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Abstract
Due to population aging, society is struggling with an increasing number of patients with
neurodegenerative diseases. One of them is Parkinson’s disease. Early detection of Parkinson’s
disease is very important since there is no cure and the treatment is more effective when
administered early. Wearable devices can be of great help - they are cheap and reachable,
they can last for many days without charging, can provide long time monitoring, and are
minimally invasive to human life. In the paper, we briefly describe the sensors and actigraphs
suitable for the analysis of sleep disturbance in Parkinson’s patients and nocturnal symptoms
of Parkinson’s disease. Moreover, we pointed out how to collect the data and what could
have an influence on the final performance of the automatic models. Additionally, as the
main aim of this paper, we have analyzed and described the machine learning algorithms used
in the area of analysis accelerometer signal for sleep / awake stages recognition or diseases
which manifested in changes in sleep patterns. We thought that these algorithms, because of
the nature of Parkinson’s patients’ sleep patterns, will be simultaneously appropriate for the
detection of Parkinson’s disease.
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1. Introduction

Sleep plays a very important role in the health of people. If we could objectively measure
its quality and quantity, it would be very beneficial for prevention and also early disease
markers detection of future possible risks on the health. One of the diseases, which is
connected with sleeping problems, is also Parkinson’s disease. What is characteristic of
persons suffering from Parkinson’s disease are changes in their sleep stages. The typically
visible markers with the sleeping problems are Rapid Eye Movement Behavioral Disorder
(RBD), insomnia, Restless Leg Syndrome (RLS), Excessive Daytime Sleepiness (EDS),
and breathing difficulties and are observable in the early stage of the disease [1, 2, 3, 4].
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To clarify, early detection is regarded as an approach to recognise the disease in the early
stage of progression [5].

For the detection of sleep disorders, many approaches have been used so far: for exam-
ple, bed sensors, wearable devices (including smartwatches), ultrasound, radiofrequency
(RF), WiFi sensors, videosomnography, sleep diaries, electroencephalography (EEG)
[6]. However, the gold standard in medical practice is still considered polysomnography
(PSG), and it is considered the most robust medical examination nowadays [6].

PSG can evaluate sleep disorders using various modalities. It includes registration
of oximetry records, respiration, electromyography (EMG), EEG, electrocardiography
(ECG) and electrooculography (EOG) [7]. There exist also other tests like Continuous
Positive Air Pressure, Videosomnography (VSG), and accelerometry. Unfortunately,
they are also tedious, more expensive, and uncomfortable for the patients since often
require hospital conditions to perform them [6]. This is the reason, why this approach
struggles to detect possible issues in their early stages.

The main contribution of this paper is an overview of emerging methodologies re-
garding the detection of sleep disorders likewise the identification and comparison of the
recent work. It was additionally presented the summary of differences of Parkinson’s
disease patients to healthy controls from the point of view of wearable sensors. The
paper focuses on the application of convincing approaches, which are more suitable for
home usage, like smart wearable electronics (e.g. actigraphy device) for recognition of
sleep disorders of Parkinson’s patients. The devices are more comfortable to patients
and can be used for early markers disease detection.

2. Sensors and actigraph devices for registering movement

Actigraphy is a term for a non-invasive method for monitoring human rest/activity cy-
cles and movements. It is being used for monitoring resting time, sleeping time, activity
time (e.g. for fitness evaluation), or progression of diseases. The wearable actigraph
devices are commonly equipped with sensors like accelerometers, gyroscopes, and mag-
netometers for the registration of movement, rotation, and body position. Additional
functionality could be provided by surplus measurements such as heart rate, ambient
light, skin temperature, skin conductance, and sound [8], [9].

Several types of actigraphs are available on the market. The most commonly chosen
are 9-axis IMU (made by mbientlab), wGT3X-BT, ActiGraph GT9X Link (ActiGraph),
GENEActiv (Activinsights), Actiwatch Spectrum Pro (Philips Respironics), Charge 3,
Versa (Fitbit), Ticwatch E (Mobvoi), Vapor (Misfit), Vivoactive3 (Garmin), and Fit2
Pro (Samsung) [10]. The placement of an actigraph device is important for the analysis
outcome. It could be situated on wrists, ankles, thighs, or hips. The most information-
rich placement of the wearable device seems to be the wrist, especially this is true in the
case of Parkinson’s patients [11].



2.1. Sleep disorders detection in Parkinson’s Disease (PD)

Depending on the disease, various correlations of results obtained by actigraphy versus
PSG would be observed. Very promising results could be achieved for sleeping apnea
or brain injury. However, specificity may differ significantly from sensitivity in the
case of insomnia [8], [12]. For this reason, analyzing and deep understanding of the
signal character of Parkinson’s patients likewise consequently choosing an appropriate
methodology for this problem will be crucial. One of the most important differences in
the sleep pattern between PD patients and healthy control are: lower sleep efficiency
(SE), longer wake after sleep onset (WASO), higher fragmentation index (FI), shorter
total sleep time, and sleep onset latency (SOL) [13]. Furthermore, the patients with
Parkinson’s express nocturnal hypokinesia [14]. The symptom shows significantly fewer
episodes of turns in bed than their spouses. The acceleration and velocity of the body are
registered as slower likewise fewer degrees. Additionally, they are spending more time in
the so-called supine position and they exhibit akinesia, which is especially visible in the
second part of the night. The reason is the decreased level of dopamine secretion. The
other symptoms that can be recognized in PD are restless leg syndrome, periodic limb
movement, and chronic insomnia [15]. Taking into consideration the aforementioned
symptoms, we are going to briefly present and compare the possible algorithms and
methodology suitable for this problem.

3. Data processing, storage, algorithms and methodology

3.1. Data processing and data storage

The concept of how the data are being transferred from the actigraph devices is similar
to all the devices and uses the approach of the Internet of Medical Things (IoMT)
[16]. IoMT consists of data acquisitions, communication gateway, and server/cloud
steps. The gateway is a transfer point between the device and cloud/server with the
field connectors. It could be a physical device (for instance a smartphone [17] or some
software). The most common communication protocol for connecting smartwatches with
the gateway is Bluetooth, however, it is not limited to only this solution. The Wi-Fi and
ZigBee communications are also using for data transferring [18], [19], [20], [21]. Cloud
computing is dedicated to data storage, complex computations, limiting the usage of the
wearable device, and automatic support system for decision making. The development
in the quality of sensors, IoT devices, and cloud services allowed the development of
telemedicine, which is desirable especially for monitoring elder people [18].

Several symptoms of Parkinson’s patients could be monitored remotely with the usage
of telemedicine by physicians and measured by sensors such as bradykinesia, tremor,
sleep, freezing of gait, and also some other disease indicators [22]. One of the instances
of the application dedicated to PD is the mHealth framework which is recognizing this
disease based on gait analysis [23]. The data are acquired from the accelerometer, which
is included in most of today’s smartphones, and are sent to the cloud. The authors claim
the system achieved 81 % accuracy.



The data could be sent in two forms as the raw signal or the so-called recording modes.
There are three types of recording modes as the pre-processing step, i. e.: zero-crossing
mode (ZCM), the time above threshold (TAT), or the proportional-integral mode (PIM).
By using a mode, it is possible to limit the size of the data transmitted, however, it can
also reduce the final accuracy of the support decision system [8]. Other factors like
sampling frequency, time window (so-called epoch), or placing the actigraph will also
influence the final model. 20-25 Hz is regarded as a sufficient sampling frequency, and
going beyond 25 Hz, the data will commonly bring not more information [24].

It is crucial to know that the manufacturer sets the length of the epoch by default.
The most common chosen length is 30 s or 1 min, a reduction in the length of the time
window will result in a decrease of the prediction [25], [24].

3.2. Algorithms and methodology

This subsection describes the methodologies and algorithms that have found application
in the detection of other diseases and cases based on wearables sleep disturbance records.
Additionally, it contains examples of solutions for the identification of Parkinson’s disease
based on different modalities. To compare those existing approaches, the summary
of potential methodologies for detection Parkinson’s disease detection based on sleep
disorders are presented in Tab 1. The overview and comparison of used approaches,
features extractions, architectures were provided. Moreover, the obtained results of
methodologies with comments to the carried-out experiments are added. The events
counting analysis (or so-called activity counting) is one of the most frequently used
approaches for detecting awake/sleep stages. Unfortunately, in the case of Parkinson’s
disease, the analysis cannot depend only on relatively simple sleep statistics or sleep
behaviour analysis. Activity counting cannot give enough information about the disease
progress or presence [26].

Depending on the manual or automatic feature extraction we distinguish between
two categories of machine learning algorithms used for the analysis: so-called Shallow
Learning or so-called Deep Learning. The algorithms used in the first class are usually the
k-nearest neighbor (k-NN), Support Vector Machine (SVM), XGBoost, Naive Bayesian
classifier, or Random Forest (RF) [24]. End-to-end learning is typically some kind of
deep convolutional neural network. Since in this field there is a typical lack of data, the
shallow methods have still relatively competitive results.

Various features can be extracted, which are typically related to the time domain,
statistics, or also morphology-based. Also, the Fourier Transform or Wavelet Transform
[27], which analyses frequency characteristics of the signal, is being used. There are many
feature extraction methods from raw signal or activity counts for sleep analysis. They
often include the energy of the signal, maximum, minimum, variance, skewness, kurtosis,
entropy[28], basic spectrum component, maximum frequencies, root mean square (RMS)
value of signal components, the difference between maximum and minimum signal peak
values, the median normalized frequency of the signal’s spectrum, the mean normalized
frequency of the signal’s spectrum [29], 10th, 20th, 50th, 75th and 90th percentiles, mean,
the sum of values, standard deviation, coefficient of variation, peak-to-peak amplitude,



interquartile range, signal power, peak intensity, zero crossings, time above threshold
[30], crest factor, band energy, and spectral flux [31].

We have analyzed the potential application of deep learning architectures for Parkin-
son’s’ sleep disorders. They have been applied so far for the detection of sleep-related
diseases, sleep/awake status, or also daily activities. In most cases, the convolution neu-
ral network (CNN) or time-aware architectures like long-short term memory (LSTM),
Gated Recurrent Units (GRU), or their combinations were applied for this aim [32], [33],
[28]. Modern possible approaches for time-series analysis include also temporal CNN’s
[34] or ODEs [35]. Because of the similarity of the accelerometry signal to the fluctuated
speech signal, the promising and interesting solution for this purpose is the usage of
spectrogram and subsequently, CNN [28].

One medical dataset problem could often be their small amount of data, which could
significantly influence the resulting accuracy. This is often a reason for not sufficient
accuracies. One possible solution for this issue is the usage of any of the data aug-
mentation methods. In [27], it was introduced 3D augmentation, i.e. timewise scaling,
magnitude scaling, and random rotation. Also, the normalization of the data and dealing
with an imbalanced dataset are regarded as essential steps in creating robust models.
The authors used smartphone-collected data that came from DREAM Parkinson’s Dis-
ease Digital Biomarker Challange [36]. The gait of patients was recorded, which will
be characterized by changes in walking pace, irregular cyclic pattern, or tremor during
the quiet standing period. They have outperformed the state-of-the-art results thanks
to normalization, augmentation, and CNNs. They achieved a 0.87 area under the curve
(AUC).

Another work [10] compared the data from high-end sleep laboratory device (New-
castle polysomnography) and data measured by a wearable device on the wrist. In
particular, the accelerometer sensor was used for the experiment. The author consid-
ered the sleep/awake stages and succeeded in 80 % accuracy for original data and 84 %
accuracy after using the Synthetic Minority Over-sampling Technique (SMOTE) method
dedicated for imbalanced data. The XGBoost was used as a classifier in combination
with cross-validation for statistical evaluation of the data.

In [30], the authors evaluated person-related factors such as age, biological factors, or
lifestyle-related variations for creating the algorithm for detecting sleep/wake periods.
The data were first normalised in the pre-processing step, and 18 statistical features were
extracted. In total, 21 actigraphy measurements were used. As the classifier, plenty of
classifiers have been evaluated, including XGBoost, Naive Bayes, Regularized logistic
regression (RLR) with an L2 regulariser and Stochastic gradient descent (SGD), Random
forests (RF), AdaBoost (AB). The best performance was achieved using XGBoost, which
reached 86 % accuracy, 95 % specificity, and 45 % sensitivity.

Other researchers have been recognizing Attention-Deficit/ Hyperactivity (ADHD)
thanks to the analysis of the subjects’ motion with the usage of accelerometers and
gyroscopes. The model was trained using SVM using earlier mentioned features where
feature selection optimization was used (they selected 15). Half of the features belong
to ”high-resolution histograms”, and it is considered a good early marker of the ADHD
disease by some scientific works. They have obtained 95 % accuracy [37].



In another work, the researchers converted the triaxial accelerometer signals into spec-
trograms. They have tested their architecture on three datasets, including the Daphnet
freezing of gait dataset of PD patients. The methodology is composed of two steps: the
unsupervised pre-training step and the supervised discriminative step. With the usage
of Deep Belief Networks, they succeeded in freezing gait recognition in 91.5 % accuracy
[28]. This pre-training (i.e. with features extraction) allowed achieving a better quality
of predictions.

Other scientists also used CNNs with spectrograms, but for ADHD recognition, and
obtained 98.6 % accuracy for 300 seconds window length. Furthermore, they have used
the aggregate signal as the magnitude of the three-axis and normalization of the data.
They have also prefiltered the signals with lower activity not to interfere with them
with the valuable signal for detecting ADHD. They found that the choice of the window
length influences the obtained accuracy. The best results were achieved using medium
size window length [38], however, for Parkinson’s disease, it could differ.

The next application of neural networks for analyzing sleep was mentioned in [31]. The
authors have used Deep-ACTINet, which contains 1-D CNN and LSTM for sleep/awake
status detection. They compared this method with another machine learning algorithm
such as RF, Naive Bayes, Linear Discriminant Analysis (LDA), feature-based CNN, and
two older, relatively frequently used algorithms: Sadeh and Cole-Kripke. The proposed
model has outperformed the rest of the algorithms and has achieved 89.65 % accuracy.

Very interesting time-aware and low-cost architecture were presented in [33] for pre-
dicting Alzheimer’s disease with actigraphy data: Time-aware Toeplitz Inverse Covariance-
based Clustering (TICC) and CNN (TATC). TICC is an unsupervised method dedicated
to recognizing states such as sleeping or exercising, and CNN can learn temporal features
from time series. Subsequently, it is using a time-aware solution to capture circadian
rhythm. The novelty lies in time series classification methods since the previous methods
were not able to distinguish between those signals which were recorded at a different time
of the day. For example, at night and during the day. This time-aware mechanism can
consider the crucial part of the day as much more meaningful than data taken at another
time. Whereas architectures like LSTM or GMU could analyze the long-term temporal
dependencies. The authors used a combination of these approaches have achieved 86.2
% AUC and, on the comparable level the sensitivity and specificity.

Other researchers used the bidirectional version of LSTM for sleep / awake recognition,
where they achieved 96.5 % accuracy[9]. They used the signals of 3-axis acceleration and
skin temperature and tested various signals, but those mentioned above were reported
to be the best. They have highlighted that real-time LSTM gave results smaller by 0.2-1
%, so this solution will be adequate for real-time application.

The bradykinesia symptom was analyzed for the detection of Parkinson’s disease with
the usage of deep learning in [32]. The authors outperformed state-of-the-art methods
by at least a higher 4.6 % accuracy. The results were also compared with algorithms like
AdaBoost, k-NN, SVM, but they achieved worse accuracies than the previous works. The
patients had to execute specific motor exercises and thanks to the 3-axial accelerometer,
it was possible to detect the bradykinesia. They used CNN and reached 90.9 % accuracy.
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4. Conclusion

The emerging wearable devices seem to be promising tools for early symptoms detec-
tion of (not only) Parkinson’s disease and a new trend for modern medicine. Its early
detection is essential since no cure exists, and early treatment administration leads to
significantly more effective treatment. Sleep analysis of PD patients seems to be a key
for early marker detection.

In the scope of this paper, we have covered the recent works in this area, have made a
comparison of accuracies, approaches, and applications, and identified the most promis-
ing methods for the future.

Thanks to wearable technology and its development in recent years, the sleep mon-
itoring of patients based on actigraphy devices could be easily deployed as a common
practice of eHealth solutions. Based on the literature review, it was confirmed that sleep
metrics are statistically different for PD patients versus healthy control. The changes
in the sleep stages are much more visible during the second part of the night because
of the decrease in dopamine level. Based on this assumption, we have analysed various
approaches and architectures of deep learning, which could be successful with sensor-
based asymmetry in automatic analysis of Parkinson’s disease. There are a couple of
factors that could significantly impact the final accuracy of the detection. For exam-
ple, the choice of modalities for transferring the data, selecting the length of the time
window, data normalisation, the size of the dataset and its quality, data augmentation,
feature selection, or dealing with the imbalanced dataset. XGB seems to be the most
successful among other classical machine learning algorithms, together with feature ex-
traction and selection. The usage of spectrogram and CNN, likewise time-aware neural
networks such as LSTM, GRU, 1-D CNN, or their combination will be a promising ap-
proach for detecting sleep disorders in Parkinson’s disease. The TICC architecture is
especially noteworthy because of the possibility of considering the time of acquisition
of the signals and recognising the long-term dependencies in the signal. Additionally,
also considering the versatility of signals from sensors could bring more information and
better performance of the final model.
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[2] A. Iranzo, J. L. Molinuevo, J. Santamaŕıa, M. Serradell, M. J. Mart́ı, F. Valldeoriola,
E. Tolosa, Rapid-eye-movement sleep behaviour disorder as an early marker for a
neurodegenerative disorder: a descriptive study, The Lancet Neurology 5 (2006)
572–577.

[3] S. Sveinbjornsdottir, The clinical symptoms of parkinson’s disease, Journal of
neurochemistry 139 (2016) 318–324.

[4] K. R. Chaudhuri, Y. Naidu, Early parkinson’s disease and non-motor issues, Journal
of neurology 255 (2008) 33–38.

[5] The early stage detection - definition, https://www.online-medical-dictionary.org/
definitions-e/early-diagnosis.html, 2021.

[6] I. Perez-Pozuelo, B. Zhai, J. Palotti, R. Mall, M. Aupetit, J. M. Garcia-Gomez,
S. Taheri, Y. Guan, L. Fernandez-Luque, The future of sleep health: a data-driven
revolution in sleep science and medicine, NPJ digital medicine 3 (2020) 1–15.

[7] M. A. Grandner, M. E. Rosenberger, Actigraphic sleep tracking and wearables:
Historical context, scientific applications and guidelines, limitations, and consid-
erations for commercial sleep devices, in: Sleep and health, Elsevier, 2019, pp.
147–157.

[8] K. L. Stone, S. Ancoli-Israel, Actigraphy, in: Principles and practice of sleep
medicine, Elsevier, 2017, pp. 1671–1678.

[9] A. Sano, W. Chen, D. Lopez-Martinez, S. Taylor, R. W. Picard, Multimodal am-
bulatory sleep detection using lstm recurrent neural networks, IEEE journal of
biomedical and health informatics 23 (2018) 1607–1617.
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