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ABSTRACT
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One of the central questions in neuroscience is how neurons and neuron populations com-
municate with each other. An approach amongst others is to model networks of neurons and
populations as a continuous nonlinear dynamical system. Continuous-time rate-based recurrent
neural networks (RNNs) offer a way to model neural networks as time-dependent nonlinear dy-
namical systems. First RNNs were developed several decades ago but recent developments on
theoretical frameworks concerning neural manifolds and new optimization techniques motivate to
study RNNs in a new perspective.

In this thesis, the theoretical background of RNNs was studied from the neuroscience perspec-
tive and the dynamics of RNNs was briefly analyzed with local stability analysis. Several RNNs
were studied while the focus was concentrated towards the two most used RNNs; the additive
system and the Wilson-Cowan system. The main difference between the models is how fast they
respond to postsynaptic currents. It was found that the additive system and the Wilson-Cowan
system exhibit same fixed points, and the asymptotic stability near the hyperbolic fixed points is
same for both models. This finding explains why the models behave similarly when external inputs
are time-invariant. In addition to the additive system and to the Wilson-Cowan system, other RNN
variants were briefly studied from a theoretical perspective explaining what is the relation between
neuroscience and the RNNs.

Altogether, the results of the thesis help to understand the dynamics of the systems and guide
the selection of RNNs on neuroscientifically interesting computational tasks which include mod-
elling of the brain’s network dynamics. The RNNs combined with dimension reduction methods
can reveal low-dimensional neural manifolds that may arguably explain fundamental brain mech-
anisms.

Keywords: recurrent neural network, RNN, dynamical system, local stability, Wilson-Cowan sys-
tem, Hopfield system
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f ′ Derivative of activation function, df(x)
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1. INTRODUCTION

Modern neuroscience as a field of science has evolved rapidly throughout its short history.

The main driver has been the rapid development of technology, especially fast develop-

ment of electrophysiology to record bioelectrical activity of neurons and neuronal net-

works and continuous progress on better imaging technologies. As more brain data has

been gathered from various species more theoretical frameworks have been developed

to understand the data. Due to complexity of the human brain many parallel approaches

are needed in order to understand even the very basics of brain dynamics. The brain op-

erates on various spatial and temporal resolutions which makes intuitive understanding

of brain dynamics extremely difficult and thus mathematical models are needed. In this

work, we will view the brain from a dynamical system point of view, and focus on network

dynamics of individual neurons and populations of neurons.

In more detail, focus will be on a particular type of network models, that is, continuous-

time rate-based Recurrent Neural Networks (RNNs). First RNNs were developed already

several decades ago [1] but interest towards RNNs has been rising due to their high

data representative power and better optimizing techniques [2–4]. In short, optimizing

RNNs means updating connectivity parameters so that the network will produce a desired

response to incoming inputs. RNNs can be seen as a data representation tool and also

as a hypothesis generating tool. For example, a common hypothesis is that the RNNs

can explain how the brain operates during a working memory task, for example see Ref.

[5]. It is up to debate if the RNNs can really offer insight to neuronal mechanisms.

RNNs can be used to model networks where the computational unit is a neuron or net-

works where the computational unit is a population of neurons. Population of neurons can

be modelled as a single computational unit when one makes suitable mean-field approx-

imations. Even networks of mean-field models can be connected recurrently as shown

in Figure 1.1. In this work, focus will be on the networks of neurons and the networks of

populations that are rate-based and recurrent. We will not focus on RNNs that have spa-

tially dependent simulation variables, rather we will only focus on time-dependent RNNs.

Note that many other modelling approaches exist for all the spatial scales shown in Figure

1.1.
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Figure 1.1. A coarse illustration of different spatial scales of modelling. Left to right:
Individual cell components, for example ion channels, can be modelled in numerous ways.
These cell components can be connected together to model a single neuron. Neurons
on the other hand can be joined together to form networks. The network of neurons
can be approximated with one population forming a mean-field model. Here only two
populations are connected, excitatory and inhibitory population, but in general the number
of populations in the mean-field models can vary from 1 to N . The mean-field model can
be used as a base unit for a large scale system. Rate-based RNNs can be used to model
any of these network models. Picture of the ion channel was adapted from Ref. [6].

In order to capitalize RNNs on neuroscientifically interesting computational problems one

should understand the relevance of these models which is the reason why this study was

conducted. The focus will be on examining theoretical motivation behind the RNNs and

briefly analysing the dynamics of RNNs. Most of the RNNs are highly simplified systems

and it is not trivial to understand how much biology is present in these models which is

why the theoretical study is needed. Although we will not focus on the optimization or

learning capacity of these models, we will study the basic properties of the dynamics as

it lays a profound basis for understanding how these systems can learn and memorize

events. The memory of RNNs is closely related to so called neural manifolds which we

shall discuss more in Chapter 2. The dynamics is analyzed with local stability analysis

while the theoretical background is based on several literature sources. Understanding

the theoretical motivation behind the RNNs and the basic stability properties of RNNs lays

a profound foundation for the computational use of RNNs.

The thesis is organized as follows: In Chapter 2 the basics of neuronal modelling will be

discussed and more concise motivation for the stability analysis is given. In Chapter 3

the neurobiological motivation of RNNs will be discussed broadly while Chapters 4 and

5 focus on numerical methods and stability analysis with examples. Finally, the results

of local stability analysis and the implications of theoretical findings will be discussed in

Chapter 6.



3

2. BACKGROUND

2.1 Integrate-and-Fire neuron as low-pass filter

In this section, the characteristics of classical Integrate-and-Fire (IF) neuron are defined

and its response to transient input is briefly studied. Furthermore, an example of recur-

rently coupled spiking network is considered, and a distinction between spiking neural

networks and rate-based neural network will be clarified.

Consider an electrical circuit depicted in Figure 2.1. The libid bilayer of a neuronal cell

membrane can be modelled as a capacitor C and ion channels are defined by a resistor

R and a voltage source E. Parallel to these components is an external input current Ie.

Figure 2.1. An integrate-and-fire neuron adapted from Ref. [7]. The membrane voltage
V depends on the capacitor properties of the cell membrane and on the cell membrane
ion channels. In addition, the membrane voltage is altered by the external input.

Now, considering Kirchhoff’s current law for the current through the capacitor IC = −IR+

Ie and Ohm’s law V − E = RIR, the time evolution of the membrane voltage V can be

written [7] as

C
dV

dt
=

E − V

R
+ Ie ⇔ τ

dV

dt
= E − V +RIe, (2.1)

where τ = RC is the time constant of the system. When V > θ, where θ is a threshold

characteristic for the neuron, then it is said that an action potential is fired, that is, the

cell membrane voltage sharply rises for a small period of time. Then shortly after, the

membrane potential is returned to initial resting potential. Real neurons exhibit the so-
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called Absolute Refractory Period (ARP) after firing an action potential during which the

neuron cannot fire even if a strong enough excitation is presented into the cell. Common

ARP values range from 0 ms to 5 ms. [8]

Next, the effect of transient external input Ie = I cos(ωt) to subthreshold dynamics is

considered. Choosing an integrating factor e
∫︁ t
0

1
τ
dt and solving Eq. (2.1) for V gives

V (t) = e−t/τ

[︃∫︂
et/τ

E +RI cos(ωt)

τ
dt+ c

]︃
= E + e−t/τ

∫︂
et/τ

RI cos(ωt)

τ
dt+

c

et/τ

= E +RI
cos(ωt) + τω sin(ωt)

1 + ω2τ 2
+

c

et/τ

Letting the initial term c/et/τ to decay close to zero and easily seeing that cos(ωt) +

τω sin(ωt) =
√
1 + ω2τ 2 cos(ωt− arctan(ωτ)) leads to

V (t) ≈ E +
RI cos(ωt− arctan(ωτ))√

1 + ω2τ 2
. (2.2)

From Eq. (2.2) it is clear to deduce that the IF neuron acts as a low pass filter because

higher frequency ω leads to diminishing change on the membrane voltage V [7]. This

low pass filtering property of IF neuron is an important observation that is needed later in

Section 3.1.

2.2 Introduction to spiking neural networks

The IF neuron and any other spiking neuron model can be used as a building block for

a recurrently connected network. A straightforward way to formulate a spiking neural

network is to replace the external input Ie with a synaptic input Isyn. Letting Isyn to be

a function of incoming spikes, recurrency is obtained. The incoming spikes are sent by

the other units in the network which are called presynaptic neurons. The neuron that

receives the spikes is called a postsynaptic neuron. There are many ways to define Isyn

depending on the choices a modeller makes. For example, the synaptic input of one unit

in the network can be written as [9]

Isyn(V ) = (Ee − V )Ge
syn(t) + (Ei − V )Gi

syn(t), (2.3a)

G(e,i)
syn (t) = Q(e,i)

N∑︂
n=1

p(n)Θ(t− tsp(n))e
− t−tsp(n)

τsp , (2.3b)

where E(e,i) is the excitatory/inhibitory reversal potential, G(e,i)
syn is the conductance of

excitatory/inhibitory inputs, Q(e,i) is an amplitude, and Θ denotes Heaviside step function.

Here an exponential decay of a spike at time tsp is chosen for depicting attenuation of the
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spike through time. In general case, not all neurons N are directly connected to each

other. On the contrary, p(n) is set to zero for a majority of neurons while p(n) = 1 for the

connected neurons [9].

To conclude, spiking neural networks describe the time evolution of neurons’ membrane

voltages with some connectivity rule that utilizes conductances, for example Eq. (2.3).

From now on, spiking networks will not be considered. Instead, the focus is steered

towards rate-based RNNs. The main difference between these two approaches is the

assumption that all important information is encoded into the rate on which each neuron

fires action potentials rather than the explicit time evolution of neurons’ membrane volt-

ages and exact timing of spikes. This assumption significantly simplifies the calculation of

simulation variable which makes the approach computationally more attractive for tasks

where a complete evolution of membrane voltages is not the priority. In the next section,

rate variables will be defined in order to help a concise description of continuous-time

rate-based RNNs.

2.3 Firing rate of single neuron and activity of population of

neurons

We start by defining a quantity called neural response function ρ(t). The neural response

function simply expresses timing of spikes tsp with the Dirac’s δ function

ρ(t) =
∑︂
n

δ[t− tsp(n)]. (2.4)

With the neural response function ρ(t), a trial averaged firing rate of a single neuron can

be defined as

r(t) =
1

∆tK

K∑︂
k=1

∫︂ t+∆t

t

ρk(t
′)dt′ =

1

∆t

∫︂ t+∆t

t

⟨ρ(t′)⟩dt′, (2.5)

where K is a number of trials, ⟨ρ(t)⟩ is a trial averaged neural response function and the

bin size ∆t is chosen so that a maximum of one spike is present at a trial k. Trials are

assumed to be independent and repeatable.

In addition to the firing rate of a single neuron, we define a firing rate of a population,

which will be referred as an activity. The activity is essentially a trial averaged proportion
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of neurons in the population that are active at the moment t:

a(t) =
1

∆tK

K∑︂
k=1

N∑︂
n=1

nact,k,n(t; ∆t)

N

=
1

N

N∑︂
n=1

1

∆tK

K∑︂
k=1

∫︂ t+∆t

t

ρk,n(t)dt

=
1

N

N∑︂
n=1

rn(t) (2.6)

where nact,k,n(t; ∆t) is the number of spikes occurring during ∆t in a neuron n on a trial

k. Definitions of the firing rate of a single neuron and the activity are adapted from Ref.

[8]. However, contrary to Ref. [8], trial averaging was included also in the definition of the

activity in order to find a connection between the two measurements.

Note that the time bin ∆t can vary greatly leading to large range of frequency values in

Hertz (Hz), which is a desired attribute in experimental regime but can cause a trouble

while building mathematical models for numerical simulations. Therefore, r(t) and a(t)

are usually normalized to get values ranging from 0 to 1.

2.4 Stability of dynamical system

As mentioned in the introduction, RNNs can be viewed as dynamical systems. An im-

portant part of understanding dynamical systems is the stability of a system. Stability is

interesting both from the neuroscience perspective and from the machine learning per-

spective. In this chapter, the importance of stability is clarified, and later in Chapter 5

some stability properties will be demonstrated with examples. Next, the term ’stability’ will

be defined and a few words shall be stated about neural manifolds.

2.4.1 Definition of stability

Stability of the system can refer to many subjects depending on the context, and there-

fore a concise definition of stability is important. When dealing with nonlinear dynamical

systems, two different definitions of stability usually come across: the Lyapunov stability

and the asymptotic stability. In this thesis focus will be on the stability of fixed points, and

the stability of other attractors like limit cycles will not be considered in detail.

A fixed point z∗ of a dynamical system is said to be Lyapunov stable if for every neigh-

borhood L there exists a neighborhood M ⊂ L for which all solutions z(t) starting in

M remains in L for all times t ≥ 0 [10]. Notice that the Lyapunov stability does not re-

quire that z(t) should approach to z∗. In contrast to the Lyapunov stability, the asymptotic

stability is more stringent condition. When L can be chosen so that |z(t) − z∗| → 0 as
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t → ∞ for all z(0) ∈ L, then z∗ is said to be asymptotically stable [10]. If L contains

all the initial conditions z(0) that lead to z∗, then L is called a basin of attraction. In this

thesis, we are not interested in the Lyapunov stability.

More complicated definitions relate to the limit cycle. The limit cycle can be defined as

an isolated periodic orbit, and sometimes the isolation is not included in the definition

[10]. The isolated orbit here means that there is no other closed trajectory in the close

neighborhood of the solution. Depending on the definition it might be difficult to show that

the limit cycle exists. The existence of a limit cycle can be proved in a two-dimensional

system for example with the Poincaré-Bendixson theorem [10], but in n-dimensional sys-

tems proving the existence of a limit cycle is a notorious task especially if the isolation is

required. Therefore, as we will later on refer to a limit cycle, we will neglect the isolation

property.

A numerical stability is other form of stability that is present when working with computa-

tional models. The numerical stability refers to instabilities that arise from computational

inaccuracies. For example, in a chaotic regime of a dynamical system small deviations

on initial conditions may lead to unpredictable results. Therefore, the system can become

unstable due to insufficient numerical accuracy. The numerical stability will not be dis-

cussed in this thesis. Instead, focus will be on the local asymptotic stability of fixed points

which will be referred simply as stability or local stability.

2.4.2 Motivation for local stability analysis

An ongoing trend in neuroscience is to understand population activities in terms of man-

ifolds. Neural manifolds are low-dimensional objects that consist of a set of continuous

points. In this context, the low dimensionality refers to decreased dimensionality of an

original state space. It is argued that the neural manifolds can reveal fundamental circuit

mechanisms accounting how a brain operates during a given task. [11]

The asymptotic stability and the Lyapunov stability are closely linked to neural manifolds.

Given a high-dimensional space, perturbations in this space should quickly approach

to values defined in the neural manifold [11]. In other words, the neural manifold has

to act as a low-dimensional attractor. This attractor can be understood as an interplay

between stable and unstable fixed points [12]. Therefore, in the perspective of RNNs,

local stability analysis of the system remains intriguing. The dynamics of trained RNNs

can be understood by studying fixed points and so-called slow points that behave similarly

to the fixed points [13]. With the approach from Ref. [13] one can find neural manifolds

contained in a high-dimensional state space.

The other motivating factor for studying the local stability of RNNs is the impact on a

learning capability of RNNs. Despite the most RNNs are simple by their architecture, they
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can produce versatile dynamics [14]. These dynamics include oscillatory and chaotic

regimes. In some cases chaotic regime weakens the predictive power of RNN especially

when the time scale is long. By developing tailored learning methods, one can limit exis-

tence of chaotic regimes as done for example in Ref. [4]. Now, we will move forward and

start inspecting theoretical background of the most typical RNNs from the neuroscience

perspective, and later in Chapters 4 and 5 the asymptotic stability will be discussed.
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3. RECURRENT NEURAL NETWORKS

3.1 Derivation of RNNs

In this chapter, continuous-time RNNs will be defined using an approach from Ref. [7].

The derivation below is divided into two parts. In the first part it is shown how presynaptic

firing rates are connected to a synaptic current at the soma of postsynaptic neuron, and

in the second part the postsynaptic current is connected to the postsynaptic firing rate to

complete the model architecture.

Postsynaptic current

Consider a network with computational units described by their firing rates v and r cor-

responding to input and output firing rates, respectively (Figure 3.1). Neurons used here

are point neurons meaning that they have no spatial structure. Therefore, the term ’soma’

(that is the body of a neuron) will be used to mitigate any time lag between synaptic and

somatic current that would be present in real neurons. Here the time lag is assumed to

be zero and therefore the synaptic currents and the somatic currents are the same. For

simplicity, assume only one output neuron.

wi1

wi2

wij

wiN

1

2

j

N

i

rv

wii

Figure 3.1. Inputs to a single postsynaptic neuron shown in green from N presynaptic
neurons shown in orange. The presynaptic neurons have firing rates v and the postsy-
naptic neuron has a firing rate r. In general, there can be many postsynaptic neurons. The
connection parameter wij describes the strength of the connection between two neurons.

First, we need to define a quantity which connects a presynaptic spike train to a postsy-
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naptic current in the soma of the output unit. We call this quantity as the synaptic kernel

Ks(t). The synaptic kernel defined here accounts both for presynaptic and postsynaptic

active and passive properties. For our approach, we can choose the synaptic kernel to be

a simple decaying exponential as we are not interested in neurons’ fine spatial dynamics

nor detailed conductance changes in synapses. [7]

Now, assuming that the action potentials are independent of each other, the total synaptic

current from one presynapse j over time t is [7]

Iij = wij

∑︂
tsp<t

Ks(t− tsp) = wij

∫︂ t

0

Ks(t− t′)ρ(t′)dt′, (3.1)

where tsp > 0 s is a timing of a spike and wij is the synaptic weight between the presy-

napse j and the postsynapse i. The neural response function ρ(t) describes the spike

train at the synapse. Notice that here was assumed that only one synapse connects two

neurons, or equivalently all synapses from j to i are modelled with a single connection

parameter.

Because we are interested in a continuous type model, the spike train will be replaced by

a firing rate vj(t). The replacement can be done without a great harm if the trial-to-trial

variation of ρ(t) is small. The variation is small when the number of presynapses is high

and the presynaptic spikes are uncorrelated [7]. This is generally a good approximation

but if presynaptic neurons fire synchronously, then the firing rate model will be insufficient

to model all phenomenons in the network.

Next, summing all inputs gives

Ii =
N∑︂
j=1

wij

∫︂ t

0

Ks(t− t′)vj(t
′)dt′.

Note that j = 1, 2, ...i, ..., N , which means that a direct feedback is allowed. Now, choos-

ing the normalized exponential function Ks(t) = exp(−t/τs)/τs with a synaptic time
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constant τs and taking time derivative using Leibniz integral rule [15] gives

dIi
dt

=
N∑︂
j=1

wij
d

dt

∫︂ t

0

Ks(t− t′)vj(t
′)dt′

=
N∑︂
j=1

wij

[︃
vj(t)Ks(t− t)

d

dt
t+

∫︂ t

0

∂

∂t
Ks(t− t′)vj(t

′)dt′
]︃

=
N∑︂
j=1

wij
vj(t)

τs
+

N∑︂
j=1

wij

∫︂ t

0

(− 1

τ 2s
)e

−(t−t′)
τs vj(t

′)dt′

=
N∑︂
j=1

wij
vj(t)

τs
− Ii

τs
. (3.2)

Eq. (3.2) now describes the time evolution of postsynaptic current at the soma with re-

spect to presynaptic firing rates. For more lucid description, vectors and dot product may

be used:

τs
dIi
dt

= −Ii + w · v.

Usually, it is convenient to break the dot product w · v to the recurrent connections and to

the feedforward connections:

τs
dIi
dt

= −Ii + wrec · vrec + wf · vf . (3.3)

An illustrative scheme is shown in Figure 3.2. Splitting the dot product into two parts

enables including an external input by reinterpreting the feedforward inputs wf · vf as

the external input wext · rext. The external input is vastly used in many computational

modelling schemes and can be time-independent or vary in time. Therefore, even if the

external inputs are written as rext, the external inputs are still dependent on time if not

otherwise mentioned.

wi1

wi2

wij

wiN

1

2

j

N

i

wii

Figure 3.2. A schematic illustration of a network with feedforward and recurrent con-
nections. Orange nodes have only feedforward connections and green nodes have also
recurrent connections.

All synaptic currents in the network can be presented succinctly by a vector of currents.

If N is the number of neurons in the network, then the dot products have to be calculated
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N times. Therefore, the vector wrec is replaced by a recurrent connectivity matrix Wrec

and wext is replaced with a matrix Wext. Thus, assuming the synaptic time constants are

same for every neuron, the synaptic currents are

τs
dI
dt

= −I + Wrecvrec + Wextrext. (3.4)

To complete the formulation of the RNNs the connection between the postsynaptic cur-

rents and the postsynaptic firing rates will be considered.

From postsynaptic current to postsynaptic firing rate

Next, the connection between the postsynaptic current and the postsynaptic firing rate

need to be defined. The simplest assumption is that the postsynaptic firing rate follows

changes of the postsynaptic current instantaneously [7]. Therefore, the postsynaptic fir-

ing rate can be obtained simply by applying a so-called activation function (or a transfer

function or a gain function) f to the postsynaptic current. Typical activation functions

are linear functions with a threshold or saturating functions like a sigmoid function [7].

Nevertheless, the firing rate r = f [I(t)] should be non-negative for all values of I(t).

The assumption on instantaneous nature of the connection between the postsynaptic

current and the postsynaptic firing rate might not be always appropriate to make. Other

approach is to couple the postsynaptic current and the firing rate with the following Ordi-

nary Differential Equation (ODE) [7]

τr
dri
dt

= −ri + f [Ii(t)] or τr
dr
dt

= −r + f[I(t)]. (3.5)

Eq. (3.5) is motivated by an observation that the membrane potential of the IF neuron is

low pass filtered version of the injected current when the current is sinusoidal as shown

in Section 2.1. Finally, the RNN can be fully defined with Eq. (3.4) and Eq. (3.5) after

deciding that output firing rates r corresponds to firing rates of recurrent units vrec. Then

one gets a pair of ODEs:

τr
dr
dt

= −r + f(I(t)) (3.6a)

τs
dI
dt

= −I + Wrecr + Wextrext. (3.6b)

However, simplified versions are usually preferred and can be obtained by comparing the

synaptic time constant τs and the firing rate time constant τr [7]. If the time constant τr is

small, then the firing rate approaches its steady state value fast when the synaptic current

is constant. Especially, if τr << τs, then Eq (3.5) quickly approaches to the steady state
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value r(t) = f[I(t)] and Eq. (3.6) simplifies to an additive system

τs
dI
dt

= −I + Wrecf(I) + Wextrext, r(t) = f[I(t)]. (3.7)

As a note, the additive system is popularly known as the continuous-time Hopfield system

[16]. However, the additive system was studied by Grossberg and Cohen [17] before

Hopfield, which is the reason why Eq. (3.7) will be referred simply as the additive system

in this thesis.

Continuing, if τs << τr, that is when the low pass filtering dynamics are relevant, then Eq

(3.4) clearly approaches to

I = Wrecr + Wextrext (3.8)

assuming the time variation of external inputs do not disrupt the steady state which will

be generally assumed. This approximation simplifies the recurrent dynamics to

τr
dr
dt

= −r + f(Wrecr + Wextrext). (3.9)

The above system will be referred as the Wilson-Cowan system later on. Reason for the

name ’Wilson-Cowan’ will be further clarified in Section 3.2.

Here I additionally want to point out that in some sources [18, 19] Eq. (3.7) and Eq.

(3.9) are shown to be mathematically equal when the condition Eq. (3.8) is satisfied.

However, as shown above, such assumption only holds when τs << τr. Therefore, it

is not meaningful to make such an assumption and the systems in Eq. (3.7) and Eq.

(3.9) should not be considered to be the same. However, later in Section 5.2 it is shown

that these two models have same fixed points and their asymptotic stability is the same

on those hyperbolic fixed points. This can be intuitively understood by noting that the

additive system will satisfy Eq. (3.8) when it is on a fixed point thus making the systems

same in this special case.

Biological relevance of additive model and Wilson-Cowan model

The additive system and the Wilson-Cowan system can be derived with different assump-

tions to those that were used here. Ermentrout’s approach [20] is based on separating

the properties of the synaptic kernel in the presynaptic properties and in the postsy-

naptic properties. This separation essentially leads to same equations as derived here,

although the time constants are interpreted in a different way. In fact, the synaptic ker-

nel is interpreted as a postsynaptic potential which is a different approach than taken

here. Interpreting the synaptic kernel as a postsynaptic potential leads to different sim-

ulation variable. Instead of postsynaptic currents one simulates postsynaptic membrane

voltages. Therefore, the additive system is called as the voltage-based system in many
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sources. Also probably due to this discrepancy on the synaptic kernel, the simulation vari-

able in the additive system is sometimes called as ’activity’ that is not connected to the

definition of activity in Eq. (2.6). The ’activity’ in this sense just models abstract internal

state of a neuron and not any physical quantity. Because of the ambiguity of the synaptic

kernel, it is not always clear how the additive system should be interpreted in a biological

context.

Models in Eq. (3.7) and Eq. (3.9) are used in different modelling schemes and it is not al-

ways clear what formalism should be preferred. Some insight can be found from [7] while

arguably the additive system is more modern and has been more used in the literature

[21]. It is up for debate if the low pass filtering is really needed as the synaptic currents

already lag behind the presynaptic firing rates. In addition, the IF neurons’ response to a

step current is fairly rapid [8].

The synaptic kernel, which was chosen to be a simple decaying exponential, could explain

why an additional low pass filtering is needed in some cases. Alternatively, one could

choose more complex synaptic kernel such as

Ks(t) = x(t)u(t)
e−t/τs

τs
, (3.10)

where x(t) and u(t) refer to the synaptic depression and facilitation, respectively, accord-

ing to the Tsodyks-Markram dynamics [22]. Other synaptic plasticity rules can be used

too. In short, the synaptic plasticity refers to the local adaptation of the synaptic strength.

Choosing the synaptic kernel in Eq. (3.10) will lead to more complex network model. For

example, in the article by Barak and Tsodyks such a model was derived and studied for

populations of neurons [23].

The other source of ambiguity is the synaptic weight parameter that is not strictly based

on any particular mechanism in the synapse. However, it is possible to modify Wrec

so that it accounts for general connectivity paradigms. According to commonly known

Dale’s principle connections from a neuron to other neurons should be either excitatory

or inhibitory. In practice this means constraining each column of Wrec to be either fully

positive or fully negative. Other constraints can be also used, for example the proportion

of excitatory and inhibitory connections allowed in Wrec. Commonly the partition 20/80 %

(inhibitory/excitatory) is used. [24]

Generalization to population models

So far we have considered models with computational units being neurons. However,

limiting to such models is computationally expensive as every neuron has to be modelled

explicitly. Alternatively, when a network of neurons is large, population models are pre-

ferred. Arguably, also the assumption we made in Section 3.1 about independency of
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spike times is better satisfied on a large scale, especially on Asynchronous Irregular (AI)

regime where population firing rates tend to be low. Generalization from the cell based

RNNs can be easily done by loosely following formalisation presented in Ref. [23].

Consider the ODE Eq. (3.6b) on a unit form:

τs
dIi
dt

= −Ii +
N∑︂
j=1

wijrj +
N ′∑︂

ext=1

wi,extrext. (3.11)

Now, consider that recurrent (external input) net of neurons is divided to P (P ′) popu-

lations that each has different intrinsic attributes. Neurons in a one population tend to

be similar but neurons between the populations are fundamentally different. For exam-

ple, inhibitory and excitatory neurons are usually separated into different populations [25].

For generality, assume that the neuron i belongs to a population α. Without losing any

information Eq. (3.11) can be written as

τs
dIi
dt

= −Ii +
P∑︂

µ=1

Nµ∑︂
j∈µ

wijrj +
P ′∑︂

µ′=1

Nµ′∑︂
ext∈µ′

wi,extrext,

where µ is a population index and Nµ is the number of neurons in that population. Next,

approximate sums
∑︁Nµ

j∈µwijrj and
∑︁Nµ′

ext∈µ′ wi,extrext with the average population statis-

tics. Thus, we write with remembering the definition of the activity (Eq. (2.6))

τs
dIi
dt

≈ −Ii +
P∑︂

µ=1

⟨Nµ⟩wiµaµ +
P ′∑︂

µ′=1

⟨Nµ′⟩wiµ′aµ′ , (3.12)

where ⟨Nµ⟩ is the average number of connections within the population µ, wiµ is the

average connection strength from the population µ to the neuron i, and aµ is the average

firing rate of the population, i.e. the activity. For convenience, ⟨N(µ,µ′)⟩ will be included into

the weight parameter [23]. This is generally a good procedure as estimating exact number

of neurons on specific populations can be cumbersome, and the same information can

be more easily expressed with one parameter.

Now, summing Eq. (3.12) over each neuron in the population α gives

Iα =
Nα∑︂
i=1

Ii,

τs
dIα
dt

= −Iα +
P∑︂

µ=1

Nα∑︂
i=1

wiµaµ +
P ′∑︂

µ′=1

Nα∑︂
i=1

wiµ′aµ′ ,

where Iα is the total current coming to the population α. Again, by approximating the
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sums
∑︁Nα

i=1wiµ and
∑︁Nα

i=1 wiµ′ one gets

τs
dIα
dt

≈ −Iα +
P∑︂

µ=1

⟨Nαµ⟩wαµaµ +
P ′∑︂

µ′=1

⟨Nαµ′⟩wαµ′aµ′ , (3.13)

where ⟨Nαµ⟩ and ⟨Nαµ′⟩ are the estimated number of connections between the popu-

lations. Final step is to include ⟨Nx,x⟩ in a weight parameter wxx as done previously.

With this fix, recurrently connected populations have exactly same equational form as

recurrently connected neurons:

τs
dI
dt

= −I + Wreca + Wextaext, a = f[I(t)], (3.14)

when the activities follow populations’ total currents instantaneously and

τa
da
dt

= −a + f(Wreca + Wextaext) (3.15)

when the activities are low pass filtered. Note that here Wrec, Wext and I are different than

in Eq. (3.6) although the same symbols are used.

When such assumptions on similarity of neurons on a specific population can be made,

the number of computational units can be dramatically decreased. For example, if 1000

neurons are to be simulated, instead of simulating each neuron independently, ten pop-

ulations size of 100 neurons can be simulated if the neurons are roughly characterized

with ten different groups. In many modelling tasks this is implicitly assumed as an ex-

perimental recording accuracy might only support recording a firing rate of a group of

neurons.

We have showed here how recurrently connected network models can be derived assum-

ing independency of spike times and a simple exponential synaptic kernel. The approach

[7] which we followed has some caveats; namely neglecting the ARP and not concerning

second order moment statistics, that is, the variance of the firing rate. In the next chapter,

it is shown how the ARP can be incorporated into the RNNs, and later in Section 3.4 the

issue with higher order moment statistics will be discussed.

3.2 Original Wilson-Cowan model

In the last chapter population models were derived after forming RNNs that have a single

neuron as the computational unit. Alternative approach is to consider a population as the

computational unit right away. Wilson and Cowan derived a population model consisting

two recurrently connected populations, from which one is inhibitory and the other is exci-

tatory [25]. The Wilson-Cowan model is considered to be the first population model that

included time-evolution of both excitatory and inhibitory populations leading to versatile
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dynamics, and therefore its contribution to the field is undisputed.

Wilson and Cowan assumed that the activity of the neural network at time t + τ can

be defined by the proportion of sensitive neurons in the population at time t and by the

proportion of neurons that receive excitation exceeding an action potential firing threshold

per unit time. The sensitivity of neurons refers to the ARP denoted by tr after an action

potential during which neurons cannot be excited. These two conditions are assumed to

be independent of each other thus giving the activity of the excitatory population [25]

ae(t+ τ) = [1−
∫︂ t

t−tr

ae(t
′)dt′]f [I(t)], (3.16)

where
∫︁ t

t−tr
ae(t

′)dt′ is the fraction of neurons on the refractory period and f [I(t)] is

population’s response function, that is the activation function. The activation function is

defined as

f [I(t)] =

∫︂ I(t)

0

D(θ)dθ,

where D(θ) is a distribution function describing different thresholds in the population and

I(t) is the average excitation coming to the population [25]. Assuming that D(θ) is uni-

modal, f(I) can be simply taken to be a sigmoid-like function. At this point we do not have

tools to define the response function in more detail. However, a recent semi-analytic ap-

proach can bring more clarity on this important nonlinearity [26], which will be discussed

more in Section 3.4.

Similar to Eq. (3.1), the average excitation can be reasoned to be sum of incoming

activities with the exponentially decaying synaptic kernel Ks(t−t′). As Wilson and Cowan

explicitly considered the system of one inhibitory and one excitatory population, Eq. (3.16)

takes the form

ae(t+ τ) = [1−
∫︂ t

t−tr

ae(t
′)dt′]

× f

(︃∫︂ t

−∞
Ks(t− t′) [weeae(t

′) + weiai(t
′) + we,extae,ext(t

′)] dt′
)︃
. (3.17)

Here wee is a positive connection weight from the excitatory population to itself and wei is

a negative connection weight from the inhibitory population to the excitatory population.

For the inhibitory population ai, one could write similar equation. The final step is to

approximate the dynamics over a small time interval. Applying temporal coarse graining
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one finds the following approximations [25]:∫︂ t

t−tr

ae(t
′)dt′ ≈ traē(t) and∫︂ t

−∞
Ks(t− t′)wyzaz(t

′)dt′ ≈ kwyzaz̄(t).

When τ is small applying Euler’s discretization leads to a pair of equations which is known

as the original Wilson-Cowan model [25]:

τ
dae
dt

= −ae + (1− trae)f(weeae + weiai + we,extae,ext), (3.18a)

τ
dai
dt

= −ai + (1− trai)f(wieae + wiiai + wi,extai,ext). (3.18b)

For simplicity, the constant k was included in the definition of w and bars denoting tempo-

ral coarse graining were removed. In fact, the temporally coarse grained version of activity

responses better to the definition in Eq. (2.6) as it was defined through experimental set-

tings. In addition, note that the activities were defined as per unit time in Ref. [25], which

means that the activities can be also seen as probabilities as they are limited from 0 to 1

Hz. In practice, the maximal frequency can be changed by scaling the activation function.

Note that Eq. (3.18) does not consider spatial dynamics of the populations. Instead, it is

assumed that the time spent on sending and receiving action potentials through spatial

interactions in the populations is not considerable important factor that would dominate

the dynamics. In the proceeding work of Wilson and Cowan [27] spatial relations were

considered in addition to the temporal evolution of the activity. However, the model from

Ref. [27] is not in the scope of interest so it will not be covered here. Contrary, we will con-

tinue to examine the original Wilson-Cowan model and generalize it to fit the formulation

used in Section 3.1.

Original Wilson-Cowan model with several populations

Instead of explicitly dividing a mass of neurons into two subpopulations (excitatory and

inhibitory) one can think N populations that are either excitatory or inhibitory. This makes

modelling work flow more flexible and can expand the use of the model to larger amount

of neurons.

Considering N recurrent populations leads to a general form

τa
daj
dt

= −aj + (1− traj)f(
N∑︂
k=1

wjkak +
E∑︂

ext=1

wj,extaext) (3.19)
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or with the matrix notation

τa
da
dt

= −a + (1− tra)f(Wreca + Wextaext). (3.20)

Here it is easy to see that Eq. (3.20) is exactly the same as Eq. (3.15) when the ARP is

set to zero. This is in align with the Poisson spike train assumption made in Section 3.1

which neglects the ARP.

3.3 Grossberg’s formulation

The previous definitions of RNNs can be found from a few distinct sources. Namely,

Grossberg developed such models early on in the late 60’s and early 70’s (see for example

Ref. [28] amongst others collected in Ref. [1]). Grossberg named Eq. (3.7) as the additive

Short-Term Memory (STM), while the Wilson-Cowan model is closely related to a shunting

STM model [1]

daj
dt

= −Ajaj + (Bj − aj)[
N∑︂
k=1

fk(ak)Cjkw
+
jk + I+ext]

− (Dj + aj)[
N∑︂
k=1

gk(ak)Ejkw
−
jk + I−ext], (3.21)

where A− E are constants with no particular physical meaning, fk and gk are activation

functions, and w+ and w− are positively valued Long-Term Memory (LTM) traces. These

LTM traces are adaptive weights that may evolve through time with respect to learning [1].

Nowadays, instead of using Hebbian learning [29], the LTM traces are usually interpreted

simply as trainable weight parameters. The second term in Eq. (3.21) describes positive

connections while the third term describes inhibitory connections. I+ext and I−ext describe

external inputs in a general level. The model is called the shunting STM because the

external inputs are multiplied with the activity. Therefore, an automatic gain control is

included in the model.

By setting B = C = D = E = 1 and A = 1/τa and considering the same activation

function for each unit, Eq. (3.21) simplifies to

daj
dt

= − 1

τa
aj + (1− aj)[

2N∑︂
k=1

wjkf(ak) +
E∑︂

ext=1

wj,extaext], (3.22)

which is somewhat a mix of the additive system and the original Wilson-Cowan system

with tr = 1. However, the shunting system has not been used widely, and therefore will

not be considered in more detail.

Grossberg’s methods differ greatly from the approach of Dayan and Abbott and from the
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approach of Wilson and Cowan. Grossberg approaches RNNs as psychological ma-

chines that evolve through time. Therefore, the early derivation of STM models by Gross-

berg follows psychological guidelines rather than physiological constraints [28]. Despite

different approaches the results stand very similar, which underlies applicability of the

RNNs on various workflows.

3.4 Alternative approach: master equation formalism

As shown in Section 3.1 and Section 3.2, the typical RNNs only include the first order

moment statistics. However, recent developments in the field aims to create mean-field

models that are more detailed and biologically more fascinating. In the work of El Bous-

tani and Destexhe [30] a new population model is derived based on the Markov property.

Briefly, it is assumed that during a time step τ a network of neurons can emit a maximum

of one spike, and the probability for emitting the spike is only depended on the current

state of the network. Therefore, choosing an appropriate time step τ is crucial for this ap-

proach. Arguably, choosing the AI state as modelled target state is biologically meaningful

as it is reported in adult mammalian awake cortical states [31], thus leading to τ = 20ms

as 1/τ gives the maximum activity of neurons [9].

Skipping all arduous derivation, that is present with this stochastic approach, one arrives

with a set of mean-field equations [30]

τ
da
dt

=− a + f +
1

2
⟨C,Hf⟩F , (3.23a)

τ
dcjk
dt

=− 2cjk + δjk
fj(1/τ − fj)

nj

+ (fj − aj)(fk − ak)

+
N∑︂
i=1

cki
∂fj
∂ai

+
N∑︂
i=1

cji
∂fk
∂ai

(3.23b)

where ⟨C,Hf⟩F is a vector valued Frobenius inner product of the covariance matrix C and

Hessian matrix Hf of the activation functions f with respect to activities ajk. δ denotes

Kronecker delta and nj is the number of neurons is a population j. The time evolution

of covariance terms is described by the second equation. Here we immediately see that

when the covariances are not concerned, then Eq. (3.23) simplifies to the Wilson-Cowan

system.

An important difference here to other models is the definition of the activation functions

f. Previously f was said to be a vector of linear functions with thresholds or a vector

of sigmoid-like functions, and f was assumed to be same for every unit in the network.

Now, however, f is estimated more carefully from the underlying network and is different

for each population. In more detail, a user of the model chooses a spiking neural network
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on which the estimation of f is based on. In a general form, f is defined as [26]

f =
1

2τV
erfc(

V eff
thr − µV√

2σV

), (3.24)

where erfc(·) is a complementary Gaussian error function, τV is population’s average

autocorrelation time, µV is the average membrane voltage, and σV its standard deviation.

Each statistical term can be expressed in terms of populations’ activities [9]. Effective

action potential firing threshold V eff
thr is estimated from the underlying single cell model

through a parameter fitting procedure [26]. There is no limitations on which spiking model

the mean-field model is based on as long as the activation functions can be estimated

(see Ref. [9] for various models).

Important consequence of this model fitting procedure is that there is not anymore a con-

nectivity matrix to learn. Instead, all parameters are bound to the underlying properties

of the spiking neural network. However, the mean-field models can be recurrently con-

nected when simulating a large scale dynamics, that is, dynamics of the whole brain or

brain areas. With this approach the network architecture is usually combination of recur-

rently connected subpopulations. This means that one population is described usually by

one excitatory and one inhibitory subpopulation, so that a=[ae ai]T describes one popula-

tion, and then populations are connected together with connection weights. In principle,

these connection weights can be trained. However, depending on the research question

connection weights might be evaluated in some other way, for example see Ref. [23]. As

a conclusion, use cases of Eq. (3.23) remains open and therefore it will not be studied

further here. Instead, the focus of local stability analysis will be on the additive system

and on the Wilson-Cowan system.
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4. METHODS

The additive system (Eq. (3.7) or Eq. (3.14)) and the Wilson-Cowan system (Eq. (3.9)

or Eq. (3.15)) will be analyzed in Chapter 5. In this chapter, methods are described for

numerical simulations and for local stability analysis.

4.1 Simulations

The additive system and the Wilson-Cowan system can be solved as an initial value prob-

lem. In short, a nonlinear dynamical system can be presented as ODEs of the general

form
dz(t)
dt

= g(z(t), rext(t), t,W), (4.1)

where g(z(t), rext(t), t,W) : RN → RN is a vector of functions, W refers to parameters,

rext(t) is time varying external inputs and z(t) is the vector of simulation variables to

be solved through time. Eq. (4.1) can be solved through time given initial values z(0).

Different values for z(0) were used depending on the simulation (see Section 5.3).

The simulations were carried out with MATLAB R2020b. Differential equations were

solved with ode45 solver that uses the Dormand-Prince method [32]. The Dormand-

Prince method is an explicit adaptive step size method that is commonly used for solving

nonstiff ODEs. The default relative error tolerance 1e-3 and the absolute error tolerance

1e-6 were used.

4.2 Finding fixed points

Finding fixed points starts by setting da
dt

= 0 (or dI
dt
= 0). For example, the two dimensional

Wilson-Cowan system with a non-zero ARP becomes:

ai =
f−1( ae

1−trae
)− weeae − we,extae,ext

wei

, (4.2a)

ae =
f−1( ai

1−trai
)− wiiai − wi,extai,ext

wie

, (4.2b)

where f−1 is the inverse of the activation function f assuming that f is invertible. Clearly,

even with only a two dimensional system, analytical solutions are hard to find.
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Luckily, fixed points can be found with numerical solvers. Used numerical solvers were

vpasolve and fsolve. Both methods return only a one solution per initialization so many

initial guesses are needed. The number of initial guesses was varied from hundreds to

thousands. Both solvers gave the same results. However, fsolve provides more tools

to adjust numerical accuracy why it was favoured. Default algorithm ’trust-region-dogleg’

was used with the relative function tolerance, the relative step tolerance and the absolute

optimality tolerance each set to 1e-9.

4.3 Linearization

In order to study the asymptotic stability of fixed points linearization is needed. According

to the Hartman-Grobman theorem [33] a nonlinear system and a linearized system in a

small neighborhood of a hyperbolic equilibrium are topologically equivalent. The hyper-

bolic equilibrium is a fixed point with eigenvalues λ that have non-zero real parts, and

the topological equivalence loosely means that the flow of the linearized system and the

flow of the nonlinear system (here a or I) can be mapped to each other without losing a

direction of time [10]. Therefore, the previous statement implies that if all the eigenvalues

of a linearized system’s Jacobian matrix evaluated at a fixed point have a non-zero real

part, then the local stability of the nonlinear system can be understood by linearizing the

nonlinear system.

In more detail, ODEs should be linearized around fixed points, and then eigenvalues of

the Jacobian matrix evaluated at the fixed points should be inspected. The following rules

apply for a fixed point with eigenvalues λ [7]:

• If ∀λ,ℜ(λ) < 0, then the fixed point is stable.

• If ∀λ,ℜ(λ) > 0, then the fixed point is unstable.

• If ∃λ,ℜ(λ) < 0 and ∃λ,ℜ(λ) > 0 and ∀λ,ℜ(λ) ̸= 0, then the fixed point is saddle.

• If ∃λ,ℜ(λ) = 0, then nonlinear terms define stability of the fixed point and therefore

linearization of the fixed point will not guarantee qualitatively correct results.

• If ∃λ,ℑ(λ) ̸= 0, then the fixed point has an oscillatory behaviour.

With these rules the asymptotic stability can be understood. We will refer to these rules

later in Section 5.3.
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5. LOCAL STABILITY ANALYSIS

5.1 Fixed points of two-dimensional system and learning

Stability of a two-dimensional system can be analysed with phase planes [7, 25]. As an

example, the phase plane of Eq. (3.18) is shown in Figure 5.1. The vector field in the

figure is obtained by calculating the time derivatives of a at multiple values with t = 0.

Fixed points are found by setting da
dt

= 0 and solving for a numerically as described

in Section 4.2. The fixed points can be also visually found on the intersections of the

nullclines (Eq. (4.2)).
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Figure 5.1. Phase plane and nullclines (Eq. (4.2)) of the two dimensional Wilson-Cowan
system with a non-zero ARP (see Eq. (3.18)). Stability of the fixed points was solved from
eigenvalues of the Jacobian matrix evaluated at fixed points. Parameter values used in
the simulation were: wee = 6.5, wei = −4, wie = 0.8, wii = −2, tr = 2 ms and τ = 10
ms. External inputs and external input weights were replaced with constant values -1.5
Hz and 0 Hz, excitatory and inhibitory, respectively. Activation function was chosen to be
a sigmoid function f = 1

1+e−x . The code to reproduce this figure is given at Appendix B.
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Stability of the fixed points can be qualitatively understood by studying the vector field.

Vectors tend to get smaller near the fixed points implicating the speed of change is getting

slow. From the direction of the vectors one can deduce that given initial values a(0), the

result collapses on either stable fixed point when time passes on. Clearly, from Figure

5.1 it can be seen that the middle fixed point is attracting in a one dimension while being

repulsive on the other dimension. Therefore, it is a saddle point.

In such parameter regime where multiple stable fixed points exist, consistent initialization

of activities is important. For example, if the system shown in Figure 5.1 is used for a

classification task, random initialization of activities a(0) could result to misclassification.

More formally, such set of initial values that drive dynamics to a stable fixed point is called

the basin of attraction, and when the activities are initialized outside of the target basin of

attraction, then misclassification may occur.

When a stable fixed point or multiple stable fixed points exist in a system, the system

can be used as a learning machine. Different external inputs, representing for example

images, will lead to different fixed points. These fixed points can be memorized and

labeled. When a new external input is introduced into the system, a new fixed point is

found. By calculating the smallest error between the new fixed point and old fixed points,

we can label the new data. If we know that the result we obtained was wrong, we can

adjust the synaptic weights so that the system will produce the correct result. This is

generally known as a supervised learning. As an example, the system in Figure 5.1

could be taught to memorize a binary cognitive selection task from electrophysiological

measurements. As a more concrete example, in Ref. [34] recordings from the prefrontal

cortex of two macaque monkeys were used to train the additive system to discriminate

between the motion and the colour of a random-dot visual stimulus.

While the phase planes provide a good intuition on how systems behave, more advanced

methods are needed when dimensionality of a system is high. In the next sections, be-

haviour of RNNs will be studied with the linearization around a hyperbolic fixed point.

5.2 Local stability of N-dimensional RNNs

Next, we will focus on the local stability of the additive system and the Wilson-Cowan

system with the ARP set to zero. The ARP is set to zero because models with the ARP

having other value than zero have seen hardly any use in modern computational tasks.

If it is assumed that external inputs rext(t) are time-invariant and initial values are in a

basin of some attracting stable fixed point, then systems in Eq. (3.7) and Eq. (3.9) will

eventually reach to a steady state solution. One can find the steady state solutions and

other fixed points by setting dr
dt
= 0. For the Wilson-Cowan system (3.9) one finds that

r = f(Wrecr + Wextrext) (5.1)
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and for the additive system

I = Wrecf(I) + Wextrext. (5.2)

Recapitulating that for the additive system rj = f [Ij(t)] holds true one can see that Eq.

(5.1) and Eq. (5.2) are equivalent. Therefore, locations of the fixed points are the same

for both systems.

To solve for Jacobians, one can calculate few elements of it and easily see the general

form (see Appendix A for details). For the additive system one finds that

Jadd = −P + WrecΦadd,

Φadd,j = f ′[Ij(t)],

where P is N × N identity matrix and Φadd is a diagonal matrix consisting of derivatives

of activation functions. The Jacobian matrix for the Wilson-Cowan system is given as

JWC = −P + WrecΦWC ,

ΦWC,j = f ′

[︄
N∑︂
k=1

wjkrk(t) +
N ′∑︂

ext=1

wj,extrext(t)

]︄
.

Although the Jacobians may seem as different at the first glance, they are the same when

evaluated at the fixed points. This can be easily seen by inserting Eq. (5.2) into the

Jacobian of the additive system. Because the Jacobians are the same when evaluated

on the fixed point, the asymptotic stability near the hyperbolic fixed point is qualitatively

same between the models (see Section 4.3). If external inputs are time-invariant, it is

likely that the additive system and the Wilson-Cowan system will reach a stable steady

state. Because of these circumstances the additive system and the Wilson-Cowan system

evolve similarly through time when external inputs are time-invariant.

5.3 Five-dimensional example

As a demonstration of the RNNs dynamics, networks with 5 units receiving time-invariant

external inputs were simulated with respect to time. Both systems have the same con-

nectivity matrix

Wrec =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0829 −0.0029 0.1351 0.0774 −0.0966

0.2379 −0.2140 0.2123 0.2141 −0.3315

0.1369 0.1456 −0.0858 0.1542 0.2402

0.1721 −0.2237 −0.0644 0.1274 0.1631

0.0096 −0.2021 −0.1910 0.1389 −0.1448

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and the external inputs

Wextrext =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.4

1.0

−3.5

0.7

1.2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
while the activation function was chosen to be

f(x) = γ(tanh(x− 2) + 1), (5.4)

for both models. Here γ = 25 Hz so that activity is scaled from 0 Hz to 50 Hz. The neu-

roscientific motivation for choosing such an activation function is to consider the maximal

activity, and the activity when zero input is present.

The derivative of the activation function is

df(x)

dx
= γsech2(x− 2)

and therefore the Jacobian evaluated at the fixed point I* is

J = −P + WrecΦ, (5.5)

Φj = γsech2(Ij* − 2).

I* can be obtained from the additive model or calculated as I* = Wrecr*+Wextrext, where

r* is evaluated from the Wilson-Cowan model. The similarity was tested to be true with

our example (see Appendix C).

Three fixed points can be found with this setup using methods described in Section 4.2.

Fixed points and corresponding eigenvalues are shown in Table 5.1.
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Table 5.1. Fixed points and the local stability of the test system. The eigenvalues are
obtained by evaluating the Jacobian matrix Eq. (5.5) at the corresponding fixed point.
The local stability and oscillatory behaviour are evaluated from the eigenvalues according
to the rules described in Section 4.3

Fixed point 1 Fixed point 2 Fixed point 3

Location (Hz) Eigenvalues Location (Hz) Eigenvalues Location (Hz) Eigenvalues

45.87 -1.640 16.79 -7.779 2.440 0.099+1.198i

50.00 -0.993 32.66 -6.250 6.002 0.099-1.198i

49.97 -1.000 20.32 2.264 0.289 -1.435

0.000 -1.000 0.000 -1.000 7.150 -2.126

0.000 -1.000 0.000 -1.000 2.668 -3.501

Stable Saddle Saddle/Oscillatory

From Table 5.1 one can deduce that if the firing rates/activities are not initialized close to

the fixed point 3, then the system will eventually reach the stable equilibrium (fixed point

1). Reasoning behind this is that the fixed point 1 is the only stable fixed point in the

system so every initial guess should collapse to it. However, the oscillatory saddle point

might act as unstable source for a periodic solution, and therefore some initial guesses

might lead to the periodic solution. Figure 5.2 illustrates an initialization where activities

are not initialized close to the fixed point 3.
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Figure 5.2. Time evolution of the Wilson-Cowan system with 5 units (left), and time evo-
lution of the additive system with 5 units (right). Both systems have the same parameter
values. The time constants were set to τa = τs = 20 ms. For the Wilson-Cowan system
the activities were initialized to a(0) = [30 40 45 20 10]T Hz, and for the additive system
the currents were initialized to I(0) = f−1(a(0)), where f−1 is the inverse function of Eq.
(5.4).
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As discussed in Section 5.2, localization of hyperbolic fixed points and the local stability of

those fixed points are the same for the additive system and for the Wilson-Cowan system.

This phenomenon can be seen from the simulations in Figure 5.2 as both systems reach

the same equilibrium. However, the simulations are not exactly the same. The Wilson-

Cowan system reaches the equilibrium much slower than the additive model although

the time constants are the same for both systems. This is not surprising as the additive

system responses to incoming synaptic current instantaneously while the Wilson-Cowan

system is low pass filtered (see Section 3.1).

In the second simulation shown in Figure 5.3, the activities were initialized to the fixed

point 3 in order to inspect oscillatory behaviour with the current parameter setting. From

Figure 5.3 it can be seen that amplitudes of the oscillations start to increase as time

progresses, which can be understood by noting the positive signs of real part of complex

eigenvalues (Table 5.1). However, approximately at t = 2 s, increase of the amplitudes

saturates, while frequencies of the oscillations seem to stay constant. Outward spiraling

ends because the activation function f is bounded and therefore a limit cycle is obtained

[7].
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Figure 5.3. Simulation of the Wilson-Cowan system with 5 units (left) and simulation
of the additive system with 5 units (right). Both systems have the same parameter val-
ues. The systems in Figure 5.2 are exactly the same as here but now the activities were
initialized to the oscillatory saddle point (Table 5.1).

The amplitudes of the oscillations on the additive system clearly reach higher values

than on the Wilson-Cowan system. This observation is consistent with the similarity of

fixed points between the systems, because both systems evolve qualitatively in a similar

manner near the fixed point. To reproduce the results of this section see Appendix C.
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6. DISCUSSION AND CONCLUSIONS

The continuous-time rate-based RNNs are simple but powerful modelling tool [14] that

can be used for almost any modelling task. In this work, the RNNs were studied from the

perspective of neuroscience. It was shown how the RNNs can be derived using phys-

iological basis of neurons. Two distinct RNNs were obtained; the additive system and

the Wilson-Cowan system. The separating factor between these two models is their re-

sponse to the synaptic current entering into the neuron. The additive system responds to

incoming current instantaneously while the Wilson-Cowan system have slower dynamics

as demonstrated in Figure 5.2. In addition to these two models, also other not so common

RNNs were briefly covered.

It is not clear which model should be used in a given modelling task. The IF neurons have

a fast response to a step current input [8] which indicates that the additive model is better

fit when the base unit of a network is neuron. In addition, the synaptic inputs already lag

behind the firing rates of presynaptic neurons so extra low pass filtering should not be

needed. However, the lag from the firing rate of presynaptic neurons to the postsynaptic

current is not always enough [7]. As a mention, neurons are not a homogeneous group

and therefore lots of information is lost when assumptions are based on a such simple

model as the IF neuron, and therefore these observations are only indicative.

If a population of neurons is used as the computational base unit of a network, the se-

lection of a model becomes even more challenging. In such cases it is hard to argue

how much neurophysiology is present in the model because of aggressive mean-field as-

sumptions that are needed. To address this gap, a new group of recurrently connected

population models have been developed [30] as discussed briefly in Section 3.4. A for-

malism obtained by the approach can be seen as continuum to work of Wilson and Cowan

[25]. Therefore, the low pass filtered version of the RNNs seems to be more firmly backed

up than the additive model when the computational base unit of a network is a population

of neurons.

In addition to methods introduced in Section 3.4, the RNNs can be molded closer to

biological reality by augmenting the synaptic kernel and constraining the parameter space

of the connectivity matrix. The synaptic kernel can be modified to account for synaptic

plasticity rules, for example the Tsodyks-Markram dynamics [22]. These types of models
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are still considered as phenomenological models but are certainly more detailed in a

biological perspective than the RNNs without synaptic plasticity rules. The other practice

to include biological constraints is to consider connectivity rules as done in Ref. [24]

and discussed in Section 3.1. How these modifications affect to dimensionality and the

dynamics of the system remains as an interesting question.

As we have seen the classical RNNs are biologically ambiguous. However, this does

not mean that the RNNs would be insufficient models. The power of the RNNs is within

the simplicity of the models. In a network level, the connectivity of neurons, or popula-

tions, is the most interesting subject of study. Different connectivity settings can lead to

versatile dynamics, and these dynamics can arguably reveal and explain hidden mech-

anisms on which the brain operates. The dynamics of the RNNs is best understood by

the stability analysis which was briefly studied. In addition to methods described here, I

advise the reader to familiarize with linear and nonlinear dimension reduction methods as

these methods together with the stability analysis form the basis for understanding neural

manifolds.

In Section 5.1 the Wilson-Cowan system with a non-zero ARP value was briefly studied

with a phase plane analysis. The analysis clarified what is the meaning of fixed points’

stability and how stable fixed points are related to the learning capability of RNNs. In

addition to methods shown in Section 4.3 and Section 5.1, the asymptotic stability and

the Lyapunov stability can be studied with Lyapunov functions [10] as done in Refs. [16]

and [17]. However, the use of Lyapunov functions in order to guarantee the stability of

fixed points generally requires that Wrec is symmetric [17]. This is not biologically plausible

as the symmetry of Wrec violates Dale’s principle.

In Section 5.2 it was shown that the additive system and the Wilson-Cowan system with-

out the ARP behave similarly on hyperbolic fixed points. In more detail, it was shown that

fixed points have the same coordinates for both systems. In addition, it was noticed that

the Jacobian matrices evaluated at the fixed points are the same. These properties were

illustrated with an example in Section 5.3. Because of the similarity between the models

when the external inputs are time-invariant, choosing between the additive system and

the Wilson-Cowan system is quite trivial on learning tasks where it is assumed that dy-

namics will eventually approach to a stable steady state given the time-invariant external

inputs. Note that similarities of basin of attractions between the models was not compared

in Section 5.2. Therefore, models might lead to different fixed points with a set of initial

values. A separate study is needed for comparing the basin of attractions for these two

models.

Because the additive model converges more quickly than the Wilson-Cowan model, the

additive model should be used in time-invariant learning tasks. Because the simulation

time can be made shorter with the additive system, it provides computationally more effi-
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cient learning. However, when considering computational efficacy one must also consider

the properties of an optimizer. Optimizing the continuous-time RNNs, that is tuning the

connectivity parameters, is a future topic that is not discussed here. In short, optimiz-

ing continuous-time RNNs is extremely challenging, especially over long periods of time,

which may affect on the decision when choosing the model. Also notice that when the

external inputs vary in time, the models may not behave similarly.

To conclude, we have discussed about theoretical motivations behind the continuous-time

rate-based RNNs and briefly studied the dynamics of RNNs with time-invariant external

inputs. The results of this thesis help to understand the dynamics of the systems, as well

as help to choose the right RNN for neuroscientifically interesting computational tasks.

These tasks contain modelling of small networks and large population networks revealing

low-dimensional neural manifolds that can arguably explain fundamental brain mecha-

nisms.
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APPENDIX A: JACOBIAN MATRICES

Consider a nonlinear dynamical system shown in Eq. (4.1). The Jacobian matrix for the

system is given as

Jadd =

⎡⎢⎢⎢⎣
∂g1
∂z1

. . . ∂g1
∂zN

...
. . .

...
∂gN
∂z1

. . . ∂gN
∂zN

⎤⎥⎥⎥⎦ .

Now, considering the additive system (3.14) one can calculate on-diagonal and off-diagonal

terms. For the additive system zj(t) = Ij(t) and gj(t) = −Ij(t) +
∑︁N

k=1 wjkf [Ik(t)] +∑︁N ′

ext=1 wj,extrext(t). Now, for the on-diagonal term one gets

∂gj
∂Ij

=
∂

∂Ij

[︄
−Ij(t) +

N∑︂
k=1

wjkf [Ik(t)] +
N ′∑︂

ext=1

wj,extrext(t)

]︄

= −1 +
N∑︂
k=1

∂

∂Ij
wjkf [Ik(t)]

= −1 + wjj
∂f [Ij(t)]

∂Ij
.

For the off-diagonal term one gets

∂gj
∂Il

=
∂

∂Il

[︄
−Ij(t) +

N∑︂
k=1

wjkf [Ik(t)] +
N ′∑︂

ext=1

wj,extrext(t)

]︄

=
N∑︂
k=1

∂

∂Il
wjkf [Ik(t)]

= wj l
∂f [Il(t)]

∂Il
.
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Therefore, one obtains the following Jacobian:

Jadd =

⎡⎢⎢⎢⎣
−1 + w11

∂f [I1(t)]
∂I1

w12
∂f [I2(t)]

∂I2
. . .

w21
∂f [I1(t)]

∂I1
−1 + w22

∂f [I2(t)]
∂I2

...
. . .

⎤⎥⎥⎥⎦ . (A.1)

This can be written in a simpler form by using an identity matrix P of size N ×N and by

recognizing that the synaptic weights form the recurrent connectivity matrix. Thus splitting

Eq. (A.1) into three matrices by separating the identity matrix and using matrix product

one obtains a final form

Jadd = −P + WrecΦadd,

Φadd,j = f ′[Ij(t)],

where Φadd is diagonal matrix containing the derivatives of the activation function. For

simplicity, we denoted here df(x)
dx

= f ′(x).

Next, we will calculate the Jacobian for the Wilson-Cowan system. Now we have zj(t) =

rj(t) and gj(t) = −rj(t) + f
[︂∑︁N

k=1wjkrk(t) +
∑︁N ′

ext=1wj,extrext(t)
]︂
. With the Wilson-

Cowan system we start similarly by calculating an on-diagonal term:

∂gj
∂rj

=
∂

∂rj

{︄
−rj(t) + f

[︄
N∑︂
k=1

wjkrk(t) +
N ′∑︂

ext=1

wj,extrext(t)

]︄}︄

= −1 +
∂

∂rj
f

[︄
N∑︂
k=1

wjkrk(t) +
N ′∑︂

ext=1

wj,extrext(t)

]︄

= −1 + wjjf
′

[︄
N∑︂
k=1

wjkrk(t) +
N ′∑︂

ext=1

wj,extrext(t)

]︄

Same process could be repeated for off-diagonal terms. Then, the Jacobian matrix for

the Wilson-Cowan system is

JWC = −P + WrecΦWC ,

ΦWC,j = f ′

[︄
N∑︂
k=1

wjkrk(t) +
N ′∑︂

ext=1

wj,extrext(t)

]︄

as expected. Notice that we excluded the time constants from the derivation of the Ja-

cobians. The time constants could be included but they are not necessary when only

qualitatively examining eigenvalues of the Jacobians.
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APPENDIX B: PHASE PLANE ANALYSIS

Matlab code for reproducing Figure 5.1. The Wilson-Cowan model is simulated with con-

stant inputs and phase plane is plotted.
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APPENDIX C: LOCAL STABILITY ANALYSIS

Matlab code for reproducing the simulations in Figure 5.2 and Figure 5.3 and to generate

the data in Table 5.1. Downloaded connectivity matrix Wrec is the same matrix as given

in Section 5.3.
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