
Leevi Uosukainen

EVENT CAMERAS FOR MOBILE IMAGING

Handshake blur removal and the technology life cycle

Master of Science Thesis

Faculty of Engineering and Natural Sciences

Examiners: Prof. Kari Koskinen, Prof. Joni Kämäräinen, D.Sc. (Tech) Radu Ciprian Bilcu

December 2021



i

ABSTRACT

Leevi Uosukainen: Event Cameras for Mobile Imaging
Master of Science Thesis
Tampere University
Master of Science (Technology)
December 2021

Event cameras are novel imaging sensors used to capture illumination changes in a scene
rather than exposing the pixels to all incoming light for a given time. Together with RGB imaging
sensors, they can be used for several image and video enhancement applications. In this thesis
it was tested whether it is possible to reduce handshake blur by utilizing event data. It was found
out that handshake blur removal is possible. Technology life cycle analysis was conducted as well
based on patent data, and it was determined that most likely event camera technology is ongoing
growth, the second stage of the life cycle. Evidence of event camera integration towards mobile
phones was obtained by examining patent documents related to event camera technology, and
some signs referring to the possible future integration was discovered.
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TIIVISTELMÄ

Leevi Uosukainen: Event Cameras for Mobile Imaging
Diplomityö
Tampereen yliopisto
Konetekniikan DI-ohjelma
Joulukuu 2021

Tapahtumakamerat ovat kuvantamissensoreita, joiden toimintaperiaate perustuu kuvattavas-
sa kohteessa tapahtuvien kirkkauden muutosten havainnointiin, toisin kuin perinteisissä RGB-
sensoreissa joissa pikseleitä valotetaan kohteesta tulevalla valolla ennalta määritetyn ajan. Yh-
dessä perinteisten sensoreiden kanssa tapahtumakameroita voidaan käyttää useissa eri kuvien
ja videoiden ehostamissovelluksissa. Tässä työssä tarkasteltiin mahdollisuutta poistaa valotuk-
sen aikana sensorin liikkeistä aiheutuvaa liikasumeutta RGB-kuvista tapahtumakameran avulla.
Kokeissa havaittiin, että sumeuden poistaminen on mahdollista. Lisäksi tarkasteltiin tapahtumaka-
merateknologian elinkaarta teknologian elinkaarianalyysin avulla, jossa käytettiin lähdeaineistona
teknologiaan liittyviä patentteja. Aineiston perusteella pääteltiin, että tapahtumakamerateknologia
on mitä ilmeisimmin teknologian elinkaaren toisessa- eli kasvuvaiheessa. Aineiston perusteella
pyrittiin myös arvioimaan, kuinka todennäköisesti tapahtumakamerateknologiaa tullaan integroi-
maan älypuhelimiin, ja siihen viittaavia merkkejä löytyi.

Avainsanat: tapahtumakamera, sumeudenpoisto, teknologian elinkaari, patenttianalyysi

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1. INTRODUCTION

The pace of development of mobile imaging in the past decades has been swift, and the

era of smartphones has brought high-quality mobile cameras into the hands of millions

of people around the world. In the 2010s, the number of smartphones sold per year

more than quintupled as units sold per year increased from 296.65 million in 2010 to 1

540.66 million in 2019 [1]. The amount of smartphone imaging sensors manufactured

and sold was multiplied by even higher number, since the number of different sensors

per smartphone has been increasing as well. This can be observed by looking at the

trends on the smartphone market in the United States and compare it to the smartphone

and tablet camera module market trends in North America from 2014 to 2020. The data

shows that the market size of smartphones grew by 161.7 % [2], when the segment of

the camera module market that consists of smartphone and tablet applications grew by

326.9 % at the same time in North America [3]. Trends of the markets in United States

and the whole of North America can be assumed to follow similar path due to the size

of the United States economy compared to the other nations in the region. In the same

time frame, the growth for average price of smartphones in the United States was 18.9

% for consumer devices and 16.2 % for enterprise devices [4], which means that the

larger growth of camera module market compared to the smartphone market can not be

explained by decreasing smartphone prices. Moreover, the total number of tablet devices

shipped, which were included in the same segment as smartphones in the camera module

market size data, increased by a mere 5.02 % from 2014 to 2020 [5].

First glimpses of the phenomenon of increased number of camera modules integrated in

mobile phones were some dual-camera smartphones in the early 2010s, which had two

similar red, green & blue (RGB) color sensors, only with different resolutions. After that,

zoom-dedicated, ultra-wide and monochrome sensors made their first appearance in the

mobile imaging market, and after that we have seen time-of-flight (TOF) and structured

light sensors appear as well. If the trend of new sensors coming to mobile devices con-

tinues, event sensor could be one possible candidate for the category. However, major

benefits of the integration must be demonstrated before integrating a whole new type of

sensor into a mobile device that is produced in large scale. A new type of sensor could

either provide new applications by itself, or via synergetic manner together with the other

sensors included in the device.
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Figure 1.1. RGB image and corresponding event camera data. Top right image is a
single snapshot from the event data, whereas bottom row shows six snapshots, with
each corresponding to 1/6 of the RGB image exposure time.

Event cameras are image sensors where pixels do not gather data by traditional method of

exposing themselves to a light source for a given exposure time, but rather continuously

and in asynchronous manner, measuring the changes of illumination that a given pixel

receives. A sample pair of data captured by RGB and event sensors is displayed in Figure

1.1. As a standalone image sensor in a setup, event cameras might have vast amounts of

potential usages in the areas such as machine vision, mobile imaging, augmented reality,

security and others. Due to the reasons presented in the previous paragraph, it should

be examined what type of advantages a mobile imaging system equipped with an event

sensor could possibly offer. Lots of research on event cameras have been conducted

in recent years. It is however unclear how much commercial potential the technology

actually contains, and hence that should be examined.

Modern mobile cameras still have some shortcomings in the areas of dynamic range and

temporal resolution, meaning they are not capable of creating high quality outputs of sce-

narios where lighting conditions change rapidly between dark and light, and when there

is fast movement in the scene during exposure, which are exactly the scenarios where

event cameras have significant performative advantage compared to traditional imaging

sensors. However, the performance increase in these areas that could be achieved with

event camera, could possibly also be achieved via other hardware- or software-based

solutions with smaller costs. Algorithms play significant role in the increasing the quality

of images captured by contemporary mobile devices, and the costs of mass-producing

an algorithm are nonexistent compared to the costs of a large-scale implementation of a

new hardware solution. For this reason, the benefits of utilizing event camera for tackling

any image quality enhancement problem should be considerably higher than those of any

software-based alternative solution.
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In this thesis two types of analysis are conducted. First, it will be examined whether it

is possible to utilize event data for eliminating handshake blur, which is a type of blur

that impairs the image quality and is caused by the movements of imaging sensor during

exposure. This will be tested by utilizing a neural network architecture that has been

developed for addressing similar problem in the case where only RGB images are used,

and by modifying the network to work with event data. The goal of this analysis is to find

out how well the handshake blur can be eliminated when event data is utilized. This type

of analysis has been chosen due to the fact that mobile devices experience some amount

of handshake every time they are used for image capturing, if they are not mounted into

stationary setups.

Second analysis that will be conducted is the examining of technology life-cycle of the

event camera technology. Motivation behind this analysis is to be able to assess what

stage of the technology life cycle the event camera technology is currently experiencing,

and to make forecasts about future development. Technology life cycle analysis is done

by using patent documents related to event camera technology as the research material,

since patents can be considered as proofs of theoretical commercial applicability, which

is required in order for them to be granted. Patent data is also available earlier in time

compared to other indicators of successful innovation, such as the products that come

to the market. Several indicators that can be derived from the data points in the patent

documents are used to assess the questions about the current state and future expecta-

tions. The patent data gathered for the analysis of technology life cycles is also examined

in order to find out which technology sectors are the ones that engage most in research

and development activities and which sectors will most likely utilize event camera technol-

ogy in the future, and how likely it is that mobile phones are among them. The analysis

about possible mobile phone integration of event cameras is therefore examined from

the technology evolution and innovation perspective, even though it is noted that financial

variables such as the costs of a single event sensor module when producing them in large

scale also play significant role.
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2. EVENT CAMERAS

Event-based sensors are types of complementary metal oxide semiconductor (CMOS)

imaging sensors. They have completely different working principles compared to tradi-

tional RGB imaging sensors that are based on Bayer arrays, and which are used in most

imaging applications. Whereas with RGB imaging sensors the working principle is based

upon exposing all of the pixels in the sensor to the light received from the scene for a

given amount of time, event sensor does not have exposure time at all. Pixels on the

event sensor only send information forward when the intensity of the light that the pixel

receives goes through a change that is deemed sufficient enough to trigger an event,

giving event sensors an asynchronous nature. Most of the imaging sensors tend to be

synchronous, which results in information loss during the time that pixels are not expos-

ing themselves to the light coming from the scene, and quality losses in cases where the

subject in front of the sensor or the sensor itself is moving during the exposure time. With

traditional sensors, information about static scenes is also forwarded along with the parts

of the scene that experience change, meaning significant bandwidth and storage will be

allocated on transferring and storing information that might be useless, although the stor-

age problem can be addressed with different compressing solutions and the bandwidth

problem via static scene detection algorithms. These problems are not apparent with

event-based sensors, since events are only passed forward from the pixels which detect

a change exceeding a certain threshold in the scene, meaning that if nothing happens in

front of the sensor, no data is passed forward.

The building of the first prototype of an event-based sensor was started in the late 1980’s

and it was completed in 1992 [6]. After 30 years of development, event-based sensors

have still not become widely used in any particular industry or segment of consumer

products. The process of development continues with a wide range of possibilities across

many different sectors, including mobile, robotics, autonomous vehicles, medicine and

security.

2.1 Biological inspiration

Event-based sensors are often called silicon-based retinas because of their ability to cap-

ture changes of illumination similarly to that of the human eye, asynchronously and with
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very low temporal resolution, down to a few microseconds, and even in dark conditions.

Traditional imaging sensors require external signals and triggers in order for the image

acquisition to take place, whereas in event sensors the events happening in the scene

are what causes it to acquire data and pass it forward. It is true that traditional sensors

can also acquire data in a manner that seems rather autonomous, one such example

being the camera that captures an image when a motion sensor to attached to the sys-

tem sends a trigger telling the system to capture data, but the underlying principle of the

camera needing an external signal in order to start exposing it’s pixels to the light coming

from the scene is still present.

Similarly to human eye, event sensors do not send information forward if nothing happens

on the scene. The reason behind why biological systems behave this way is efficiency,

which is a result of biological vision systems undergoing hundreds of millions of years

of evolution. animal brains would be overwhelmed with the incoming information if all of

the information received from the observed scene would be sent forward for processing.

In the human visual system, forwarding only relevant information to the brain makes it

possible to reduce the bandwidth from approximately 36 gigabits per second for the raw

input to a mere 20 megabits per second for the information forwarded towards brains [7],

a decrease of 180 000 %.

2.2 Sensors

There exists several different types of event sensors. The three most dominant types are

the dynamic vision sensor (DVS) [8], the dynamic and active pixel vision sensor (DAVIS)

[9]. Other types of sensors also exist, such as the asynchronous time-based image sen-

sor (ATIS) [10]. The main shortcoming regarding DVS compared to ATIS and DAVIS

is that it does not output any absolute or baseline value of the illumination, only rela-

tive changes. After the initial development of DVS, it was found out that more complex

applications often require also the baseline illumination detection in order to succeed.

Major difference between DVS and DAVIS is also that DAVIS is capable of providing syn-

chronous grayscale image frames together with the event data. In 2021, first sensors

which are capable of simultaneous RGB and event capturing were published [11]. The

benefit of these types of sensors compared to solely event-based sensors is that inte-

grating them to a system does not require additional space compared to a two-sensor

setup.

From the perspective of possible mobile phone integration, small size is an absolute re-

quirement that the sensor must fulfill, even more so if the camera is placed on the front

side of the device. Other characteristics that are essential are high dynamic range and

high resolution, which are required in order to justify the extra costs that implementing

a novel sensor to the devices would result in. It is therefore reasonable to examine and
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Sensor description Sensor size Dynamic range Resolution

Asynchronous Temporal Contrast Vision Sensor by Lichtsteiner et al. (2008) [8] 6 × 6.3 mm2 120 dB 128 × 128

QVGA Frame-Free PWM Image Sensor With Lossless Pixel-Level Video Compression
and Time-Domain CDS by Posch et al. (2011) [10]

9.9 × 8.2 mm2 143 dB 304 × 240

Global Shutter Spatiotemporal Vision Sensor by Brandli et al. (2014) [9] 5 × 5 mm2 130 dB 240 × 180

Dynamic vision sensor by Samsung (2017) [12] 8 × 5.8 mm2 > 80 dB 640 × 480

Back-Illuminated Stacked Temporal Contrast Event-Based Vision Sensor by Prophesee
& Sony (2020) [13]

4.86 × 4.86 mm2 > 124 dB 1280× 720

Dynamic vision sensor by Samsung (2020) [14] 8.37 × 7.64 mm2 Not specified 1280× 960

Table 2.1. Comparison of size, dynamic range and resolution of several different event-
based sensors

compare these characteristics of different event sensors for which specifications are pub-

lished. The comparison of sensor size, dynamic range and resolution is presented in

Table 2.1. As Table 2.1 shows, the sizes of the sensors are already small enough to be

considered for mobile phone usage, and have been of such size for long time. Sensor

resolution, on the other hand, has been steadily increasing over the years. It is hard to

determine which resolution would be considered as sufficient enough to justify the event

sensor mobile phone integration, but if the trend continues, we can expect to see sensors

with even higher resolution in the coming years.

2.3 Use cases

Most of the event camera use cases are related to computer vision. Samsung’s Smart-

Thing Vision was the only consumer product containing DVS sensors that have been sold

to customers, but the product was discontinued later, and it is not anymore available for

purchasing [15]. The product is a home security device which can detect intruders or

events where a person might injure themselves by for example falling in front of the sen-

sors view, alerting other people connected to the smart home system. The decision to

put event sensor into the product was advertised by arguing that it increased the level of

privacy compared to RGB sensors. Security implementations of event sensors are fur-

ther explored by [16], focusing on object detection in dark outdoor conditions. Detecting

persons from the event data is especially useful, if that can be done faster than with other

sensors. Autonomous automobiles is one example of an area where time is of essence

when detecting objects, when moving at speeds which would result in serious conse-

quences in the case of collision. Sokolova and Konushin have shown that gait detection

is possible using event sensors and the accuracy is at par with the state-of-the-art RGB-

based methods [17], and the results suggest that event sensors could be used in both

pedestrian detection in automotive applications and security applications where person is

identified by modeling the unique attributes of their gait.

Sarmadi et al. [18] have demonstrated that using event camera as data source, it is

possible to reliably detect fiducial markers, which could be used for example as spatial

references to inform autonomous vehicles about their position or directions. Examples of

such cases are robots on the factory floor and unmanned aerial vehicles (UAV’s). These
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types of markers can also be detected via other types of sensors, but significantly less

computing power is required with event-based solution, which is also able to detect the

markers from higher velocity due to the asynchronous nature of the camera. The case

of UAV’s equipped with event cameras has been explored by Falanga et al. [19], and it

was concluded that by reducing the latency of object detection to 3.5 ms it was possible

to perform effective obstacle avoidance in speeds up to 10 meters per second.

In 2021, the United States National Aeronautics and Space Administration (NASA) con-

ducted the first ever experiment of autonomous flying vehicle on extraterrestrial celestial

body, when their Ingenuity helicopter flew independently on Mars [20]. If these types of

experiments are continued in the future, using event camera for localization and mapping

for those types of vehicles could be useful, since in those types of scenarios power is very

scarcely available, and hence the lower power consumption of event camera compared to

other sensors could provide some advantage. In the comparison between RGB and event

sensors, the difference of power consumption is dependent on the amount of movement

that the event sensor detects, since more movement leads to more events. When com-

paring event sensors to depth-sensing sensors that can be used in autonomous vehicles,

using event sensors could result in up to 90 % less power consumption [21].

2.3.1 Mobile imaging

In the later half of 2010’s and since, there has been steady increase in the amount of

different camera sensors in mobile devices [22]. Data from multiple high-quality imaging

sensors combined with more efficient neural networks and other such algorithms has

made it possible to increase the capability of mobile devices to become viable alternatives

to digital single-lens reflex (DSLR) cameras, which have seen decline in sales in countries

such as Norway and Germany [23] [24] at the same time when mobile phone sales have

soared.

Examples of sensors that provide additional functionality to the mobile imaging space are

TOF sensors which can be used to estimate the distance between the sensor and the

subject, and structured light sensor, which is perhaps most well known from Microsoft’s

Kinect sensor, which can detect movement and gestures by a person in 3D space. TOF

and structured light sensors have already been included in devices by multiple different

manufacturers, such as Huawei, Samsung and Xiaomi.

There are several applications on what event cameras could be useful on if they were

included in mobile devices. For example, event data captured alongside other data could

allow the generation of slow-motion videos after the capturing, in the post-processing

phase. Rebecq et al. have demonstrated that event data can be utilized for increasing

the attribute frames per second (FPS) for videos significantly, making even >5000 FPS

possible [25]. Higher FPS in traditional slow-motion videos means more frames that need



8

to be saved, which leads to greater usage of storage space when capturing slow-motion

videos with traditional methods. Due to the lightweight nature of the event data, it could

be a viable option for slow-motion video creation in the future.

Other mobile applications could include motion- and handshake-deblurring, of which the

latter is addressed in more detail in further parts of this thesis. Video and picture quality

enhancement on content captured on dark conditions are also cases where event cam-

eras could be used. Event cameras have also been proven to be efficient in iris-tracking

by Ryan et al. [26], the motivation behind their study being to examine the possibility to

utilize event data to monitor the ability of the driver when they are driving a car. However,

the results also suggests the possible benefits of implementing event capturing capacity

to the front-facing cameras on mobile devices to be used in applications where the user

could interact with the device by solely blinking or moving their eyes. Event-based eye

tracking can also be used for face detection, as shown by [27], although face detection

and user identification based on facial features is already possible in dark conditions by

methods implemented in some mobile phones that are being sold today. Gesture recog-

nition in more general form by utilizing event data has already demonstrated as possible

by Chen et al. [28]. Along with security, automotive and other such usages where the

data could be useful, this type of detection could be used in mobile phones.

2.4 Event Data

A single data point in event data contains three different components; time (t), place

(x, y) and the sign of light intensity change, also often called polarity (p). This format is

called the address-event representation (AER) [8]. From a set of data points in AER for-

mat, several visual representations can be derived. One of the most straightforward ones

is grayscale event frames, where a set of data points are plotted on an image which has

the same resolution as the event-based sensor. It appears that most single-frame repre-

sentations use either intensity representation defined by [29] or binary representation. In

addition to the two, another type of gradual representation is introduced here. To empha-

size the asynchronous nature of the event data, it is also possible to visualize the event

stream in a time-continuous way. This representation adds time as additional dimension

to the frame-based representation that was introduced previously, and is visualized in

Figure 2.1 by [30].

In binary representation, for each pixel the sum of the event polarities on a given time

window is calculated, and if the sum is negative, the pixel is portrayed as negative event.

Positive sum is similarly portrayed as positive event. Pixels portrayed as negative events

are plotted as minimum value (0) on the grayscale pixel value spectrum and pixels por-

trayed as positive events as maximum value (255). Neutral pixels where the sum is zero

take the middle range value of 128. The method used for calculating the pixel value in
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Figure 2.1. Event stream representation including time dimension and distinction be-
tween outputs of traditional and event-based sensors, included in [30]. (a) depicts the
event sream, (b) is the frame-based representation of the event data, a snapshot from the
stream and (c) is a DVS event camera.

this manner is presented in Equation 2.1.

Exy =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
255, if P ≥ 1

0, if P ≤ −1

128 otherwise

, P =
L∑︂
i=1

pi and pi = {−1, 1} (2.1)

In Equation 2.1, Exy is the value of a single pixel in the event frame, L is the number of

events for a pixel where the coordinates are (x, y), and pi is the polarity of a single event.

Gradual representation portrays events as values anywhere from 0 to 255, depending on

what the sum of the polarities is during the given window of time and what is the maximum

difference compared to the baseline value 128. The method for this calculation is visible

in Equation 2.2.

Exy = 128 + P, P (I, x, y) =
128(Ixy − 128)

max(|Imax − 128|, |Imin − 128|)− 128
(2.2)

In Equation 2.2, I stands for the image frame where all of the polarities for each pixel

have been summed together, and where values can exceed 255 or be less than 0. Ixy

is the initial value of the pixel in the coordinates (x, y) in I and Imax and Imin are the

minimum and maximum values inside I . This representation contains more information

about the scene, since it makes it possible to directly observe how many times the illumi-

nation of a given pixel has changed enough to trigger and event, and thus it is the type

of representation that is used in the upcoming visual representations of event data and

the experiments that are conducted. In some cases, negative events are portrayed as
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Figure 2.2. Gradual and binary types of frame-based representation of event data.

p = 0 whereas some cases p = −1 is used. In order for these representations to work

properly, the latter notation is used. Visualization of binary and gradual representations is

displayed in Figure 2.2.

As it was stated earlier in this chapter, biological systems reduce the information that is

passed forward by significant amounts to avoid information overload in the brain. Similarly,

the difference of the amount that is contained in raw RGB images can be compared to the

amount stored in event data. If the resolution of a raw RGB image is w × h, the amount

of information can be expressed by Equation 2.3.

bits = w × h× b× 3 (2.3)

Where b is the number of bits per pixel on each of the three channels (red, green and

blue), for example 8, 16 or 32, with larger number of bits per channel resulting in more

realistic colors. As for the event data, the number of bits stored in a single event is

expressed in Equation 2.4.

bits = bw + bh + 32 + 1 (2.4)
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Figure 2.3. Amount of information contained in raw RGB and event data where the
number of events per pixel varies, both from sensor of size 1920× 1080. Number of bits
is in logarithmic scale.

Where bw and bh are the amounts of bits that are required to store the information about

the event width and height, respectively, and which is depend on the sensor size. Times-

tamp of an event is considered to be stored at microsecond precision, resulting in 32 bits,

and polarity of an event requires a single bit. Using Equations 2.3 and 2.4, a comparison

between information contained in event and raw RGB data is conducted. Assuming a

sensor size of 1920×1080 for both event and RGB sensors, the comparison is visualized

in Figure 2.3.

As the Figure 2.3 shows, there has to be almost two events per each pixel in the event

data for the amount of bits required to store it to match the amount of bit required in

storing a 8-bit raw RGB of the same resolution. However, as the event sensors have

already been proven to provide data with such precision that many different applications

have been made possible even without reaching the full high-definition resolution, and

taking into consideration that most of the RGB sensors already have a resolution that is

higher than full high-definition, it is reasonable to suggest that in reality the sensors in a

setup where both event and RGB sensors are used will not have same resolution, and

therefore the difference in the amount of bits required to store the information is even

higher.
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2.4.1 Simulators

Since event cameras are still quite uncommon, and not too many event data data sets

are freely distributed online, it follows that all the people who would like to participate in

investigating and developing applications and algorithms that utilize event data may not be

able to do so. For this reason, open source event data simulators such as ESIM [31] and

AirSim [32] have been made publicly available. Luckily, from the technology development

point of view, the amount of event datasets have been increasing in the last years, and

now there exists several freely distributed datasets for different areas, such as automotive

[33] [34] and UAV’s [35]. However, event simulators make it possible to generate event

datasets from any RGB video or image sequence, increasing the scope of available data

significantly.

The working principle of ESIM is as follows; series of consecutive RGB image frames

are taken, and temporal upsampling is applied to interpolate new frames between the

original images by arbitrary temporal resolution. This way the illumination signal in high

temporal resolution can be approximated to mitigate the output of a real event sensor.

Then, consecutive frames from the new set which contains more frames are compared to

each other, measuring the change of illumination in each pixel. If the change exceeds the

threshold parameter being used, an event is triggered and stored to the output.

Another benefit of simulated event data compared to data acquired by using a system

consisting of a real event sensor alongside the RGB sensor is that in the event data cre-

ated by the simulator is perfectly aligned with the RGB data that is used as an input for

the simulator. In cases where the data is acquired by two spatially separated sensors,

registration is required. By registration, misalignment caused by the distance between

the sensors and different field-of-view (FOV) of the cameras is compensated so that the

two images captured by two different sensors become aligned. In addition to the registra-

tion, using real sensors would require stereo camera calibration to diminish the effect of

different lens distortions in the two camera modules.
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3. DEBLURRING EXPERIMENTS

Handshake blur is the type of blur that appears in the image when the imaging sensor

is moving during the exposure. It is important to note the difference between handshake

and motion blur, of which latter is the type of blur which happens when the subject in front

of the sensor is moving during the exposure time, rather than the sensor itself. The blur

types can also occur simultaneously, when both the sensor and the subject are moving

during exposure. Several different solutions have been developed to combat this problem,

including the usage of optical image stabilization (OIS), and gyroscopes that track the

movements of the camera and then use that information for reconstructing the trajectory

that the device moved during exposure, and then use this information in postprocessing

to compensate for the relative movement between the sensor and the scene [36]. Also,

purely software-based methods such as [37] which do not rely on any external hardware

or source of data have been developed to combat the issue.

As mentioned in previous chapter, event cameras have several potential use cases. De-

blurring of motion blur using event data has been demonstrated as possible task by [29]

and [38]. It would therefore be reasonable if the event data could also be utilized for

reducing the blur caused by imaging sensor motion as well. Here a study is conducted

on examining the possibility to utilize an existing neural network based method which

was initially proposed for simultaneous deblurring and denoising, and to replace one of

its two RGB inputs with event data. Since event cameras gained their initial inspiration

from the way biological retina passes information forward and neural networks mimics the

processes in which biological neurons take part, these types of applications can be con-

sidered to be a part of an interdisciplinary field called neuromorphic engineering, which

studies the utilization of bio-inspired models to solve different engineering problems.

LSD2 network developed by Mustaniemi et al. [39] is based on U-Net, which is a neural

network architecture used for simultaneous deblurring and denoising. U-Net was origi-

nally developed by Fischer and Brox to be used in the segmentation of biomedical im-

ages [40], and the name comes from the fact that the network architecture contains a

contracting path and expansive path, of which the latter takes a curved route in the net-

work architecture visualization, giving it it’s U-shaped form. As mentioned, original LSD2

can perform both denoising and deblurring. It takes two inputs, one taken with short ex-

posure time and which contains noise but is sharp, and other which is taken with long
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Figure 3.1. Sample images from the MIRFLICKR dataset [41].

exposure time, is blurry but does not contain noise. Because the noisy input image is

replaced with event data in the following experiments, denoising part is irrelevant for the

task and focus will be on the deblurring. LSD2 model is chosen due to the analogous

nature between the data it takes as input and event data. Both event frames and the

short-exposed RGB image that the original LSD2 network takes as input are snapshots

of the scene with low temporal resolution. The low temporal resolution of those two allow

them to contain the details which are missing in the blur, and are thus considered helpful

for deblurring purposes.

MIRFLICKR dataset [41] is chosen as the source of RGB images. The dataset is a

collection of 100 000 images with a wide range of different types of content from the online

photo hosting service Flickr. The dataset also includes a set of one million photos, but

for the case of a image quality enhancement neural network training, 100 000 photos is

considered as a size that is sufficient enough due to the high variance among the contents

that the dataset contains. Randomly chosen sample images from the MIRFLICKR dataset

are displayed in Figure 3.1. As it can be seen from Figure 3.1, the images are high quality

and the variance among contents is large, which are considered as benefits from the

perspective of training a model.

Some modifications are required for the LSD2 model to work with event data. Size of the

input layer of the model was changed to be adjustable for different sizes and shapes of

inputs. Generators which feed training data to the networks also needed to be created to

support event data formats.
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Parameter Explanation Value

Trajectory size Maximum square size of the trajectory area
in pixels

30

Anxiety Amount of shake, on scale from 0 to 1 0.25

NumT Number of points along trajectory 10

Max total length Maximum sum of euclidean pixel distance
between all the points on the trajectory

20

Table 3.1. Random motion trajectory parameters

3.1 Data generation

Training data is needed in order to train the neural network to model the correspondences

between the input event and RGB pairs. It consists of three parts; the ground truth, or

the ideal output, which is the original sharp RGB image, the blurry RGB image and the

event data. Blurry RGB image and event data act as the inputs from which the network

should be able to compute an image that resembles the original sharp image. In order

to generate the handshake blur effect for the blurry input images, the motion of a moving

imaging sensor should be simulated. This is done via process called random motion

trajectory generation. The method used here is based on the implementations by [42],

which is considered suitable due to the fact that the methods for trajectory generation were

developed for artificial blur purposes in the first place. Some parameters are required to

be set for the trajectory generation, including its size and length. The parameters and the

values used are presented in Table 3.1.

After the points of random motion trajectory are generated, they will be applied to the

images that were obtained from the MIRFLICKR dataset. The trajectories are applied

to the images by setting the first point of the trajectory at the center point of the image.

Images from MIRFLICKR dataset vary in size, which means that in order to standardize

the input size, the trajectory will act as a path for a moving window from which samples of

constant size will be obtained by using a MATLAB script that conducts camera movement

emulation [43]. A window of 256x256 pixels is chosen for practical reasons. The window

size is big enough so that in most cases, there remains objects inside the window that

are suitable for deblurring. The small size also makes the process of generating data

and training the network used for deblurring faster. The first image from the center of

the image is chosen as the ground truth, which will be used in the training to teach the

network what the output should look like. Windows moving along the trajectory on top of

an image is visualized in Figure 3.2

Some original images from the MIRFLICKR dataset are discarded during the data gen-

eration due to their small size. Discarding happens only in cases where some part of the

window that is being moved in order to get the blurry image moves beyond the borders of
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Figure 3.2. A 256x256 window moving along the random motion trajectory on top of an
image. Image is presented in black and white for visualization purposes.

the original image at some point of the trajectory. This leaves a total of 88 293 remaining

images from the original 100 000, which is considered a sufficient amount for the task.

Additional frames could be added inbetween the consecutive original frames via upsam-

pling in order to build images with more smooth blurry areas which resemble a more

realistic scenario. This step is not conducted here because there are relatively few im-

ages with non-smooth blur containing the types of edges that become apparent when

objects in the images that are being averaged are too far apart from each other. The

same problem can be tackled by reducing the spread of the random motion trajectory

by adjusting the parameters presented in Table 3.1 so that the points are closer to each

other, but still far enough from each other for the averaged image to contain blur.

The ten images obtained along the trajectory from slightly different positions in the original

image are used as input for the ESIM, which generates event data for each transition

from one image to the next. Event data from the simulator is given as AER format as

explained in Chapter 2, containing timestamp, event location and the event polarity. This

data is divided into chunks by splitting events according to their timestamp, and those

chunks are being used for event frame generation. Different amounts of event frames

per each transition should be tried, to see which input format is optimal for training to

achieve best results. First event frame from the simulator output has quite few events,

and it is discarded. Now we have nine transitions from one image to other, which means

that number of event frames in the stack should be divisible by 9 for the amount of event

images per transition to be equal. Smaller sizes of event stacks could also be used, but

if the time interval used for constructing each event frame would be too large then the

sharpness of the details in the event images would decrease. Two event data stack sizes,

9 and 18, are chosen to be used in the trials.

Event simulator requires thresholds for positive and negative events as input, as explained
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Figure 3.3. Different event thresholds visualized.

in Chapter 2. The thresholds represent the so-called sensitivity of the sensor, meaning

that with lower threshold, smaller change of illumination of the light perceived by the

event sensor is required in order to trigger an event. Lowering the threshold comes with

a trade-off; more details can be seen, but more noise appears as well. This is illustrated

in Figure 3.3. It can also be seen that halving the simulator threshold almost doubles the

percentage of event pixels in the image. There can be different thresholds for positive and

negative events, but here those two are kept equal in all instances where the simulator is

utilized for event generation.

After the data generation is complete, 88 293 samples are obtained with each sample

containing a stack of event frames, one blurry image and the original sharp image. Re-

sulting data and the process for generating it is visualized in Figure 3.4.

The input provided for the network consists of three color channels (red, green and blue)

from the blurry RGB image stacked on top of all the event frames that have one channel

each since they are in grayscale format. For the case where motion trajectory contains

n1 points and n2 event frames are constructed per transition, the size of the input layer

will be 256× 256× (3 + n1 + n2).
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Figure 3.4. Process of creating handshake motion, event stack and blurry image from
single RGB image.

3.2 Training

Several different combinations of input data and training parameters should be tried in

order to find how event data should be formatted in order to yield best results. Evaluation

of the outputs after training is done by peak signal to noise ratio (PSNR) and structural

similarity (SSIM) [44], which are widely used metrics for image quality assessment. Dur-

ing training, the evaluation of model performance is done by using the loss function of the

model, which in this case is mean squared error (MSE). The way the MSE, PSNR and

SSIM are calculated are presented in Equations 3.1, 3.2 and 3.3, respectively.

MSE(image1, image2) =
1

XY

X∑︂
i=1

Y∑︂
j=1

(image1ij − image2ij)
2 (3.1)

PSNR(image1, image2) = 10log10

(︃
2552

MSE(image1, image2)

)︃
(3.2)

SSIM(image1, image2) =
(2µ1µ2 + C1) + (2σ12 + C2)

(µ2
1 + µ2

2 + C1) + (σ2
1 + σ2

2 + C2)
(3.3)

In Equations 3.1, 3.2 and 3.3, X and Y are the image dimensions, in this case both equal

to 256. µ is the average image value, σ is the image variance, and C is a parameter

defined in Equation 3.4.

C1 = (k1L1)
2, C2 = (k2L2)

2 (3.4)
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Experiment ID Event threshold Event stack size

E01 0.300 9

E02 0.300 18

E03 0.150 9

E04 0.150 18

E05 0.225 9

E06 0.225 18

Table 3.2. Event data formats on initial experiments

In Equation 3.4 k1 and k2 are constants, 0.01 and 0.03, respectively, and L is the dynamic

range within the image, defined by being the difference between maximum and minimum

values. From Equations 3.2 and 3.3, it becomes evident that for both PSNR and SSIM,

larger value corresponds to a higher similarity between the two images that are being

compared. Since the images here contain three channels; red, green and blue, the value

is calculated as the average of the values for MSE, PSNR and SSIM are calculated using

all three channels. Average PSNR and SSIM values are also calculated using the blurry

images from validation data and the sharp ground truth image, to give an impression on

where the baseline is when examining the development of the models in training. The

validation data baselines are 18.20 for PSNR and 0.44 for SSIM.

It is worth noting that SSIM has also received criticism on its accuracy, especially on the

case of evaluating RGB images. Nilsson and Akenine-Möller have explained that image

quality that is perceived by humans can vary considerably of that which is mathematically

calculated via SSIM, making the metric somewhat unreliable [45]. Nevertheless, it is still

among the most used and efficient metrics available, and hence it will be used here. Due

to concerns of unreliability, subjective evaluation is needed together with the objective

metrics.

3.3 Experiment I: Event parameters

Training is done in two phases in order to find what parameters are the most important for

successful deblurring. In the first phase, different event thresholds and event stack sizes

are tried. Experiments and their corresponding labels are presented in Table 3.2. After

the initial trials, it is observed which parameters result in best results both objectively and

subjectively, and after that the training is conducted again while keeping those parameters

which were found out to work best as constants, and by tuning other aspects of the

training.

Each experiment in the first phase is trained for 100 epochs with batch size of 1000

images. Learning rate does not vary between experiments, as it starts at 0.00005, and
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Figure 3.5. Image quality on validation data during the training of initial experiments, as
measured by PSNR and SSIM.

halves every 10 epochs. From these initial experiments, best parameters for event thresh-

old and event stack size are chosen for further experiments with other network parame-

ters. Average PSNR and SSIM values calculated after each epoch from a set of outputs

generated using images from validation data is presented in Figure 3.5. The set of vali-

dation data images remains constant between epochs and experiments, so the numbers

are comparable. In Figure 3.5 and all following figures of the same format, three-sample

moving average is used to smooth the curves for clearer interpretation.

Learning curves by PSNR and SSIM metrics show that the models with 0.15 threshold

perform best with this type of data, and hence it seems that the benefit from increased

accuracy in the event data is great enough to offset the possible downsides caused by

increased noise, which was visualized in Figure 3.3. The curves also imply that the effect

of the threshold to the model performance is not unambigious, since the threshold of

0.225 results in worse performance than both 0.30 and 0.15. The curves of PSNR and

SSIM do not provide much insight into the actual image quality of the outputs from the

human perspective, and hence visualization is needed. Deblurring is performed for a set

of images from the test data, and some samples from the test data outputs are displayed

in Figure 3.6.

The results presented in Figure 3.6 give a promising picture of the possibilities of utilizing

event data for deblurring. The blur is clearly reduced in the outputs, but otherwise the
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Figure 3.6. De-blurred images from testing data using models developed in initial exper-
iments, and choosing the ones with highest PSNR and SSIM values.

results are poor quality. The dynamic range is lower than in the original image, and some

artificial noise can be seen in all of the outputs. The top-right image in the figure shows

that the blur region is still present in the output, and it can be seen especially well since

there is high contrast. For further experiments, 0.15 threshold is kept since it performed

best by both PSNR and SSIM metrics and subjective evaluation.

3.4 Experiment II: Network parameters

For further experiments, threshold 0.15 is kept constant like previously mentioned. In the

experiments, variables are the initial learning rate, learning rate decay and batch size,

although different batch size is tried only once. For detailed descriptions of experiment
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Experiment ID Learning rate at start Learning rate decay Notes

E07 0.0005 0.75 * every 10th epoch

E08 0.00005 0.50 * every 10th epoch

E09 0.0005 0.75 * every 10th epoch

E10 0.0005 0.95 * every 10th epoch Try out significantly smaller batch size (100); bad re-
sults

E11 0.0005 0.95 * every 10th epoch Subjectively best results

E12 0.005 0.75 * every 10th epoch Try out significantly higher learning rate; bad results

E13 0.0001 0.75 * every 10th epoch

Table 3.3. Training parameters on further experiments

Figure 3.7. Image quality on validation data during the training of second phase of ex-
periments, as measured by PSNR and SSIM.

parameters, see Table 3.3.

The training progress is visualized in the same format as previously. Figure 3.7 shows

that the difference between model performance is smaller than in the initial stage, as

expected, when not including one outlier (E12). Interesting observation can be done

when comparing figures 3.5 and 3.7; the values for PSNR and SSIM are lower in the latter

experiments, and thus can be considered worse than the results obtained in preliminary

experiments. However, the results presented in Figure 3.8 show that the outputs are

less noisy, and have greater dynamic range than their counterparts generated by models

trained in the initial phase. In addition to that, the PSNR and SSIM values calculated

within the testing data images are better with the models developed in latter experiments,

even though the same metrics were better for the initial models in the training phase. The

output images portrayed in Figure 3.8 are picked by the highest PSNR and SSIM values,

when comparing the output images of all experiments detailed in Tables 3.2 and 3.3.
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Figure 3.8. De-blurred images from testing data, picking best by PSNR and SSIM among
all models developed.

Even though the image quality on testing data increased within second phase experi-

ments, shortcomings of same type can be seen in the images in Figure 3.8 as well, but

as having a minor effect compared to images in Figure 3.6. Resulting test image out-

puts are examined for all the models that were trained, to see if subjectively perceived

quality matches the objective metrics. For both sets of testing images, image quality that

is subjectively perceived by the author among the outputs of all models is aligned with

the PSNR and SSIM based evaluation, except in the case of the top row in Figure 3.8,

where the model E11 looks subjectively better than the ones picked by highest PSNR and

SSIM. Detailed visualization of model E11 performance on an image from testing data is

visualized in Figure 3.9.
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Figure 3.9. Detailed visualization of model E11 performance on an image from testing
data.

As it can be seen from Figure 3.9, although the predicted image is a lot sharper than the

blurry input, some defects can be observed. Deblurred image has lower dynamic range,

and the area that was covered by the blur in the blurry image is still mildly visible in the

output.

Evaluation with external data should be additionally conducted to assess how well the

deblurring works with other type of data than the type for which the generation was vi-

sualized in Figure 3.4. It will be especially useful to see whether it is possible to use a

blurry image for which the sequence of images are not generated by the random motion

trajectory, but rather by natural movement of the camera.

For external evaluation, GoPro dataset by Nah et al. is used, since it has been proven to

be useful data set for deblurring applications [46]. From that data set, a single video is

chosen for evaluation, and blurry image is generated by averaging ten consecutive frames

from a video in the dataset which is shot at 200 FPS. ESIM is used again to generate event

data for that image sequence. The video chosen for evaluation contains a license plate

of a car, which is an useful case since it can be easily seen if the text becomes readable

after the deblurring. Event data is generated in several different forms so that for each

model, event data is created with the same stack size and event threshold that the model
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Figure 3.10. Deblurring performance on GoPro data by [46].

was trained with. The outputs that achieved best PSNR and SSIM are presented in figure

3.10, alongside the output with subjectively best quality. There are several important

notions that can be taken when examining the Figure 3.10. For one, the blur in the blurry

image is worse than it was within the blurry images generated from the MIRFLICKR data.

Despite that, the text becomes readable even though the image quality is otherwise poor.

Second important notion is that in this case, the model achieving best PSNR and SSIM

is clearly performing worse than the one that has been picked as subjectively best by the

author.

3.5 Summary

From the model output results, it can be seen that event data can be utilized in this

setting for handshake deblurring. There are few noticeable shortcomings on the model

performance, perhaps the most obvious of those being that the colors of the outputs

are less saturated and lack the dynamic range that the ground truth images have. This

might be caused by the grayscale format of the event images, a characteristic that the

model perhaps omits and passes forward to the output. As it was shown in Figure 3.10,

developed deblurring method can also be applied to a dataset where the blur images are

not generated by random motion trajectory as seen in Figure 3.4, but rather from authentic

and natural movements of the camera, although this was demonstrated with only a single

sample. Same shortcomings are present in the results of deblurring of this type, including

lower dynamic range. Dynamic range issue is visualized in Figure 3.11, where the test

data predictions from model that was considered best performer (E11) is compared to the
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Figure 3.11. Average color intensities of predicted and ground truth test data images with
model E11.

ground truths from the perspective of color value distribution among the images. It can

be seen that the high and low end of the color spectrum have very low intensities among

the output images, contrary to the ground truths, where the peaks are on both edges of

the color intensity spectrum. The effect is stronger on the higher end of the color scales,

meaning that the model performs better on dark than bright targets.

The dynamic range issue that is present in the results could be perhaps addressed in

further research by integrating guided image filtering (GIF) step to the network architec-

ture. Marnedires et al. [47] have developed a version of the U-net where GIF can be

used for dynamic range expansion also known as inverse tone mapping (ITM), called

GUNet. The GUNet architecture also tends to reduce artifacts in the output, but in the

experiments conducted here, the artifacts are mainly remainders of the blur area that was

removed when sharpening the image, which makes it unlikely that GUNet would be able

to address this issue.

It is worth noting that these experiments were done only to demonstrate the possibility of

using event data in LSD2-based application, and hence some things such as the perfect

alignment between the RGB and event data were taken as granted. The sensitivity that

is equal to the event threshold that was providing the best results might be impossible

to achieve with event sensors available at the market today, without creating excessive

noise. Although neural network based approaches are mostly what contemporary studies

on image quality enhancing are focused on, event data could be also helpful with other

methods, since it could be used to calculate the blur kernel of an image.

There exists almost endless possibilities on different parameters and adjustments that

could be tried in order to drive the model performance closer to ideal. The trials conducted

here and the results that were presented can offer some idea on which direction to move in

order to achieve better performance. The smallest threshold of the three used was proven
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to be the best, so decreasing the threshold even further down could yield improvements,

even though it might cause the scenario to become too unrealistic, as it was previously

mentioned. The slowest pace for learning rate decay was found to be the best among

all models that were trained, and therefore in further research it should be considered

to further decreasing of the learning rate decay. It should also be considered to train

the network with data where the event threshold is varying among the images. This

would resemble a more realistic scenario, since the ideal threshold is dependent on the

scene, and thus different amounts of event data would be available for images captured

in different scenes. Other possible modifications could include for example changing the

ground truth image from the start of the artificial motion sequence of the images to the

middle.
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4. EVENT CAMERA TECHNOLOGY LIFE CYCLE

ANALYSIS

The study of life cycles of from the industrial perspective is highly concentrated around

product life cycles (PLCs), leaving the study in the field of technology life cycles (TLCs)

in a significantly smaller role. When searching for scientific literature on technology life

cycles on Google Scholar yields approximately 10 100 matches at the time of writing,

similar search for literature about product life cycles (PLCs) yields approximately 237

000 matches. Similar but slightly smaller difference was discovered by Taylor and Taylor

in 2011, using Abi Inform as the source [48]. This difference might be caused by the

fact that a single product has narrower scope than the technology it is based upon, and

therefore there is more variation in that space and more topics for research. While un-

derstanding both of these topics is important in order to achieve efficient and sustainable

business practices and make informed decisions at the management level, here the fo-

cus will be on the technology life cycle and not on any individual product, event though

the concepts of TLC and PLC are interlinked. From the management perspective, TLC

analysis offers insights that can be helpful when making strategic long-term investment

decisions in research and development (R&D) activities.

In this chapter, the technology life cycle models and different indicators and metrics are

used to determine the current phase and future prospects of the event camera technology.

Patent data will be used to gather information of event camera technology and few other

technologies that can be used for comparison and validation of the models and methods

that are being used for the analysis.

4.1 Technology life cycle model

The literature considering technology life cycles is not coherent in a way that there is not

an established consensus on what models and terms to use, and although some models

have been more widely adopted and used in research, no universally accepted model

have yet been established, as pointed out by [48]. However, the S-curve has established

itself as the dominant graphical representation of the technology evolution from the life

cycle perspective, even though there is variance considering what exactly the S-curve

portrays [48].
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Figure 4.1. S-Curve of technology life cycle, based on illustration by [49].

S-curve representation of technology life cycle model, where the accumulated number

of granted patents acts as the metric for inflection, was introduced by Ernst [49], and is

displayed in Figure 4.1. The S-curve representation is used widely in modern research

about TLC stage determination and forecasting, and it will be used here as well. Deter-

mining which metrics are adequately representative of performance of different types of

technologies is difficult, as noted by [50]. Benefit of using accumulated patents compared

to for example, accumulated amount of sales, is that patent data is available for observa-

tion earlier in time. This makes it more suitable for an analysis where the goal is to predict

future trends, and the observations are ideally made as early as possible. Other advan-

tages of using patent data in TLC analysis is that it is publicly and freely available, thus

giving the analysis a high cost to benefit ratio. When using the logistic growth function

that is depicted by S-curve, it is assumed that the variable under inspection starts from

zero and has some upper limit which it reaches in some point in time. In TLC context and

patents as the model variable, the thinking is that when the amount of total patents in-

creases, the total knowledge behind the technology increases as well, making it possible

to innovate even further, taking advantage of the established knowledge. This thinking

is in line with the initial exponential growth, which is followed by stagnation when the full

potential of the technology has been reached.

Several models have been proposed to represent evolutionary characteristics of technolo-

gies. Division of technology life cycle into four distinct stages has been widely adopted.

In the early literature the TLC was interpreted as cyclical model which consists of four

different eras; first era of ferment, second of emergence of dominant design, third of in-

cremental change, and finally the fourth era of discontinuity of the technology, which is

then again followed by the era of ferment [51]. In further research, S-shaped curve has

become more commonly used, even though it lacks the cyclical visual representation that

is present in the term life cycle. In S-curve models, eras have been redefined more simply
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Figure 4.2. Technology life cycle curve from business gain perspective, based on illus-
tration by [54].

as different stages, which are generally called emergence, growth, maturity and satura-

tion. TLC stage naming convention is not something that is universally agreed upon, even

though they represent similar characteristics in most of the cases. Sometimes stages get

called different names than previously mentioned, for example the emergence stage can

be called initiation [52] or embryonic stage [48], and saturation can be called decline

[53]. Also, stages can be split, such as in [53] where growth stage has been divided into

preliminary and real growth stages.

TLC from the business gain perspective is presented in Figure 4.2. At the early phases,

losses are inevitable since resource requiring R&D activities are needed to be conducted

in order to make further, commercially viable development possible. If the results during

the R&D phase are good enough that the confidence among investors encourages further

investment, eventually some products are developed and the investment costs are grad-

ually covered. Point A on the graph stands for ascent, M for maturity and D for decline

[54]. The four stages are analogous to the ones presented in Figure 4.1 along with the

S-curve model.
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4.2 Bibliometric analysis

Several sources for patent data are available. In this thesis, patent data is gathered from

the United States Patent and Trademark Office (USPTO) database [55] for two reasons.

First, searches from that database seem to provide more results per query than same

searches from other databases such as Espacenet [56], which is the database owned

and operated by European Patent Office (EPO). Second reason is related to the format

that the patent documents are presented in at each source, and which is explored in the

next section.

Using USPTO as the data source might bring up some undesirable skew in the data

that is the subject of examination. Criscuolo has studied the home advantage effect

which manifests in a way that domestic applicants are disproportionately represented in

the domestic patent space compared to their foreign counterparts [57]. However, since

the United States is the largest technology market in the world [58], most innovators

worldwide desire to protect their intellectual property on that market, and that gives some

explanation on why the disproportional majority of domestic applicants is smaller in the

United States than in Europe, as observed by Criscuolo. Despite the effect, the analysis

from Criscuolo comes to a conclusion that even with the domestic over-representation in

the data, patent data from both both EPO and USPTO does offer a reliable picture into

the international status of innovation in different technologies.

4.2.1 Patent data retrieval

Unfortunately, USPTO database does not offer an application programming interface

(API) from which to access the patent documents in a programmatic manner, or a tool

which would allow downloading all documents that match a given query at once. For this

reason, programmatic browser-based method is needed in order to access the patents

and download them. Python scripts were created to extract patent documents matching

given queries from USPTO database in .html format recursively. Executing the searches

in programmatic manner is possible using a Python package called Selenium WebDriver,

which allows interacting with .html elements such as forms and buttons on a web page

[59], and thus making it possible to acquire the search URL and the search results page

containing links to patent documents matching the query by filling and submitting the

query form, which is implemented via plain HTML. Finding the patent document links

from the resulting web pages is done via BeautifulSoup Python package, which allows

accessing the website elements systematically [60].

A distinction between the full patent documents and the documents retrieved should be

made. The patent web pages which are downloaded lack some of the information that

the full patent documents that are in .pdf format contain. The full documents can contain
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Figure 4.3. Recursive patent document retrieval process.

figures of designs, technical drawings, snippets of code or other such elements which give

more visual depiction of the invention that is being claimed by the patent. For the sake of

ease of processing the information contained within the patents and because of the format

that the full documents are accessible in, only the .hmtl versions are downloaded, but the

full contents of some of the documents are also examined in some cases. For these

reasons, the term patent document is used in this thesis to refer to the .html contents

rather than the full documents, if not specified otherwise.

Additional scripts were created to parse the downloaded documents to extract relevant

information from them, such as filing and granting date, patent classes and the names of

inventors, applicants and assignees. The scripts used are divided into two sets. Miner is

responsible for submitting queries and downloading documents, whereas parser scripts

process documents which have been stored locally, extract relevant information fields

from them and combine the information from those fields into a single .csv file, which

contains the desired data points from all the patents that were retrieved. These data

points which are stored in a single file can then be used for different types for data analysis

and visualization. The process flow of information retrieval by the miner part of the created

scripts is visualized in Figure 4.3.

Creating a set of queries that make it possible to obtain a representative sample of patents

related to a given technology is a challenging task. As pointed out by [61], patents are

not classified in such precision that it would be possible to conduct a search for patents

related to a single technology by querying by classifications. Additionally, the names of

all the technologies that are related to the patent are not always mentioned in the title

or the abstract of a patent. Some other challenges also occur while searching for patent
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Query ID Query Matches

Q1 "temporal contrast vision sensor" 54

Q2 "event-based sensor" 48

Q3 "dynamic vision sensor" 184

Q4 "asynchronous time-based image sensor" 28

Q5 "event-based vision" 79

Table 4.1. Queries used for patent document retrieval from USPTO database

documents in the USPTO database. The search algorithm includes some limitations

when searching for exact phrases. For example, if there is a document in the database

that contains the phrase, but with additional stop words, which are some commonly used

words in patent documents [62], such as that, where or the, those documents are counted

as matches for the given query. Due to this behaviour by the search system, a patent

document containing the phrase "event where the camera..." is included in the results

when the search is conducted by using the query "event camera". The database search

interface does not provide an option to list only exact matches, where the stop words

are dismissed. To combat the undesirable behaviour of the USPTO search algorithm

regarding stop words, additional filtering is conducted to get rid of the documents that do

not contain the exact phrase that was searched for, without stop words. The query "event

camera" is not among the ones used in the document retrieval, since the term is generic

by nature and can be used in other contexts not relating to the event camera technology.

The queries that are used are limited to contain more technical terms, that are considered

unique to the event camera technology. The queries are picked from terms that commonly

occur in scientific literature about event cameras, and in those patent documents that were

found by initially searching by broader terms.

Queries for a given term also give results where the text only appears in the literature

references section, which means that a decision has to be made whether to include those

results. In this case, those results are chosen to be included, the reasoning behind being

that a patent which refers to a scientific paper with the query term in its title, is related to

the specific query term in question. Those types of patents represent 30.9 percent of the

retrieved documents. Several queries related to event camera technology were used, and

they are displayed in Table 4.1. The number of matches on table is the amount of patent

documents after filtering, meaning that the ones without exact matches are not included

in it.

Some of the retrieved patent documents are matches for multiple queries in Table 4.1.

Examining the overlap of query results can provide information on how different terms

used in querying are related to each other. The percentage of overlap between queries

is visible in Figure 4.4, where the values presented tell what percentage of the results
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Figure 4.4. Overlap of results between different queries presented in Table 4.1 and per-
centage of unique matches.

of a given query in y-axis are also results for the query in x-axis. Percentage of unique

matches for a given query, which means the percentage of patents matching a query that

were not matches for any other query used, is also shown. Removing duplicate matches

reduces the amount of patents retrieved significantly from initial expectations. If all the

values from the column Matches in Table 4.1 are summed, the sum equals 396 matches.

However, the real number of documents retrieved is 256 after dismissing duplicates from

the results.

4.2.2 Patent data

Patent documents contains several elements which are required to understand before

analyzing it. Applicant refers to the individual or organization which is responsible for filing

the patent. The organizations capable of filing a patent application are narrowed down

to legal entities [63]. Assignee is by definition the entity that has legal interests to the

ownership rights of a patent. It is often the same organization that employs the inventor

of the technology [64]. Inventors are the individuals who have contributed intellectual work

towards making the patent contents possible. References in patents can point to either

related patent documents or other literature, such as scientific papers. Claims define the

scope of a patent from the perspective of what about a given patent is legally enforceable

[63]. Forward citations of a patent are other patents which have been published after the

first one, and have listed the older patent in their referred patents. Number of forward

citations can be considered as a metric of commercial success of a patent, as noted by

Henderson et al. [65], who ranked patents to winners and losers based on the number

of forward citations that the patents had. For this reason, event camera patent data is

searched for the top cited patents to find out which patents are the most successful in this

regard. Top 10 patents by this metrics are presented in Table 4.2.
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Patent
number

Forward
citations

Patent title Applicants Assignees

8780240 20 Method for the generation of an image in electronic form, pic-
ture element (pixel) for an image sensor for the generation of
an image as well as image sensor

POSCH, CHRISTOPH; LITZEN-
BERGER, MARTIN; MATOLIN,
DANIEL; WOHLGENANNT,
RAINER

AIT AUSTRIAN INSTITUTE OF
TECHNOLOGY GMBH

7573956 19 Time encoding and decoding of a signal Not specified THE TRUSTEES OF COLUMBIA
UNIVERSITY IN THE CITY OF
NEW YORK

9143680 15 Event-based image processing apparatus and method SAMSUNG ELECTRONICS CO.,
LTD.

SAMSUNG ELECTRONICS CO.,
LTD.

9001220 10 Image sensor chip, method of obtaining image data based on
a color sensor pixel and a motion sensor pixel in an image
sensor chip, and system including the same

SAMSUNG ELECTRONICS CO.,
LTD.

SAMSUNG ELECTRONICS CO.,
LTD.

9471840 10 Apparatus and method for low-power object-detection in im-
ages using hardware scanning window

QUALCOMM INCORPORATED QUALCOMM INCORPORATED

9554100 10 Low-power always-on face detection, tracking, recognition
and/or analysis using events-based vision sensor

QUALCOMM INCORPORATED QUALCOMM INCORPORATED

9804635 10 Electronic device and method for controlling displays SAMSUNG ELECTRONICS CO.,
LTD.

SAMSUNG ELECTRONICS CO.,
LTD.

10032498 8 Memory cell unit and recurrent neural network including multi-
ple memory cell units

SAMSUNG ELECTRONICS CO.,
LTD.; UNIVERSITAET ZUERICH

SAMSUNG ELECTRONICS CO.,
LTD.; UNIVERSITAET ZUERICH

10229341 7 Vector engine and methodologies using digital neuromorphic
(NM) data

VOLKSWAGEN AG; AUDI AG;
PORSCHE AG

VOLKSWAGEN AG; AUDI AG;
PORSCHE AG

10133944 6 Digital neuromorphic (NM) sensor array, detector, engine and
methodologies

VOLKSWAGEN AG; AUDI AG;
PORSCHE AG

VOLKSWAGEN AG; AUDI AG;
PORSCHE AG

Table 4.2. Top 10 U.S. event camera patents by forward citations

Table 4.2 shows that among the top patents by forward citations, most of the patents

are related to the event sensors and core data processing, but patents granted to more

advanced applications of the sensor technology have made it to the list as well. Those

patents consider applications related to object detection and tracking, and notably two of

those are from automotive manufacturers which implies that there is possibility of auto-

motive integration of event camera technology.

To examine event camera technology from the TLC perspective, the patents that were

retrieved are plotted by their granting date in Figure 4.5 in S-curve format. By looking

at Figure 4.5 where the accumulated number of patents and the yearly increases to that

number is displayed, it can be seen that the development of event camera technology

which started in the late 80’s, did not prove commercial potential until 2009 when the first

patent was published, and the threshold of 50 patents in total was not broken until 2017.

After that, patents granted have seen exponential growth, increasing by over five-fold from

2017 to 2020. Comparing the cumulative patents of event camera technology to the theo-

retical S-curve would suggest that the technology is currently either at late emergence or

at early growth stage of the TLC. However, as Figure 4.5 shows, the number of granted

patents in 2020 was slightly less than the number granted in 2019. This might suggest

the beginning of an early saturation stage, but one sample is not enough to confidently

assume that that is the case, and inspection of other metrics should be conducted.

Each patent is assigned to one or several classes and sub-classes that correspond to

the International Patent Classification (IPC) scheme, which is maintained by World Intel-

lectual Property Organization [66]. Examining which classes are dominant in the patent

documents of a given technology gives some hint on what industries might contain early

adopters in the case of upcoming technology or main researchers in already established

one. Also, if patent data of a given technology shows that there are not many patents
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Figure 4.5. Cumulative patents

Figure 4.6. Number and percentage of each top-level classification in patents by year

outside the scope of classes that the technology is initially based upon, one can make an

assumption that the technology does not yet have practical uses in wide range of fields.

For example, in the case of event camera technology, from the classes of the patents,

it can be seen in Figure 4.6 that majority of the patent classifications are made in core

categories related to the technology itself, physics (G) and electricity (H). However, al-

ready 4.4 % of the classifications are in other categories, and with most of those types of

patents being granted in the last three years. This hints that the event camera technol-

ogy already has some practical usages that span into other industries. The potential for

expansion towards other fields is examined with quantitative metrics in further sections of

this chapter.

In addition to the top classes among the patents, sub-classes should be inspected also.

Each sub-class that occurs in the patent data is displayed in Table 4.3 alongside the

number of occurrences and a detailed description. Classifications show that among the

patents in categories G and H, on which it is harder to determine the exact are of usage,
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Figure 4.7. Yearly applicants for granted event camera patents

event camera technology has been granted sector-specific patents at least in the medical

and automotive sectors.

One way to understand where a technology is possibly heading is to look which entities

are being granted most patents. In this case, it will especially looked at the applicants to

see if there are entities among them that are closely tied to the mobile phone industry.

First, we can look at top applicants contributing to the technological development of event

camera technology, meaning the applicants who have been granted most patents. Figure

4.7 shows the amount of patents from top applicants on a yearly basis.

Although Samsung is insurmountably the top applicant in patents related to event camera

technology, it is worth noticing that as it was mentioned in chapter 2, the only product sold

by them where they have used DVS sensors has been already pulled from the market.

However, as was seen in chapter 2, the latest publication regarding sensor specifications

by Samsung was published in 2020, which along with the patent data shows that the

R&D efforts by the company continue. When considering the possibility of event camera

integration into mobile phones, it is reasonable to assume that the knowledge that a

company that operates in mobile phone sector have accumulated in other areas about

any given technology is also utilized in mobile phones in future if that is perceived as

useful. Two other enterprises, Sony and Apple, that have a stake in mobile imaging

business are also found among the applicants, even though they are not among the top

ones.

Qualcomm Incorporated, the applicant with the second largest number of granted patents

on event camera technology, is the world’s biggest supplier of smartphone application

processors [67]. This brings some confidence to the argument that the event camera

integration is being at least researched and considered in the mobile phone industry.

It is worth noticing that among the top 8 applicants are three companies that are focused
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Class Count Description

A61B 8 DIAGNOSIS; SURGERY; IDENTIFICATION

A61F 2 FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING
OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION;
TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS

A61N 4 ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY

A63F 1 CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; GAMES NOT OTHERWISE PRO-
VIDED FOR

B25J 2 MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES

B32B 2 LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM

B60R 1 VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR

B60T 1 VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL

B60W 2 CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY
ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL
OF A PARTICULAR SUB-UNIT

B62D 1 MOTOR VEHICLES; TRAILERS

C12Q 1 MEASURING OR TESTING PROCESSES INVOLVING ENZYMES OR MICRO-ORGANISMS

G01B 9 MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING
IRREGULARITIES OF SURFACES OR CONTOURS

G01C 3 MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY
OR VIDEOGRAMMETRY

G01J 18 MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-
RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY

G01M 1 TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHER-
WISE PROVIDED FOR

G01N 2 INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES

G01P 2 MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR
DIRECTION, OF MOVEMENT

G01S 11 RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING
OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS
USING OTHER WAVES

G02B 12 OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS

G02C 1 SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES

G03B 5 APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR AR-
RANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR

G05D 4 SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES

G05F 1 SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES

G06F 85 ELECTRIC DIGITAL DATA PROCESSING

G06K 77 RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS

G06N 12 COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS

G06Q 1 DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGE-
RIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COM-
MERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR

G06T 80 IMAGE DATA PROCESSING OR GENERATION, IN GENERAL

G08B 7 SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS

G08G 1 TRAFFIC CONTROL SYSTEMS

G09B 1 EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF
OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS

G09G 14 ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMA-
TION

G10K 1 SOUND-PRODUCING DEVICES

G10L 2 SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION

G11C 3 STATIC STORES

H01L 19 SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR

H03D 1 DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER

H03F 5 AMPLIFIERS

H03K 4 PULSE TECHNIQUE

H03M 1 CODING, DECODING OR CODE CONVERSION, IN GENERAL

H04B 2 TRANSMISSION

H04J 2 MULTIPLEX COMMUNICATION

H04L 5 TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION

H04M 2 TELEPHONIC COMMUNICATION

H04N 129 PICTORIAL COMMUNICATION, e.g. TELEVISION

H04Q 1 SELECTING

H04R 1 LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-
AID SETS; PUBLIC ADDRESS SYSTEMS

H04S 1 STEREOPHONIC SYSTEMS

H04W 5 WIRELESS COMMUNICATION NETWORKS

H05B 2 ELECTRIC HEATING; ELECTRIC LIGHTING NOT OTHERWISE PROVIDED FOR

Table 4.3. IPC codes present in the event camera patent data



39

Figure 4.8. Keyword term occurrences in event camera patent data

on automotive industry, Volkswagen AG, Audi AG and Porsche AG, although the latter two

are subsidiaries of the first one. Closer look into the patent documents also reveal that

for all of the patents where one of these companies is listed as applicant, also one or two

of the others are listed as applicant as well. For other automotive manufacturers, at least

Honda’s R&D vision has been granted one patent related to event camera.

Looking at the titles and contents of the patents suggests that there are several ar-

eas where the patent applications focus. Virtual- and augmented realities (VR and AR)

are mentioned in several patents, along with areas such as mobile phones, automotive,

robotics and aerospace. One way to look at the representation of different areas in the

patent documents is by conducting a keyword search. Different keyword terms related

to several industries are gathered and searched for in the patent documents that were

retrieved. The number of documents containing each term is displayed in Figure 4.8.

Although mobile imaging category yields more keyword term matches from the patent

data than other categories that were tested, closer examination of the patents containing

those keywords shows that in many cases, mobile phones are mentioned just as one

example of an applications where the technology described in the patents could be uti-

lized, as the patents are not especially granted for mobile phone implementation of the

innovations.

In addition to analyzing the number of occurrences of keywords, their importance in the

texts can be analyzed as well. This can be done by measuring the term frequency-inverse

document frequency (tf-idf) score of the keywords. The calculation for this metric [68] is

presented in Equations 4.1, 4.2 and 4.3.

tf(w, d) =
w(d)

|d|
(4.1)
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Figure 4.9. Term frequency scores by themselves and with inverse document frequency

idf(w,D) = 1 + log(
N∑︁N

i=1W (w, di)
) (4.2)

tf -idf(w, d,D) = tf(w, d)× idf(w,D) (4.3)

In Equations 4.1, 4.2 and 4.3, w is used to note the term for which the metric is being

calculated for, d is a single document containing |d| terms in total, and D is a set of N

documents. Function w(d) returns the amount of occurrences of the term w in a the

document d, and W (w, d) returns either 1 or 0 depending on if the document d contains

the term w or not, respectively. The metric is therefore calculated for each document

separately, but with respect to the complete set of documents. Tf and tf-idf scores for the

same keyword terms that were used in Figure 4.8 are presented in Figure 4.9.

Using tf-idf scores can be problematic in cases where there exists an abbreviation for the

term which is used in the text after only mentioning the full term once. The keyword list

used here contains several terms like that, which include simultaneous localization and

mapping (SLAM), unmanned aerial vehicle (UAV) and virtual and augmented realities (VR

& AR). For those terms, the tf scores of abbreviations and the original terms are added

together 4.9.

4.3 Forecasting and stage determination

Determining whether a technology is going to succeed or fail is a difficult task, but one

that investors must consider every time they allocate their resources into any new or

existing technology. Several studies have been done with different types of metrics and

methods to gain foresight on how technologies may perform in the future. Here, some

of those metrics will be utilized in order to determine current status and future prospects
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of event camera technology. As it was found out previously by examining the patent

data, the scope of event camera technology is not confined to contain only the hardware

(event sensors) but also includes the applications that utilize that hardware for different

purposes.

By looking at the S-curve of cumulative patents in Figure 4.5, initial assumption can be

made that event camera technology is currently at the growth stage, but the data point

representing the latest full year of observations (2020) does show signs of decreasing

growth, which should not be dismissed. Altuntas et al. [52] conducted a study where

they examined three different metrics driven from patent data to determine the future

prospects of three different technologies, TFT-LCD displays, flash memory systems and

personal digital assistants (PDA’s). Motivation behind the study was to be able to analyze

the investment potential of different technologies that are in the growth stage of the TLC,

as is the event camera technology, according to the initial assumption. The metrics that

they used were diffusion speed, expansion potential and patent power. The data querying

criteria in their study was more strict than used in this thesis, and only patents with the

specific term in the patent document’s title were approved. For that reason, when calcu-

lating those metrics for event camera technology, two values will be calculated, one with

the requirement that the query term is on the title, and one with the all the data gathered

with the requirements mentioned previously. However, in the original study, no arguments

were presented for why only the title matches were required. Perhaps the reason was

that it resulted in smaller sample size, since the technologies that were analyzed would

yield thousands of patents as result if all the patents containing the query term would be

taken into account. As stated by [69], headlines can often be formulated in a way that the

technology itself is not mentioned in it.

As for the metrics, diffusion speed originally introduced by Huang & Wang [70] looks at the

value of the patents from the perspective of forward citations, giving patents that get cited

more value in same manner as it was done earlier in this chapter in Table 4.2. Diffusion

speed is defined as the total number of forward citations in the patent data divided by the

total number of patents. Patents that have been granted within last four years from the

time that querying happens are discarded when calculating diffusion speed, due to the

fact that patents may take several years to undergo the examination period before they

are granted, and therefore it is not reasonable to assume that patents citing other recent

patents have been granted yet. In the case of event camera, patents from the last four

years equal most of the patents that were retrieved, which results in a small sample size

as can be seen from Figure 4.5. Expansion potential is defined as the total number of

different IPC classifications that are present in the patent data, and patent power is the

expansion potential divided by the total number of patents.

The study by [52] was published in 2014 and the patent data they used was gathered

from the years prior to 2012, which means that the metrics that they calculated are now



42

Metric TFT-LCD (-2012) Flash memory system (-
2012)

Personal digital assistant
(-2012)

Event camera technology
(title match required)

Event Camera
technology (all)

Diffusion speed 10.61 31.11 31.46 6.50 3.42

Expansion potential 21 21 52 206 558

Patent power 1.73 1.30 1.38 2.30 2.12

Table 4.4. Metrics used and values calculated by Altuntas et al. [52] and corresponding
values calculated for event camera technology

outdated. However, this makes it possible to compare the metrics they calculated with

the actual outcomes of these technologies in the years that followed. The values for the

three metrics calculated in the original study and calculated for event camera technology

by two different criteria are displayed in Table 4.4.

Notable differences between the technologies compared is that the diffusion speed is

considerably lower with event camera technologies than with any of the technologies

in the original study, and that the patent power and expansion speed are both higher

than with any of the other technologies in comparison. Higher expansion potential is in

line with the fact that as listed in Chapter 2 and based on examining characteristics of

the retrieved patent data, there exists many possibilities for event camera use cases in

different industries.

The three technologies considered by [52], the metrics calculated for them and the re-

sulted outcomes provide interesting outlook from the TLC perspective. TFT-LCD displays

can still be considered prevalent, as the annual units shipped in 2019 was 770.5 million,

but that is only 2.17 % increase from 2012 [71]. As the demand for other types of displays,

such as OLED an AMOLED, have soared during recent years [71], while the increase in

TFT-LCD display sales have been only modest, it is reasonable to consider that TFT-LCD

technology has possibly reached the saturation stage of it’s TLC. The argument gains

more confidence when by looking at the S-curve of TFT-LCD technology in Figure 4.10,

where the outcomes for the three technologies is displayed. Figure 4.10 shows that the

growth of accumulated number of granted patents has decreased to near zero, a clear

sign of saturation stage in the S-curve model of TLC.

The case of personal digital assistants depicts the scenario on which a technology goes

through dramatic shift and moves on to a completely new S-curve. Even though smart-

phones have made PDA devices almost obsolete in the last decade, it can be argued that

the smartphone technology was built on top of the base that PDA devices had established,

or even that smartphones are actually a part of the PDA technology. If smartphones were

to be considered as successors of PDA’s or would be considered as part of the PDA tech-

nology, that would be in line with the fact that PDA technology was assigned the highest

expansion potential of the three technologies compared. The relationship between PDA’s

and smartphones could be studied further by collecting patents related to smartphones

and examining how often they cite PDA patents.
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Figure 4.10. S-curves for TFT-LCD, PDA and flash memory system technologies before
and after the analysis by [52]

As previously stated, the question that these metrics are supposed to help to answer is

whether a technology is worth investing. If we look at the market data of the products in

question, flash memory systems and PDA’s saw large-scale growth, if PDA’s are classified

as smartphone predecessors [72] [2], whereas TFT-LCD has seen competing technolo-

gies gaining more interest and only modest growth over the years [71]. Obviously there

exists other factors that affect the profitability of an investment in a technology, but growth

in market size can be considered as a generally useful metric. When comparing only

these three samples and the values calculated for them in Table 4.4 to the market size

growth, it would seem that larger diffusion speed and lower patent power result in growth,

whereas expansion potential cannot be used to predict future behaviour. That would sug-

gest that event camera technology is not a viable investment target. However, the sample

size of three is too small to suggest that any conclusions about the predictability of a

technology’s success could be made based on these metrics.

4.3.1 S-Curve models

Liu and Wang introduced a straightforward method to utilize three existing metrics for TLC

forecasting, based on three different but similar equations used in modeling the S-curve

[73]. The models in the study include the Loglet Lab model, the Pearl model and the

Gompertz model. The Loglet Lab model is more commonly referred to as logistic model,

for example by [50] and [74], and will for that reason be referred to as logistic model in

this thesis.

The Logistic and Pearl models are better at describing technologies that experience a

rapid growth phase [73], which makes them suitable candidates in the case of event

cameras, for which there has been increasing growth until the year 2019, like seen in

Figure 4.5. Contrary, the Gompertz model is better for modeling technologies that grow
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Figure 4.11. Observations and forecasts for event camera technology by Logistic, Pearl
and Gompertz S-curve models, using a range of different values for K

with slower pace. The formulas for the S-curves that Logistic, Pearl and Gompertz models

are described as follows:

Yt =
K

1 + e−a(t−b)
, Logistic model (4.4)

Yt =
K

1 + ae−bt
, Pearl model (4.5)

Yt = Ke−ae−bt

, Gompertz model (4.6)

In Equations 4.4, 4.5 and 4.6, Yt is the value of the S-curve, K is the accumulated number

of patents after saturation, t is the time point for which the value of Yt is calculated, and

a and b are the model parameters. The model equations are used to fit the existing real

data and use that to obtain a and b, and then using these parameters again with Equa-

tions 4.4, 4.5 and 4.6 for forecasting. Forecasts by these three models and with a range

of K spanning from 257, which is one more than the number of patents retrieved, and

up to 3 000 are represented in Figure 4.11. The year 2021 is dismissed when calculating

the parameters, since at the time of the writing the year has not reached it’s end, and

additional patents will almost certainly be granted still. As previously mentioned, Gom-

pertz model is suitable for technologies with more moderate growth pace, and in Figure

4.11 that is evident, as the Gompertz model forecasts separate from the real observations

early on. For this reason, the Gompertz model is not addressed anymore in the follow-up

analysis of the models. Logistic and Pearl models also provide identical values for the

S-curve, and for that reason only the logistic model will be used from now on.

In the study by Liu and Wang, determination of the best value for K was done by com-
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Figure 4.12. Optimal forecast curves chosen by calculating minimum MSE and SME by
trying different values of K. On the right, corresponding error values are displayed.

puting forecasts by using a range of different values for K, like in Figure 4.11, and then

calculating MSE and the Sum of Modulus Error (SME), also known as the sum of abso-

lute errors (SAE), between the forecast and the observation curves, and then choosing

as best value the K that resulted in minimum value for both of these error metrics. SME

calculation for arrays X and Y which are of length N is visible in Equation 4.7, and the

forecast curves that correspond to the value of K causing the least error by both of these

metrics is visualized in Figure 4.12.

SME(X, Y ) = SAE(X, Y ) =
N∑︂
i=0

|Xi − Yi| (4.7)

The model forecasts that the number of event camera patents will grow rapidly until the

late 2020’s, and that the saturation value is between 895 (minimum MSE) and 1243 (min-

imum SME), which would indicate that the total number of patents would increase from

3.50 to 4.86 times the current amount. If we look at the theoretical S-curve presented

in Figure 4.1, we can see that the transition from emergence to growth stage happens a

short period before the rate of growth in cumulative patents reaches it’s maximum value.

Using this notion and looking at the forecast S-curve and the position of latest observa-

tions related to it, it can be seen that the point on the forecast curve at the position of

latest observation is already at the highest rate of growth, but the sequence of latest ob-

served points show growth at slightly slower rate. This suggests that the event camera

technology is either at the verge of transition from emergence to growth, or has recently

passed the transition point.

The patent data for other technologies that was gathered previously can be utilized to

validate the functioning of these S-curve models. These technologies are especially use-

ful, since they have all arguably reached the saturation stage based on the S-curves,
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Figure 4.13. Forecasts using logistic model and patent data of TFT-LCD, PDA and flash
memory system technologies prior to 2012, compared with the actual outcomes that oc-
curred

and therefore they are considered suitable candidates for examining how accurate the

error-based fitting and determining of K is. These technologies are not however the most

ideal for this usage, since they are not part of the same product family which would be

desirable for comparison purposes as pointed out by [50]. However, patent data for such

technologies which would show clear signs of saturation on the S-curve in the imaging

sensor space was not able to be found. Data from these three technologies prior to 2012

is fitted and compared to the actual outcomes in the accumulated patent numbers that

followed after that year. The forecasts compared to observations are presented in Figure

4.13.

The logistic model is able to predict the development of these three technologies in high

accuracy. Perhaps the most notable of these is the forecast concerning flash memory

systems. In that case, latest years of observations used for forecast construction showed

accelerating growth, but nevertheless the model was able to accurately predict that the

growth will slow down. The observations used for constructing the forecasts contain more
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Figure 4.14. Forecast accuracy with different amount of data points available. Cut-off
year in x-axis means the latest year from which data is used as input for the forecast
model.

data points than the observations used for event camera forecasts, exactly 22 in the

case of TFT-LCD and PDA, and 18 in the case of flash memory systems, whereas event

camera technology patent data has only 12 data points. For this reason, it should be

tested how far back the cut-off point where the data is split into observation and outcome

can be moved, until the forecasts become unreliable. That test is visualized in Figure

4.14, where Kreal equals the latest observation which is the number of patents that was

granted by the end of the year 2020.

It can be seen from Figure 4.14 that the cut-off point can be rolled back all the way to

the year 2006 until the difference between latest observed cumulative number of patents

and predicted K starts to differ significantly, reducing the number of data points to 16

with TFT-LCD and PDA, and 12 with flash memory systems. Same cut-off year applies

for the calculated MSE and SME between the real outcome and the forecasts. What

is significant about the result of this test is that if we look at the S-curves of the three

technologies and the visualized errors, we can see that if the data used for making the

forecast has reached the point of rapid growth, the forecasts are reliable in these cases.

It should be noted that the latest observed value of K, which is considered in the forecast

accuracy determination to be the real outcome value, is actually slightly lower than the real

saturation value which is yet to be determined, since although the growth in accumulated

patents have been decreased to a low level, it is nevertheless still growing slightly every

year.

One trait of the forecast models should be noted after looking at Figure 4.14, and that

is the volatility of the forecast when having few data points. If we look at the difference

between latest observation and predicted K in the case of TFT-LCD patents, it can be

seen that the difference drops from near zero down to below -700 within just two-year
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difference in the cut-off year, from 2006 to 2004. As the real observed K is around 250,

the error of predicted K is over 150 % of the actual outcome value. Similar behaviour can

also be observed within the PDA forecasts. This somewhat increases the doubts when

considering the event camera forecast.

4.3.2 Entropy model

Entropy is a term that is used in thermodynamics to describe the amount of disorder in

a system. Lin et al. refined the term to be used in the area of TLC examination [53].

In the TLC context, the larger the diversity is among patent applicants in the technology

space, the larger the entropy value becomes. On the contrary, if most of the patents are

applied by only few applicants, the entropy value is smaller. Lin et al. also examined how

the value behaves in different TLC stages and in transitions between them, and found out

some trends that occur in those scenarios. The basis for the calculation of the entropy

indicator for TLC analysis is presented in Equation 4.8.

H = −
M∑︂
i=1

Ni∑︁M
j=1 Nj

log
Ni∑︁M
j=1 Nj

(4.8)

In equation 4.8, H is the entropy value, M is the total number of patent applicants, Ni is

the total number of patents granted and Nj is the number of patents by a single applicant.

The indicator is calculated on a yearly basis.

In their analysis, Lin et al. noted that growth, the second of four TLC stages previously

introduced is better to be divided into two distinct stages in the case of some technolo-

gies. They call these two stages preliminary and real growth, where preliminary growth

precedes real growth and can occasionally experience more fluctuations than it is typical

for the growth stage. From the entropy indicator data, one can estimate the current TLC

stage that the technology is currently experiencing, and also transition points from one

stage to other. Entropy calculated by using Equation 4.8 for the event camera patent data

is presented in Figure 4.15.

In addition to the entropy calculated using applicant information, Figure 4.15 also shows

the value calculated using assignee data, since those data points represent similar type

of information, answering the question of who is behind the patent. According to Lin et al.

the transition from emergence to preliminary growth stage happens after the value of H

has risen from zero, when dH
dt

= 0 and when H decreases after the transition. Based on

the indicator values over time, it appears that the best candidate for transition point from

emergence to growth is at year 2015, where the entropy reaches the condition dH
dt

= 0

and decreases for one year until it starts to grow steadily when looking at the values

calculated by assignee data. When looking at the applicant data, there is not considerable



49

Figure 4.15. Entropy indicator derived from event camera patent data

growth after 2015, although the trend is going upwards with some fluctuatios. According

to the entropy model, event camera technology is therefore possibly transitioned from

emergence to growth phase, but other indicators must be observed to confirm or dismiss

whether it has really happened.

4.3.3 Other indicators

Several other indicators can be derived from the patent data. Haupt et al. conducted a

study on how those indicators behave in TLC stage transitions [61]. The indicators include

the average number of backwards citations made to other patents and scientific papers,

and their hypothesis was that the amount of citations of both types increase in transition

from emergence to growth phase. Average immediacy of patent citations means the time

that has passed between the cited patents and the patents that have cited them. Aver-

age number of forward citations, a term defined in earlier section of this chapter, is also

included. Average duration of examination process is the time that has passed between

filing and granting the patents. Average number of claims and average number of pri-

orities are also considered. The study by Haupt et al. was conducted on pacemaker

technology, which contains some different traits when comparing it to event camera tech-

nology. For example, pacemakers are heavily contained in the medical field, meaning that

the number of applications outside of the scope of medical is limited. Summary of these

indicators, the hypotheses by Haupt et al. and their observed results are visible in Table

4.5. Values for these indicators derived from event camera patent data are displayed in

Figure 4.16.

The values of regarding forward citations might be misleading, because as Figure 4.16

shows, the duration of examination has ranged from around one up to six years in recent

years. This means that some of the patents that will refer to the patents published recently
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Indicator Hypothesis Observation by Haupt et al. [61] Observation on event camera patent
data

Backwards citations Significant increase from emergence to
growth and from growth to maturity in
both patent and literature citations

Patent citations increased at both tran-
sitions, literature citations only from
emergence to growth

Patent citations increased and litera-
ture citations decreased to a steady
level

Immediacy of citations Significantly higher in emergence and
maturity stages than in growth stage

Increase was only observed when
comparing growth to maturity stage

Slight drop after 2014

Forward citations Significant increase from emergence to
growth

Observations confirmed the hypothesis Not conclusive

Claims Increasing in every TLC stage Increase was only observed when
comparing growth to maturity stage

Steady throughout the years

Priorities Increasing in every TLC stage Increase was only observed when
comparing growth to maturity stage

Increased to a steady level in 2014

Duration of examination Significantly higher in emergence and
maturity stages than in growth stage

Observations confirmed the hypothesis Trend going downwards from 2013

Table 4.5. TLC indicators and corresponding hypotheses by [61] and observations using
event camera patent data

Figure 4.16. TLC indicators derived from event camera patent data

are yet to be published. Haupt et al. emphasize that in order to reliably address that a

technology has transitioned between TLC stages, one must be able to observe a change

in the indicators that is both significant and has a long-term effect [61]. Although it seems

that most of the indicators increase significantly from 2012 to 2014, this effect should

be observed with some criticism, since there were no granted patents related to event

camera technology between 2010 and 2012, and the indicators have remained relatively

close to their values in 2009, which should also not be given too much emphasis, since

there was only one patent granted that year. For these reasons, it is not possible to make

convincing arguments about the stage of event camera TLC based on these metrics.

Patent data offers useful insights into the development of technologies, but it can be mis-

leading to rely solely on it when conducting TLC analysis. As Järvenpää et al. [69] point
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out, other non-patent based indicators can also provide insights, and the way that these

indicators behave is related to the stage of the life cycle. In their study the hypothesis was

that in the early stages of the life cycle, scientific literature appears before other indicators.

Scientific literature development can be measured by examining the Scientific Citation In-

dex Expanded (SCIE), which measures the number of citations to papers related to a

technology among a curated collection of 9 200 established journals. Scientific literature

was thought to be followed by engineering papers, patent documents and news articles

in respective order. The explanation behind the order of the indicators was that scientific

literature depicts status of fundamental research that is required before applied research

can occur, and which can in turn be measured by indicators derived from engineering

paper publishing data. Patent documents come to picture only on when further develop-

ment happens and commercial applicability is proven possible, and the actual inflection of

a technology can be seen from examining news articles related to the technology. How-

ever, the hypothesis which was tested by three different technologies was concluded to

be not generally applicable principle, as in the case of the tested technologies examined

the order was different.

The non-patent indicators were calculated for event camera technology using the same

query terms that were used in the patent search, and which were presented in Table

4.1. In the case of literature about event camera technology, it is very difficult to make

a distinction on whether a publication is part of the fundamental scientific research or

applied engineering, and therefore the two metrics are combined, and citation index value

thus contains the citations to all the papers that match the queries used. News articles

matching the queries are obtained by using the Nexis Uni search engine [75], which

offers matches from over 17 000 different publications. Citation indices and the number

of occurrences of the query terms in news articles is presented in Figure 4.17. Query Q4

(asynchronous time-based image sensor) did not yield any results when searching via

Nexis Uni, and is thus excluded from that section in Figure . To see how these values are

related to the patent publishing activity, a comparison is made and displayed in Figure

4.18.

The data from citation- and news-based indicators and comparison with patent publishing

activity shows that although the rise of citation index precedes the other two indicators

displayed as was expected, occurrences in news articles start to grow before the number

of granted patents, contrary to what was expected. In the study by [69], three technolo-

gies, biodiesels, laser cladding and blue light-emitting diodes (LEDs) were examined.

Interestingly, the first of the three was the only technology of these in which the news

indicator started growing before the patent indicator, the same way that the case is with

event cameras.
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Figure 4.17. Citation index and occurrences in news articles of queries presented in
Table 4.1

Figure 4.18. Citation index and occurrences in news articles of queries presented in
Table 4.1 compared to patent publishing activity related to the same queries

4.4 Applications

In addition to granted patents, USPTO database allows users to search for applications

under examination. As seen in Figure 4.16, granting a patent can take several years

from the date when the patent application is submitted. Searching with the queries that

were presented in Table 4.1 from the application database instead of the granted patents

database can give some hint on what should be expected from the patents that will be

granted in the future. Conducting the same queries for application data yields 367 results,

which is 43.4 % increase compared to corresponding granted patents.

Because the motivation is to seek the potential of event camera technology to expand

into different industries, especially mobile imaging, it is again important to look at who is

applying for the patents related to event camera technology. In Figure 4.19, applicants by
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Figure 4.19. Yearly applicants for non-grated patent applications for event camera tech-
nology

year for non-granted patent applicants related to event camera technology is shown.

Applicant data over the years presented in Figure 4.7 show that Samsung is the top ap-

plicant as was the case with granted patents, and also another mobile imaging enterprise

(Sony) has submitted dozens of event camera -related patents in recent years. How-

ever, examining the contents of the patents by these companies do not suggest that the

patents are especially designed for mobile phone imaging applications. R&D efforts on

event camera utilization in VR & AR setting should also be noted, as we can see a Magic

Leap Inc., an enterprise focusing on those technologies [76] as a major player among the

applicants in recent years.

4.5 Summary

Several methods using different metrics were utilized in order to determine which TLC

stage the event camera technology is currently on. Methods and their corresponding

results are presented in Table 4.6. The analysis shows that the event camera TLC stage

is either at late emergence or early growth stage, more likely the latter, and that there are

several years of continuous development ahead.

The possible uncertainty of the metrics used should not be dismissed. Especially the time

period between 2010 and 2012 when there was no patents granted might cause some

misleading results when examining the patent data, since after those years significant

changes occur among all indicators when the values rise from zero.

Although event-based vision sensors do have many advantages over RGB sensors, from

the perspective of manufacturing they require similar resources. In order to provide a

sufficient incentive for existing manufacturers of imaging sensors to allocate some of their

currently available or future production capacity towards event sensor production, man-
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Method Stage determined by method

Examining S-curve Late emergence or growth

Forecast model Growth

Entropy Growth

Other indicators Not conclusive

Table 4.6. Summary of TLC determination

ufacturing these sensors should provide them more profits than their current production

is generating. The demand for smartphones have been increasing steadily in the past

decade and at the same time the number of camera modules in them have been increas-

ing, as shown in Chapter 1, meaning that the manufacturers of imaging sensors that are

used in contemporary mobile devices see promising future in the demand of their prod-

ucts, and this suggests that putting resources in the event sensor manufacturing might be

too risky on their part. However, some production capacity for event sensors has already

been created, since there are several vendors from whom it is possible to purchase the

sensors online.

It remains to be seen if enterprises are willing to take the risk and be the early adopters

and integrate event sensors in their products. The cost-benefit ratio might still be too

high due to the scarce manufacturing capacities. However, in addition to smartphones,

forecasts regarding the markets of technologies on which event sensors have the most

potential use cases, such as autonomous vehicles and unmanned aerial vehicles show

that the market size of those technologies is expected to increase significantly in the com-

ing years [77] [78]. Additionally, the market of smart home security devices, of which the

only consumer product with integrated event sensors was part of, is expected to double

between 2020 and 2025 as well [79].

In 2020, as the SARS-CoV-2 pandemic shocked the world economy, global computer

chip production saw unprecedented demand that it was not able to answer to. As the

chip shortage has halted manufacturing of many industries, such as automotive, which

is one potential for future event camera markets, it is still unclear how much this will

delay the adaptation of new technologies. On the contrary, it would seem feasible to

assume that enterprises that face challenges in production due to shortages will use

the time on their hands on focusing in R&D activities. If event cameras fail to break

through into the consumer products, they still have potential to be used in large-scale

industrial applications such as in machine vision for robots, or in aerospace and military

applications.

Although the patent data analysis offers lots of details considering event camera devel-

opment in general, no clear conclusions were able to made from the basis of it for the

possible implementations in mobile phones. It was noted that several mobile phone man-
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Figure 4.20. Illustration included in U.S. patent 9554100 [80] depicting a scenario where
event sensor can used for face detection and tracking in mobile phone

ufacturers engage in R&D activities related to event cameras, but the companies in ques-

tion also research and produce a wide variety of other products in other areas. It should

also be noted that some mobile phone manufacturers might not engage in the R&D, but

nevertheless implement some features patented by someone else via patent licensing.

Keyword analysis showed that terms related to mobile phones occurred frequently in

event camera patent documents, but closer look at the documents revealed that most

of the patents are more general in nature and are not especially designated for mobile

phones, but that mobile phones are mentioned only in the documents as an example of

a device on which the invention could be used in. However, some patents such as [80]

clearly depict a concept where event sensors could be utilized in mobile devices, as seen

in Figure 4.20. Notably the patent where the illustration in Figure 4.20 is included in, is

also included in Table 4.2, where most cited patents in all event camera patents are listed,

and is thus considered to be among the most commercially valuable ones. Examining the

patents that have cited [80] show that referring patents also have asserted claims on the

purpose of utilizing event sensor for iris tracking and iris-based authentication.

It can be argued that the integration of the event sensors into mobile phones is not some-

thing that could be patented as itself, or that it is something that the enterprises that

considering it would not want to reveal to the public by applying a patent. Debackere

et al. [81] have pointed out that in many cases, the decision for not applying for patent

protection for an invention is made due to several reasons, which include that some inven-

tions are not patentable, that sometimes acting in secrecy and launching products quickly

might result in more success from the business point of view, that the costs of patent



56

application process are considered too high, or that it is too easy to create competitive in-

novations that go around the patent. Especially the first, second and last of these reasons

can be considered as relevant points from the perspective of mobile phone manufacturing

enterprises, when considering whether to apply patents for event camera integration into

mobile devices.
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5. CONCLUSION

It was demonstrated that event cameras could be used for LSD2-based handshake de-

blurring applications, but the method does not provide ideal results, since the dynamic

range decreases when the data is processed by the network, and some artefacts are

present in the outputs. Some possible solutions for the dynamic range problem were

found in literature but not tested in this thesis. The method for generating data sets for

deblurring purposes by using random motion trajectories and moving window was proven

to be realistic enough, since the network trained on that data also provided similar results

when the blur was generated from data on which the movement is based on authentic,

natural movements rather than artificially generated ones. Overall, the results suggest

that event data seems to contain the necessary information for the elimination of hand-

shake blur, making it one possible use case for event cameras in mobile phone among

others. However, further research towards finding the best methodologies of utilizing the

event data in handshake blur elimination should be conducted.

Event camera technology’s TLC was examined and assessments of the possible future

outcomes were made. By examining several different indicators derived from patent data,

it was concluded that event camera technology is currently most likely at the growth stage,

which is considered as the second stage of the TLC. Forecasts based on logistic S-

curve model predict that event camera technology will grow for several more years, after

it reaches the saturation stage of the life cycle around the year 2025, when the growth

starts to slow down. Accuracy of the forecasts models was tested with three technologies

that have already reached the saturation stage of their life cycles. Those tests proved

the forecast models to be useful tools. Nevertheless the results from forecasts should

be considered with caution, especially if the amount of real observations that are used to

make the forecast is little, or if the technology in question has not started growing rapidly.

Although several enterprises which have strong interests in mobile phone imaging sector

have applied and been granted patents related to event camera technology, the contents

of patents and applications by those enterprises mostly imply that the patents are for

more generic usage but could possibly be used in mobile phones. This may be due

to the fact that patented algorithms and applications that could be used within mobile

phones with integrated event sensors could be used elsewhere as well. However, one

patent among the most valuable ones measured by the number of forward citations does
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depict a scenario where event sensor is used in a mobile phone. Areas other than mobile

phone imaging stand out when examining the patent contents. Technologies such as

autonomous vehicles and virtual or augmented reality are at the core of multiple patents

from several different applicants. This suggests that event camera technologies might be

integrated in products in these technology categories in the coming years.

Tools were developed to be used in automatized patent document retrieval from the

USPTO patent and application databases and for parsing important information from the

retrieved documents. These tools could be easily utilized in the future when inspecting

other technologies of interest by only changing the queries that were used to search for

the data. Building new tools for TLC and other types of patent-based analysis on top of

the environment that was created could also be done.
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