

qx �
√

� − 2k2
0 . (A10)

When the momentum is along the y or z direction, the condi-
tion is

qy, qz � √
G1. (A11)

At finite temperature, the linear dispersion region also requires
that the dispersion of the thermal excitations is linear, and this
leads to the condition

T � � − 2k2
0 . (A12)

These conditions are used in deriving the analytical expres-
sions for Beliaev and Landau damping rates.

2. Density and spin response functions

In the modulus-phase representation, the density and spin
response functions are given by the Green’s functions Gζ+ζ+
and Gζ−ζ− , respectively. So the spin polarizability defined in
Refs. [48,49] is simply given by Gζ−ζ− (qx → 0)/ρ, and at the
mean-field level,

χM = G0,ζ−ζ− (qx → 0)/ρ = 2

� + 2G2 − 2k2
0

. (A13)

The mean-field density and spin static structure factors are
given by

Sd (q) =
∫

dωG0,ζ+ζ+ (ω, q)/ρ, Ss(q)

=
∫

dωG0,ζ−ζ− (ω, q)/ρ. (A14)

We show the mean-field static structure factors for different
spin-orbit coupling strength in Fig. 9. As comparison, the
contribution of the phonon branch are also shown. Without
spin-orbit coupling, the density and spin excitations are de-
coupled and the phonon branch does not contribute to the
spin structure factor. In the presence of spin-orbit coupling,
a density perturbation along the x direction also induces a
spin response and vice versa, so the density and spin structure
factors are carried by both the phonon and gapped excitations.
In the large momentum limit, the total static structure factors
approach to 1 and the phonon branch contributes to one half.
Remarkably, we find a peak in the total spin static structure
factor. When the parameter approaches to the phase transition
point, the peak becomes higher and its location moves to the
zero momentum. By contrast, the peak is not observed in the
total density structure factor, although there is peak in the
contribution of the phonon branch.

3. Superfluid density

To get the superfluid density, we integrate out the ϕ and ζ−
fields and obtain an effective theory of φ and ζ+

Leff = 1
2 [φ, ζ+]G−1

0,eff [φ, ζ+]T , (A15)

where

G−1
0,eff =

[
ρq2 −ωn

ωn
q2

4ρ
+ g+

]
−

[
0 ik0qx

−ik0qx 0

]

×
[
ρq2 + 2�ρ −ωn

ωn
q2

4ρ
+ g− + �

2ρ

]−1[
0 ik0qx

−ik0qx 0

]
,

(A16)

which in the low-energy limit is

G−1
0,eff =

[
ρ
(
q2 − 2k2

0
�+2G2

q2
x

) −ωn

ωn
q2

4ρ
+ g+

]
. (A17)

Integrating out the ζ+ field, we arrive at an effective La-
grangian of the phase fluctuation, and in the low-energy and
long-wavelength limit,

Leff = (
K−1ω2

n + ρiq
2
i

)|φ|2, (A18)

where K is the zero momentum static density response func-
tion whose mean-field value is 1/g+, and the mean-field
superfluid densities are

ρx = ρ

(
1 − 2k2

0

� + 2G2

)
, ρy = ρz = ρ. (A19)

APPENDIX B: ANALYTICAL RESULTS OF ONE-LOOP
CORRECTIONS IN THE ABSENCE OF SPIN-ORBIT

COUPLING

Without the spin-orbit coupling, we can calculate the one-
loop corrections analytically. It is useful to calculate the

(a) (b)

FIG. 9. The (a) density and (b) spin static structure factors (blue
upper lines). Both approach unity in the large momentum limit. The
contribution of the phonon branch are also shown (red lower lines).
The interaction is taken to be SU (2) invariant with G2 = 0 and G1 is
taken to be unit. There is a peak in the spin structure factor.
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following integral,

I (α, m2; β, M2; γ ) =
∫

dd k

(2π )d

kγ

(k2 + m2)α (k2 + M2)β
= 2πd/2

(2π )d�(d/2)

kd−1+γ

(k2 + m2)α (k2 + M2)β
, (B1)

= 2πd/2

(2π )d�(d/2)

�(α + β )

�(α)�(β )

∫ 1

0
dx

kd−1+γ xα−1(1 − x)β−1

[x(k2 + m2) + (1 − x)(k2 + M2)]α+β
, (B2)

= 2πd/2

(2π )d�(d/2)

(M2)
d+γ

2 −α−β

�(α + β )
�

(
α + β − d + γ

2

)
�

(
d + γ

2

)
2F1

(
α, α + β − d + γ

2
; α + β; 1 − m2

M2

)
,

(B3)

where 2F1(a, b; c; z) is the hypergeometric function. To get the above result we have used dimensional regularization.
The condensate fraction is

|〈ψ↑〉|2 + |〈ψ↓〉|2 = 1

2
(|〈

√
ρ + ζ1ei(φ+ϕ)〉|2 + |〈−

√
ρ + ζ2ei(φ−ϕ)〉|2) ≈ ρ − 1

4ρ
(〈ζ 2

+〉 + 〈ζ 2
−〉) − ρ(〈ϕ2〉 + 〈φ2〉), (B4)

so the quantum depletion is

δρ = 1

4ρ
(〈ζ 2

+〉 + 〈ζ 2
−〉) + ρ(〈ϕ2〉 + 〈φ2〉) = (g+ρ)3/2

3π2
+ (g−ρ)3/2

3π2

√
1 + x/2

[
(x + 1)E

(
2

x + 2

)
− xK

(
2

x + 2

)]
, (B5)

with x = �/(g−ρ) and E (z) and K (z) are the complete elliptic integral of the second and first kind, respectively. The quantum
depletion increases with increasing g+ and g−, but decreases with increasing �.

The transverse spin polarization is

〈σx〉 = 1

ρ
〈ψ†σxψ〉 ≈ −1 + 2〈ϕ2〉 + 1

2ρ2
〈ζ 2

−〉, (B6)

so

δ〈σx〉 = 2〈ϕ2〉 + 1

2ρ2
〈ζ 2

−〉 = 2(g−ρ)3/2

3ρπ2

√
1 + x/2

[
(x + 1)E

(
2

x + 2

)
− xK

(
2

x + 2

)]
. (B7)

The Lee-Huang-Yang correction [51] can be obtained as the zero point energy of the system [52], and we find

ELHY = 8

15π2
g+ρ2

√
g3+ρ + (g−ρ)5/2√1 + x/2

4π
2F1

(
−1

2
,

3

2
; 3;

2

2 + x

)
. (B8)

The first term in Eq. (B8) is the same as the result for a weakly-interacting spinless Bose gas [51]. The second term
comes from the spin excitation. The function 2F1(− 1

2 , 3
2 ; 3; 2

2+x ) depends weakly on x, with 2F1(− 1
2 , 3

2 ; 3; 1) = 32/(15π ) and

2F1(− 1
2 , 3

2 ; 3; 0) = 1, so the second term increases with increasing g− and �.
The chemical potential shift is given by the tadpole diagrams shown in Fig. 5. Evaluating the integrals, we find

δμ =
4g+ρ

√
g3+ρ

3π2
+

g−ρ

√
g3−ρ

√
1 + x/2

3π2

[
(4 + x)E

(
2

2 + x

)
− xK

(
2

2 + x

)]
, (B9)

which increases with g+, g−, and �. Another way to calculate the chemical potential shift is to take derivative of the LHY energy
density ELHY with respect to ρ, δμ = ∂ρELHY, and the result is the same as Eq. (B9).

The correction to K−1 is given by �ζ+ζ+ (0), and in the absence of spin-orbit coupling,

δK−1 = −�ζ+ζ+ (0) =
2g+

√
g3+ρ

π2
+

g−
√

g3−ρ
√

1 + x/2

2π
2F1

(
−1

2
,−1

2
; 1;

2

2 + x

)
. (B10)

Note that δK−1 can be related to δμ through δK−1 = ∂ρδμ.
To calculate the correction to the mean-field excitation gap �0, we need to compute the self-energies �ϕϕ (�0), �ζ−ζ− (�0),

and �ϕζ− (�0), which can also be done analytically in the absence of the spin-orbit coupling, and we find that the one-loop
correction to the gap is zero. In the presence of spin-orbit coupling, we calculate the self-energies numerically, and find the
one-loop correction increases the gap slightly, see the main text.
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APPENDIX C: PHASE BOUNDARY BETWEEN THE PLANE WAVE AND ZERO MOMENTUM PHASES: THE EFFECT OF
THE LHY ENERGY

In this section we study the phase boundary between the zero momentum and plane wave phases by minimizing the ground
state energy. As we will show, this also provides another way to calculate the superfluid density.

We only consider the plane wave and zero momentum phases, and in general the field operator can be written as

ψ = eiφ+ik1x

[ √
ρ + ζ1 cos αeiϕ

−√
ρ + ζ2 sin αe−iϕ

]
, (C1)

where we have introduced the phase fluctuations φ and ϕ, and the density fluctuations ζ1 and ζ2, which are simply set to be zero
in the mean-field approximation. The parameters k1 and α should be determined by minimizing the ground-state energy, and
k1 �= 0 characterizes the plane wave phase while k1 = 0 gives the zero momentum phase.

Substituting Eq. (C1) to the Lagrangian density

L = ψ†(∂τ + h0 − μ)ψ + g+
2

(ψ†ψ )2 + g−
2

(ψ†σzψ )2, (C2)

and up to the quadratic order of the fluctuations, we find

L = k2
1 + k2

0

2
ρ − k0k1ρ cos 2α − �

2
ρ sin 2α + g+ + g− cos2 2α

2
ρ2 − μρ

+
(

k2
1 + k2

0

2
− �

2 sin 2α
+ G1 − μ

)
ζ+ +

(
� cos 2α

2 sin 2α
− k0k1 + G2 cos 2α

)
ζ−

+ 1

2
[φ, ζ+, ϕ, ζ−]G−1

0 [φ, ζ+, ϕ, ζ−]T , (C3)

where ζ+ = ζ1 cos2 α + ζ2 sin2 α, ζ− = ζ1 cos2 α − ζ2 sin2 α, and G−1
0 in the momentum and frequency representation reads

G−1
0 (iω, k) =

⎡
⎢⎢⎢⎣

ρk2 −ω − ik1kx ρk2 cos 2α ik0kx

ω + ik1kx
k2

4ρ sin2 2α
+ g+ + cos2 2α

2 sin3 2α

�
ρ

−ik0kx − � cos 2α

2ρ sin3 2α
− cos 2α

4ρ sin2 2α
k2

ρk2 cos 2α ik0kx ρk2 + 2�ρ sin 2α −ω − ik1kx

−ik0kx − � cos 2α

2ρ sin3 2α
− cos 2α

4ρ sin2 2α
k2 ω + ik1kx

k2

4ρ sin2 2α
+ g− + 1

2 sin3 2α

�
ρ

⎤
⎥⎥⎥⎦. (C4)

We choose the renormalization condition 〈ζ+〉 = 〈ζ−〉 = 0, which gives two conditions at the mean-field level

k2
1 + k2

0

2
− �

2 sin 2α
+ G1 − μ = 0, (C5)

� cos 2α

2 sin 2α
− k0k1 + G2 cos 2α = 0. (C6)

The first condition Eq. (C5) determines the mean-field chemi-
cal potential and the second condition Eq. (C6) gives a relation
between α and k1. Note that for small k1, we have cos 2α ∝ k1.

The mean-field energy density is given by the first line in
Eq. (C3),

Emf = k2
1 + k2

0

2
ρ − k0k1ρ cos 2α − �

2
ρ sin 2α

+ g+ + g− cos2 2α

2
ρ2. (C7)

Note that Eq. (C6) can also be obtained by minimizing the
energy with respect to α. In Ref. [42], a relation between
k1 and α is obtained by minimizing the energy with respect
to k1, which leads to α = arccos (k1/k0)/2. This relation and
Eq. (C6) determine the mean-field value of α and k1 and
therefore the mean-field phase boundary, which are the same
as the results in Ref. [42]. However, α = arccos (k1/k0)/2
no longer holds when the LHY energy is taken into account
because in this case there will be extra contribution to the
energy density depending on k1. In contrast, Eq. (C6) is

still valid up to at least one loop since there is no one-loop
correction proportional to ζ− and therefore 〈ζ−〉 = 0 leads to
the same condition. Therefore, to include the effects of the
LHY energy, we should utilize the condition Eq. (C6) instead
of the form used in Ref. [42].

Using Eq. (C6), we can rewrite Emf in terms of k1, and then
we can view the resultant expression as a Landau functional
in terms of the order parameter k1. The disordered phase
corresponds to the zero momentum phase while the ordered
phase is the plane wave phase. Technically, it is simpler to use
x ≡ cos 2α as the order parameter (because x ∝ k1 for small
k1) and we have

Emf = k2
0

2
ρ − �

2
√

1 − x2
ρ + g+ρ2

2

+ ρ

2k2
0

[
�x

2
√

1 − x2
+ g−ρx

]2

− g−ρ2x2

2
. (C8)

By minimizing the above express with respect to x, we can
determine the mean-field phase diagram.
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Expanding Eq. (C8) around x = 0 and rewriting the result
in terms of k1, we get

Emf = k2
0

2
ρ − �

2
ρ + g+ρ2

2
+ ρ

2

[
1 − 2k2

0

� + 2G2

]
k2

1 . (C9)

It is then clear that the mean-field phase transition point is

determined by 1 − 2k2
0

�+2G2
= 0. In the zero momentum phase,

the coefficient before k1 measures the energy cost of the phase
fluctuations, and therefore it is by definition the superfluid
density ρx/2. From the point view of the Landau theory of
phase transitions, the superfluid density is the coefficient of
the quadratic term in the order parameter expansion. A nega-
tive superfluid density simply means that the zero momentum
phase is unstable, and k1 will acquire a nonzero expectation
value such that the system enters the plane wave phase. In
the plane wave phase, the superfluid density becomes positive
again.

To calculate the correction to the mean-field phase bound-
ary, we include the LHY contribution to the ground-state
energy density and minimize Emf + ELHY as a function of k1.
The LHY energy is obtained through the excitation energy
determined by det G−1

0 = 0 with G−1
0 given by Eq. (C4). The

minimization can be done in the following way: We first
calculate numerically the LHY energy for small k1, and then
extract the coefficient of the k2

1 term in ELHY. This coefficient
gives a correction to the coefficient of k2

1 in Eq. (C9), and the
new phase boundary is determined by requiring the corrected
coefficient to be zero. As shown in Fig. 6(d), the phase
boundary determined in this way agrees perfectly with the one
determined through the one-loop result of ρx.

Before closing this section, we mention that the same
method can be used to get the superfluid density in the plane
wave phase. Assuming Emf reaches its minimal at k1,c, then
the superfluid density is obtained by expanding the mean-field
energy Eq. (C8) around k1,c,

Emf = Emf (k1,c) + ρx

2
δk2, (C10)

where δk = k1 − k1,c. To find k1,c we minimize Eq. (C8)
with respect to x and find the position xc at which the en-
ergy takes minimum. Then using Eq. (C6), we find k1,c =
k0

√
1 − �2/�2

c,mf . Expanding Eq. (C8) around xc and change

the variable from x − xc to k1 − k1,c, we obtain the mean-field
superfluid density in the plane wave phase

ρx = ρ − ρ
k2

0�
2

�2G2 + 4
(
k2

0 − G2
)3 , (C11)

which is the same as the result in Ref. [50]. By taking
into account the LHY contribution, we can also obtain the
correction to the mean-field superfluid density in the plane
wave phase.

APPENDIX D: DAMPING RATE AT ZERO AND FINITE
TEMPERATURE

The damping rate γ , i.e., the imaginary part of the phonon
excitation energy, is determined by

det
[
G−1

0 (εph − iγ , q) − �(εph + i0+, q)
] = 0, (D1)

FIG. 10. Feynman diagrams for �φφ that contribute to the
phonon damping rates.

where �(εph + i0+, q) is the one-loop self-energy evaluated
at the phonon frequency.

To solve Eq. (D1), we first integrate out the ϕ and ζ− fields
and obtain an effective theory for the low-energy mode [c.f.
Eq. (A15)]

Leff = 1
2 [φ, ζ+]G−1

eff [φ, ζ+]T , (D2)

where G−1
eff can be written as

G−1
eff =

[
ρ
(
q2 − 2k2

0
�+2G2

q2
x

) −ωn

ωn
q2

4ρ
+ g+

]

−
[

�eff,φφ �eff,φζ+
�eff,ζ+φ �eff,ζ+ζ+

]
. (D3)

And then from Eq. (D3), the damping rate is obtained

γ = ρ
(
q2 − 2k2

0
�+2G2

q2
x

)��eff,ζ+ζ+ + g+��eff,φφ

2εph
+ ��eff,φζ+ .

(D4)

We focus on the linear dispersion regime defined through
Eqs. (A10)–(A12). By analyzing the low-energy and momen-
tum behavior of all the one-loop self-energies, we find that
it is enough to consider the Feynman diagrams constructed
from only two vertices Figs. 2(a) and 2(d), and the momentum
dependence of vertex Fig. 2(d) can be neglected. Therefore the
relevant parts of the effective self-energy matrix is[ ��eff,φφ ��eff,φζ+

��eff,ζ+φ ��eff,ζ+ζ+

]

=
[ ��φφ ��φζ+
��ζ+φ ��ζ+ζ+

]

+
⎡
⎣− 4ρk0qx��φζ−

�+2G2
+ 4ρ2k2

0 q2
x ��ζ−ζ−

(�+2G2 )2 − 2ρk0qx��ζ+ζ−
�+2G2

2ρk0qx��ζ+ζ−
�+2G2

0

⎤
⎦.

(D5)

As an example, we calculate �φφ (iωn, q) explicitly. The
Feynman diagrams are shown in Fig. 10.

�φφ (iωn, q)

=
∑
ω′

m,k

[(k · q)2G0,φφ (iω′
m, k)G0,ζ+ζ+ (iωn − iω′

m, q − k)]

+ k · q(q2−k · q)G0,φζ+ (iω′
m, k)G0,φζ+ (iωn−iω′

m, q−k)].

(D6)
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We write the mean-field Green’s function explicitly

G0,φφ (iωn, q) = A11(q)

ω2
n + ε2

sp(q)
+ B11(q)

ω2
n + ε2

ph(q)
, (D7)

G0,ζ+ζ+ (iωn, q) = A22(q)

ω2
n + ε2

sp(q)
+ B22(q)

ω2
n + ε2

ph(q)
, (D8)

G0,φζ+ (iωn, q) = −G0,ζ+φ (iωn, q) = ωA12(q)

ω2
n + ε2

sp(q)
+ ωB12(q)

ω2
n + ε2

ph(q)
. (D9)

Since we are studying the damping rate in the linear regime, the gapped branch can be neglected, and it is enough to know the
low momentum behavior of B11, B22, and B12,

B11(q) ≈ g+, B22(q) ≈ ρ
c2
θ

c2
0

q2, B12(q) ≈ 1. (D10)

Evaluating the Matsubara frequency summation, �φφ (iωn, q) can be written as

�φφ (iωn, q) = �φφ,1(iωn, q) + �φφ,2(iωn, q), (D11)

with

�φφ,1(iωn, q) =
∑

k

[1 + n(εph(k)) + n(εph(q − k))]
[

1

−iωn + εph(k) + εph(q − k)
+ 1

iωn + εph(k) + εph(q − k)

]

×
[

(k · q)2 B11(k)B22(q − k)

4εph(k)εph(q − k)
+ k · q(q2 − k · q)

B12(k)B12(q − k)

4

]
, (D12)

which is nonzero even if the temperature is zero and is relevant to the Beliaev damping rate, and

�φφ,2(iωn, q) =
∑

k

[n(εph(k)) − n(εph(q − k))]
[

1

iωn + εph(q − k) − εph(k)
− 1

iωn + εph(k) − εph(q − k)

]

×
[

(k · q)2 B11(k)B22(q − k)

4εph(k)εph(q − k)
− k · q(q2 − k · q)

B12(k)B12(q − k)

4

]
, (D13)

which is nonzero only at finite temperature and is relevant to the Landau damping rate.
We calculate the imaginary part of �φφ,1(εph(q) + i0+, q) at zero temperature,

��φφ,1(εph(q) + i0+, q) = π
∑

k

δ( − εph(q) + εph(k) + εph(q − k)) f (q, k), (D14)

f (q, k) = (k · q)2 B11(k)B22(q − k)

4εph(k)εph(q − k)
+ k · q(q2 − k · q)

B12(k)B12(q − k)

4
. (D15)

To calculate the above integral, we need to solve the internal k allowed by the energy and momentum conservation. We can scale
the momentum as cxkx ≡ c0k′

x and ky/z = k′
y/z, and then the phonon dispersion can be written as

εph(k) =
√

c2
xk2

x + c0k2
y + c2

0k2
z = cθk = c0k′. (D16)

The momentum and energy conservation can be solved in terms of the new variables in the small q limit (θ ′ is the angle between
k′ and q′),

δ(−c0q′ + c0k′ + c0|q′ − k′|) = q′ − k′

c0q′k′ sin θ ′ δ(θ ′), (D17)

with the restriction k′ < q′. This means that k′ and q′ are along the same direction and k′ < q′ and therefore k and q are also
along the same direction and k < q. Under this condition,

f (q, k) = kq2(q − k)

2
, (D18)
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so

��φφ,1(εph(q) + i0+, q) = π

∫
dkxdkydkz

(2π )3
f (q, k)δ(−εph(q) + εph(k) + εph(q − k)), (D19)

= π
c0

cx

∫ dk′
xdk′

ydk′
z

(2π )3
f (q, k)δ(−c0q′ + c0k′ + c0|q′ − k′|), (D20)

= π
c0

cx

∫ dk′
xdk′

ydk′
z

(2π )3
f (q, k)

q′ − k′

c0q′k′ sin θ ′ δ(θ ′), (D21)

= π
1

cx

∫
k′2dk′

4π2
f (q, k)

q′ − k′

q′k′ , (D22)

= c2
θ

c2
0cx

∫ q

0

k2dk

4π

kq2(q − k)

2

q − k

qk
, (D23)

= 1

2

c2
θ

c2
0cx

q6

120π
. (D24)

We now calculate ��φφ,2(εph(q) + i0+, q) at finite temperature,

��φφ,2(εph(q) + i0+, q) = π
∑

k

[n(εph(k)) − n(εph(q − k))]
[

(k · q)2 B11(k)B22(q − k)

4εph(k)εph(q − k)

− k · q(q2 − k · q)
B12(k)B12(q − k)

4

]
× [−δ(εph(q) + εph(q − k) − εph(k)) + δ(εph(q) + εph(k) − εph(q − k))], (D25)

= −π
∑

k

[n(εph(k + q)) − n(εph(k))]δ(εph(q) + εph(k) − εph(k + q))g(q, k), (D26)

= −π
∑

k

∂n(εph(k))
∂εph(k)

εph(q)δ(εph(q) + εph(k) − εph(k + q))g(q, k), (D27)

where

g(q, k) =
[

(k · q + q2)2 B11(k + q)B22(k)

4εph(k + q)εph(k)
+ (k · q + q2)k · q

B12(k + q)B12(k)

2
+ (k · q)2 B11(k)B22(q + k)

4εph(k)εph(q + k)

]
. (D28)

To get Eq. (D27) we have assumed cθq/T � 1 and expand n(εph(k + q)) − n(εph(k)) to the lowest order. In general it is difficult
to solve the energy and momentum conserving condition δ(εph(q) + εph(k) − εph(k + q)) even if q is small, because k is not
necessarily small and for general k, the phonon dispersion is very complicated. However, if we focus on the low-temperature
region such that the corresponding phonon dispersion is linear, then we can replace εph(k) by the linear dispersion because
∂n(εph (k))
∂εph (k) decays rapidly when εph(k) > T . In this region the momentum and energy conservation is easily solved: k and q are

along the same direction and the length of k is unrestricted. Under this condition g(q, k) also takes a simple form

g(q, k) = kq2(k + q), (D29)

and

��φφ,2[εph(q) + i0+, q] = c2
θ

c2
0cx

∫ ∞

0

k2dk

4π

βeβcθ k

(eβcθ k − 1)2
cθqkq2(k + q)

q + k

qk
, (D30)

= q2T 4

c2
θc2

0cx

∫ ∞

0

x2dx

4π

ex

(ex − 1)2

(
x + cθq

T

)2
, (D31)

= π3q2T 4

15c2
θ c2

0cx
. (D32)

To get Eq. (D32) from Eq. (D31), we have used the condition cθq/T � 1.
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QUANTUM CORRECTIONS TO A SPIN-ORBIT-COUPLED … PHYSICAL REVIEW A 100, 023619 (2019)

We can calculate other self-energies in the similar way, and here we just summarize the final results,

��φφ,1 = 1

2

c2
θ

c2
0cx

q6

120π
��φφ,2 = π3q2T 4

15c2
θ c2

0cx

��φζ+,1 = g+
4

[
1 − 2k2

0� cos2 θ

(� + 2G2)2

]
cθ

c2
0cx

q5

120π
��φζ+,2 = g+

2

[
1 − 2k2

0� cos2 θ

(� + 2G2)2

]
1

c2
0c3

θ cx

π3qT 4

15

��ζ+ζ+,1 = g+
8ρ

[
1 − 2�k2

0 cos2 θ

(� + 2G2)2

]2 1

cx

q4

120π
��ζ+ζ+,2 = g+

4ρ

[
1 − 2�k2

0 cos2 θ

(� + 2G2)2

]2 1

c4
θ cx

π3T 4

15

��ζ−ζ−,1 = k2
0�

2 cos2 θ

2ρ2(� + 2G2)2

c2
θ

c2
0cx

q4

120π
��ζ−ζ−,2 = k2

0�
2 cos2 θ

ρ2(� + 2G2)2

1

c2
0c2

θcx

π3T 4

15

��φζ−,1 = �k0 cos θ

2ρ(� + 2G2)

c2
θ

c2
0cx

q5

120π
��φζ−,2 = �k0 cos θ

ρ(� + 2G2)

1

c2
0c2

θ cx

π3qT 4

15

��ζ+ζ−,1 = g+�k0 cos θ

4ρ(� + 2G2)

[
1 − 2k2

0� cos2 θ

(� + 2G2)2

]
cθ

c2
0cx

q4

120π
��ζ+ζ−,2 = g+�k0 cos θ

2ρ(� + 2G2)

[
1 − 2k2

0� cos2 θ

(� + 2G2)2

]
1

c2
0c3

θcx

π3T 4

15

(D33)

From the above results we get the Beliaev damping rate at zero temperature

γB = 3g+q5

640πcθ

[
1 − 2�k2

0 cos2 θ

(� + 2G2)2

]2
c2
θ

c2
0cx

, (D34)

= 3q5

640πρ

[
1 − 2�k2

0 cos2 θ

(� + 2G2)2

]2
cθ

cx
, (D35)

= 3q5

640πρ

[
1 − 2�k2

0 cos2 θ

(� + 2G2)2

]2
√

1 + 2k2
0 sin2 θ

� + 2G2 − 2k2
0

(D36)

and the Landau damping rate at finite temperature

γL = 3π3qT 4

40ρc4
θ

[
1 − 2�k2

0 cos2 θ

(� + 2G2)2

]2
√

1 + 2k2
0 sin2 θ

� + 2G2 − 2k2
0

. (D37)

The Beliaev damping rate takes the same form as the result in Ref. [41], where a different method was used. The analytical
expression for the Landau damping rate is obtained here for the first time.

If G2 = g−ρ = 0, the damping rates can be further simplified as

γB = 3q5

640πρ

c4
θ

c4
0

√
1 + 2k2

0 sin2 θ

� − 2k2
0

, (D38)

γL = 3π3qT 4

40ρc4
0

√
1 + 2k2

0 sin2 θ

� − 2k2
0

. (D39)

Since cθ = c0

√
1 − 2k2

0 cos2 θ

�+2G2
, the Beliaev damping is strongly suppressed when the momentum is along the direction of the

spin-orbit coupling. However, the Landau damping is not suppressed.
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