
The Requirements and Challenges of Visualizing
Building Data

M. Nurminen*, A. Lindstedt*, M. Saari*, and P. Rantanen*

* Tampere University/Faculty of Information Technology and Communication Sciences, Pori, Finland
mikko.nurminen@tuni.fi

Abstract - Nowadays, energy consumption and especially
energy saving are important issues. The news of global
warming have increased the need to save energy in many
areas of our living community. Visualization is an important
trend in energy consumption research. Typical commercial
buildings include building automation systems with special
user interfaces are for automation professionals. There is a
lack of UIs for information sharing with ordinary users. It
has been proven that increasing consumer awareness can
result in reduced energy consumption. Building automation
systems, as well as other sensors installed in buildings collect
a huge amount and variety of data related to heating,
ventilation, and air conditioning. This paper presents a user
interface for providing relevant data for the users,
managers, and owners of buildings. Furthermore,
requirements for visualizing building data are described.
Finally, challenges faced in developing the visualization
methods are discussed.

Keywords - Visualization, user interface, building data,
IoT

I. INTRODUCTION

Considerable amount of energy is used to maintain
comfortable living conditions in residential and
commercial buildings. The energy is used for example in
heating or cooling, lighting, and air conditioning of these
buildings. In year 2019 in Finland 280.217 terajoules of
energy was spent on the heating of buildings, accounting
for 26% of all energy consumed that year.[1] With
people's increased awareness of the need to lower energy
usage to slow climate change, there rises a question: how
can we aid the users, managers, and owners of buildings
who are seeking to monitor the living conditions and
reduce energy consumption? Earlier study [2] has shown
that giving users real-time information about their energy
usage led to less energy being consumed. We in the
KIEMI research project embarked on a journey to create a
system, DataSites, which would gather data from building
data systems and would be able to visualize the gathered
data to the users in an understandable way.

This paper presents the preliminary results of the
KIEMI (“Vähemmällä Enemmän – Kohti Kiinteistöjen
Energiaminimiä”, or “Less is More: Towards Energy
Minimum of Properties” in English) project, which aims
to develop proof-of-concept demonstrations and prototype
applications that illustrate how cost-effective, open, and
modular solutions could be utilized to improve the energy
efficiency of existing, older buildings.

Usually there are no User Interfaces accessible for
normal users or residents of buildings, where they could
view data from building systems. If building data UIs
exist, they are usually supplier-specific, and only display
data from that supplier's system. Also, they are reserved
for managers of buildings only. To remedy this, DataSites'
end-user client applications can be implemented as a web
or mobile applications. A web browser or a smart phone
are readily available and familiar to most people, and by
using them as a platforms DataSites enables more people
to discover relevant building data, and to make informed
decisions on their own energy usage.

The rest of this paper is structured as follows. In
Section II, the related studies on visualization are
discussed. In Section III, the architecture of DataSites is
examined. Then in Section IV the requirements placed on
visualization of building data are specified. In Section V
the Sites service and its UI are shown. Section VI closes
this article with discussion and conclusions.

II. RELATED RESEARCH

Feedback and visualization related to building data
and energy consumption has attracted worldwide research
interest. One important point of view is the awareness
aspect of energy consumption, where the energy users’
level of awareness and its effects on their energy
consumption is studied. We made a survey of applications
for apartment energy consumption monitoring [3] and one
result was that several studies[4-7] show that knowledge
of energy consumption increases efforts toward energy
saving, leading to both monetary savings for the energy
users, and less emissions from energy production, but this
depends on the method used to produce the energy.

In an article [4] college students who received the real-
time data of their energy consumption were more
motivated and successful in reducing energy consumption
than those students who received data after longer
intervals. It is worth noting that both groups reduced their
electricity usage when their awareness of it was increased.
Another study [5] verified that an increase in received
information about energy-saving, and thus increased
awareness, had a positive lessening effect on the energy
consumption of residents. The study, conducted in South
Korea, found that collective efforts created community
spirit, which can be another motivating factor for residents
to continue these efforts.

Looking at human factors related to energy usage in
residential buildings [6], researchers found that for most

of the people in the studied cohort comfort meant warmth,
but that actions giving most comfort were not energy
intensive. Saving money was found to be the greatest
motivator for changing energy consuming behaviors.

We have focused on IoT data visualization in an
earlier study [8] where we presented methods of utilizing
the free map services available on the Internet for the
visualization of the gathered IoT data. In the system under
study, monitoring of road conditions was crowdsourced.
Conditions were monitored by drivers using an Android
application. This application sends the timestamped data
about acceleration, speed, location, as well as other data
to the server. OpenStreetMap and Google Maps were used
to visualize the routes driven. The condition of the roads
calculated from the data was indicated by the color of the
different sections of the path.

In addition, the appropriate tools for storing,
monitoring, and visualizing the data of living conditions
have been presented [9]. In the context of real world IoT
systems different types of databases were tested for
storing and retrieving data: time series, document, and
relational databases were compared. For visualization of
the IoT data open source Grafana visualization and
analytics web application was used.

III. ARCHITECTURE

The architecture of DataSites system is shown in Fig. 1.

The five architectural components comprising DataSites
system are:

1. Building systems
2. Adapters
3. Data and Sites service components
4. Data and Sites services' APIs and Data Formats
5. Client applications

Building systems are the building automation systems
and sensors from which DataSites can retrieve or receive
data. Communicating with building systems DataSites' is
the responsibility of adapter components. The information
streaming from automation systems and sensors is in
heterogeneous data formats, so DataSites' adapters also
need to convert the data to JSON object arrays, which
include the data most pertinent to users.

Two categories of data are handled by DataSites:

 the physical layouts of buildings, called schemas
in DataSites, and

 the measurements and other data sent by the
building systems.

Both of these data categories require using adapters to
convert them. Sites service and its API are used to manage
the data concerning the physical layouts of the buildings,
and Data API is responsible for managing other data. APIs
are REST (REpresentational State Transfer) APIs
described with OpenAPI specifications. Clients use HTTP
protocol to send requests to API servers to interact with
their resources. An effort was given to keep the APIs
simple to ease client application development.

IV. REQUIREMENTS FOR VISUALIZING COLLECTED

BUILDING SYSTEM DATA

Visualization of data involves the presentation data in
the graphical form, as graphs, charts, histograms, gauges,
geographic maps, etc. To be useful to its users, the
visualizations of building data have to be able to show the
data in understandable form, and in its proper context.
Here the context is a building site, which vary in their
layout complexity. A larger building site can have several
multi-floor buildings on them, with several rooms and
sensors. Using DataSites' data models for sites, layers, and
sensors users can place a sensor in a room on the third
floor of a building. Layers can be used to model the floors
and rooms, as well as other spaces of a building. Used in
this manner, the visualization provides an intuitive way
for the end-users to connect the source of the sensor data
to the real world.

The building systems change during the lifetime of the
building. There will likely be changes to the sensors
attached to the building system. Sensors might need to be
replaced by newer or different models, or be moved if
their initial installation spots were suboptimal. Placing the
sensors in their proper places in layers is made easier by
the fact that DataSites' sensor data model has x, y, and z
attributes for three-dimensional coordinates. This way a
sensor's location in the visualization is accurate.

Building systems, sensors and other related IoT
systems create a voluminous amount of data which places
requirements for the servers, and clients too. As some
sensors broadcast their measurements several times per
minute, or even in intervals of a couple of seconds, these
measurements create a discrete time series of
measurements. Storing this data requires hard disk space,
and processing larger time series data sets demands high
computing power from clients. DataSites uses the
InfluxDB time series database (TSDB) [11] to store data.
Published studies [12-14] have shown that InfluxDB has
advantages over many of the other options in
performance, especially in executing aggregation
functions over data and faster grouping of query results.

Stored time series data is intuitive to visualize and
understand. Graphs can be drawn using time as the x-axis,
with y-axis reflecting the changes in measurement values.
Errors in time series, like erroneous values caused by
sensor malfunction or periods where the sensor didn't send
data, can be easy to spot from a timeline graph. An
example that can be seen from a timeline series, is sensor
drift. In the sensor drift the sensor's ability to send reliable
readings deteriorates over time.

Figure 1: Architecture of DataSites service

One use of building system data is monitoring the
proper functioning of buildings. In case of detected
problems, manifesting as abnormally high or low sensor
measurements, most building systems are configured to
send alerts to the appropriate personnel. These abnormal
readings are usually highlighted graphically in
visualizations, for example using colors, larger text, or
opening a dialog showing a warning. In buildings of
course a wide range of problems can arise: pipes start to
leak, electric fuses operate, or the heating system goes
offline, etc. These problems need to be shown in a clear
way to the users in the visualization too. Serious problems
should be placed at the central place to alert the users. If a
fire alarm or a burglary alarm system is integrated into the
visualizations, showing active alarms from them is more
important than showing other information.

V. SITES SERVICE AND WEBUI

This chapter first discusses the Sites Service and its
API. Then it examines DataSites’ WebUI visualization
tool through an example of creating a visualization of
sensors on a building site to illustrate this process.

Data from both the Sites Service's and Data Service's
OpenAPI REST APIs is utilized by WebUI client in
visualizations. The Sites Service's API provides access to
three types of resources: sites, layers, and sensors. These
all have associated endpoints in the API. The creation, the
modification, and the deletion of resources is enabled
through these endpoints.

In the communication between the clients and the
service API, resources are transmitted as representations
in JSON format. The data models for these representations
are specified with OpenAPI with the endpoints. All data
models have a required ID field. The data model for the
sites also requires a name attribute. For the layer’s data
model, the following attributes are required: index for
ordering the stacked layers, the layer name, and the type
of the layer. Layer can be one of five types: unknown,
outdoor, a building, a floor, or a room. This set of types
were chosen to give enough flexibility in specifying the
layers, while keeping the set down to a manageable size.
Mandatory fields for a sensor data type are an external ID,
and the sensor's service type. External ID is the ID of the
sensor in the building system the sensor is sending its data
to. Service type is the name of a specific building system.
DataSites needs to be configured to what type of data is
available from a building system. After that DataSites can
use the external ID and service type to fetch a sensor's
data.

Before creation of any visualization for a new site,
certain resources and information are required. End-users'

requirements for the visualization drive the process, so
gathering them is the first step. To meet the requirements,
developers need to have adequate information about the
site and all the building systems to be visualized. Access
rights to the data from building systems and sensors on the
site have to be obtained from the site's owner or manager.
Communication involved in this can take time, as often it
is the vendor of the building system, not the site manager
or owner, who actually can enable access to the data.
Images indicating the physical layout of the building
(floor plans, blueprints, etc.) can be added to layers like
floors of the building, or rooms, and need to be at hand,
too.

The creation of the site visualization starts with
creating a new site in WebUI, as shown in Fig. 2. In the
dialog named "Add a site", only the name of the site needs
to be given, but it is good practice to also include a
description for the building, and as well as its managing
organization. A web URL for the site can be given if one
exists. Here we create a site named "Amazing building".
Once created the site will be available from the dropdown
menu on the uppermost-left corner.

We can now add a layer to the new site, in this case
the first floor of the building. In "Add a layer" dialog (see
Fig. 3) we can enter information for the layer. Here again
we have the option of providing not only the mandatory
name attribute, but other available information like the
postal address connected with the layer. One attribute of
note is the "Image url", which is used to link to an image
file picturing the floor plan or similar. This image is

Figure 2: Creating a building site

Figure 3: Creating a new site in WebUI

Figure 3: Adding a layer to a site

Figure 4: Hierarchy of layers in a site

always shown when the layer is selected from the side
panel. The link can be to any image file hosted on a web
server DataSites can access.

The created layer is viewable on the left side panel of
WebUI. When we choose the layer from that panel, we
can create other layers as its children. All layers can have
children. Hierarchies can be used to model complex
buildings, like one in Fig. 4.

Adding sensors starts with selecting the layer for
which the sensor will be bound. A layer’s visibility
dictates if the sensor is shown in the UI, a sensor will only
be visible if the layer it is on has been selected from the
hierarchy on the left side panel. Dialog "Add sensor", like
in Fig. 5, requires the name, external ID, and service type.
As was stated earlier, external ID enables accessing the
sensor's data in the remote building system, and the
service type is used to deduce what information is
available from this building system.

A turquoise square is created as the sensor icon. This
icon can be moved on the layer to place it on the exact
location of the sensor. Clicking or hovering over the icon
opens a window showing the latest measurements
received from the sensor. Fig. 6 shows an example of a
sensor whose service type is setup to provide readings for
temperature and target temperature, as well as values for
valve, signal, and charge level.

By default, only the icon for the sensor is shown in its
location. However, this can be changed from the top bar
selection “Show”. In the menu that opens, all the
measurements available from the sensor in DataSites are
visible. If we chose for example “Temperature”, in the
same location we would see the real-time temperature
readings from the sensors that send that data.

WebUI enables users to set any number of alert states
for each measurement. By setting the minimum and
maximum values for each alert state of the measurement,
the sensor sending that abnormal value causing the alert is
highlighted with the background color the user chooses.

The process of adding layers to the site, and sensor to
those layers is repeated until the desired parts of the site
have been modeled.

DataSites can also visualize history data of a quality
measured by a sensor. Fig. 7 shows a graph visualization
of temperature time series data as measured by a sensor.
Time period visualized has been chosen to be 14 days,
other options are 1, 5, or 30 days. Chart.js [14] JavaScript
library is used for this visualization.

WebUI client application was developed using
JavaScript, HTML5, and CSS3. jQuery and Underscore
JavaScript libraries were used. The application was served
from the same Java Spring Boot as the Site Service itself.

VI. DISCUSSION AND CONCLUSION

The study is part of our ongoing project, the purpose
of which is to develop a means of reducing energy
consumption in houses and apartments.

The presented DataSites service and its WebUI enable
users of buildings to get real-time data of living
conditions. WebUI, and tools like it, that have been
designed to increase a building’s users’ awareness of the
living conditions. Maintaining comfortable living
conditions has direct links to energy consumption, for
example the temperature difference between indoors and
outdoors implies that energy has been used for cooling or
heating.

As the goal of the KIEMI project is to reach the
minimal energy consumption while maintaining

Figure 5: Adding a sensor to a layer

Figure 6: Window showing the latest readings from a sensor

Figure 7: Graph visualizing the history data of room temperature
measurement

comfortable living conditions, it would be useful to
integrate direct energy consumption readings into the
visualizations. Also, the correlation of changes in the
living conditions and in energy consumption could then be
visualized. When users are able to discover these
correlations, and what behaviors affect energy usage most,
could give them incentive to change these behaviors.

The cost of the energy should be made clear in the
visualizations, too. This is supported by one of the key
findings from a study [6]: saving money was the most
important motivating driver in energy-saving behavior.
This would expand the systems DataSites needs to
communicate with to include energy systems and smart
meters, and systems from which real-time electricity
prices can be fetched.

One important aspect of DataSites is implementing
adapters that ensure that the data visualization components
receive are in unified format. This has proven to be a
time-consuming part of the process, as the adapters have
had to be created for each building system. Now the
vendors of building systems are hesitant to open and
document their interfaces.

For residential buildings, DataSites could be
developed to act as a Home Energy Management System
(HEMS), which could include dedicated In-Home
Displays (IHDs). Smart meters, capable of capturing the
electricity consumption of the devices at home can give
high definition data which can be stored and visualized.
However, a study looking at HEMS [14] use found that
their effect on energy usage was highly dependent on the
household they were installed in, some reducing energy
usage, but others actually increasing it. Also, a study [16]
found that the aesthetics of IHDs affected the frequency
users used it. This has implications to UI design too.
Graph.js and other visualization libraries could be used to
create visually more interesting graphical representations
of the building system data.

It would be interesting to create energy saving
feedback systems, maybe with DataSites, that would be
able to create community spirit around this matter, like in
previous research [5]. This will require future work on
how the social dynamics can be affected with these
systems. Crowdsourcing energy-saving measures could
be one direction worth exploring, similarly to what was
done with a road maintenance system we studied before
[8].

VII. SUMMARY

This paper presented a user interface for providing
relevant data for the users, managers, and owners of
buildings. Furthermore, requirements for visualizing
building data were described. It was discovered that to be
useful to its users, the visualizations of building data have
to be able to show the data in understandable form, and in
its proper context. To achieve this goal, this paper also
introduced asimple layer-based data model for describing
building features, such as floors, rooms and sensor
locations. The developed WebUI showed promise, and we
will continue the development of the service in our
ongoing project.

ACKNOWLEDGMENT

This work is part of the KIEMI project and has been
funded by the European Regional Development Fund and
the Regional Council of Satakunta.

REFERENCES

[1] Official Statistics of Finland (OSF): Energy supply and
consumption [e-publication].

[2] L. Bartram, J. Rodgers and K. Muise, “Chasing the Negawatt:
Visualization for Sustainable Living,” in IEEE Computer Graphics
and Applications, vol. 30, no. 3, pp. 8-14, 2010.

[3] M. Saari, P. Sillberg, J. Grönman, P. Rantanen, H. Jaakkola, and J.
Henno, “Survey of Applications for Apartment Energy
Consumption Monitoring,” in 23rd IEEE International Conference
on Intelligent Engineering Systems 2019, IEEE, 2019.

[4] J. E. Petersen, V. Shunturov, K. Janda, G. Platt, and K.
Weinberger, “Dormitory residents reduce electricity consumption
when exposed to real-time visual feedback and incentives,”
International Journal of Sustainability in Higher Education, Vol. 8,
No. 1, pp. 16-33, 2007.

[5] N. N. Kang, S. H. Cho, and J. T. Kim, “The energy-saving effects
of apartment residents’ awareness and behavior,” Energy and
Buildings, Vol. 46, pp. 112-122, 2012.

[6] G. M. Huebner, J. Cooper, and K. Jones, “Domestic energy
consumption - What role do comfort, habit, and knowledge about
the heating system play?” Energy and Buildings, Vol. 66, pp. 626-
636, 2013.

[7] A. Faruqui, S. Sergici, and A. Sharif, “The impact of
informational feedback on energy consumption - A survey of the
experimental evidence,” Energy, Vol. 35, No. 4, pp. 1598-1608,
2010.

[8] P. Sillberg, M. Saari, J. Grönman, P. Rantanen, and M. Kuusisto,
“Interpretation, Modeling, and Visualization of Crowdsourced
Road Condition Data,” in Intelligent Systems: Theory, Research
and Innovation in Applications, R. Goncalves, V. Sgurev, V.
Jotsov, and J. Kacpzyk, Eds. Springer, pp. 99–119, 2020.

[9] M. Saari, J. Grönman, J. Soini, P. Rantanen, and T. Mäkinen,
“Experimenting with Means to Store and Monitor IoT based
Measurement Results for Energy Saving,” in 2020 43th
International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), 2020.

[10] M. Nurminen, P. Rantanen, M. Saari “DataSites: a Simple
Solution for Providing Building Data to Client Devices”, in 2021
44th International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), 2021.
Submitted.

[11] InfluxDB 2.0 documentation, https://docs.influxdata.com/
influxdb/v2.0/, Retrieved: January 29, 2021.

[12] S. Di Martino, L. Fiadone, A. Peron, V. N. Vitale, and A.
Riccabone, “Industrial Internet of Things: Persistence for Time
Series with NoSQL Databases,” Proceedings -2019 IEEE 28th
International Conference on Enabling Technologies: Infrastructure
for Collaborative Enterprises, WETICE 2019, pp. 340–345, 2019.

[13] E. Musa, G. Delač, M. Šilić and K. Vladimir, “Comparison of
Relational and Time-Series Databases for Real-Time Massive
datasets,” in 2019 42nd International Convention on Information
and Communication Technology, Electronics and
Microelectronics (MIPRO), 2019, pp. 1065–1070.

[14] Chart.js 2.9.4 documentation, https://www.chartjs.org/docs/2.9.4/,
Retrieved: February 4, 2021.

[15] A. Nilsson, M. Wester, D. Lazarevic, and N. Brandt, “Smart
homes, home energy management systems and real-time feedback:
Lessons for influencing household energy consumption from a
Swedish field study,” Energy and Buildings, Volume 179, 2018,

[16] T. Hargreaves, M. Nye, J. Burgess, “Making energy visible: A
qualitative field study of how householders interact with feedback
from smart energy monitors”, Energy Policy, Volume 38, Issue
10, 2010.

	I. Introduction
	II. Related research
	III. Architecture
	IV. Requirements for visualizing collected building system data
	V. Sites Service and WebUI
	VI. discussion and conclusion
	VII. Summary
	Acknowledgment
	References

