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Abstract
We study a temperature and velocity output tracking problem for a two-dimensional
room model with the fluid dynamics governed by the linearized translated Boussi-
nesq equations. Additionally, the room model includes finite-dimensional models for
actuation and sensing dynamics; thus, the complete model dynamics are governed by
an ODE–PDE–ODE cascade. As the main contribution, we design a low-dimensional
internal model-based controller for robust output tracking of the room model. The
controller’s performance is demonstrated through a numerical example.

Keywords Partial differential equations · Output regulation · Linear systems · Fluid
flows · Coupled systems

1 Introduction

We consider fluid temperature and velocity control for a two-dimensional roommodel.
In the model, behavior of the fluid within the room is described by the linearized
Boussinesq equations. The Boussinesq equations are a system of partial differential
equations coupling the fluid flowdynamics given by the incompressibleNavier–Stokes
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Fig. 1 A room with the boundary regions of interest highlighted

equations with the fluid temperature dynamics governed by the advection–diffusion
equation, and they are commonly used for modeling non-isothermal flows, see, e.g.,
[1,10,12]. In this paper, we consider the linearized Boussinesq equations. As the main
control problem, we study output tracking for the room model, where a mix of obser-
vations on the fluid temperature and velocity must converge to a desired reference
trajectory over time, i.e.,

‖y(t) − yref(t)‖ → 0 as t → ∞, (1)

where y(t) ∈ R
pY is the observation and yref(t) ∈ R

pY is the reference output. The
considered reference outputs are of the form

yref(t) = a0(t) +
qs∑

i=1

ai (t) cos(ωi t) + bi (t) sin(ωi t), (2)

where 0 = ω0 < ω1 < · · · < ωqs are known frequencies and ai (t), bi (t) ∈ R
pY are

polynomial vectors with possibly unknown coefficients but known maximal degrees.
As the main contribution of this paper, we design a finite-dimensional controller for
output tracking of the room model with the room geometry depicted in Fig. 1.

Fluid dynamics within the room are governed by the linearized translated Boussi-
nesq equations. We focus on a control setup typical for rooms, where the physical
control inputs act on the fluid near some parts of the boundary of the room, i.e., the
walls, the floor or the roof, cf. [10,12]. In the model, the fluid flows into and out of
the room through the boundary regions ΓI and ΓO , which represent an inlet and an
outlet, respectively. Both the fluid velocity and the fluid temperature are controlled
within ΓI , cf. [12]. Additionally, the fluid temperature is controlled within ΓH by a
radiating heater, but no velocity control is applied within ΓH and there is no fluid flow
through this boundary section. Observations on the fluid are performed both within
the boundary regions and inside the spatial domain. In addition to the fluid dynamics,
the room model includes finite-dimensional dynamical models for the actuators and
the sensors related to the fluid control and observation, respectively. Dynamic actuator
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modeling has been reported to increase model accuracy for an acoustic model in [46],
and has been argued to be a more realistic approach to system modeling in general
[13]. The complete roommodel is thus a coupled ODE–PDE–ODEmodel. Compared
to a model with PDE dynamics only, the room model is more complex in the sense of
having extended dynamics, but the control and observation operations are bounded.
From now on, we will refer to the full ODE–PDE–ODE room model as the cascade
system.

We achieve the output convergence (1) for the roommodel by implementing a con-
troller introduced in [34]. The controller is based on the internal model principle, see
[17,19,35], and has several desirable properties. It can be used in control of unstable
systems, which is essential for this paper due to the fact that the linearized Boussi-
nesq equations may be unstable [12] (depending on the room geometry and physical
parameters). The controller does not require complete state information of the system
but rather only uses the observation y(t), and since the controller is based on a finite-
dimensional approximation of the room model combined with model reduction, it is
of low-order for fast computations. Finally, the controller is robust in that it tolerates
small system uncertainties and rejects disturbance signals of the form

ud(t) = c0(t) +
qs∑

i=1

ci (t) cos(ωi t) + di (t) sin(ωi t), (3)

which can be applied either within the boundary or inside the spatial domain of the
room. Here, ωi are the same frequencies as in (2) and ci (t), di (t) ∈ R

d are poly-
nomial vectors with possibly unknown coefficients but known maximal degrees. For
linear systems, also several alternative output tracking controllers have been designed.
However, these control solutions typically lack the robustness property of fault toler-
ance and disturbance rejection, cf. [14,18,45], are designed for stable systems only,
cf. [22,38], or are infinite-dimensional, cf. [23,33].

Most of the previous work regarding control of the Boussinesq equations focuses
on stabilization [12,26,37,42]. Examples of output tracking for both nonlinear and
linear thermal fluid flows based on state feedback have been considered in [1] and
references therein, and solution methods for the related regulator equations have been
further developed in [2,3]. Additionally, robust output tracking for a simplified room
model with only temperature dynamics and in-domain control and observation has
been studied in [27]. Finally, addition of the actuator dynamics for classes of linear
systems has previously been considered in [11,13,31].

In this work, we utilize the concept of abstract boundary control systems, see [16,
Ch. 3.3], [15], [40, Ch. 10], to formulate the abstract system presentation for the cas-
cade system with temperature, velocity and ODE dynamics. The boundary control
system framework appears to not have been used in the analysis of incompressible
Navier–Stokes-type fluid flows previously, yet it is a natural presentation choice for
systems with boundary inputs and can be translated to the more familiar abstract state
space formulation, see [40, Ch. 10]. We also use the boundary control system frame-
work to study effects of the additional ODE dynamics on exponential stabilizability
and exponential detectability of the room model. Furthermore, the boundary control
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system formulation could be used to justify alternative controller designs, namely
those introduced in [28].

The paper is organized as follows. In Sect. 2, we first present the complete room
model. We formulate the cascade system as an abstract linear control system in
Sect. 2.2. Section 2.3 is devoted for stabilizability and detectability analysis of the
cascade system in terms of us presenting sufficient conditions for these properties.
In Sect. 3, we couple the room model with an error feedback controller to guaran-
tee the output convergence (1). The controller is based on [34] and we present the
design process for the cascade system. In Sect. 4, we present a numerical example of
robust output tracking for the boundary controlled linearized Boussinesq equations
with a mix of boundary and in-domain observations and including actuator and sensor
dynamics. Finally, the paper is concluded in Sect. 5.

We use the following notation. For a linear operator A, D(A), R(A) and N (A)

denote its domain, range and kernel, respectively. The spectrum of A is denoted by
σ(A) and the resolvent set by ρ(A). The set of bounded linear operators from X to
Y is denoted by L(X , Y ). Finally, 〈·, ·〉Ω and 〈·, ·〉Γ denote the L2-inner product or
duality pairing on the two-dimensional domainΩ and on the one-dimensional domain
Γ , respectively.

2 The roommodel

We consider a two-dimensional model of a room depicted in Fig. 1 with the interiorΩ
and the boundaryΓ . The room has two disjoint vents; an inletΓI and an outletΓO . We
denote the walls of the room by ΓW = Γ \(ΓI ∪ ΓO) and assume “no-slip” velocity
condition at the walls. Regarding temperature, we assume that there is a radiative
heater located within ΓH ⊂ ΓW and on ΓW \ΓH the temperature is fixed. In addition
to the radiator, the fluid flow and the fluid temperature within the room are affected by
Robin boundary control within the inlet. Finally, the fluid is assumed to be stress-free
with unforced heat flux within the outlet.

We next formulate the linearized Boussinesq equations around a steady-state solu-
tion of the Boussinesq equations. The linearized Boussinesq equations are used to
describe the flow and temperature evolution of the fluid within the room. The system
of PDEs is coupled with abstract ODE systems governing the actuation and sensing
dynamics, and we present the cascade system in an abstract form. Finally, we consider
stabilizability and detectability properties of the cascade system

2.1 The linearized translated Boussinesq equations with actuation and sensing

The Boussinesq equations for ξ ∈ Ω and t ≥ 0 are given by

ẇ(ξ, t) = 1

Re
Δw(ξ, t) − (w(ξ, t) · ∇)w(ξ, t) − ∇q(ξ, t)

+ ê2
Gr

Re2
T (ξ, t) + fw(ξ), (4a)
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Ṫ (ξ, t) = 1

RePr
ΔT (ξ, t) − w(ξ, t) · ∇T (ξ, t) + fT (ξ), (4b)

0 = ∇ · w(ξ, t), w(ξ, 0) = w0(ξ), T (ξ, 0) = T0(ξ), (4c)

where T is the temperature, q is the pressure, andw = [w1, w2]T is the velocity of the
fluid. The functions fw and fT represent a body force and a heat source, respectively,
and ê2 = [0, 1]T indicates the direction of buoyancy. Finally, the condition 0 =
∇ · w(ξ, t) describes incompressibility of the fluid, Re is the Reynolds number, Gr is
the Grashof number and Pr is the Prandtl number. By linearizing the above equations
around a steady-state solution (wss, qss, Tss) of (4) using the change of variables
v(ξ, t) = w(ξ, t) − wss(ξ), θ(ξ, t) = T (ξ, t) − Tss(ξ), p(ξ, t) = q(ξ, t) − qss(ξ),
we arrive at the linearized translated Boussinesq equations

v̇(ξ, t) = 1

Re
Δv(ξ, t) − (wss(ξ) · ∇)v(ξ, t) − (v(ξ, t) · ∇)wss(ξ)

− ∇ p(ξ, t) + ê2
Gr

Re2
θ(ξ, t), (5a)

θ̇ (ξ, t) = 1

RePr
Δθ(ξ, t) − wss(ξ) · ∇θ(ξ, t) − v(ξ, t) · ∇Tss(ξ), (5b)

0 = ∇ · v(ξ, t), v(ξ, 0) = v0(ξ), θ(ξ, 0) = θ0(ξ). (5c)

We consider the linearized translated Boussinesq equations subject to the boundary
conditions

(
T (v(ξ, t), p(ξ, t)) · n + αvv(ξ, t)

)∣∣
ΓI

= [
bvI (ξ) bdvI (ξ)

] [
ubvI (t)
udvI (t)

]
, (5d)

(
1

RePr

∂θ

∂n
(ξ, t) + αθθ(ξ, t)

)∣∣∣∣
ΓI

= [
bθI (ξ) bdθI (ξ)

] [
ubθI (t)
udθI (t)

]
, (5e)

(
1

RePr

∂θ

∂n
(ξ, t)

)∣∣∣∣
ΓH

= [
bθH (ξ) bdθH (ξ)

] [
ubθH (t)
udθH (t)

]
, (5f)

(
T (v(ξ, t), p(ξ, t)) · n

)|ΓO = 0, v(ξ, t)|ΓW = 0, (5g)

∂θ

∂n
(ξ, t)|ΓO = 0, θ(ξ, t)|(ΓW \ΓH ) = 0, (5h)

where n denotes the unit outward normal vector of Γ , T is the fluid Cauchy stress
tensor and αv, αθ ≥ 0 are constants, ub = [ubvI , ubθI , ubθH ]T are control inputs,
ud = [udvI , udθI , udθH ]T are disturbance inputs, and the control and the disturbance
inputs are applied via the shape functions bvI , bθI , bθH , bdvI , bdθI and bdθH . The inputs
ub(t) are not directly generated by the controller, but are rather given as the output of
the finite-dimensional actuator

ẋa(t) = Aa xa(t) + Bau(t), xa(0) = xa0 ∈ R
na , (6a)

ub(t) = Ca xa(t), (6b)
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Fig. 2 A closed-loop control scheme with an actuator Au , a plant P̃ , a sensor Sy , the cascade system P
and a controller C

which takes as its input the control signal u(t) generated by the controller.
We are mainly interested in two types of observations. These are weighted temper-

ature or velocity averages either over a two-dimensional domain ΩC ⊂ Ω , given by

yΩ(t) =
〈
cΩ(ξ),

[
v(ξ, t) θ(ξ, t)

]T
〉

ΩC

, (7a)

or over a one-dimensional domain ΓC ⊂ Γ , given by

yΓ (t) =
〈
cΓ (ξ),

[
v(ξ, t) θ(ξ, t)

]T
〉

ΓC

, (7b)

and we denote by yb the observation of interest consisting of a combination of the two
types. Note that one may include several observations of one type with the restriction
that one needs to increase the number of inputs u(t) accordingly to at least match
the number of observations, cf. Assumption 3.1 in Sect. 3. These additional inputs
are included in (5d)–(5f) by considering vector valued ubvI , ubθI , ubθH

, bvI , bθI and
bθH . Just as in the case of the fluid input, the fluid output is also processed by a
finite-dimensional system, the sensor

ẋs(t) = As xs(t) + Bs yb(t), xs(0) = xs0 ∈ R
ns , (8a)

y(t) = Cs xs(t) (8b)

with the observation y(t). The complete plant thus consists of the linearized translated
Boussinesq equations (5) coupled with the actuator (6) via the input ub and with the
sensor (8) via the output yb. Recall that we refer to the system (5)–(8) as the cascade
system. Figure 2 depicts the control scheme consisting of the cascade system and an
error feedback controller.

The control goal is considered for the observation y(t) of the sensor, which we
want to converge exponentially to a prescribed reference trajectory yref(t) of the form
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(2) despite the disturbance signal ud(t) given by (3). That is, for some Mr , ωr > 0 it
should hold that

‖y(t) − yref(t)‖ ≤ Mre
−ωr t P0, (9)

where P0 is determined by the initial states of the linearized translated Boussinesq
equations, the actuator, the sensor and the controller and the coefficients ai (t), bi (t),
ci (t) and di (t) of the reference signal (2) and the disturbance signal (3).

2.2 Abstract formulation of the control system

The controller to be implemented achieves output tracking for a class of abstract linear
systems,whichmotivates us to present the cascade system as one.We define the system
dynamics operator based on a weak formulation of the cascade system.We then follow
up with formulation of the operators related to the abstract boundary control system
representation of the cascade system, a formulation choice natural in the presence of
boundary inputs such as (5d)–(5f). Finally, we connect the abstract boundary control
system framework to the abstract state space formulation of the cascade system.

To prepare for the formulations, we define the spaces

Xv = {
v ∈ (L2(Ω))2

∣∣∇ · v = 0, (v · n)|ΓW = 0
}
,

Xb = Xv × L2(Ω),

XΓ = (L2(ΓI ))
2 × L2(ΓI ) × L2(ΓH ),

Hv = {
v ∈ (H1(Ω))2

∣∣ ∇ · v = 0, v|ΓW = 0
}
,

Hθ = {
θ ∈ H1(Ω)

∣∣ θ |(ΓW \ΓH ) = 0
}
,

Hb = Hv × Hθ

concerning the Boussinesq equations and the spaces

X = Xb × R
na × R

ns , (10a)

H = Hb × R
na × R

ns (10b)

concerning the cascade system. Furthermore, for all x = [xb, xa, xs]T ∈ X , where
xb = [v, θ ]T, we define the norms

‖x‖2X = ‖xb‖2Xb
+ ‖xa‖2

Rna + ‖xs‖2Rns , (11a)

‖x‖2H = ‖xb‖2Hb
+ ‖xa‖2

Rna + ‖xs‖2Rns , (11b)

and denote the input space U = R
m , the output space Y = R

pY and the disturbance
space Ud = R

d .
The presented observations (7) are not the only possible choices, and before focus-

ing on the system as a whole we present an assumption characterizing the class of
suitable observations
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yb(t) = Cbxb(t) (12)

on the linearized Boussinesq equations.

Assumption 2.1 The observation operator satisfies Cb ∈ L(Hb, Yb) for some Yb :=
R

pb .

Lemma 2.2 For system (5), both the observation yΩ = 〈cΩ, xb〉ΩC and yΓ =
〈cΓ , xb〉ΓC in (7) with cΩ ∈ (L2(ΩC ))2 × L2(ΩC ) and cΓ ∈ (L2(ΓC ))2 × L2(ΓC )

satisfy Assumption 2.1.

Proof Clearly 〈cΩ, ·〉ΩC ∈ L(Xb,R). Due to properties of the trace operator, we have
for a constant k > 0

〈cΓ , xb〉ΓC ≤ ‖cΓ ‖L2(ΓC )‖xb‖L2(ΓC ) ≤ k‖xb‖H1(Ω),

thus 〈cΓ , ·〉ΓC ∈ L(Hb,R). 
�
Existence and uniqueness of steady-state solutions for the Boussinesq equations

are outside the scope of this work. For the following analysis of the cascade system,
we assume that a weak steady-state solution

(wss, qss, Tss) ∈ Hv × L2(Ω) × Hθ

for the Boussinesq equations (4) exists. Discussion on existence and uniqueness of
steady-state solutions for the Boussinesq equations can be found in, e.g., [29].

As the first step toward abstract formulation of the cascade system, we construct
the system dynamics operator A via a weak formulation of the cascade system and
verify that it generates a strongly continuous semigroup on X . To that end, we define
the bilinear and trilinear forms

av(v, ψ) = 2

Re
〈ε(v), ε(ψ)〉Ω + αv〈v,ψ〉ΓI ∀v,ψ ∈ Hv, (13a)

aθ (θ, φ) = 1

RePr
〈∇θ,∇φ〉Ω + αθ 〈θ, φ〉ΓI ∀θ, φ ∈ Hθ , (13b)

bv(v1, v2, ψ) = 〈(v1 · ∇)v2, ψ〉Ω ∀v1, v2, ψ ∈ Hv, (13c)

bθ (v, θ, φ) = 〈v · ∇θ, φ〉Ω ∀v ∈ Xv, ∀θ, φ ∈ Hθ , (13d)

b0(θ, ψ) =
〈
ê2

Gr

Re2
θ, ψ

〉

Ω

∀θ ∈ L2(Ω), ∀ψ ∈ (L2(Ω))2. (13e)

Here,

ε(v) = 1

2

(∇v + (∇v)T
) ∀v ∈ (H1(Ω))2,

thus the Cauchy stress tensor is given by

T (v, p) = 2

Re
ε(v) − pI .
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Note that 0 = −aθ (θ, φ) corresponds to a weak formulation of the stationary diffu-
sion equation for the temperature subject to (5e), (5f) and (5h) with zero control and
disturbance, i.e., when

(
1

RePr

∂θ

∂n
+ αθθ

)∣∣
ΓI

= 0,

(
1

RePr

∂θ

∂n

)∣∣
ΓH

= 0.

Similarly, due to Stokes formula and incompressibility, 0 = −av(v, ψ) corresponds
to a weak formulation of the stationary Stokes equation subject to (5d) and (5g) with
zero control and disturbance, i.e., when

(
T (v, p) · n + avv

)∣∣
ΓI

= 0.

Consider the cascade system (5)–(8) subject to a constant boundary disturbance
signal u′

d = [u′
dvI

, u′
dθI

, u′
dθH

]T and denote gdvI = bvI u′
bvI

, gdθI = bθI u′
dθI

, gdθH =
bθH u′

dθH
. Now the boundary conditions (5d)–(5f) for the cascade system are

(
T (v, p) · n + αvv

)∣∣
ΓI

= bvCav xa + gdvI ,(
1

RePr

∂θ

∂n
+ αθθ

)∣∣∣∣
ΓI

= bθI CaθI
xa + gdθI ,

(
1

RePr

∂θ

∂n

)∣∣∣∣
ΓH

= bθH CaθH
xa + gdθH ,

where Cav , CaθI
and CaθH

are obtained from Ca = [Cav , CaθI
, CaθH

]T. A weak
formulation for a steady-state solution of the cascade system subject to u′

d and a
constant control input u′ is now given by

0 = −av(v, ψ) − bv(v,wss, ψ) − bv(wss, v, ψ) + b0(θ, ψ) + 〈T (v, p) · n, ψ〉ΓI

+ αv〈v,ψ〉ΓI

= −av(v, ψ) − bv(v,wss, ψ) − bv(wss, v, ψ) + b0(θ, ψ)

+ 〈bvCav xa + gdvI , ψ〉ΓI ∀ψ ∈ Hv,

0 = −aθ (θ, φ) − bθ (wss, θ, φ) − bθ (v, Tss, φ) + 1

RePr

〈∂θ

∂n
, φ

〉
ΓI ∪ΓH

+ αθ 〈θ, φ〉ΓI

= −aθ (θ, φ) − bθ (wss, θ, φ) − bθ (v, Tss, φ) + 〈bθI CθI xa + gdθI , φ〉ΓI

+ 〈bθH CθH xa + gdθH , φ〉ΓH ∀φ ∈ Hθ ,

0 = 〈Aa xa, ψa〉Rna + 〈Bau′, ψa〉Rna ∀ψa ∈ R
na ,

0 = 〈As xs, ψs〉Rns + 〈
BsCb

[
v

θ

]
, ψs

〉
Rns ∀ψs ∈ R

ns .

Motivated by the weak formulation, we define for u′
d = 0 and u′ = 0 the bilinear

form

a0(Φ,�) = a0((v, θ, xa, xs), (ψ, φ,ψa, ψs))

= av(v, ψ) + aθ (θ, φ) + bv(v,wss, ψ) + bv(wss, v, ψ) + bθ (wss, θ, φ)
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+ bθ (v, Tss, φ) − b0(θ, ψ) − 〈bvI Cav xa, ψ〉ΓI − 〈bθI CaθI
xa, φ〉ΓI

− 〈bθH CaθH
xa, φ〉ΓH − 〈

BsCb
[
v θ

]T
, ψs

〉
Rns − 〈Aa xa, ψa〉Rna

− 〈As xs, ψs〉Rns ∀Φ,� ∈ H , (14)

and more generally for u′ = 0 and some u′
d ∈ R

d the bilinear form

ag(Φ,�) = a0((v, θ, xa, xs), (ψ, φ,ψa, ψs)) − 〈gdvI , ψ〉ΓI − 〈gdθI , φ〉ΓI

− 〈gdθH , φ〉ΓH ∀Φ,� ∈ H . (15)

Using the bilinear form a0(·, ·), we define the linear operator A by

〈Ax, �〉X = −a0(x, �),

D(A) = {
x ∈ H

∣∣ ∀� ∈ H , � → a0(x, �) is X -continuous
}
. (16)

Note that the geometry of Ω and presence of the mixed boundary conditions reduce
regularity of the solutions of (5) so that D(A) �⊂ (H2(Ω))2 × H2(Ω) × R

na × R
ns ,

cf. [12,24,30].
The following semigroup generation result is not only needed for the abstract system

formulation but also the coercivity and boundedness results for the bilinear form
will be utilized for the controller implementation to achieve output tracking, cf. [34].
Similar results focusing mainly on semigroup generation instead of coercivity and
boundedness of the bilinear forms for both the linearized Boussinesq equations and the
linearized incompressible Navier–Stokes equations without additional ODE dynamics
have been presented in multiple papers, see, e.g., [12,24,32].

Theorem 2.3 Operator A is the generator of an analytic semigroup on X and the
bilinear form a0(·, ·) is H-bounded and H-coercive, i.e., H is continuously and densely
embedded in X and there exist c, λ, γ > 0 such that for all Φ,� ∈ H

|a0(Φ,�)| ≤ c‖Φ‖H ‖�‖H ,

a0(Φ,Φ) ≥ γ ‖Φ‖2H − λ‖Φ‖2X .

Proof Throughout the proof, we denote by c a generic positive constant which may
have a different value for each occurrence. We start by considering the terms aθ (·, ·)
and av(·, ·). Now properties of the trace operator imply

0 ≤ αθ 〈θ, θ〉ΓI ≤ c‖θ‖2H1 ,

thus using Poincare’s inequality we get for θ ∈ Hθ and a constant cθ > 0

aθ (θ, θ) = 1

RePr
〈∇θ,∇θ〉Ω + αθ 〈θ, θ〉ΓI ≥ cθ‖θ‖2H1 , (17)
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i.e., aθ (·, ·) is Hθ -coercive. Since

|aθ (θ, φ)| ≤
∣∣∣∣

1

RePr
〈∇θ,∇φ〉Ω

∣∣∣∣ + |αθ 〈θ, φ〉ΓI |

≤ 1

RePr
‖θ‖H1‖φ‖H1 + c‖θ‖H1‖φ‖H1 , (18)

aθ (·, ·) is also Hθ -bounded.
Regarding av(·, ·), it similarly holds that

0 ≤ αv〈v, v〉ΓI ≤ c‖v‖2H1 ,

and the norm ‖ε(·)‖L2 is equivalent to the norm ‖ · ‖H1 through Korn’s and Poincare’s
inequalities. Now for v ∈ Hv and a constant cv > 0

av(v, v) = 2

Re
〈ε(v), ε(v)〉Ω + αv〈v, v〉ΓI ≥ 2

Re
‖ε(v)‖2L2 ≥ cv‖v‖2H1 , (19)

thus av(·, ·) is Hv-coercive. Since additionally

|av(v, ψ)| ≤
∣∣∣∣
2

Re
〈ε(v), ε(ψ)〉Ω

∣∣∣∣ + |αv〈v,ψ〉ΓI |
≤ c

(‖v‖H1‖ψ‖H1 + ‖v‖H1‖ψ‖H1
)
, (20)

av(·, ·) is also Hv-bounded. Combining (17)–(20), we have that there exist constants
c1, γ1 > 0 such that for all φb, ψb ∈ Hb the bilinear form

a1(ψb, φb) = a1((v, θ), (ψ, φ)) := av(v, ψ) + aθ (θ, φ)

satisfies

|a1(φb, ψb)| ≤ c1‖φb‖Hb‖ψb‖Hb , (21a)

a1(φb, φb) ≥ γ1‖φb‖2Hb
. (21b)

The rest of the proof now consists of presenting estimates for the norms of the
remaining terms of a0(·, ·).

We immediately have that

|b0(θ, ψ)| ≤ c‖θ‖L2‖ψ‖Xv , (22)

|〈Aa xa, ψa〉Rna | ≤ c‖xa‖Rna ‖ψa‖Rna , (23)

|〈As xs, ψs〉Rns | ≤ c‖xs‖Rns ‖ψs‖Rns . (24)

Regarding the form bθ (·, ·, ·), by Sobolev embeddings, L2-duality of H1/2 and H−1/2

and Ladyzhenskaya’s inequality
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|bθ (v, Tss, θ)|
= |〈v · ∇Tss, θ〉Ω |
≤ |〈vTss,∇θ〉Ω | + |〈v · n, Tssθ〉Γ |
≤ ‖vTss‖L2‖∇θ‖L2 + c‖v‖H1‖Tssθ‖L2

≤ ‖v‖L4‖Tss‖L4‖∇θ‖L2 + c‖v‖H1‖Tss‖L4‖θ‖L4

≤ c‖Tss‖H1
(‖v‖1/2

L2 ‖∇v‖1/2
L2 ‖∇θ‖L2 + ‖v‖H1‖θ‖1/2

L2 ‖∇θ‖1/2
L2

)
. (25)

Similarly, we have

|bθ (wss, θ, θ)| = 1

2
〈wss,∇θ2〉Ω

= 1

2
〈wss · n, θ2〉Γ

≤ c‖wss‖H1‖θ2‖L2

= c‖wss‖H1‖θ‖2L4

≤ c‖θ‖L2‖∇θ‖L2 . (26)

Furthermore,

|bθ (v, θ, φ)| ≤ |〈v,∇(θφ)〉Ω | + |〈vθ,∇φ〉Ω |
= |〈v · n, θφ〉Γ | + |〈vθ,∇φ〉Ω |
≤ c‖v‖H1‖θ‖H1‖φ‖H1 . (27)

Regarding the form bv(·, ·, ·), we again use L2-duality of H1/2 and H−1/2, Sobolev
embeddings and Ladyzhenskaya’s inequality to form the estimates. Now

|bv(wss, v, v)| = |〈(wss · ∇)v, v〉Ω |
≤ |〈wss, (v · ∇)v〉Ω | + |〈wss · n, v · v〉Γ |
≤ c

(‖wss‖L4‖v‖L4‖∇v‖L2 + ‖wss‖H1‖v‖2L4

)

≤ c
(‖v‖1/2

L2 ‖∇v‖3/2
L2 + ‖v‖L2‖∇v‖L2

)
(28)

and

|bv(v,wss, v)| = |〈(v · ∇)wss, v〉Ω |
≤ ‖v‖2L4‖∇wss‖L2

≤ c‖wss‖H1‖v‖L2‖∇v‖L2 . (29)
Additionally,

|bv(v1, v2, ψ)| ≤ |〈v1, (v2 · ∇)ψ〉Ω | + |〈v1 · n, v2 · ψ〉Γ |
≤ c‖v1‖L4‖v2‖L4‖∇ψ‖L2 + c‖v1‖H1‖v2 · ψ‖L2

≤ c
(‖v1‖H1‖v2‖H1‖ψ‖H1 + ‖v1‖H1‖v2‖L4‖ψ‖L4

)

≤ c‖v1‖H1‖v2‖H1‖ψ‖H1 . (30)
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Finally, properties of the trace operator together with Assumption 2.1 and duality
imply

|〈bt Caψa, ψb〉Γ | ≤ c‖ψa‖Rna ‖ψb‖Hb , (31)

|〈BsCbψb, ψs〉Rns | ≤ c‖φs‖Rns ‖ψb‖Hb , (32)

where bt := [bvI , bθI , bθH ]. Recalling the norm definitions (11), equations (21a),
(22)–(24), (27) and (30)–(32) together imply H -boundedness of a0(·, ·). H -coercivity
of a0(·, ·) follows from (21b) after applyingYoung’s inequality to (25), (26), (28), (29),
(31) and (32). Finally, H -coercivity and H -boundedness of a0(·, ·) imply generation
of an analytic semigroup on X , see, e.g., [6]. 
�

To formulate the cascade system as an abstract boundary control system in the sense
of [16, Ch. 3.3], we next define the related operators. In what follows, P denotes the
Leray projector as defined in [32, Lemma 2.2], which is used to eliminate the pressure
term while imposing incompressibility. Define the operators

A

⎡

⎢⎢⎣

v

θ

xa

xs

⎤

⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎣

P

(
1

Re Δv − (wss · ∇)v − (v · ∇)wss + Gr
Re2

ê2θ

)

1
RePr Δθ − wss · ∇θ − v · ∇Tss

Aa xa

As xs + BsCb[v, θ ]T

⎤

⎥⎥⎥⎥⎦
: D(A) → X ,

BΓu =
⎡

⎣
bvI 0 0
0 bθI 0
0 0 bθH

⎤

⎦ : Ub → XΓ ,

BΓud
=

⎡

⎣
bdvI 0 0
0 bdθI 0
0 0 bdθH

⎤

⎦ : Ud → XΓ ,

BΓ = [
BΓu BΓud

]
,

where Ub := R
mb . Operator A coincides with A on D(A) but has a larger domain

due to relaxed boundary conditions within the boundary parts ΓI and ΓH affected
by disturbance inputs. That is, noting that the Neumann trace of Hb functions is in
(H−1/2(Γ ))2 × H−1/2(Γ ) and recalling the definition of ag(·, ·) in (15), the domain
is given by

D(A) = {
x ∈ H

∣∣ ∃gdvI ∈ (H−1/2(ΓI ))
2, ∃gdθI ∈ H−1/2(ΓI ),

∃gdθH ∈ H−1/2(ΓH ) : ∀� ∈ H , � → ag(x, �) is X -continuous
}
.

Corresponding to the control and disturbance boundary conditions (5d)–(5f), we
define the operator

B̃b

⎡

⎣
v

θ

p

⎤

⎦ =
⎡

⎢⎣

(
T (v, p) · n + αvv

)∣∣
ΓI( 1

RePr
∂θ
∂n + αθθ

)∣∣
ΓI( 1

RePr
∂θ
∂n

)∣∣
ΓH

⎤

⎥⎦ : D(B̃b) ⊂ Xb × L2(Ω) → XΓ .
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The pressure p is uniquely defined by the velocity v, see [4], thus there exists an
operator Bb such that

Bb

[
v

θ

]
= B̃b

⎡

⎣
v

θ

p

⎤

⎦ ∀
⎡

⎣
v

θ

p

⎤

⎦ ∈ D(B̃b), D(Bb) = {
(v, θ) ∈ D(B̃b)

}
.

Tomatch the state variable x ∈ X of the cascade system, we finally define the operator

B = [
Bb 0 0

] : D(B) = D(Bb) × R
na × R

ns ⊂ X → XΓ .

Since A = A|N (B−[0, BΓu Ca , 0]) generates an analytic semigroup on X by Theo-
rem 2.3 and B is onto XΓ , cf. [12], by defining

B = [
0Xb Ba 0Rns

]T ∈ L(U , X) (33)

we have that the cascade system (5)–(8) corresponds to the abstract boundary control
system

ẋ(t) = Ax(t) + Bu(t), (34a)

Bx(t) = BΓ

[
Ca xa(t)

ud(t)

]
(34b)

on X with the (boundary) input space XΓ in the sense of [16, Ch. 3.3]. The system
observation is given by

y(t) = Cx(t), C = [0Xb , 0Rna , Cs] ∈ L(X , Y ). (34c)

Note that the control and observation operators of the boundary control system are
bounded and the disturbance BΓud

ud is the only boundary input of the boundary control
system. The boundary control system formulation of the cascade system also has the
following equivalent state space formulation.

Proposition 2.4 The cascade system (5)–(8) can be formulated as

ẋ(t) = Ax(t) + Bu(t) + Bdud(t), x(0) = x0 ∈ X , (35a)

y(t) = Cx(t) + Ddud(t), (35b)

where the dynamics operator A defined as in (16) generates an analytic semigroup
on the state space X defined in (10a) and the control operator B together with the
observation operator C defined in (33) and (34c) are bounded. Additionally, a change
of the state variable x can be applied such that also the resulting disturbance operator
Bd is bounded.
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Proof Existence of the state space formulation (35) follows from the boundary con-
trol system formulation as presented in [40, Ch. 10] and boundedness of B and C is
apparent from their definitions. The change of variable x̃b = xb − BI BΓud

, where
BI ∈ L(XΓ , D(Ab)) is a right inverse of Bb used to homogenize the boundary con-
ditions and obtain a bounded operator Bd , is presented in [16, Ch. 3.3]. Note that the
change of variable utilizes smoothness of the disturbance signal ud given by (3) and
introduces a bounded feedthrough operator Dd into the system. 
�

The state space formulation together with the fact that the operators B, Bd , C and Dd

are bounded will later in this paper be utilized for implementing the output tracking
controller.

Remark 2.5 The controller to be implemented uses no information on the disturbance
related operators Bd and Dd , thus we do not formulate the cascade system using the
state variable x̃b. However, one needs to verify that a representation using bounded
disturbance operators Bd and Dd exists.

2.3 Stabilizability and detectability of the system

We will be using a controller including an observer-like structure, which means that
we need to address both stabilizability and detectability properties of the cascade
system (5)–(8). Here, we focus on deriving sufficient conditions for exponential sta-
bilizability and exponential detectability of the cascade system based on properties of
the linearized translated Boussinesq equations, the actuator and the sensor.

To begin with we note that, in addition to the cascade system, also the linearized
translated Boussinesq equations (5) form an abstract boundary control system

ẋb(t) = Abxb(t), (36a)

Bbxb(t) = BΓ

[
ub(t)
ud(t)

]
, (36b)

which can be verified by repeating the steps of Sect. 2.2 without the actuator and
sensor dynamics. Here

Ab = A|D(Ab),

D(Ab) = {
xb ∈ Hb

∣∣ ∃gvI ∈ (H−1/2(ΓI ))
2, ∃gθI ∈ H−1/2(ΓI ),

∃gθH ∈ H−1/2(ΓH ) : ∀ϕ ∈ Hb, ϕ → ab(xb, ϕ) is Xb -continuous
}

with the bilinear form ab(·, ·) defined by

ab((v, θ), (ψ, φ))

= av(v, ψ) + aθ (θ, φ) + bv(v,wss, ψ) + bv(wss, v, ψ) + bθ (wss, θ, φ)

+ bθ (v, Tss, φ) − b0(θ, ψ) − 〈gvI , ψ〉ΓI − 〈gθI , φ〉ΓI − 〈gθH , φ〉ΓH .
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The associated generator of a strongly continuous semigroup is Ab = Ab|N (Bb). Now
recalling that A = A|N (B−[0, BΓu Ca , 0]), A is described by

A

⎡

⎣
xb

xa

xs

⎤

⎦ =
⎡

⎣
Ab 0 0
0 Aa 0

−BsCb 0 As

⎤

⎦

⎡

⎣
xb

xa

xs

⎤

⎦ , (37a)

D(A) = {
(xb, xa, xs) ∈ D(A)

∣∣Bbxb = BΓu Ca xa
}
, (37b)

which is the expression thatwewill use for the stabilizability and detectability analysis.
Recall that by Theorem 2.3 A generates an analytic semigroup on X . Additionally,

by Theorem 2.3, Lax–Milgram theorem and compactness of the embedding H onto
X , the resolvent of A is compact on X , cf. [37]. Thus, A has a finite number of

isolated eigenvalues on the closed right half plane C+
0 , each with finite multiplicity.

As such, stabilizability and detectability considerations of the cascade systemwith the
bounded control operator B and the bounded observation operator C can be treated as
controllability and observability problems of the finite-dimensional unstable part, see
[16, Ch. 5.2]. That is, the pair (C, A) is exponentially detectable if and only if

N (s I − A) ∩ N (C) = {0} for all s ∈ C
+
0 , (38)

and the pair (A, B) is exponentially stabilizable if and only if

R(s I − A) + R(B) = X for all s ∈ C
+
0 . (39)

Recalling Assumption 2.1, the observation (12) satisfies Cb ∈ L(D(Ab), Yb), thus
it can be included into the abstract boundary control system framework as defined in
[15]. For any s ∈ ρ(Ab), the transfer function Pb(s) of the triple (Ab,Bb, Cb) is then
defined by

Pb(s)ub = Cbz(s), (40)

where z(s) ∈ D(Ab) is the unique solution of the abstract elliptic problem

Abz(s) = sz(s), (41a)

Bbz(s) = BΓu ub, (41b)

see [15]. The transfer functions for the actuator (6) and the sensor (8) are defined as
Pa(s) = Ca(s I − Aa)−1Ba and Ps(s) = Cs(s I − As)

−1Bs , respectively.
For ease of notation, we define the operator Bb as

Bb = (Ab − Ab)BI BΓu ∈ L(Ub, Xb−1), (42)

where we recall that BI ∈ L(XΓ , D(Ab)) is a right inverse ofBb. Here, Ab is regarded
as an operator from Xb to Xb−1 , which is the completion of Xb with respect to the
norm ‖ · ‖Xb−1

= ‖(s I − Ab)
−1(·)‖Xb with s ∈ ρ(Ab).
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Lemma 2.6 The boundary control system (Ab,Bb, Cb) corresponds to a state space
formulation (Ab, Bb, Cb), which is a well-posed triple in the sense of [41, Def. 4.8].
Furthermore, the triple (Ab, Bb, Cb) is regular in the sense of [43, Def. 4.1].

Proof The proof is a combination of existing results. We start by presenting results
of [12, Sec. 2.2] relevant to the proof. Let λ0 ∈ ρ(Ab) have a large enough real part.
Then, the fractional powers of λ0 I − Ab are well defined, D((λ0 I − Ab)

1/2) = Hb

and

(λ0 I − Ab)
−1/4−ε Bb ∈ L(Ub, Xb) (43)

for any ε > 0. Additionally, the operator Ab has a decomposition Ab = Ab2 + Ab10,
where Ab2 with the domain D(Ab2) = D(Ab) is self-adjoint and the generator of an
exponentially stable analytic semigroup on Xb, and Ab10 ∈ L(Hb, Xb).

Now by [41, Prop. 6.5] both (Ab2, Bb, Cb) and (Ab2, Bb, Ab10) are well-posed
triples and even regular with zero feedthrough. We then use the feedback results of
[21], which originate from [44], by considering the operator Ab10 in the expression
Ab = Ab2 + Ab10 as an output feedback for Ab2. By [21, Lemma 12] the triple
(Ab, Bb, Cb) is well-posed. Finally, the triple (Ab, Bb, Cb) is regular by [41, Prop.
5.13], since the degree of unboundedness is at most 1/2 for Cb and strictly less than
1/2 for Bb, cf. Assumption 2.1 and (43). 
�
Since the transfer function Pb is well defined, we canmake the following assumptions.

Assumption 2.7 Assume that the following hold:

(i) The spectra σ(Ab), σ(Aa) and σ(As) are pairwise disjoint on C
+
0 .

(ii) The pair (Cs, As) is detectable.

(iii) For every λ ∈ σ(Ab) ∩ C
+
0 , N (Ps(λ)Cb) ∩ N (λI − Ab) = {0}.

(iv) For every λ ∈ σ(Aa) ∩ C
+
0 , N

(
Ps(λ)Pb(λ)Ca

) ∩ N (λI − Aa) = {0}.
In particular, the assumption requires that also the pairs (Cb, Ab) and (Ca, Aa) are
exponentially detectable even if Cb is unbounded [5].

Assumption 2.8 Assume that the following hold:

(i) The spectra σ(Ab), σ(Aa) and σ(As) are pairwise disjoint on C
+
0 .

(ii) The pair (Aa, Ba) is stabilizable and Pa(λ) is surjective for every λ ∈ σ(Ab) ∩
C

+
0 .

(iii) For every λ ∈ σ(As) ∩ C
+
0 ,R(λI − As) + R(Bs Pb(λ)Pa(λ)) = Xs .

(iv) The pair (Ab,Bb) is exponentially stabilizable, i.e., there exists Kb ∈
L(Xb, Ub) such that Ab|N (Bb−Kb) generates an exponentially stable strongly
continuous semigroup on Xb.

Note that due to the results in [5] we can limit our attention to considering bounded
operators Kb in Assumption 2.8(iv).

Lemma 2.9 If Assumption 2.7 holds, then the pair (C, A) is exponentially detectable.
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Proof To show that (38) holds for the pair (C, A), let (xb, xa, xs) ∈ N (λI−A)∩N (C),

where λ ∈ C
+
0 . Since (xb, xa, xs) ∈ D(A), using (34c) and (37) we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Cs xs = 0, (44a)

(λI − Aa)xa = 0, (44b)

(λI − Ab)xb = 0, (44c)

Bbxb = BΓu Ca xa, (44d)

(λI − As)xs − BsCbxb = 0. (44e)

If λ ∈ ρ(Aa), (44b) implies xa = 0, thus (44d) implies xb ∈ D(Ab). If λ ∈ ρ(Aa)∩
ρ(Ab), then xb = 0 by (44c) and furthermore (44a), (44e) and Assumption 2.7(ii)
imply xs = 0. If λ ∈ ρ(Aa) ∩ σ(Ab), then xs = (λI − As)

−1BsCbxb by (44e) and
Assumption 2.7(i). By (44a), (44b) and Assumption 2.7(iii) we have xb = 0, which
then implies xs = 0.

If λ ∈ σ(Aa), then λ ∈ ρ(Ab) by Assumption 2.7(i). Now combining (41)–(40)
with (44c), (44d) and (44e) and using Assumption 2.7(i) again yields xs = (λI −
As)

−1Bs Pb(λ)Ca xa . Then, xa = 0 by (44a), (44b) and Assumption 2.7(iv). By (44d)
it now holds that xb ∈ D(Ab), thus xb = 0 by (44c). Finally, xs = 0 by (44e). Since

λ ∈ C
+
0 was arbitrary, (38) holds and (C, A) is exponentially detectable. 
�

Lemma 2.10 If Assumption 2.8 holds, then the pair (A, B) is exponentially stabiliz-
able.

Proof We show that (39) holds for the pair (A, B). Using (33) and (37), for arbitrary

z = (zb, za, zs) ∈ X and for any λ ∈ C
+
0 we need to find x = (xb, xa, xs) ∈ D(A)

and u ∈ U such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(λI − Ab)xb = zb, (45a)

(λI − Aa)xa + Bau = za, (45b)

(λI − As)xs − BsCbxb = zs, (45c)

Bbxb = BΓu Ca xa . (45d)

If λ ∈ ρ(Ab), there exists x̃b ∈ D(Ab) such that zb = (λI − Ab)x̃b = (λI − Ab)x̃b.
Since Bb x̃b = 0, (45a) and (45d) form an abstract elliptic problem

(λI − Ab)(xb − x̃b) = 0, (46a)

Bb(xb − x̃b) = BΓu Ca xa, (46b)

which has a unique solution xb − x̃b = xb − (λI − Ab)
−1zb ∈ D(Ab) depending on

xa [40, Rem. 10.1.5]. If in addition λ ∈ ρ(Aa) ∩ ρ(As), (45b) and (45c) yield

xa = (λI − Aa)−1(za − Bau), (47)

xs = (λI − As)
−1(zs + BsCbxb), (48)
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respectively, thus x and u for the arbitrary z can be solved from (46)–(48). If λ ∈
ρ(Ab) ∩ ρ(As) ∩ σ(Aa), Assumption 2.8(ii) implies that there exist xa and u such
that (45b) holds. Then, xb and xs can be solved from (46) and (48). If λ ∈ ρ(Ab) ∩
ρ(Aa) ∩ σ(As), we can use (47), (46) and (40) to rewrite (45c) as

zs = (λI − As)xs − Bs Pb(λ)Ca xa + BsCb(λI − Ab)
−1zb

= (λI − As)xs + Bs Pb(λ)Pa(λ)u − Bs Pb(λ)Ca(λI − Aa)−1za

+ BsCb(λI − Ab)
−1zb. (49)

Now Assumption 2.8(iii), (46), (47) and (49) guarantee that there exist x and u such
that (45a) holds.

ByAssumption 2.8(i), the single case left to consider isλ ∈ σ(Ab)∩ρ(Aa)∩ρ(As).
In that case xa and xs can be solved from (47), (48) with the latter depending on the
choice of xb. By [40, Ch. 10] we have Ab = Ab + BbBb on D(A), where Ab again
denotes the extension from Xb to Xb−1 and Bb is defined in (42). Now using (45a) and
(45d) yields

zb = (λI − Ab)xb = (λI − Ab)xb − BbCa xa,

thus by (47) we have

zb = (λI − Ab)xb + Bb Pa(λ)u − BbCa(λI − Aa)−1za .

Based on Lemma 2.6 and [39, Lemma 8.2.8], Assumption 2.8(ii),(iv) imply

Xb ⊂ R(λI − Ab) + R(Bb Pa(λ)),

thus there exists xb, hence x and u, such that (45a) holds. Now (39) holds, i.e., the pair
(A, B) is exponentially stabilizable. 
�

3 Robust output regulation

The output tracking goal (9) is in the case of abstract linear systems covered by the
robust output regulation problem. We start by coupling an error feedback controller
with the cascade system (35). The resulting system is called the closed-loop system.
We then present the robust output regulation problem, which describes requirements
for choosing the controller operators. Finally, we design an error feedback controller,
introduced in [34], to solve the robust output regulation problem for the room model.

An error feedback controller on a Hilbert space Z is given by

ż(t) = G1z(t) + G2e(t), z(0) = z0 ∈ Z , (50a)

u(t) = K z(t), (50b)
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where G1 generates a strongly continuous semigroup on Z , G2 ∈ L(Y , Z), K ∈
L(Z , U ) and e(t) = y(t)− yref(t) is the regulation error. Coupling the controller with
the cascade system (35) yields the closed-loop system, see [23,35],

ẋe(t) = Aexe(t) + Bewext(t), xe(0) = xe0,

e(t) = Cexe(t) + Dewext(t)

on theHilbert space Xe := X×Z with the state xe = [x, z]T.Here,wext = [ud , yref ]T,

Ae =
[

A BK
G2C G1

]
, Be =

[
Bd 0

G2Dd −G2

]
,

Ce = [
C, 0

]
, De = [

Dd , −I
]
.

The robust output regulation problem Design a controller (G1,G2, K ) such that the
following hold:

(I) The closed-loop system is exponentially stable.
(II) There exist Mr , ωr > 0 such that for all initial states xe0 ∈ Xe of the closed-loop

system and for all reference signals yref in (2) and disturbance signals ud in (3)

‖y(t) − yref(t)‖ ≤ Mre
−ωr t (‖xe0‖ + ‖�‖), (51)

where� is a vector consisting of the coefficients of the polynomials ai (t), bi (t),
ci (t) and di (t) of yref and ud .

(III) If A, B, Bd , C, Dd in (35) are perturbed to Ã, B̃, B̃d , C̃, D̃d in such a way that
the closed-loop system remains exponentially stable, then for all xe0 ∈ Xe and
for all signals of the form (2), (3) the regulation error satisfies (51) for some
M̃r , ω̃r > 0.

By the internalmodel principle, an error feedback controller solves the robust output
regulation problem precisely when the closed-loop system is exponentially stable and
the controller incorporates a suitable internal model of the reference and disturbance
signals [35]. That is, the controller must include the dynamics of the reference signal
(2) and the disturbance signal (3) reduplicated according to the dimension pY of the
output space Y , cf. the first step of the controller design algorithm. The following
lemma, i.e., (A, B, C) having no transmission zeros at the relevant frequencies, is a
standard necessary property for solvability of the robust output regulation problem.

Assumption 3.1 None of the systems (Ab, Bb, Cb), (Aa, Ba, Ca) and (As, Bs, Cs)

has transmission zeros at the frequencies {iωk}qs
k=0, i.e., for bounded stabilizing feed-

back operators Kb, Ka and Ks the transfer functions Pb,Kb (iωk) = Cb(iωk I −
Ab − Bb Kb)

−1Bb, Pa,Ka (iωk) = Ca(iωk I − Aa − Ba Ka)−1Ba and Ps,Ks (iωk) =
Cs(iωk I − As − Bs Ks)

−1Bs are surjective for k = 0, 1, . . . , qs .

Lemma 3.2 Given Assumption 3.1, the cascade system (A, B, C) has no transmission
zeros at the frequencies {iωk}qs

k=0.
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The proof follows immediately since the transfer function of the cascade system is
product of the transfer functions of the three subsystems.

The particular controller design we propose for the cascade system is the one in
[34, Sec. III.A], see also [36] for its boundary control system implementation.
I The observer-based finite-dimensional controller is given by

ż1(t) = G1z1(t) + G2e(t), (52a)

ż2(t) = (Ar
L + Br

L K r
2)z2(t) + Br

L K N
1 z1(t) − Lr e(t), (52b)

u(t) = K N
1 z1(t) + K r

2 z2(t), (52c)

and is of the form (50) with z(t) := [z1(t), z2(t)]T ∈ Z := Zim × C
r ,

G1 =
[

G1 0
Br

L K N
1 Ar

L + Br
L K r

2

]
, G2 =

[
G2

−Lr

]
, K = [

K N
1 K r

2

]
.

For the cascade system (5)–(8), the operators in (52) are chosen according to the
following algorithm.
I The Internal Model:

Choose Zim = Y n0 × Y 2n1 × · · · × Y 2nqs , where ni − 1, i ∈ {0, 1, ..., qs} is the
highest-order polynomial coefficient of the corresponding frequency ωi in (2). Set
G1 = diag

(
J Y
0 , . . . J Y

qs

) ∈ L(Zim) and G2 = (
Gk

2

)qs

k=0 ∈ L(Y , Zim), where

J Y
0 =

⎡

⎢⎢⎢⎢⎣

0p Ip

0p
. . .

. . . Ip

0p

⎤

⎥⎥⎥⎥⎦
, G0

2 =

⎡

⎢⎢⎢⎣

0p
...

0p

Ip

⎤

⎥⎥⎥⎦

and for k = 1 . . . qs

J Y
k =

⎡

⎢⎢⎢⎢⎣

Ωk I2p

Ωk
. . .

. . . I2p

Ωk

⎤

⎥⎥⎥⎥⎦
, Gk

2 =

⎡

⎢⎢⎢⎢⎢⎣

02p
...

02p

Ip

0p

⎤

⎥⎥⎥⎥⎥⎦
, Ωk =

[
0p ωk Ip

−ωk Ip 0p

]
.

II Plant approximation and stabilization
For a sufficiently large N ∈ N, discretize the operators Ab, Bb and Cb to obtain the

finite-dimensional approximative system (AN
b , B N

b , C N
b ) on H N

b . The chosen approx-
imation method should satisfy the following assumption.

Assumption 3.3 The finite-dimensional approximating subspaces H N
b of Hb have the

following property: For any xb ∈ Hb there exists a sequence x N
b ∈ H N

b such that

‖x N
b − xb‖Hb → 0 as N → ∞. (53)
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More specifically, the approximation of the cascade system should have the property
equivalent to (53), and Assumption 3.3 implies the approximation property for the
cascade system.

Lemma 3.4 Let H N := H N
b ×R

na ×R
ns denote the finite-dimensional approximating

subspaces of H. Given Assumption 3.3, there exists a sequence x N ∈ H N such that
‖x N − x‖H → 0 as N → ∞.

The proof follows immediately by choosing x N = [x N
b , xa, xs]T, where x N

b is such
that Assumption 3.3 holds.

Denote the cascade system approximation on H N by (AN , B N , C N ). Let α1, α2 ≥
0 and choose Q1 ∈ L(U0, X), Q2 ∈ L(X , Y0) such that (A + α1 I , Q1, C) and
(A + α2 I , B, Q2) are exponentially stabilizable and detectable, where U0 and Y0 are
Hilbert spaces. Denote by QN

1 and QN
2 the approximations of Q1 and Q2 on H N .

Choose 0 < R1 ∈ L(Y ) and 0 < R2 ∈ L(U ), and choose Q0 ∈ L(Zim,Cp0) such
that (Q0, G1) is observable. Let

AN
c =

[
G1 G2C N

0 AN

]
, B N

c =
[

0
B N

]
, QN

c =
[

Q0 0
0 QN

2

]

and solve the finite-dimensional Riccati equations

(AN + α1 I )ΣN + ΣN (AN + α1 I )∗ − ΣN (C N )∗ R−1
1 C N ΣN = −QN

1 (QN
1 )∗,

(AN
c + α2 I )∗ΠN + ΠN (AN

c + α2 I ) − ΠN B N
c R−1

2 (B N
c )∗ΠN = −(QN

c )∗QN
c .

Finally, define L N = −ΣN C N R−1
1 ∈ L(Y , H N ) and K N := [K N

1 , K N
2 ] =

−R−1
2 (B N

c )∗ΠN ∈ L(Zim × H N , U ).
III Model reduction

For a sufficiently large r ≤ N , apply balanced truncation, see [34, Sec. II-B] and
the references therein, on the stable system

(AN + L N C N , [B N , L N ], K N
2 )

to obtain the reduced-order system

(Ar
L , [Br

L , Lr ], K r
2).

By [34, Thm. III.1], the observer-based finite-dimensional controller solves the
robust output regulation problem for a class of systems including the infinite-
dimensional cascade system (5)–(8). Thus, the following holds for robust output
tracking of the linearized translated Boussinesq equations (5) with the observation
(12), the actuator dynamics (6) and the sensor dynamics (8).

Theorem 3.5 Assume that the control and disturbance shape functions
[bvI , bdvI ] ∈ (L2(ΓI ))

i , [bθI , bdθI ] ∈ (L2(ΓI ))
j and [bθH , bdθH ] ∈ (L2(ΓH ))k ,

where i , j and k equal the sum of the number of control and disturbance inputs for
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the inlet velocity, the inlet temperature and the heating strip temperature, respectively.
Assume that the observation on the fluid satisfies Assumption 2.1 and the linearized
translated Boussinesq equations (5)with the observation (12), the actuator (6) and the
sensor (8) satisfy Assumptions 2.7, 2.8 and 3.1. Then, the finite-dimensional low-order
controller (52) solves the robust output regulation problem for the cascade system (5)–
(8), thus achieving the output convergence (9), provided that Assumption 3.3 holds for
the approximation method used in the controller design and the orders of approxima-
tion N and r ≤ N are large enough.

4 Output tracking example for the roommodel

We consider robust output tracking of the linearized translated Boussinesq equations
(5) with the actuator dynamics (6) and the sensor dynamics (8) in the rectangular room
Ω = [0, 1] × [0, 1] with the inlet, the outlet and the heating strip given by

ΓI =
{
ξ1 = 0,

5

8
≤ ξ2 ≤ 7

8

}
, ΓO =

{
ξ1 = 1,

1

8
≤ ξ2 ≤ 1

2

}
,

ΓH =
{
3

8
≤ ξ1 ≤ 5

8
, ξ2 = 0

}
,

which roughly corresponds to Fig. 1. Physical parameters for theBoussinesq equations
are chosen as Re = 100, Gr = Re2

0.9 and Pr = 0.7. There are three control inputs on
the fluid; one on each of vξ1 and θ within the inlet and one on θ within the heating
strip, with coefficients αv = αθ = 1 indicating Robin boundary conditions within the
inlet. Additionally, we assume that a single disturbance signal acts within the inlet
on vξ2 . Now ub(t) = [uv(t), uθI (t), uθH (t)]T ∈ R

3 and ud(t) = udvI (t) ∈ R. The
control and disturbance shapes are given by

bvI (ξ2) =
[
exp

(
−0.00004

((5/8−ξ2)(7/8−ξ2))2

)∣∣∣∣
ΓI

, 0
]T

,

bθI (ξ2) = exp

( −0.00002

((5/8 − ξ2)(7/8 − ξ2))2

)∣∣∣∣
ΓI

,

bθH (ξ1) = exp

( −0.00001

((3/8 − ξ1)(5/8 − ξ1))2

)∣∣∣∣
ΓH

,

bdvI (ξ2) =
[
0, exp

(
−0.0003

((5/8−ξ2)(7/8−ξ2))2

)∣∣∣∣
ΓI

]T

with the nonzero components depicted in Fig. 3.
We consider three observations on the linearized Boussinesq equations (5). These

are given by

yb1(t) = 1

|Ωθ |
∫

Ωθ

θ(ξ, t)dξ, yb2(t) = 1

|ΓO |
∫

ΓO

θ(ξ, t)dξ2,
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Fig. 3 Control and disturbance shape functions. On the left bv (black), bθI (red) and bdv (blue), and on the
right bθH

yb3(t) = 1

|Ωv|
∫

Ωv

vξ1(ξ, t)dξ,

where Ωθ = [ 18 , 2
8 ] × [ 58 , 6

8 ] and Ωv = [ 38 , 4
8 ] × [ 28 , 3

8 ], and we set yb =
[yb1, yb2, yb3]T. The actuator (6) and the sensor (8) are characterized by the simple
choices

Aa = As = −I3, Ba = Ca = Bs = Cs = I3, (54)

and the reference signals to be tracked are

yref1(t) = −1 + sin(t) + 0.3 cos(2t), yref2(t) = 0.5 cos(0.5t),

yref3(t) = 1 + 0.5 sin(2t),

respectively. Finally, the disturbance signal is given by ud(t) = 2 sin(0.5t).
For the simulations, we use a uniform triangulation of Ω together with the Taylor–

Hood finite element spatial discretization for the Navier–Stokes part of the Boussinesq
equations and quadratic elements with the same triangulation for the advection–
diffusion part. The incompressibility condition ∇ ·v = 0 is relaxed by using a penalty
method to decouple the pressure term from the velocity, see, e.g., [20, Ch. 5.2] or
[24], with the penalty parameter εp = 10−5. To approximate the infinite-dimensional
system (Ab, Bb, Cb), we use the mesh size hin f = 1/24, which results in approxima-
tion order Nin f = 6728 for the system (A, B, C) after accounting for the boundary
conditions.

We use Newton’s method to calculate a steady-state solution for the Boussinesq
equations (4) subject to

fT (ξ) = 5 sin(2πξ1) cos(2πξ2),

fw(ξ) = 4
[
sin(2πξ1) cos(2πξ2), − cos(2πξ1) sin(2πξ2)

]T
.

The steady-state solution may be, and according to numerical tests is, non-unique, and
we choose the steady state (wss, Tss) corresponding to the initial guess given by the
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Fig. 4 A steady-state solution (wss1 , wss2 , Tss ) of the Boussinesq equations (4)

steady-state solution (wi , Ti ) of (4) subject to

fTi (ξ) = 4 sin(2πξ1) cos(2πξ2),

fwi (ξ) = 2
[
sin(2πξ1) cos(2πξ2), − cos(2πξ1) sin(2πξ2)

]T
.

The steady-state solution is depicted in Fig. 4.
We observe numerically that for the calculated steady-state solution Ab, thus also

A due to the block triangular structure if rearranged according to the state (xa, xb, xs),
has a single pair of unstable eigenvalues

λ± ≈ 0.0621 ± 0.4908i .

Exponential stabilizability, exponential detectability and Assumption 3.1 are checked
numerically for the system (Ab, Bb, Cb), and for the choice (54) they are transferred
to the system (A, B, C) by Lemmata 2.9, 2.10 and 3.2.

For the controller construction, we use a coarser linearized Boussinesq equations
approximation with the mesh size h = 1/16. Using the penalty method would intro-
duce additional modeling error, so we base the plant approximation (AN , B N , C N )

on the discretized Leray projector instead, see [7,8,25]. The discretized Leray projec-
tor is used merely as a theoretical tool, and the Riccati equations together with the
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Fig. 5 The initial state (v0, θ0)

model-reduced operators Ar
L , Br

L , K r
2 , Lr are instead solved using the differential-

algebraic equation form of the Taylor–Hood-quadratic discretized cascade system.
More specifically, we obtain solutions of the Riccati equations using the Generalized
Low-Rank Cholesky Factor Newton Method, see Algorithm 2 in [7], with the ini-
tial stabilizing feedback solved by the Matlab’s icare function using the penalized
Taylor–Hood-quadratic discretization and the ADI shift parameters solved using the
LYAPACK toolbox for Matlab. Finally, balred function of Matlab is utilized for the
order reduction. Parameters of the Riccati equations are chosen as

α1 = 0.3, α2 = 0.2, R1 = R2 = I3, Q1Q∗
1 = IX , Q∗

c Qc = IZim×X .

To track yref = [yref1, yref2, yref3]T while rejecting ud , the internal model of
the controller has 4 frequencies. Due to yref and ud having constant coefficients,
dim Zim = 3 + 3 · 3 · 2 = 21, thus us using the reduction order r = 20 results in the
controller order dim Z = dim Zim + r = 41.

Remark 4.1 Assumption 3.3 is not satisfied by the mixed finite element methods such
as the Taylor–Hood discretization implemented in this work. Convergence properties
of the approximation-based controllers for mixed finite elements are studied in [9], but
the presented results are incomplete for our use. As such, finding suitable approxima-
tion methods or verifying convergence properties of commonly used approximation
methods, such as mixed finite elements, requires further work.

For the simulations, we choose as the initial state of the closed-loop system

[
v0, θ0, xa0, xs0, z0

]T

= [
wi − wss, Ti − Tss, 0, 0, 0

]T ∈ Xv × L2(Ω) × R
3 × R

3 × Z

and the state components v0 and θ0 are shown in Fig. 5.
Output tracking performance of the controller for t ∈ [0, 50] is illustrated in Fig. 6.
The system output converges to the reference output with accurate tracking for

t > 30. Initial oscillations of the observation are reasonable, but the state (v, θ) of the
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Fig. 6 The system output y = [y1, y2, y3]T and the reference output yref = [yref1, yref2, yref3]T

Fig. 7 State (v1, v2, θ) of the linearized translated Boussinesq equations at the time t = 50

linearized translated Boussinesq equations experiences significant oscillations. The
temperature values near the controlled strips ΓI and ΓH are a prime example of this
behavior, as Fig. 7 suggests, while incompressibility leads to “less localized” velocity
states.

The controlled strips actually maintain large amplitudes for both the velocity v

and the temperature θ throughout the simulation disregarding the initial transient, as
evident from Fig. 8.

123



Mathematics of Control, Signals, and Systems

Fig. 8 State components within the controlled strips for t ∈ [0, 50]

Fig. 9 Plant input u and the corresponding boundary input ub generated by the actuator

Similarly, the boundary inputs to the room do not change sign after the transient,
see Fig. 9, although the plant input component u3 just barely does.
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5 Conclusion

We studied robust temperature and velocity output tracking of a two-dimensional room
model with the fluid dynamics governed by the linearized Boussinesq equations. For
the room model, we considered the natural case of the control applied on the fluid via
the boundary and the observations performed on the fluid at the boundary. Related to
the control and the observation operations, we modeled actuator and sensor dynamics
of the system, thus the complete room model was an ODE–PDE–ODE cascade. We
examined effects of the added actuator and sensor dynamics on the system properties
such as semigroupgeneration, exponential stabilizability and exponential detectability,
and implemented an internal model-based error feedback controller design for robust
temperature and velocity output tracking for the room model. In addition to being
robust, the controller is suitable for unstable systems, requires only output information
instead of full state information and is of low order for efficient applicability.

As an example, we illustrated robust output tracking of the linearized Boussinesq
equations with actuator and sensor dynamics in the case of three boundary controls,
a mix of one boundary and two in-domain observations and a boundary disturbance,
each affecting either a velocity or the temperature component of the system. The
controller achieved accurate tracking with relatively small transient observation oscil-
lation, although the system state reaches large absolute values locally. Analogous
approach of actuator and sensor modeling can be applied for robust output tracking
of a class of linear systems with boundary control and observation.
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