
Tapio Honka

AUTOMATIC MIXED PRECISION

QUANTIZATION OF NEURAL NETWORKS

USING ITERATIVE CORRELATION

COEFFICIENT ADAPTATION

Master of Science Thesis

Faculty of Information Technology and Communication Sciences

Examiners: Prof. Pekka Jääskeläinen

Jouni Siirtola

November 2021

i

ABSTRACT

Tapio Honka: Automatic Mixed Precision Quantization of Neural Networks using Iterative Correla-
tion Coefficient Adaptation
Master of Science Thesis
Tampere University
Master’s Degree Programme in Computing and Electrical Engineering
November 2021

Recent research of deep learning approaches has resulted in many novel and high-performing
models being developed. Simultaneously, the interest in hardware acceleration of neural net-
works has been constantly growing. This has led to research being targeted at transforming deep
learning models to a hardware-implementable form by using techniques such as quantization,
quantization-aware training and pruning. These techniques aim to optimize a neural network for
hardware resource efficiency with minimal loss in the quality of network output.

Quantization is a commonly used technique, as it maps high precision floating-point models
to integer-only models. In the simple case, a certain precision is used uniformly throughout the
whole model. Mixed precision quantization extends this by allowing a mix of different integer
precision to be used for different parts of the network. The problem which arises in mixed precision
quantization is finding a suitable configuration of different precisions, which in practice usually
means a trade-off between network accuracy and resource consumption. As models get larger,
this problem becomes difficult to solve manually, thus requiring intelligent automatic solutions.

In this thesis, a novel lightweight approach for automatic mixed precision quantization is pro-
posed. Compared to many already existing methods, the proposed iterative correlation coefficient
adaptation method is lightweight and easy to implement, as it does not use any form of gradient-
based optimization or complex algorithms. The proposed method is evaluated on a CNN-based
radio receiver DeepRx using the Open Neural Network Exchange (ONNX) format. Furthermore,
as the ONNX format does not currently support mixed precision quantization fully, an explicit list
of changes and additions needed to enable this is proposed.

The experiments done in this thesis first explore the hyperparameters for the method, and
then perform automatic mixed precision quantization for both memory consumption and compute
latency optimization. The resulting mixed precision quantization configurations are compared
against uniformly quantized baselines and manually chosen mixed precision configurations by
assessing the radio receiver performance, memory usage, and compute latency of each model.
The results show that the method is able to find feasible mixed precision models within the cho-
sen resource limitations, and can be thus utilized for finding more complicated mixed precision
configurations outside the common manually chosen configurations.

Keywords: neural networks, deep learning, quantization, mixed precision, Open Neural Network
Exchange, hardware accelerator, radio receiver

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Tapio Honka: Automaattinen monitarkkuuskvantisointi neuroverkoille iteratiivista korrelaatiokerroin-
adaptaatiota käyttäen
Diplomityö
Tampereen yliopisto
Marraskuu 2021

Neuroverkkopohjaisten lähestymistapojen laaja tutkimustyö on johtanut monien uusien ja tark-
kojen neuroverkkomallien kehittämiseen. Samanaikaisesti myös kiinnostus neuroverkkomallien
laitteistokiihdytykselle on ollut jatkuvassa nousussa. Tämä on luonut nostetta neuroverkkojen lait-
teistototeusten tutkimukselle, jossa malli pyritään muuntamaan laitteistolle sopivammaksi käyttäen
tekniikoita kuten kvantisointi, kvantisointitietoinen koulutus, sekä verkon rakenteen karsiminen.

Kvantisointi on yleisesti käytetty tekniikka, sillä sen avulla liukulukuja käyttävät neuroverkot
pystytään muuntamaan monelle laitteistolle sopivimmiksi kokonaisluvuiksi. Tavallisessa tapauk-
sessa kvantisointi tapahtuu yhdenmukaisesti samaa tarkkuutta käyttäen koko mallille. Monitark-
kuuskvantisointi vie tämän pidemmälle käyttämällä eri tarkkuuksia neuroverkkomallin eri osille.
Tämän tekniikan suurin ongelma on sopivan eri tarkkuuksien yhdistelmän löytäminen, joka tavalli-
sesti on valinta neuroverkon tarkkuuden ja laitteistoresurssien välillä. Suurempien mallien tapauk-
sessa tämä ongelma vaikeutuu entisestään ja yhdistelmien manuaalinen valitseminen muuttuu
epäkäytännölliseksi, jolloin eri tarkkuuksien yhdistelmien löytämiseen tarvitaan automaattisia rat-
kaisuja.

Tässä diplomityössä esitetään uusi kevyt menetelmä automaattiselle sekoitettujen tarkkuuk-
sien kvantisoinnille. Muihin saatavilla oleviin menetelmiin verrattuna tämän työn menetelmä on
kevyt ja helposti toteutettavissa, sillä se ei käytä gradientteihin perustuvaa optimointia tai muita
monimutkaisia algoritmeja. Tämän työn menetelmä evaluoidaan neuroverkkopohjaisella radiovas-
taanottimella nimeltä DeepRx, käyttäen Open Neural Network Exchange (ONNX) esitysmuotoa.
Koska ONNX ei nykyisessä muodossaan tue täysin sekatarkkuuksia, osana tätä työtä esitetään
myös selkeä lista muutosehdotuksista nykyiseen ONNX määritelmään, jotka mahdollistavat moni-
tarkkuuskvantisoinnin.

Tämän työn kokeellinen osuus tutkii aluksi menetelmän hyperparametreja, jonka jälkeen me-
netelmällä suoritetaan automaattinen sekoitettujen tarkkuuksien kvantisointi sekä muistinkäytölle
että laskentalatenssille optimoiden. Optimoinnin tuloksia vertaillaan yhdenmukaisesti kvantisoitu-
jen ja manuaalisesti valittujen sekoitetuilla tarkkuuksilla kvantisoitujen mallien kanssa, tarkastel-
len mallien radiovastaanoton suorituskykyä, muistinkäyttöä ja laskentalatenssia. Tulosten perus-
teella voidaan todeta, että työssä esitetty menetelmä kykenee löytämään sopivia sekoitettujen
tarkkuuksien yhdistelmiä optimointiin valitun resurssin rajoissa. Näin ollen menetelmää voidaan
käyttää manuaalisesti valittuja yhdistelmiä monimutkaisempien sekoitettujen tarkkuuksien yhdis-
telmien löytämiseen.

Avainsanat: neuroverkot, kvantisointi, sekatarkkuus, Open Neural Network Exchange, laitteisto-
kiihdytin, radiovastaanotin

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.

iii

PREFACE

This thesis was done while working on a machine learning related project at Nokia. I’d first

like to acknowledge and thank both Jouni Siirtola and Andrew Baldwin from Nokia who

were the key people when coming up and working with the topic of this thesis. The topics

related to this thesis have resulted in many great discussions and development ideas

within the project. Pekka Jääskeläinen was the key person from Tampere University and

I’d like to also thank him for giving clear and constructive feedback during the writing

process. Moreover, I’d like to thank my parents and my girlfriend who have supported me

throughout this journey ultimately culminating to a finished master’s thesis (and hopefully

a degree as well), and I’d also like to encourage my sister who will be experiencing the

same journey. One journey completed, though certainly not the last; let us see what the

future holds.

In Tampere, 29th November 2021

Tapio Honka

iv

CONTENTS

1. Introduction . 1

2. Neural Networks . 3

2.1 Overview . 3

2.2 Quantization of Neural Networks. 7

2.2.1 Quantization Scheme 7

2.2.2 Hardware Implementable Scaling. 9

2.2.3 Mixed Precision Quantization 10

2.3 Quantization-aware Training 11

2.4 Pruning . 11

2.5 Open Neural Network Exchange. 12

3. Iterative Correlation Coefficient Adaptation for Mixed Precision Optimization . . 13

3.1 Algorithm . 13

3.2 Incremental Pearson Correlation Coefficients. 16

3.3 Estimating Memory Usage and Compute Latency 19

3.4 Cost Function . 20

4. Related Work . 23

5. Evaluation Environment . 28

5.1 Quantization with Open Neural Network Exchange 28

5.2 Target Hardware . 30

5.3 Static Quantization Configurations 32

5.4 DeepRx . 33

6. Experiments . 35

6.1 Hyperparameters for the Proposed Method 35

6.2 Baselines . 38

6.3 Manual Mixed Precision . 38

6.4 Proposed Method . 42

7. Conclusion . 47

References . 49

v

LIST OF SYMBOLS AND ABBREVIATIONS

AI Artificial Intelligence

ANN Artificial Neural Network

CNN Convolutional Neural Network

CP Cyclic Prefix

DMRS Demodulation Reference Signal

DNN Deep Neural Network

FFT Fast Fourier Transform

FNN Feed-forward Neural Network

GPU Graphics Processing Unit

IFFT Inverse Fast Fourier Transform

INT16 16-bit signed integer

INT4 4-bit signed integer

INT8 8-bit signed integer

LDPC Low-Density Parity Check Code

LLR Log-Likelihood Ratio

LMMSE Linear Minimum Mean Square Error

MAPE Mean Average Percentage Error

OFDM Orthogonal Frequency-Division Multiplexing

ONNX Open Neural Network Exchange

PCC Pearson Correlation Coefficient

QAM Quadrature Amplitude Modulation

QAT Quantization-aware Training

ReLU Rectified Linear Unit

RL Reinforcement Learning

SRAM Static Random Access Memory

1

1. INTRODUCTION

During the recent years deep learning has become a widely researched topic, extending

to many different applications such as image processing, speech recognition, and even

radio receivers. This active research has resulted in many novel and high-performing neu-

ral networks being developed, and new state-of-the-art approaches for different applica-

tions are discovered every year. Although different novel approaches, architectures, and

training procedures are constantly being researched and optimized, many of these state-

of-the-art networks are not suitable for devices with distinct hardware limitations as is.

Generally, hardware implementation of a deep learning model requires transforming the

highly optimized network to a hardware-compatible form, usually sacrificing some of the

model accuracy in the process. Consequently, this has led to research being targeted at

making networks more hardware implementable, ultimately assisting in the model deploy-

ment process for mobile devices and custom hardware chips. There exists many different

techniques for transforming neural networks to a more hardware suitable form, such as

quantization, quantization-aware training and pruning. Quantization is a frequently used

approach as it transforms floating-point operations to fixed integer arithmetic operations

commonly required by the target hardware. As a result of quantization, some information

is inherently lost and thus in most cases a trade-off between accuracy and model output

quality is required. In the simple cases, this is done by manually deciding how much

precision is required for the quantized integer values.

Many of the currently available neural network libraries already offer quantization and

representation of quantized models, e.g. TensorFlow Lite [1] and PyTorch’s built-in quan-

tization [2]. Open Neural Network Exchange (ONNX) [3] is a quite recent format for

representing neural networks, and has since become a common way to bridge the gap

between the development framework and the hardware deployment environment. The

quantization support currently found in ONNX is still somewhat limited and only aimed to-

wards 8-bit quantization. Despite its current limitations, ONNX is still a popular approach

for representing quantized models in a common format, and furthermore it is been con-

stantly developed by its open community.

To further optimize the trade-off between accuracy and model resources, a mix of different

integer precisions may be used. This mixed precision quantization can be done in a very

straightforward way, e.g. by using certain higher precision on all intermediate quantiza-

2

tions and keeping weights in a lower precision, or by intelligently choosing a mix of differ-

ent precision for all different parts of the network. The latter is essentially a type of neural

architecture search problem, where the search consists of finding a suitable mixed pre-

cision quantization configuration according to some predefined trade-off between model

accuracy and resource cost. Although this problem is highly researched with multiple

different methods proposed [4, 5, 6, 7, 8, 9, 10], many of these utilize gradient-based

optimization or other computation heavy approach.

In this thesis, a novel gradient-free optimization algorithm for automatic mixed precision

quantization is proposed. The proposed algorithm is first described in detail, and the

hyperparameters for the method are explored and suitable values for these suggested.

The method is then evaluated using a CNN-based radio receiver neural network, and the

baseline, manual mixed precision and automatic mixed precision results are thoroughly

reported and discussed. Furthermore, as the environment used for the experiments uti-

lizes the ONNX format which does not currently support mixed precision quantization, the

changes required for the current ONNX specification for it to fully enable mixed precision

quantization are proposed. The main contributions of this thesis therefore consists of:

• A novel gradient-free method for finding mixed precision quantization configurations

according to a trade-off between accuracy drop and a chosen target resource.

• Suggested hyperparameters for the proposed method based on thorough experi-

mental results.

• Well documented and analyzed experiments, where the method is utilized for DeepRx,

a CNN-based radio receiver.

• Conclusive list of changes required to the current ONNX specification to fully enable

mixed precision quantization

The rest of this thesis is arranged as follows. Background regarding neural networks, op-

timization of these for resource efficiency, and the ONNX format are discussed in Chapter

2. A novel lightweight method for finding suitable mixed precision quantization config-

urations is proposed in Chapter 3, followed by a review of other research work related

to automatic mixed precision quantization in Chapter 4. The target environment for the

experiments is discussed in Chapter 5, including extended quantization using ONNX, tar-

get hardware, and an example neural network of interest, DeepRx. Experimental results,

including suggested hyperparameters for the method and utilization of the method for

DeepRx is presented in Chapter 6, followed by a conclusion to the thesis in Chapter 7.

Moreover, some suggestions for future research and evaluation of the proposed method,

and how it could be developed further to improve the experimental findings are discussed

at the end of Chapter 7.

3

2. NEURAL NETWORKS

Artificial neural networks (ANN) refer to computing systems defined as networks of in-

terconnected computing nodes. These networks were originally inspired by the biological

neurons found in the brain which form a biological neural network, which consequently

is one of the reasons why neural networks are commonly associated with the concept of

artificial intelligence (AI). The reason why ANNs are particularly interesting is their capa-

bility to model very complex behaviour by learning from data. By significantly expanding

these networks and optimizing them using very large and diverse data sets, they’re able

to tackle complex problems such as image classification and speech recognition. Activ-

ity regarding ANNs has seen many busy and quiet periods, the latter being sometimes

referred to as AI winters. Currently neural networks is a widely researched and invested

topic, most notably due to inference and training acceleration enabled by general-purpose

computing on Graphics Processing Units (GPU).

2.1 Overview

Feed-forward neural network (FNN) is the very first and simplest type of a neural net-

work consisting of computation nodes fully connected in a feed-forward only manner [11].

A single computation node processes an input vector x by first computing an affine trans-

formation by multiplying by a weight matrix W T followed by addition of a bias vector b,

and then applying a nonlinear activation function g(z) to produce output vector y [12]:

y = g(W Tx+ b) (2.1)

A commonly used activation function is the Rectified Linear Unit (ReLU), which replaces

all negative values with zeros:

g(z) = max(0, z) (2.2)

ReLU is commonly used due to its simple and efficient implementation, and its robustness

to vanishing gradients when compared to sigmoid activation function [13]. The basic

concept of a FNN can be seen in Figure 2.1, where input, hidden and output layers are

4

HiddenInput Output

Figure 2.1. A simple FNN with one hidden layer between the input and output layers

illustrated. Each unit in a given layer is fully connected to all of the units in the next

layer. This is the reason why feed-forward layers are also commonly referred to as fully

connected layers.

Convolutional neural network (CNN) is a specific type of neural network which consists

of convolutional layers and optional fully connected layers. The concept of a CNN was

introduced in 1980 by Fukushima [14], where layers utilizing convolution operations and

layers applying downsampling were first proposed. The convolution operation is com-

monly denoted using an asterisk, and in a two-dimensional case can be written as

S(i, j) = (K ∗ I)(i, j) =
∑︂
m

∑︂
n

I(i−m, j − n)K(m,n), (2.3)

where K is a two-dimensional kernel matrix and I is a two-dimensional input matrix [12].

In the case of neural networks, a single convolution result is commonly referred to as a

feature map. Moreover, an additional dimension is usually used for different channels.

Depending on the use case, the edges of I may need to be handled using padding, i.e.

increase the size of I by adding values, e.g. zeros, outside of its edges. This is done

to ensure the convolution result shape matches the shape of its input. In Figure 2.2 the

convolution operation with zero padding for ensuring the input and output shapes match

is visualized.

5

0 0 0 0 0

0 I11 I12 I13 0

0 I21 I22 I23 0

0 I31 I32 I33 0

0 0 0 0 0

I

∗
K11 K12 K13

K21 K22 K23

K31 K32 K33

K

=

S11 S12 S13

S21 S22 S23

S31 S32 S33

K ∗ I

K11 K12 K13

K21 K22 K23

K31 K32 K33

Figure 2.2. Convolution operation with zero padding visualized

Depthwise separable convolution extends the standard convolution by reducing the com-

puting complexity, thus making the convolutional neural network more efficient. This con-

cept was first introduced in [15], and has since been adopted in many architectures [16,

17, 18]. Instead of performing kernel-wise operations at once for all of the channels

of an input array local neighborhood, each channel is first considered separately using

depthwhise convolution and the resulting intermediate result is interpreted using point-

wise convolution. In depthwise convolution, a separate one-channel convolution kernel is

used for each channel, resulting in an array with the same size as in normal convolution.

The pointwise convolution following this performs convolution with a kernel matching the

channel count but the neighborhood reduced to one, i.e. a single point, in all other dimen-

sions. This procedure is able compute a result matching to standard convolution but with

significantly less total multiplications.

A typical convolution layer pipeline applies an activation function after convolution, such as

the aforementioned ReLU, followed by a pooling function. The basic idea of pooling is to

take local neighbourhoods of a tensor and summarize each of them with a statistic, such

as maximum or average value. This is very similar to the shifting kernel in convolution,

where the stride between each shift and the size of the local neighbourhood determine

the output size of the pooling. Pooling is commonly used to reduce the dimensions of

a tensor and additionally help the representation become more invariant to small input

translations. [12]

A key part of a neural network is the optimization of its parameters according to the use

case, commonly referred to as learning. Automated gradient-based back-propagation

optimization of neural networks was first introduced by LeCun et. al in 1998 [19], and

has since been expanded and implemented in the majority of deep learning frameworks.

Moreover, the first GPU supported CNN implementation was introduced in [20] where

GPU provided 4 times faster inference compared to CPU implementation, and the first

GPU accelerated supervised learning using back-propagation was introduced in [21] and

[22] for FNNs and CNNs respectively. GPU accelerated learning and inference has since

become the standard used in the majority of deep learning libraries [2, 23, 24].

6

Conv2D

kernel(3×3×64×64)
bias(64)

ReLU

Conv2D

kernel(3×3×64×64)
bias(64)

Add

ReLU

Input

Output

Figure 2.3. A simple residual neural network with a single residual block

Residual neural networks utilize shortcut connections (also known as skip or residual

connections) to jump over one or more layers. The concept of a residual building block

was first introduced in [25], where they were used to address the degradation problem

associated with deep neural networks. As networks get deeper, i.e. the number of layers

is increased significantly, the accuracy saturates and then starts to rapidly degrade. The

authors of [25] showed that residual networks are easier to optimize and are able to

gain accuracy boosts from increased network depth. The original residual block consists

of two convolution layers with a ReLU activation in the middle followed by the residual

connection and a final ReLU activation. Residual blocks have since been adopted in

many deep neural network architectures [25, 26, 27]. A simple residual neural network

consisting of a single residual block can be seen in Figure 2.3.

Although neural networks are currently popular and highly researched, they still are not

always suitable for every problem and come with certain drawbacks. As networks get

deeper and more complex, the amount of diverse training and evaluation data required

becomes very high. This may cause problems with applications where a very complex

neural network is required but relevant data is hard to gather. Moreover, if data is not

diverse enough or the neural network model is too complex for the application, the model

7

might overfit to the training data. This means that the network becomes too optimized for

the training data and is not able to perform as well on data outside the training data set.

Another drawback is the network architecture which might be arbitrarily chosen by the

network designers to maximize the model accuracy without considering model execution

time or possible hardware implementations.

2.2 Quantization of Neural Networks

There exists many techniques for transforming a neural network to a more hardware-

implementable form. Representing neural network operations using limited precision in-

teger values is known as quantization, more specifically post-training quantization if the

training procedure is not affected. This method is commonly used to map a neural net-

work to integer hardware, and also to reduce the size and complexity of the network.

A quantization scheme defines how a full-precision floating-point neural network is con-

verted to fixed-precision integer form. Although many quantization approaches have been

proposed, not all of them aim to deliver improvements on hardware implementation, but

rather to reduce the storage size of the model [28, 29, 30].

One of the biggest motivations behind quantization is the hardware platforms developed

for real-time hardware-accelerated inference of neural networks. As an example, NVIDIA

is looking more into using 4-bit integers in model inference, which is supported by their

Turing architecture [31] where INT4 precision mode was introduced as an option to pro-

vide speed-up to calculations. They showed that an INT4 implementation of a residual

neural network model achieved a 59% throughput increase while only losing less than 1%

of accuracy when compared to INT8 implementation [32]. Moreover, in their 2020 white

paper [33], Xilinx describe how their devices perform with 4-bit integer optimized convo-

lutional neural networks. They concluded that a network with 4-bit integer weights and

activations delivered 77% performance boost compared to 8-bit integer quantization, and

that the accuracy drop from 8-bit to 4-bit precision in a variety of computer vision tasks

was not too drastic, although still present in all of the tasks. These examples indicate that

lower precision modes are starting to appear more frequently on machine learning hard-

ware applications, and could provide significant boosts in terms of resource utilization and

inference time when exploited appropriately.

2.2.1 Quantization Scheme

Let r ∈ R be a full-precision real number, and q ∈ Z be a quantized integer number. The

mapping between these two can be written as

8

r = S(q − Z) (2.4)

q = r/S + Z (2.5)

where S ∈ R+ is a scaling factor and Z ∈ Z is zero-point offset. S and Z are the main

quantization parameters which are configured for each weight array, bias vector and pre-

activation layer. Additionally, bias vectors are handled in a special manner specific to the

target hardware where the number of bits used for bias vector values can be decreased

while preserving the scale, discussed more in detail in Section 5.2.

The scaling factor S aims to scale r to the target integer type range, and is typically

represented as a floating-point value in software. Section 2.2.2 describes more in detail

how scaling can be done in a hardware implementable way. The scale value needs to be

determined based on the target integer type and the range of the associated real values.

For quantization of weight arrays, the minimum and maximum values for each weight

array are gathered, while for pre-activation layers, the minimum and maximum values are

observed by inferring a representative dataset through the network. The representative

dataset should be as close to the final use case as possible to ensure the observed

quantization ranges correspond to those present during deployment. The scaling factor

S can be then calculated as:

S =
2b−1

max(|xmax|, |xmin|)
(2.6)

where xmax and xmin are the minimum and maximum values of a weight array or pre-

activation layer output, and b is the number of bits available for a signed integer, e.g. 8 for

INT8.

Zero-point offset Z is the quantized value corresponding to the value r = 0, and is

represented as the same type as the target quantized value q. Z translates the scaled

values so that the real value r = 0 can be precisely represented by the quantized value q.

As mentioned in [34], one of the motivations for this is the zero-padding of arrays required

by many neural network operators.

An essential part of converting real numbers to integers is rounding. There are multiple

different ways of performing rounding, such as the commonly used rounding down and

rounding up methods, and the less conventional methods rounding half towards zero

and rounding half away from zero. The latter two consider positive and negative values

symmetrically, and are thus free from any bias related to the sign of the values.

To store the intermediate result from a partial convolution or matrix multiplication prod-

uct, there needs to be enough bits available to not overflow the intermediate result. On

9

the hardware, this effectively means using an accumulator register with a high enough

bit-width. For accumulation of multiplications with 8-bit integer operands, a 32-bit ac-

cumulator is sufficient as discussed in [34]. With both operands being 4-bits, a 16-bit

accumulator suffices, whereas with 16-bit operands the accumulator is expanded to 48

bits.

2.2.2 Hardware Implementable Scaling

One way to implement data scaling on hardware is to first apply an integer pre-multiplier

followed by bit-shifting, also referred to as dyadic scaling in [10]. Let Sopt ∈ R+ be the

optimal quantization scaling factor based on the ranges observed from a representative

data set or a weight array. Moreover, let’s denote the pre-multiplier as M and the amount

of right shifting applied as n, where {M,n} ∈ N. In the hardware case we want to

find a hardware implementable scale Shw best corresponding to Sopt within the hardware

limitations. The hardware implementable scale can be written as

Shw =
2n

M
, (2.7)

and we want to find M and n which minimize the difference between the scaling factors

Sopt and Shw while also making sure that Sopt ≤ Shw to prevent scaling values over the

target ranges thus saturating or overflowing them. First, we calculate the optimal shift

nopt ∈ R and pre-multiplier values nopt as

nopt = log2(Sopt) (2.8)

Mopt = 2⌈nopt⌉−nopt (2.9)

At this point the optimal scale can be written as

Sopt =
2⌈nopt⌉

Mopt

, (2.10)

Next, the optimal pre-multiplier is scaled according to the magnitude bits b ∈ N, b ≥ 1,

available in the hardware pre-multiplier. Now 20 ≤ Mopt < 21, and by scaling 2b we get

2b ≤ Mopt2
b < 2b+1, where the most significant bit is always 1. To preserve equality, this

scaling is also done to the numerator in the right side of Equation 2.10, thus resulting in

Sopt =
2⌈nopt⌉2b

Mopt2b
, (2.11)

10

which is then finally converted to hardware implementable integer values

Shw =
2⌈nopt⌉+b

⌊2⌈nopt⌉−nopt+b⌋
, (2.12)

where ⌊.⌋ denotes the floor function which effectively prevents the denominator from going

over 2b−1, while also ensuring that Sopt ≤ Shw to prevent overflowing the scaled values.

We can now write explicitly:

n = ⌈nopt⌉+ b (2.13)

M = ⌊2⌈nopt⌉−nopt+b⌋. (2.14)

In practice, these values are calculated beforehand and then moved to the hardware

during deployment. Furthermore, as 2b ≤ M < 2b+1, the most significant magnitude bit

of M is always 1 and thus still only b bits need to be stored. In the special case where

pre-multiplier is not available, i.e. b = 0, and only right-shifting is available, then M = 1

while n = ⌈nopt⌉.

2.2.3 Mixed Precision Quantization

In mixed precision quantization (also known as heterogeneous quantization), the bit-

widths are not constant for the whole model, but rather a mixed configuration of differ-

ent bit-widths are used across the model. The bit-widths can be set separately for each

weight tensor and activation output [4, 5], or additionally for each convolution channel sep-

arately [6, 7]. The latter is often referred to as channel-wise quantization of weights and

it significantly extends the possible mixed precision quantization configurations, but could

also provide additional resource consumption optimization. The more common way of

quantizing whole kernels separately is commonly referred to as kernel-wise quantization.

Both channel-wise and kernel-wise quantization may result in a combination of different

multiplication operand bitwidths. Regardless, the scaling factor in Equation 2.6 is still cal-

culated similarly using the pre-activation layer output value ranges for the multiplication

result.

Generally, the goal of mixed precision quantization is to assign more bits to the parts of

the network which are more significant in terms of keeping the quantization error minimal,

and use less bits for the less significant parts, ultimately keeping the network output as

close to the high-precision representation as possible while making sure too many bits are

not used in parts where it’s unnecessary. It should be noted that the benefits of assigning

less bits are very hardware dependent, and might not always provide direct gains in terms

11

of latency or even memory consumption. Therefore generalizing a search method for all

possible hardware types is very complicated, and some hardware-specific definitions are

usually needed to find an optimal or close to optimal mixed precision configuration for

the target hardware. As the network architecture gets larger in terms of layer count,

the amount of mixed precision quantization configurations gets exponentially larger, thus

drastically expanding the search space. This means that sophisticated search methods

are required to find the optimal or close to the optimal solution in reasonable search time.

2.3 Quantization-aware Training

The post-training quantization discussed up until now does not affect the model training

procedure which is targeting the full-precision floating-point environment. Quantization-

aware training (QAT) aims to train the model directly to the quantized deployment envi-

ronment by emulating the behaviour of quantized inference during forward-propagation,

while keeping the back-propagation normal. In [34], quantized inference was emulated

by inserting fake quantization operations in parts of the floating-point graph where the

intermediate tensors would be converted to lower bit-width representation after actual

quantization. Specifically, these fake quantization operations divide floating-point values

into evenly spaced discrete bins, emulating the behaviour of integer values. Furthermore,

Zhou et. al. [35] used low bit-width quantization of parameter gradients during back-

propagation to train convolutional neural networks. QAT has since become a widely used

method when targeting neural networks to applications requiring quantization [34, 36,

37], as it prevents the common failures, such as large differences in ranges of weights

and outlier weight values [34], associated with simple post-training quantization.

2.4 Pruning

Another completely different approach for reducing the size and complexity of neural net-

works is called pruning. In pruning, individual parts of a model are analyzed and removed

if declared non-essential, e.g. if there are no significant accuracy drop observed from the

absence of the specific part. Pruning can be done in either an unstructured or structured

manner. In unstructured pruning, the connections to certain individual parameters are

removed by setting the parameter to zero or introducing a zero during the multiplication,

resulting in a sparse network which usually requires a special implementation to be fully

exploited. In structured pruning, grouped structures, such as neurons, filters, or chan-

nels, are completely removed from the architecture and can be thus fully exploited using

standard neural network computation hardware or software. [38]

The method proposed in [39] combines pruning and QAT in a so-called Quantization-

aware multi-stage pruning algorithm. The main idea of this method is to perform pruning

12

on a quantization-aware trained model to ensure that the pruned model is already aimed

to the target quantized environment. Additionally, the algorithm combines unstructured

and structured pruning by first disabling connections in an unstructured manner for faster

execution time during optimization, and removing connections in a structured manner only

when the pruned model has been ensured to work appropriately.

2.5 Open Neural Network Exchange

Open Neural Network Exchange (ONNX) [3] is an open format for representing neural

network models using a common set of well-defined operators, standard data types, and

a common file format. ONNX is an open community project with many large companies

as partners, and encourages its users to contribute their ideas and code implementa-

tions. It was originally developed by the PyTorch team under the name Toffee, and was

later renamed to ONNX when announced by Facebook and Microsoft. Due to its common

format, ONNX is often used as a bridge between the training framework and the deploy-

ment environment as models produced by most common frameworks, e.g. Tensorflow

[23] and PyTorch [2], can be converted into the ONNX format. This effectively makes the

hardware deployment process independent of the framework used during research, thus

streamlining the deployment from research to the hardware environment.

ONNX format also offers a representation for quantized neural networks. This was first

introduced in version 1.5.0, which introduced the operator set version 10 including quanti-

zation specific operators. This included operators such as integer convolution and matrix

multiplication, and a specific operator for scaling and converting data from an integer type

to another. Additionally, ONNX runtime [40], a cross-platform open source project for

inference and training of ONNX models, offers 8-bit quantization of ONNX models. The

current ONNX specification (version 1.9.0) is mainly targeted for 8-bit quantization, and

does not fully support e.g. 16-bit or mixed precision quantization. This is due to quantiza-

tion being a relatively new feature within ONNX, the aforementioned operator set version

10 being released in 2019. However, as ONNX is a constantly evolving open community

project, quantization support is expected to be extended in the coming years.

13

3. ITERATIVE CORRELATION COEFFICIENT

ADAPTATION FOR MIXED PRECISION OPTIMIZATION

As discussed previously, mixed precision quantization results in a large amount of pos-

sible quantization configurations with larger networks. Therefore, manually finding an

optimized configuration is usually non-practical and an automatic algorithmic approach

is needed. The automatic mixed precision optimization method proposed in this thesis

consists of combining normal distributed sampling and Pearson correlation coefficient

adaptation with dynamic weighted sampling center updating. The benefit of this method

is that it does not require any gradient information, and is therefore relatively lightweight

and applicable to non-differentiable cost functions. Furthermore, the implementation of

this method is not too complex and also well-documented here, and can be thus easily

implemented for different target environments.

The proposed optimization algorithm starts as a pure random search where quantization

configurations are sampled from a normal distribution around the current sampling center.

For each configuration, the corresponding cost function value is calculated to evaluate its

performance. As the algorithm advances, the Pearson correlation coefficients between

each configuration state and cost value are updated incrementally, and used for calcu-

lating a heuristic candidate solution. The sampling center is updated based on the best

configurations found from the latest iteration and the heuristic candidate. Moreover, the

proportion in which these are used when updating the center is dynamically changed, first

by using only the best sampled configurations and gradually using more of the heuristic

candid solution. This whole process is described in more detail in the following sections.

3.1 Algorithm

Let S = [s0, s1, . . . , sn−1], be a mixed precision quantization configuration state-vector

with n state-variables, each being si ∈ [0, 1] for all i from 0 to n − 1. In this case, each

state-variable can be interpreted as amount of precision given to a certain part of the

neural network, i.e. layer weights, bias, and activation output quantization. As the state-

variables are now represented as floating point values, they need to be mapped to actual

usable precision values. For layer weights and activations, values in range [0, 0.333...)

are considered to be INT4, values in [0.333..., 0.666...) INT8, and values in [0.666..., 1]

14

INT16, however, this could be extended to even wider variety of integer precisions. For all

bias vectors, a single common precision is used to reflect the target hardware considered

in this thesis as described in Section 5.2. The floating point value for the common bias

vector precision is mapped to the range [8, 32] and then rounded to the nearest integer

to acquire the bias bits used. These mappings are done when evaluating each state and

calculating the corresponding cost value.

The proposed search algorithm starts by initializing the current sampling center m =

[m0,m1, . . . ,mn−1] where mi ∈ [0, 1] for all i from 0 to n− 1, to m = [1.0, 1.0, . . . , 1.0].

For learning rates, the sample learning rate αs ∈ [0, 1] is set to αs = 1, and the correlation

coefficient candidate learning rate αc ∈ [0, 1] to αc = 0. Furthermore, the states for static

INT4, INT8 and INT16 configurations are evaluated and the state with the lowest cost is

used as the initial best state Sbest and best cost cbest.

For each start of an iteration (also called epoch), a set X = [x0,x1, . . . ,xλ−1] of λ sam-

ples are sampled from a normal distribution with current center m as mean and variance

σ for each state variable, which are then evaluated based on a cost function to acquire the

corresponding cost values c = [c0, c1, . . . , cλ−1]. The sample set is then sorted according

to ascending cost values denoted as Xsorted, and Sbest, cbest are updated if a new lowest

cost is found. Next, the first µ ∈ (0, 1, . . . , λ] samples from the sorted sample set are

used to calculate the sample based center ms using weights w = [w0, w1, . . . , wµ−1] as

ms =

µ−1∑︂
i=0

xsorted,iwi, (3.1)

where

µ−1∑︂
i=0

wi = 1, wi ∈ R+, (3.2)

and

w0 ≥ w1 ≥ · · · ≥ wµ−1. (3.3)

These weights implement a weighted average of the top samples from the current sample

set, generally favoring significantly more samples with a lower cost.

In some cases the top performing samples from a sample set might be drastically worse

than the best overall sample so far, and therefore ms may start to drift to an inferior

direction. To mitigate this, if the best sample set cost is higher than cbest, the best solution

so far, Sbest, and previously calculated ms are averaged as

wbest = min((
min(c)

cbest
)2 − 1, 1) (3.4)

15

ms = (1− wbest)ms + wbestxbest (3.5)

Doing purely random search with dynamically changing sampling center works well in

cases where the target model is not too deep. However, when the model gets deeper,

this approach does not always converge and may fail completely. The approach proposed

here is to introduce a heuristic candidate solution, which is not guaranteed to be the

optimal solution, but rather a sophisticated approximate solution based on the sample

Pearson correlation coefficients (PCC) r = [r0, r1, . . . , rn−1] between each state-variable

and cost value. For all i from 0 to n − 1, the correlation coefficient based candidate

solution mc is calculated by linearly mapping the coefficient as:

mc,i = 0.5(1− ri) (3.6)

A positive correlation coefficient indicates that higher variable values, i.e higher precision,

increase the cost and therefore lower precision is preferred, and a negative coefficient

indicates that higher values decrease the cost and therefore higher precision is preferred.

Equation 3.6 implements this behaviour by setting state-variables to range [0.5, 1], i.e.

INT8 and INT16 range, for negative coefficients, and to range [0, 0.5), i.e. INT4 and

INT8 range, for positive coefficients. For coefficients with low magnitude, i.e. changing

the precision does not drastically affect the cost, the INT8 range is used. This same logic

applies to the state variable used for bias bits, where 16 is considered as the conservative

middle area.

After ms and mc are calculated, they are weighted using αc, the sample learning rate,

and αs, the correlation coefficient candidate learning rate, and summed to acquire the

updated sampling center m:

m = αsms + αcmc (3.7)

Recall that αs is initialized to 1, therefore at the start of the algorithm only ms is considered

when updating m. As the algorithm advances, the learning rates are updated at each

iteration using the following formulas respectively:

αc = αc + αs(1− γ) (3.8)

αs = γαs (3.9)

where γ is the discount factor effectively diminishing αs and augmenting αc at each iter-

16

ation so that αs + αc = 1. The value of γ should be 0 ≪ γ ≤ 1, typically somewhere

in range [0.9, 1] as the correlation coefficient candidate requires a broad selection of ex-

plored states before being a meaningful candidate solution.

To conclude, the hyperparameters for the algorithm consist of sample set size λ, number

of top samples µ, weights w, sampling variance σ, and learning rate discount factor γ.

The values proposed for these are explored and discussed more thoroughly in Section

6.1. The full algorithm with all of the discussed steps is presented in 1 as pseudocode.

Algorithm 1 CorrelationCoefficientAdaptation

1: Set λ, σ, γ
2: Initialize m, αs, αc, cbest, xbest

3: for number of epochs do
4: for i = 0, 1, . . . λ− 1 do
5: xi ← sample_normal(m, σ)
6: ci ← cost(xi)
7: Update r incrementally
8: end for
9: xsorted ← sort_ascending_cost(x, c)

10: ms ←
∑︁µ

i=0 xsorted,iwi

11: if min(c) > cbest then
12: wbest ← (min(c)/cbest)

2 − 1
13: if wbest > 1 then
14: wbest ← 1
15: end if
16: ms ← (1− wbest)ms + wbestxbest

17: else
18: Sbest = xsorted,0

19: end if
20: for i = 0, 1, . . . variables− 1 do
21: mc,i ← 0.5(1− ri)
22: end for
23: m← αsms + αcmc

24: αc ← αc + αs(1− d)
25: αs ← αsd
26: end for

3.2 Incremental Pearson Correlation Coefficients

Generally for a pair of random variables X and Y , the population Pearson correlation

coefficient is defined as

ρxy =
cov(X, Y)

σXσY

, (3.10)

where cov is the covariance between two random variables, and σX , σY are the stan-

dard deviations for X and Y respectively [41]. The Pearson correlation coefficient can

17

be thus considered as a normalised measurement of covariance. The sample Pear-

son correlation coefficient rxy for a pair of sample sets xN = [x0, x1, . . . , xN−1] and

yN = [y0, y1, . . . , yN−1] with N samples each is then defined as

rxy =

∑︁N−1
i=0 (xi − x̂)(yi − ŷ)√︂∑︁N−1

i=0 (xi − x̂)2
√︂∑︁N−1

i=0 (yi − ŷ)2
, (3.11)

where x̂, ŷ are the mean values over each sample set [41]. Furthermore, calculating

rxy can be implemented in an incremental way, where each update remains the same in

terms of complexity. The mean x̂ can be written as:

x̂ =
1

N

N−1∑︂
i=0

xi (3.12)

Which can be implemented incrementally with a running sum of the data and sample

number N . To estimate variance, Bessel’s Correction [42] is applied to estimate unbiased

sample variance σ2 using biased sample variance s2N :

s2x =
1

N

N−1∑︂
i=0

(xi − x̂)2

=
1

N
(xN − x̂1N)

T (xN − x̂1N)

(3.13)

σ2 =
N

N − 1
s2x (3.14)

where 1N is a vector with all N elements set to 1. By expanding Equation 3.13, we get

s2x =
1

N
(xN − x̂1N)

T (xn − x̂1N)

=
1

N
(xT

nxN −Nx̂2)

=
1

N
xT
nxN − x̂2

(3.15)

where xT
NxN can be implemented as a running sum of squares. Therefore, σ2 can be

calculated incrementally by keeping track of the sample number N , and keeping a running

sum and sum of squares of the incoming data. For covariance, the same principle is

18

applied:

s2xy =
1

N

N−1∑︂
i=0

(xi − x̂)(yi − ŷ)

=
1

N
xT
NyN − x̂ŷ

(3.16)

cov(x,y) =
N

N − 1
s2xy (3.17)

which needs to keep a running product of the incoming data pairs instead of sum of

squares. In the case of the search method discussed here, the variances for state vari-

ables and cost as well as the covariances between each state variable and cost is cal-

culated to acquire the PCCs for all state variables. A pseudocode implementation of

incremental PCC is described in Algorithm 2.

Algorithm 2 IncrementalPCC
1: n← 0
2: sums_state← 0
3: sums_cost← 0
4: products← 0
5: squares_state← 0
6: squares_cost← 0
7: PCC ← 0
8: for every new state and cost do
9: n← n+ 1

10: sums_state← sums_state+ state
11: sums_cost← sums_cost+ cost
12: products← products+ state ∗ cost
13: squares_state← squares_state+ state2

14: squares_cost← squares_cost+ cost2

15: if correlation coefficients needed then
16: mean_state = sums_state/n
17: mean_cost = sums_cost/n
18: s2_cov = products/n−mean_state ∗mean_cost
19: s2_var_state = squares_state/n−mean_state2

20: s2_var_cost = squares_cost/n−mean_cost2

21: cov = n ∗ s2_cov/(n− 1)
22: var_state = n ∗ s2_var_state/(n− 1)
23: var_cost = n ∗ s2_var_cost/(n− 1)
24: PCC ← cov/

√
var_state ∗ var_cost

25: end if
26: end for

19

3.3 Estimating Memory Usage and Compute Latency

For estimating the memory required to store the weight parameters of a neural network,

the shape and bit-width used for each parameter array, i.e. weight arrays and bias vectors,

is observed. The total memory resource consumption for a model with l convolutional or

matrix multiplication layers is therefore estimated as:

Cmemory =
l−1∑︂
i=0

bw,inw,i +
l−1∑︂
i=0

bbnb,i, (3.18)

where nw,i is the number of elements in ith weight array using bit-width bw,i, and similarly

for number of bias elements nb,i with the constant bias most significant bits bb available.

The bit-widths for weight values considered here are 4, 8 and 16, and the number of bias

magnitude bits limited to range [8, 9, . . . , 32].

For estimating the multiplication latency of a single the network inference, the estimated

computed cycles for multiplication between each data type pair is used. The latency due

to memory reading is omitted here, as usually memory utilization is done partially or fully

in parallel while computing parts of the network, and is therefore complicated to estimate.

The latency estimation for a model with l convolutional or matrix multiplication layers is

defined here as:

Clatency =
l−1∑︂
i=0

mioi, (3.19)

where mi is the number of individual multiplications in ith weight array and oi is the

corresponding latency in cycles for the two operand data types. For full element-wise

matrix multiplications the number of multiplications is simply the number of elements in

the weight array, as the batch size is omitted and assumed to be 1. For convolutions,

the weight kernel is reused and shifted and thus the number of multiplications is not as

straightforward to calculate. The number of convolution multiplications oc is calculated as

oc = wk · hk · f · c · wo · ho, (3.20)

where wk and hk are the kernel width and height, f is the number of feature maps, c is

the channel count, and wo and ho are the output tensor width and height. This way of

estimating matrix multiplication and convolution latency completely ignores parallelism.

However, in the common case the amount of parallel operations stays constant across

different data types, thus the relative difference between latencies with different data types

is still very relevant despite omitting parallelism. The amount of cycles for multiplications

between each available data type considered here are shown in Table 3.1. These values

are not accurate for any specific hardware, but rather give a general direction of how each

20

Table 3.1. Latency values used for compute latency estimation

Operand 1 data type Operand 2 data type Multiplication latency in cycles

INT4 INT4 1

INT4 INT8 2

INT4 INT16 4

INT8 INT8 4

INT8 INT16 8

INT16 INT16 16

data type would behave relative to each other. These values are only used as part of the

proposed optimization method to give an estimated change in latency between different

data types, but could be easily changed to be more hardware specific.

3.4 Cost Function

The cost function proposed for the method used here consists of a weighted sum of nor-

malized mean absolute percentage error (MAPE) between floating-point and quantized

model outputs, and normalized resource cost measuring either memory usage or model

compute latency. The mean absolute percentage error, denoted as ϵ here, between float-

ing point model outputs yf = [yf,0, yf,1, . . . , yf,n−1] and quantized integer model outputs

yq = [yq,0, yq,1, . . . , yq,n−1] is calculated as

ϵ =
1

n

n−1∑︂
i=0

|yf,i − yq,i|
si

, (3.21)

where scales si for all i from 0 to n− 1 are

si =

⎧⎨⎩|yf,i|, yf,i ̸= 0

1, yf,i = 0
(3.22)

The observed MAPE ϵ is then normalized to [0, 1] using the maximum and minimum

MAPEs, i.e. static INT4 and INT16 configurations ϵi4 and ϵi16 respectively, and mapped

to a logistic sigmoid function:

Cerr = fσ(
ϵ− ϵi16
ϵi4 − ϵi16

), (3.23)

21

where the logistic sigmoid function fσ is defined as

fσ(x) =
1

exp(−k(x− x0))
. (3.24)

Here x0 is the middle-point of the curve and is set to the desired MAPE threshold normal-

ized to [0, 1] using the maximum and minimum MAPEs similarly as above. The steepness

k of the curve determines how fast the curve goes from 0 to 1, and is set now to an ar-

bitrary high value of 200 to keep the accuracy cost values very close to 0 with MAPEs

below the threshold, and saturate quickly to 1 with MAPEs above the threshold. It should

be noted that as the logistic function implementing the threshold is still a continuous curve,

there is a slight slope in the threshold area. Combined with the fact that fσ(x0) = 0.5,

this means that the Cerr starts to already increase significantly with values slightly below

the threshold. This effectively means that the search method aims to find models with

MAPEs slightly below the threshold, instead of trying to directly match the threshold.

Memory usage and compute latency are calculated as discussed in Section 3.3. For both

memory usage and compute cycles, the values are again normalized to [0, 1] using the

worst- and best-case resource costs, i.e. INT16 and INT4 configurations respectively:

Cmemory,norm =
Cmemory − Cmemory,i4

Cmemory,i16 − Cmemory,i4

(3.25)

Clatency,norm =
Clatency − Clatency,i4

Clatency,i16 − Clatency,i4

(3.26)

The target resource cost Cresources used during optimizing is chosen between Cmemory,norm

and Clatency,norm. Finally, the cost function C can be written as

C = 0.51Cerr + 0.49Cresources (3.27)

The reasoning behind this weighted sum is to always prefer just slightly more models

with lower output errors, in case multiple models all having different values for Cerr and

Cresources but with their sum being equal in all cases is met. Generally these cases mainly

happen when initializing Sbest based on the static baseline configurations. Finally, as

the sampling center m is initialized to the corresponding static INT16 configuration, the

search always starts below the MAPE threshold and starts to optimize the resource until

the threshold is reached. This prevents the search from getting stuck to the search space

area where the MAPE is always above the given threshold.

When the resource used for optimizing is memory consumption, INT4 option for model

22

input, intermediate quantizations, and output is left completely out of the search. This is

to reduce the search space and ease the overall search process, as INT4 representation

of dynamic data does not affect the memory consumption and is generally a bad choice

in terms of model accuracy. It is also common to leave activations completely out of the

search and set these according to the target hardware. Similarly with latency as resource

cost, global bias vector significant bits is left out of the search as it only affects the memory

consumption of the model.

23

4. RELATED WORK

Integer representation of neural networks is a very popular reasearch topic due to e.g.

general hardware accelerator chips and model-specific FPGA implementations, which

has consequently resulted in many solutions and frameworks being developed. Jacob

et. al [34] explored the quantization and training of neural networks using integer-only

arithmetics for inference. The authors proposed a quantization scheme and inference

framework which together enable more efficient inference on integer-only hardware as

opposed to floating point inference. Later this became the implementation used in Ten-

sorFlow Lite [1]. Their proposed quantization scheme consisted of representing both

weights and activations as 8-bit integers and bias vectors as 32-bit integers. This effec-

tively means that operations, such as convolution or matrix multiplication, involves 8-bit

input operands and a 32-bit accumulator for the multiplication result and bias addition.

The resulting 32-bit integer is then quantized to an 8-bit integer value and fed to the ac-

tivation involving only 8-bit arithmetic. Although this quantization scheme is effective, the

authors did not discuss INT16 or INT4 implementation, or heterogeneous configuration of

weight, input, bias and activation precisions.

In the extreme cases a neural network can be quantized using only binary or ternary rep-

resentation of weights and two- or three-valued discrete activations. In [43], the authors

investigated how decreasing a network’s numerical precision to binary or ternary affects

the model’s performance and resource consumption. They considered two multi-class

classification tasks where the models were trained with their floating point representation

and compared the quantized models to the floating point models. They showed how bi-

nary and ternary networks are able to preserve a competitive accuracy regardless of their

low precision representation. Moreover, they concluded that ternary models reach supe-

rior accuracy values when compared to binary models, and that generally these extremely

quantized models use significantly less resources with low inference latency.

Park et. al [44] proposed a deep neural network with two different precision modes in

a single model. This dual-precision neural network enables easy switching between the

two different precision modes. The purpose of this is to support scalable dynamic trade-

off between model accuracy and complexity for applications in dynamic environments.

They achieved this by sharing the common bits between the weights from both precision

modes, and by proposing a two-part training process consisting of shared-bit training and

24

full high-precision training.

Training a model simultaneously under different bit-widths was investigated by Jin et. al.

[45]. Their approach was to use shared weights for different bit-widths during training and

adopt the switchable batch normalization introduced in [46] to moderate the different vari-

ances of weights and activations caused by different quantization bit-widths. Moreover,

they proposed using independent clipping levels [47] for different bit-widths during training

to avoid quantization error due to too large or small clipping levels for different bit-widths.

Adaptive layer-wise mixed precision quantization of deep neural networks was studied in

a 2018 publication by Zhu et. al [4], where they proposed a method for using different

bit-widths for different layers. Their method aims to quantize most of the layers using

low bit representations and assign more bits only to the most important layers. They

used entropy as an indicator of importance for each layer by observing the distribution of

weight and activation values. These distributions were approximated by uniformly dividing

the values into discrete bins and then calculating the entropy for this discrete distribution.

To mitigate the large values produced by unconstrained activations, an additional penalty

term for preventing too large activation values was introduced.

In [48], the authors explored using periodic functions as reqularizers for training mixed-

precision neural network models, while simultaneously learning the bit-widths of different

layers by distinguishing the respective importance concerning model accuracy for each

layer. The periodic functions, such as continuous sine and cosine or non-continuous hat

function, were applied as a regularization term to the training loss instead of using a

quantization function. Their proposed regularization term pushes the weight and activa-

tion values to a set of discrete points during training, effectively acting as a quantization

function. The frequencies of the periodic regularizer functions are directly related to the

number of bits assigned, thus each selected frequency is used for determining the model

bit-widths.

Mixed precision quantization for convolutional networks was studied by Wu et. al in their

paper [5], where they approached the problem of finding different quantization precisions

for different layers as a model architecture search problem. They proposed a differen-

tiable neural architecture search framework which uses gradient-based optimization to

explore the neural network architecture search space. This framework represents the ar-

chitecture search space as a stochastic super net, where intermediate data tensors, e.g.

feature maps, are represented as nodes, and operators, e.g. convolution layers, are rep-

resented as edges. Any architecture can be then seen as a sub-graph of this super net.

To solve the mixed precision quantization problem, a super net with the same number of

layers as the target network and with each layer containing several parallel edges repre-

senting different quantization precisions is constructed. The optimal architecture is then

solved by using stochastic gradient descent with respect to quantized weights and param-

25

eterized network architecture. They showed that their framework for layer-wise precision

assignments surpassed state-of-the-art compression on ResNet models. Moreover, they

concluded that their pipeline is faster when compared to previous network architecture

search algorithms where search time is typically several days using hundreds of GPUs as

opposed to several hours with only a few GPUs using their method.

Coelho Jr. et. al [6] explored automatic mixed precision quantization of neural networks

and provided software libraries QKeras and AutoQKeras for using their methods on Keras

[49] models. They introduced a method for heterogeneously quantizing deep neural net-

works using an automatic procedure which aims to minimize area and power consumption

while maximizing the accuracy. This method enables users to trade off model area or en-

ergy consumption for accuracy according to the application. This is achieved by defining

a forgiving factor which indicates how big of an accuracy drop is tolerated for a given

energy consumption or area reduction, while also using an estimation of model energy

consumption to allow the algorithm to simultaneously tune the model quantization and

architecture. This means that the model architecture is changed according to the level

of quantization done to each part of the model, e.g. fewer convolutional filters might be

needed for a certain layer when lower bit-width quantization is used. The actual tuning

of quantization and architecture is treated as a hyper parameter search by using either

random search methods, hyperband [50] or Gaussian processes.

Yang et. al. [7] further investigated mixed precision quantization by utilizing differen-

tiable fractional bit-widths, where the transition between neighbouring quantized bits is

smoothed. The pipeline for their method consisted of first searching with fractional bit-

width using gradient-based optimization and then fine-tuning with mixed bit-width quanti-

zation. During the optimization, the model converges to optimal bit-widths for both weights

and activations of each unit by using a resource constraint as a penalty loss for the op-

timizer. Fine-tuning consists discretizing the fractional bit-widths using a threshold value

which results in a model resource cost within 1% deviation from the target constraint.

They also noted how this method also supports kernel-wise quantization where each

convolution kernel producing a single-channel feature map is quantized separately.

A method for automated kernel-wise quantization was proposed in a paper by Lou et.

al. [8], where they used a hierarchical deep reinforcement learning -based schemes to

search distinct quantization bit-widths for each convolution weights in kernel-wise man-

ner and activation in layer-wise manner. The reinforcement learning agent considers

the inference latency and energy as well as FPGA area overhead in its extrinsic reward

function. The method consists of a high-level controller agent which performs layer-wise

quantization, and a low-level controller agent which finds the kernel-wise bit-widths.

Reinforcement learning leveraged automated quantization with mixed precision was also

studied in a paper by Wang et. al. [9]. They introduced a hardware-aware automated

26

quantization method, which includes additional feedback from the target hardware in the

loop by utilizing a hardware simulator. The reinforcement learning agent processes the

target network layer by layer, taking an action for both the quantization of weights and

activations at each layer. The action space they used is continuous to preserve relative

order between different bit-widths during search, and an action is rounded into a practical

discrete bit-width value before quantization. The direct latency and energy feedback from

the hardware accelerator is used as resource constraints to determine the bit-widths for

each layer. If a policy exceeds the resource limits, the bit-widths of each layer is sequen-

tially decreased until the policy is withing limits.

In HAWQv3, Yao et. al. [10] introduced a hardware-aware mixed precision quantiza-

tion framework that proposed a fast method for finding the optimal bit precision for a

given application-specific constraint, while only relying on integer multiplication, addition

and bit shifting. Their method formalized the problem as an Integer Linear Programming

problem, which tries to minimize a sensitivity metric for each layer to find the optimal bit-

widths. They also addressed the precision used for residual connections and ended up

using INT32 for the skip connection. Moreover, the authors also discussed the common

question about hardware efficiency of mixed-precision quantization by deploying models

on NVIDIA T4 GPUs, ultimately showing that up to 50% speed up is achievable with

INT4/INT8 mixed-precision quantization compared to 8-bit integer quantization.

Bruin et. al [51] explored layer-wise quantization of deep neural networks for processors

with limited accumulation registers. Their heuristic technique aims to perform layer-wise

optimization of quantization to maximize the classification accuracy with a given fixed ac-

cumulator size and maximum data width. In their method, they define several accumulator

constraints to first reduce the search space, and use a straightforward iterative approach

to find the best input data and accumulator bit width configuration for each layer. Layers

are processed in a sequential manner starting from the first eligible layer. For each layer,

the solutions proposed by the chosen constraint are tested and the best solution for data

bus width and accumulator bit width is set to the layer. The accumulator constraints they

proposed were divided into pessimistic, conservative and optimistic, which all provide an

upper bound for the accumulator width. Moreover, they also provided a novel procedure

for fine-tuning the solution from the heuristic optimization by combining reduced-precision

forward computation pass with high-precision backward pass. During fine-tuning, the loss

value for the network is calculated using a simulated fixed-point network, which is then

used to update the full-precision weights.

In [52], the authors proposed a method for adapting neural networks to use 8-bit additions

in the accumulators instead of the commonly used 32-bits, and naming the architecture

utilizing this method WrapNet. To enable the use of low precision accumulation, Wrap-

Net includes a cyclic activation function, an overflow penalty, and a special strategy for

quantization activation scale selection. The cyclic activation function is inserted after ev-

27

ery convolutional and linear layer to emulate the wrap-around behaviour associated with

overflows while also ensuring the activation is continuous thus enabling gradient-based

training. The proposed overflow penalty acts as a regularizer during training by penaliz-

ing outputs exceeding the accumulator bit-width. Finally, the quantization activation scale

for each layer is adjusted according to the overflow rate to balance accumulation and

quantization errors.

As seen from the overview above, mixed precision quantization and automatic solutions

to it are widely researched topics. Although many novel and intriguing approaches for

mixed precision quantization optimization have been proposed, many of these aim to

highly optimize the quantization configuration using very compute costly methods. The

methods discussed in [5] and [9] both utilize reinforcement learning, which is a tedious

resource heavy process comparable to the actual network training process. Similarly

in [7], gradient-based optimization was used which isn’t a lightweight solution. The ap-

proach in [48] embeds the quantization optimization to the training process as training

is always needed for neural networks, however, this approach always requires costly

gradient-based training to tune the quantization configuration. As discussed in Chapter

3, the proposed iterative correlation coefficient adaptation does not require any gradient

information during optimization, and is thus lightweight and relatively simple to implement.

The drawback of this is that the proposed method might not be able to optimize the archi-

tecture as extremely as gradient-based methods, as it is a random search method at its

core with a heuristic technique embedded in it.

28

5. EVALUATION ENVIRONMENT

In this chapter, the target environment used for the experiments is discussed in more de-

tail. The pre-hardware representation used here is the Open Neural Network Exchange

(ONNX) format [3], as it is independent of the training framework. The ONNX quantiza-

tion method discussed in Section 5.1 is not the same as the one implemented in ONNX

runtime [40], but rather a method which ensures that the quantized ONNX model is im-

plementable on the target hardware discussed in Section 5.2. Furthermore, in Section

5.3 the static quantization configurations used as baselines during the experiments are

defined explicitly. Finally, the actual model being quantized and optimized, a CNN-based

radio receiver named DeepRx, is overviewed in Section 5.4.

5.1 Quantization with Open Neural Network Exchange

As discussed in Section 2.5, operators enabling quantization were first introduced in op-

erator set version 10 as part of ONNX version 1.5.0. All operators and their behaviour

discussed here refer to the current ONNX specification version 1.9.0, which has functional

but somewhat limited quantization support. The main operations which will be discussed

are convolution, matrix multiplication, element-wise addition, and ReLU activation func-

tion, as they form the core operators utilized by the target hardware.

First, the basic ONNX quantization procedure used in the target environment is defined.

For convolution layers with bias vector addition and ReLU activations, the floating-point

ONNX operators Conv and ReLU are converted into ConvInteger, Add, ReLU and Quan-

tizeLinear integer ONNX operators respectively. Similarly for matrix multiplications, the

floating-point operators MatMul and ReLU are converted into MatMulInteger, Add, ReLU

and QuantizeLinear integer operators respectively. The Add operator introduced for con-

volutions and matrix multiplications performs bias addition, which is already integrated

into the floating point convolution Conv, but not in MatMul. The QuantizeLinear operator

performs data scaling and quantization by using a pre-calculated scaling value to scale

its high precision input data tensor, followed by rounding and conversion of the data to a

lower precision data type. In case addition of two non-constant inputs are needed, e.g. in

residual blocks, Cast and Mul operators are introduced to cast and scale both inputs of

the original Add operator into a common format, followed by a QuantizeLinear operator.

29

N×64×32×64

N×64×32×64

N×64×32×64

Conv

W〈64×64×3×3〉
B〈64〉

Add

Relu

input

output

(a) Original model

N×64×32×64

N×64×32×64

N×64×32×64

N×64×32×64

N×64×32×64

N×64×32×64

N×64×32×64

N×64×32×64

N×64×32×64

N×64×32×64

N×64×32×64

N×64×32×64

ConvInteger

w(64×64×3×3)

Add

B(1×64×1×1)

QuantizeLinear

y_scale(1)

y_zero_point(1)

Cast

Mul

B(1)

Cast

Mul

B(1)

Add

QuantizeLinear

y_scale(1)

y_zero_point(1)

Relu

input

output

(b) Quantized model

Figure 5.1. Example of ONNX quantization procedure in the target environment

A comparison between an example ONNX model and its corresponding quantized model

is illustrated in Figure 5.1.

Operators ConvInteger and MatmulInteger function similarly as their floating point coun-

terparts, but instead using integer values. The weight arrays for these are converted to

integer values as discussed in 2.2.1 and stored as constant initializers. The same is re-

peated for Add operators performing bias addition by quantizing each bias vector and

storing it as a constant initializer. With non-constant Add operators, both inputs are first

cast to a common data type, then scaled by multiplication to a common scale based on

the data types and magnitudes of both inputs, and finally the addition can be calculated.

30

The scaling discussed in Sections 2.2.1 and 2.2.2 is performed during each QuantizeLin-

ear operator. Each scale is calculated during model quantization and stored as a constant

initializer. For ReLU operators, the only change is the input and output data types which

are changed from floating point to integer values.

Mixed precision quantization is something that isn’t thoroughly supported yet, as quanti-

zation is a relatively new feature within the ONNX specification. Next, the changes and

additions needed to fully enable mixed precision quantization on the current ONNX spec-

ification (version 1.9.0) will be discussed. The aim is to support a mix of INT4, INT8 and

INT16 quantizations. The changes proposed here enable mixed precision quantization

within the in-house framework used for manipulating ONNX models in this thesis, but

can be additionally used as a reference when extending other frameworks or the ONNX

specification for mixed precision quantization.

The first obvious change needed in the context of this thesis, is the addition of a 4-bit

integer data type, which in practice means simply extending the existing data type enu-

meration. The behaviour of 4-bit integers may need to be emulated by software, as the

byte size of x86, ARM, and similar architectures is commonly 8 bits. The input data

type constraints for operators ConvInteger, MatMulInteger need to be extended to also

include 16-bit and 4-bit integers. As accumulated 16-bit multiplications may need more

than 32 bits, the output type constraints of these operators need to additionally include

64-bit integers. Moreover, the output type constraints may also include 16-bit integers for

4-bit multiplications. For Add operators, all types are already supported in the current

specification. Inputs with different types for Add are not supported, however, this is not

required as constant bias values are bit-shifted to the same scale as will be discussed in

Section 5.2, and non-constant inputs are cast and scaled using Cast and Mul operators

as discussed above. QuantizeLinear operators are only able to quantize 32-bit integer

values to 8-bit integers in the current specification. Thus, the input type constraint need

to be extended to include 64-bit integers (and 16-bit integers if included in ConvInteger or

MatmulInteger output constraints), and the quantized output constraints to also include

4-bit and 16-bit integers.

5.2 Target Hardware

In this section, the target hardware and parts of its implementation in a high level of ab-

straction will be discussed. Here target hardware refers to an example hardware platform

the quantization scheme from Section 2.2.1 and ONNX representation from Section 5.1

aim for, however the proposed optimization method is not bound to this platform. The goal

of this hardware is to efficiently run models quantized using the techniques discussed pre-

viously. For the target hardware used in this thesis, the integer-arithmetic matrix multipli-

cation, bias-addition, activation function and quantization are fused into a single pipeline.

31

Figure 5.2. High level implementation of a fused layer on hardware

The exact compute capabilities and specific bit-widths will not be disclosed, but rather a

general example of the functionality is discussed. The general pipeline of a fused layer is

illustrated in Figure 5.2

The fused layer pipeline starts by first loading matrix multiplication weights from a fast lo-

cal Static Random Access Memory (SRAM) block, and setting these to the vector matrix

multiplication unit. The vector matrix multiplication unit considers matrices as sets of vec-

tors and is responsible for calculating kernel-wise operations and full element-wise matrix

multiplications. Additionally, the accumulator registers for a single vector is initialized to

the bias vector loaded from another SRAM block for bias values. Bias loading includes

a special bias shifting stage, which can be used to dynamically scale bias values larger

according to the target value range, e.g. from 16 bits to 32 bits with the least significant

bits being zeros. The vector multiplication results from the vector matrix multiplication

unit are accumulated to the initialized accumulators, and then passed to the vector pool-

ing and vector ReLU activation units respectively. The final stage is the quantizer, which

quantizes the higher precision activation output to a lower precision, e.g. from 32 bits to

8 bits, and consists of a pre-multiplier stage followed by a power-of-2 downscaler using

bit-shifting as formulated in Section 2.2.2. For the hardware considered here, half away

from zero rounding is used, which can be formulated as

round(x) = −sgn(x)⌈−|x| − 0.5⌉ (5.1)

where sgn is the sign function which returns the sign of its input, and ⌈.⌉ is the ceiling func-

tion. The benefit of this rounding mode is that its behaviour is efficiently implementable

32

on hardware.

The kernel and matrix multiplication weights are stored as is in the weight memory block,

whereas bias memory includes only the available most significant bits for each value.

Therefore, the data type (INT4, INT8 or INT16) of each weight array determines how much

weight memory they consume, and the amount of bits used for bias values determines

how much bias values consume bias memory. The amount of most significant bias bits

is kept constant for all bias vectors, as assigning different amount of bits for each bias

vector wouldn’t provide significant memory optimization compared to weight memory, and

would also expand the quantization configuration search space drastically. To implement

this, full precision bias vectors are processed during quantization to ensure they fit to

the available bits. For each bias vector separately, the maximum magnitude value is

observed, and if this exceeds the maximum value representable using the available bias

bits the values are right shifted (sacrificing the least significant bits) until the remaining

bits are representable. The amount of shifting done is stored and then later applied as

left shift in the bias shifting stage.

In practice, multiple parallel fused matrix multiplication pipelines can be used to leverage

parallelism for faster network graph computation. For some element-wise vector oper-

ations which cannot be efficiently executed by the discussed pipeline, such as residual

connections, additional special hardware may be required. The details of this hardware

are not disclosed here, but are still mentioned to highlight the limitations of the discussed

fused matrix multiplication pipeline. The target hardware aims for 100% utilization rate,

meaning that the computational resources are fully utilized at all times during the com-

putation of a model graph fulfilling the hardware requirements, e.g. sizes of inputs and

weight arrays.

5.3 Static Quantization Configurations

Static quantization configurations in the context of this thesis will now be explicitly de-

fined, as they are a key part of the experiments performed in Chapter 6. Static INT8

quantization is a commonly used configuration, as it’s usually a good balance between

model output error and resource consumption. In this configuration, each input, weight

array and quantization output uses 8-bit integer precision, and the number of bits used

for bias vector values is set to 16. For static INT4 configuration, inputs, weight arrays,

and outputs use 4-bit integers, and the number of bias vector bits used is set to 8. For

static INT16 configuration, each input, weight array and quantization outputs uses 16-bit

integer precision, number of bias vector bits used set to 32. For all of the configurations,

the pre-multiplier bits, i.e. b in Equations 2.13 and 2.14, is set to 3.

33

Figure 5.3. Traditional OFDM receiver pipeline stages illustrated

5.4 DeepRx

Replacing a specific part of a traditional radio receiver pipeline with a neural network has

been proposed by multiple researchers [53, 54, 55]. In DeepRx [26], almost the whole

receiver pipeline is executed in a 5G-compliant fashion using a CNN developed in Nokia

Bell Labs. As shown in the original paper, DeepRx performs significantly better than a

traditional OFDM receiver pipeline. Therefore this novel approach could be beneficial if

made implementable on the radio receiver hardware with feasible inference latency and

power consumption.

A traditional digital wideband radio receiver commonly uses Orthogonal Frequency-Division

Multiplexing (OFDM) [56] as its digital data transmission method, as it is capable of en-

coding bit-streams into multiple subcarrier frequencies for carrying data in parallel. In

OFDM transmission, a bit-stream is first encoded using an error correction code, such

as Low-Density Parity Check code (LDPC), followed by rate matching and OFDM symbol

mapping. Next, Demodulation Reference Signals (DMRS) (also known as pilot signals)

are inserted to the symbols for later signal demodulation and transmit channel estimation.

Finally, the Inverse Fast Fourier Transform (IFFT) is calculated and a Cyclic Prefix (CP) is

added as a guard interval to prevent interference between different transmissions. This

is the final transmitted signal. The receiver needs to reverse all of the transmitter steps

and also assess and mitigate any distortion caused by the transmission channel. Conse-

quently, the receiver pipeline includes an additional channel estimation and interpolation

stage utilizing the pilot reference symbols, followed by equalization where the effects of

the transmission channel are mitigated.

From the traditional ODFM receiver, illustrated in Figure 5.3, DeepRx replaces the DMRS

34

extraction, channel estimation and interpolation, equalization, and symbol demapping

tasks with a single CNN. The network is a fully convolutional deep neural network utilizing

pre-activation blocks similarly as in [25], and also depthwise separable convolutions. The

original paper focused mainly on Quadrature Amplitude Modulation (QAM) with 16 values,

however the model is designed to also handle other QAM schemes. The modulation

scheme considered in this thesis is QAM with 256 values, i.e. 8 bits per symbol.

The input for DeepRx consists of frequency-domain representation of the received an-

tenna data with CP removed, reference pilot symbols positioned to correspond to the pilot

positions in antenna data with zero-padding in non-pilot positions, and a pre-computed

raw channel estimate. All of these are stacked to separate channels to form the full net-

work input. The output of the network represents the raw bit log-likelihood ratios (LLR)

similarly as in the output of symbol demapper in the OFDM receiver pipeline. Hence the

output of DeepRx requires additional post-processing to acquire the final bit stream.

Although the proposed model shows potentially very significant receiver accuracy boosts,

the hardware implementation of even the smaller single receiver antenna model limits

the practicality of DeepRx drastically. Very large neural network computation graphs im-

plemented on hardware require more power and silicon area which are crucial factors

especially when designing large scale telecommunication products. The work done in

[39] aims to prune DeepRx to a much smaller size using a so-called quantization-aware

multi-stage pruning algorithm. The proposed algorithm is a crucial part of the model de-

ployment pipeline which the method proposed in Chapter 3 also belongs to. Therefore,

DeepRx and more specifically a pruned version of it is the key model used for evaluation

in Chapter 6, as it’s very relevant to the work done in this thesis at Nokia.

35

6. EXPERIMENTS

The iterative correlation coefficient adaptation method proposed in Chapter 3 will be eval-

uated on DeepRx in this chapter. The experiments are arranged as follows. First, the

hyperparameters for the proposed method are explored and discussed using a small test

network, and appropriate values for each are suggested. Next, the DeepRx neural net-

work is quantized using the static quantization configurations defined in Section 5.3 and

used as a baseline for the coming mixed precision quantization results. This is followed

by common manual mixed precision configurations and the proposed automatic method,

which are both evaluated in terms of DeepRx performance, memory usage, and compute

cycle latency. The automatic method is used for both memory and latency optimization,

and all of the automatically optimized models are additionally compared with the manual

mixed precision configurations to conclude the functionality of the method.

6.1 Hyperparameters for the Proposed Method

In this section, different hyperparameter values for the method proposed in Section 3

are explored, effects of each parameter discussed, and best choices concluded. The

model used for examining the method behaviour consists of an input convolutional layer

with three residual blocks and a fully-connected layer all utilizing a ReLU activation. All

searches performed started with the same sampling center and random seed, and the

target cost function maximum MAPE set to ϵi8 with latency being the resource target.

Sample set size λ defines how frequently the sampling center is updated, consequently

also affecting the time complexity of each epoch. Together with µ and w, they define

how many samples and in what proportions are used for calculating the sample based

sampling center update. For all hyperparameter tests performed, µ was set to ⌊λ
3
⌋ and w

were calculated as

w =

[︃
µ5∑︁µ
i=1 i

5
,
(µ− 1)5∑︁µ

i=1 i
5
, . . . ,

15∑︁µ
i=1, i

5

]︃
, (6.1)

which satisfies both Equations 3.2 and 3.3. The sample set sizes included in the tests

here were {5, 10, 15, 20}, and σ = 0.10, γ = 0.95 was used for all tests. The search

results are illustrated in Figure 6.1. As the sample set size increases, the mean cost of

36

Figure 6.1. Search results with different sample set sizes

each set becomes less stochastic, while simultaneously the time it takes to complete a

single epoch increases. Based on more extensive tests, λ = 5 is a too small value and

the search does not converge easily, whereas with λ = 20, the search time increases

significantly. Hence, a sample set size of 10 or 15 or similar is a good choice.

Sampling variance σ affects how widely the current search center is sampled. Too small

variance makes it hard for the new sample set to contain new unexplored states, whereas

too big variance is not able to fully exploit the learned sampling center. Figure 6.2 shows

results for pure random (γ = 1) searches with different sampling variances. The sample

set size used here is λ = 10. When σ2 = 0.05, the search finds and stays around a good

solution but does not explore many new states. As the variance is increased to σ2 = 0.10,

the search starts to explore more states where the cost function occasionally saturates

to larger values due to too high accuracy drops, but also states below the threshold.

With σ2 = 0.15 and larger the sampling starts to become too random, i.e. updating the

sampling center does not have a big effect to the sampling process, and a good solution

might be missed completely. Hence, the preferred variance is approximately σ2 = 0.10.

37

Figure 6.2. Pure random search results with different sampling variances

Learning rate discount factor, i.e. γ in Equations 3.9 and 3.8, defines how fast the

correlation coefficient candidate solution is used. As the candidate solution requires a

diverse set of explored states, γ should not be set too low as then random sampling

is not executed to the required extend and the candidate solution is used prematurely.

Furthermore, a too large value makes it hard for the algorithm to exploit the candidate

solution. A total of 10 searches with γ ∈ [0.90, 0.91, . . . , 0.99] were performed, all having

λ = 10 and σ = 0.10. Figure 6.3 illustrates some of the search results with different

values of γ. With lower values of γ, e.g. γ = 0.91, the search converges fast and

keeps sampling around a suitable solution. However, especially when the search space

gets significantly larger, the candidate solution may be significantly worse than the global

optimum, or a sampled new best solution might be missed as the center converges too

quickly. With higher values, e.g. γ = 0.99, the search takes more epochs to converge and

the candidate solution is not exploited to its full extent. Based on more extensive tests,

γ = 0.95 is a good choice for many model architectures, however, smaller values such

as γ = 0.92 can be used to speed-up the search. Lastly, it should be mentioned that very

small models with small search spaces should prefer larger values of γ, and possibly

38

larger values of σ, as the time cost of performing more stochastic search is noticeably

smaller and a more optimal solution may be thus discovered.

6.2 Baselines

For evaluating DeepRx, the uncoded Bit Error Rates (BER) and signal-to-noise ratio

(SNR) are utilized. Here uncoded BER refers to the log-likelihood ratios before LDPC

decoding, and coded refers to the LDPC decoded bits. Signal-to-noise ratio indicates

how much background noise there is by comparing the noise-free signal to the back-

ground noise. A lower SNR value indicates a more noisy signal. The BER against SNR

curves are plotted for each DeepRx model with 1 and 2 pilots, and are compared against

a traditional OFDM receiver with Linear Minimum Mean Square Error (LMMSE) used for

channel estimation with 1 and 2 pilots, as well as an optimal (non-practical) receiver with

perfect channel knowledge. By representing SNR as a function of BER, the robustness of

each method based on the error rates for different amounts of background noise can be

observed. The evaluation data set used consists of 256 QAM modulation scheme data,

i.e. each OFDM symbol is represented using 8 bits, and was provided by the original

authors of [26].

As the main goal of DeepRx is to outperform traditional methods, quantization should not

introduce too drastic errors. As a baseline, all static quantization configurations from Sec-

tion 5.3 are evaluated. The DeepRx model here consists of an input convolutional layer

and 11 residual blocks utilizing depthwise separable convolutions, and is quantization-

aware trained and pruned using the method proposed in [39]. The original floating point

model and all quantized models are evaluated and illustrated in Figure 6.4. Static INT16

quantization does not introduce notable errors and is very close to the original model,

however the resource consumption is the worst possible. Static INT8 quantization intro-

duces clear errors and does not perform as desired, but is still somewhat usable and has

a good overall resource consumption. Errors introduced by static INT4 quantization are

far too big and make the model unusable, even though the minimal resources would be

beneficial. Therefore, a suitable MAPE threshold for the search method is the static INT8

configuration MAPE.

6.3 Manual Mixed Precision

Next, some of the common manual mixed precision configurations are evaluated. The

configurations considered here are INT8 activations with INT4 weights, INT8 activations

with INT16 weights, and INT16 activations with INT8 weights. These are referred to as

8x4, 8x16, and 16x8, respectively. For all of these configurations, bias bits is set to 16.

The BER against SNR curves for each configuration are illustrated in Figure 6.5, and the

39

Figure 6.3. Mean sample set cost for each epoch with different values of γ

40

12.5 15.0 17.5 20.0 22.5 25.0 27.5
SINR (dB)

10−4

10−3

10−2

10−1

100

Un
c
de

d
BE

R

DeepRx, 1 pil t
DeepRx, 2 pil ts
LMMSE, 1 pil t
LMMSE, 2 pil ts
LMMSE, kn wn channel

(a) Original

12.5 15.0 17.5 20.0 22.5 25.0 27.5
SINR (dB)

10−4

10−3

10−2

10−1

100

Un
c
de

d
BE

R

DeepRx, 1 pil t
DeepRx, 2 pil ts
LMMSE, 1 pil t
LMMSE, 2 pil ts
LMMSE, kn wn channel

(b) Static INT8 quantization

12.5 15.0 17.5 20.0 22.5 25.0 27.5
SINR (dB)

10−4

10−3

10−2

10−1

100

Un
c
de

d
BE

R

DeepRx, 1 pil t
DeepRx, 2 pil ts
LMMSE, 1 pil t
LMMSE, 2 pil ts
LMMSE, kn wn channel

(c) Static INT16 quantization

12.5 15.0 17.5 20.0 22.5 25.0 27.5
SINR (dB)

10−4

10−3

10−2

10−1

100

Un
c
de

d
BE

R
DeepRx, 1 pil t
DeepRx, 2 pil ts
LMMSE, 1 pil t
LMMSE, 2 pil ts
LMMSE, kn wn channel

(d) Static INT4 quantization

Figure 6.4. Original and quantized DeepRx models with pruning and QAT

corresponding DeepRx models are summarized in Table 6.1. The weight values in Table

6.1 refer to the percentage of all convolution kernel weight parameters using a specific

data type, and the activations refer to the number of intermediate QuantizeLinear operator

outputs with a certain data type as discussed in Section 5.1.

As seen in Figure 6.5, 16x8 configuration performs significantly better than others and is

very close to the static INT16 configuration, 8x16 performs similarly as static INT8 quan-

tization, and 8x4 configuration is completely unusable. Moreover, as 8x16 configuration

does not provide any significant accuracy gains and has worse latency when compared to

INT8, it is not considered as a feasible mixed precision configuration, and therefore 16x8

is the only usable configuration here. Table 6.1 shows that 16x8 has the same memory

consumption as static INT8 configuration, and 50% of static INT16 latency while keeping

the model bit error rates very close to static INT16 configuration. Thus, it can be con-

cluded that for DeepRx 16x8 manual mixed precision configuration is very suitable and a

good compromise between static INT8 and INT16 configurations. This configuration has

also been implemented in Tensorflow Lite [1], where it is mentioned that the configuration

can significantly improve the accuracy of quantized models.

41

12.5 15.0 17.5 20.0 22.5 25.0 27.5
SINR (dB)

10−4

10−3

10−2

10−1

100

Un
c
de

d
BE

R

DeepRx, 1 pil t
DeepRx, 2 pil ts
LMMSE, 1 pil t
LMMSE, 2 pil ts
LMMSE, kn wn channel

(a) Static INT8 quantization

12.5 15.0 17.5 20.0 22.5 25.0 27.5
SINR (dB)

10−4

10−3

10−2

10−1

100

Un
c
de

d
BE

R

DeepRx, 1 pil t
DeepRx, 2 pil ts
LMMSE, 1 pil t
LMMSE, 2 pil ts
LMMSE, kn wn channel

(b) INT8 activations with INT4 weights

12.5 15.0 17.5 20.0 22.5 25.0 27.5
SINR (dB)

10−4

10−3

10−2

10−1

100

Un
c
de

d
BE

R

DeepRx, 1 pil t
DeepRx, 2 pil ts
LMMSE, 1 pil t
LMMSE, 2 pil ts
LMMSE, kn wn channel

(c) INT8 activations with INT16 weights

12.5 15.0 17.5 20.0 22.5 25.0 27.5
SINR (dB)

10−4

10−3

10−2

10−1

100

Un
c
de

d
BE

R

DeepRx, 1 pil t
DeepRx, 2 pil ts
LMMSE, 1 pil t
LMMSE, 2 pil ts
LMMSE, kn wn channel

(d) INT16 activations with INT8 weights

Figure 6.5. Manual mixed precision quantized DeepRx models

Table 6.1. Manual mixed precision quantization models

8x4 8x16 16x8 Static INT4 Static INT8 Static INT16

MAPE 2.172 0.589 0.187 2.894 0.677 0.003

% of worst memory case 25.5% 99.1% 50.0% 25.0% 50.0% 100.00%

INT4 weight values 100.0% 0.0% 0.0% 100.0% 0.0% 0.0%

INT8 weight values 0.0% 0.0% 100.0% 0.0% 100.0% 0.0%

INT16 weight values 0.0% 100.0% 0.0% 0.0% 0.0% 100.0%

Bias bits 16 16 16 8 16 32

% of worst latency case 12.5% 50.0% 50.0% 6.25% 25.0% 100.0%

INT4 activations 0 0 0 61 0 0

INT8 activations 61 61 0 0 61 0

INT16 activations 0 0 61 0 0 61

Input type INT8 INT8 INT16 INT4 INT8 INT16

Output type INT8 INT8 INT16 INT4 INT8 INT16

42

6.4 Proposed Method

The proposed method is next applied separately for both optimizing the memory con-

sumption and compute latency of DeepRx. The top 3 models discovered by the search

algorithm are saved, and then evaluated similarly as the baselines to ultimately choose

the most suitable model for the use case. Following the propositions in Section 6.1, the

hyperparameters were set to λ = 10, σ = 0.10, γ = 0.95, and w was set according to

Equation 6.1 for both searches. Finally, the cost function MAPE threshold was set to ϵi8

and a small subset of the whole data set was used to calculate the MAPE values for each

configuration in both search cases.

First, the search was performed for optimizing memory consumption, where the input and

activations were completely left out of the search and manually set to INT16. A total of 30

iterations were performed, which are illustrated in Figure 6.6. The total elapsed search

time was approximately one hour without any GPU accelerated inference. The search

smoothly converges to a good solution in approximately 10 epochs, and keeps sampling

around the good solutions to find the first, second and third best cost values at epochs

13, 21, and 25 respectively. Additionally, the explored models shown in Figure 6.6 shows

that as a result of the ϵi8 threshold, most of the searches were done around the INT8

baseline configuration. The top 3 models from the search are summarized in Table 6.2,

and evaluated in Figure 6.7. All of the models have lower memory consumption than

static INT8 and 16x8 configurations, have lower latency than 16x8, and perform better

than static INT8 but slightly worse than 16x8. An interesting observation is the amount

of INT4 weight values used for all of the top 3 models which is close to 30 % for the

best model and around 19% for second and third best models. Based on manual 8x4

mixed precision configuration, INT4 weights don’t seem to be feasible at all, however,

the memory optimized search results show that parts of the DeepRx weight arrays can

indeed be quantized using INT4 precision.

43

Figure 6.6. Memory optimized search

12.5 15.0 17.5 20.0 22.5 25.0 27.5
SINR (dB)

10−4

10−3

10−2

10−1

100

Un
c
de

d
BE

R

DeepRx, 1 pil t
DeepRx, 2 pil ts
LMMSE, 1 pil t
LMMSE, 2 pil ts
LMMSE, kn wn channel

(a) Static INT8 quantization

12.5 15.0 17.5 20.0 22.5 25.0 27.5
SINR (dB)

10−4

10−3

10−2

10−1

100

Un
c
de

d
BE

R

DeepRx, 1 pil t
DeepRx, 2 pil ts
LMMSE, 1 pil t
LMMSE, 2 pil ts
LMMSE, kn wn channel

(b) Best search result

12.5 15.0 17.5 20.0 22.5 25.0 27.5
SINR (dB)

10−4

10−3

10−2

10−1

100

Un
c
de

d
BE

R

DeepRx, 1 pil t
DeepRx, 2 pil ts
LMMSE, 1 pil t
LMMSE, 2 pil ts
LMMSE, kn wn channel

(c) Second best search result

12.5 15.0 17.5 20.0 22.5 25.0 27.5
SINR (dB)

10−4

10−3

10−2

10−1

100

Un
c
de

d
BE

R

DeepRx, 1 pil t
DeepRx, 2 pil ts
LMMSE, 1 pil t
LMMSE, 2 pil ts
LMMSE, kn wn channel

(d) Third best search result

Figure 6.7. Original and top 3 best models from memory optimized search

44

Table 6.2. Memory optimized top 3 models and baselines

1st 2nd 3rd Static INT4 Static INT8 Static INT16

MAPE 0.557 0.492 0.525 2.894 0.677 0.003

% of worst memory case 46.1% 46.3% 47.2% 25.0% 50.0% 100.00%

INT4 weight values 27.7% 19.4% 18.9% 100.0% 0.0% 0.0%

INT8 weight values 66.4% 78.7% 77.5% 0.0% 100.0% 0.0%

INT16 weight values 5.9% 1.9% 3.6% 0.0% 0.0% 100.0%

Bias bits 16 19 18 8 16 32

% of worst latency case 46.0% 46.1% 47.0% 6.25% 25.0% 100.00%

INT4 activations 0 0 0 61 0 0

INT8 activations 0 0 0 0 61 0

INT16 activations 61 61 61 0 0 61

Input type INT16 INT16 INT16 INT4 INT8 INT16

Output type INT16 INT16 INT16 INT4 INT8 INT16

Next, the search was performed for latency optimization, where the bias bits were left

out of the search and set to a constant value of 32. Additionally, the input data type

was excluded from the search and manually set to INT16 to ensure the precision is not

already lost at start of the model. A total of 30 iterations were again performed, illustrated

in Figure 6.8. Similarly as in the memory optimization search, the elapsed search time

was approximately one hour without any GPU accelerated inference. In this case, the

search does not converge as smoothly and exceeds the threshold limit especially in the

first epochs, but is still able to discover good solutions. The first, second and third best

cost values were found at epochs 29, 19 and 22 respectively. The visualization of explored

models show that there can be very drastic changes in MAPE with models having similar

latency, consequently making the latency optimization search much harder than memory

optimization. The resulting top 3 latency optimized models are summarized in Table 6.3,

and evaluated in Figure 6.9. The latency of all of the top 3 models is close but slightly

higher than static INT8, however the MAPEs are superior in all of the top models. After

evaluation, it can be seen that all of the top 3 models perform better than static INT8

configuration but still worse than 16x8, however, as mentioned the latency of the top

models is very close to static INT8 and thus the models can be considered as good

compromises between static INT8 and 16x8 configurations.

45

Figure 6.8. Latency optimized search

12.5 15.0 17.5 20.0 22.5 25.0 27.5
SINR (dB)

10−4

10−3

10−2

10−1

100

Un
c
de

d
BE

R

DeepRx, 1 pil t
DeepRx, 2 pil ts
LMMSE, 1 pil t
LMMSE, 2 pil ts
LMMSE, kn wn channel

(a) Static INT8 quantization

12.5 15.0 17.5 20.0 22.5 25.0 27.5
SINR (dB)

10−4

10−3

10−2

10−1

100

Un
c
de

d
BE

R

DeepRx, 1 pil t
DeepRx, 2 pil ts
LMMSE, 1 pil t
LMMSE, 2 pil ts
LMMSE, kn wn channel

(b) Best search result

12.5 15.0 17.5 20.0 22.5 25.0 27.5
SINR (dB)

10−4

10−3

10−2

10−1

100

Un
c
de

d
BE

R

DeepRx, 1 pil t
DeepRx, 2 pil ts
LMMSE, 1 pil t
LMMSE, 2 pil ts
LMMSE, kn wn channel

(c) Second best search result

12.5 15.0 17.5 20.0 22.5 25.0 27.5
SINR (dB)

10−4

10−3

10−2

10−1

100

Un
c
de

d
BE

R

DeepRx, 1 pil t
DeepRx, 2 pil ts
LMMSE, 1 pil t
LMMSE, 2 pil ts
LMMSE, kn wn channel

(d) Third best search result

Figure 6.9. Static INT8 and top 3 best models from latency optimized search

46

Table 6.3. Latency optimized top 3 models and baselines

1st 2nd 3rd Static INT4 Static INT8 Static INT16

MAPE 0.583 0.570 0.592 2.894 0.677 0.003

% of worst memory case 52.1% 56.7% 53.3% 25.0% 50.0% 100.00%

INT4 weight values 0.0% 0.6% 0.0% 100.0% 0.0% 0.0%

INT8 weight values 97.7% 87.2% 95.2% 0.0% 100.0% 0.0%

INT16 weight values 2.3% 12.2% 4.8% 0.0% 0.0% 100.0%

Bias bits 32 32 32 8 16 32

% of worst latency case 26.9% 30.4% 30.5% 6.25% 25.0% 100.00%

INT4 activations 0 0 0 61 0 0

INT8 activations 58 51 48 0 61 0

INT16 activations 3 10 13 0 0 61

Input type INT16 INT16 INT16 INT4 INT8 INT16

Output type INT8 INT16 INT16 INT4 INT8 INT16

47

7. CONCLUSION

In this thesis, the goal was to study mixed precision quantization of neural networks and

the ONNX specification, and propose and evaluate a novel mixed precision quantiza-

tion search method. After studying the current ONNX specification, an explicit list of

changes required to the current version for it to fully support the mixed precision quan-

tization scheme considered in this thesis was proposed in Section 5.1. These change

proposals are yet to be officially forwarded to the ONNX community, but the plan of do-

ing this is under preparation. The automatic mixed precision quantization search method

proposed in Chapter 3 is a lightweight, gradient-free approach with an easily tunable cost

function. The method is able to find multiple slightly different configurations optimized for

the chosen target resource while keeping the error introduced due to quantization below

the specified threshold. The proposed target resources, though not being perfectly accu-

rate to the target hardware, function as intended and the resulting quantization configura-

tions favor either smaller bit-width parameters or a combination of smaller parameter and

intermediate quantization bit-widths. Furthermore, the hyperparameters for the search

method were explored and suitable values for each proposed in Section 6.1.

The experimental results done in Sections 6.4 and 6.3 on a CNN-based radio receiver,

DeepRx, show that significant optimizations are achievable by utilizing mixed precision

quantization. From the manual mixed precision configurations, 16-bit activations and

8-bit weights is clearly the most suitable configuration, effectively being a compromise

between static INT8 and INT16 configurations. The proposed search method was able

to find 3 feasible mixed precision quantization configurations for both memory and la-

tency optimization, and can be thus utilized to find quantization configurations in a more

specific area of model output quantization error. Although DeepRx is a large network,

both memory and latency optimization searches took approximately one hour without any

GPU inference acceleration. This is significantly faster than e.g. the gradient-based ar-

chitecture search in [5] which took several hours using multiple GPUs. The MAPE metric

used for estimating the model accuracy drop due to quantization is generally usable in

many models, however, in more complex models such as DeepRx where additional post-

processing is needed, it does not directly capture the performance degradation of the

model.

Although the experiments done in this demonstrate the functionality of the proposed

48

search method, future work should evaluate the method more thoroughly on a wider set

of different models. As the framework developed here is very specific to the quantization

scheme, proposed modified ONNX specification, and the target hardware, other frame-

works were not used to compare the search results. Therefore a rough comparison be-

tween different frameworks could be performed to estimate how well the proposed method

performs in terms of resource optimization and search time when compared to other ex-

isting methods. This comparison should also include GPU inference acceleration for the

proposed method which is currently absent. Moreover, as shown during the experiments,

MAPE does not fully capture the accuracy degradation of complex models, and therefore

a more model specific accuracy drop function could be used instead of the general MAPE

metric when optimizing very use case specific neural networks. Future work could also

expand the proposed method, e.g. by utilizing multivariate normal distribution sampling by

utilizing a full covariance matrix, investigating dynamic sampling variance where variance

is adjusted according to the current sampling center, or by exploring different mappings

of the correlation efficients in the heuristic candidate as opposed to the current simple lin-

ear mapping. Finally, the whole mixed precision quantization scheme could be extended

from kernel-wise to channel-wise quantization to allow even more freedom in the mixed

precision configurations, and possibly optimize models even further.

49

REFERENCES

[1] TensorFlow Lite. https://www.tensorflow.org/lite/. 2017.

[2] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,

Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,

Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J. and Chin-

tala, S. PyTorch: An Imperative Style, High-Performance Deep Learning Library.

Advances in Neural Information Processing Systems 32. Curran Associates, Inc.,

2019, pp. 8024–8035. URL: http : / / papers . neurips . cc / paper / 9015 -
pytorch - an - imperative - style - high - performance - deep - learning -
library.pdf.

[3] ONNX: Open Neural Network Exchange. https://onnx.ai/. 2019.

[4] Zhu, X., Zhou, W. and Li, H. Adaptive Layerwise Quantization for Deep Neural

Network Compression. eng. 2018 IEEE International Conference on Multimedia

and Expo (ICME). Vol. 2018-. IEEE, 2018, pp. 1–6. ISBN: 9781538617373.

[5] Wu, B., Wang, Y., Zhang, P., Tian, Y., Vajda, P. and Keutzer, K. Mixed Precision

Quantization of ConvNets via Differentiable Neural Architecture Search. CoRR abs/1812.00090

(2018). arXiv: 1812.00090. URL: http://arxiv.org/abs/1812.00090.

[6] Coelho, C. N., Kuusela, A., Li, S., Zhuang, H., Ngadiuba, J., Aarrestad, T. K., Lon-

car, V., Pierini, M., Pol, A. A. and Summers, S. Automatic heterogeneous quanti-

zation of deep neural networks for low-latency inference on the edge for particle

detectors. eng. Nature machine intelligence 3.8 (2021), pp. 675–686. ISSN: 2522-

5839.

[7] Yang, L. and Jin, Q. FracBits: Mixed Precision Quantization via Fractional Bit-Widths.

CoRR abs/2007.02017 (2020). arXiv: 2007.02017. URL: https://arxiv.org/
abs/2007.02017.

[8] Lou, Q., Liu, L., Kim, M. and Jiang, L. AutoQB: AutoML for Network Quantization

and Binarization on Mobile Devices. CoRR abs/1902.05690 (2019). arXiv: 1902.
05690. URL: http://arxiv.org/abs/1902.05690.

[9] Wang, K., Liu, Z., Lin, Y., Lin, J. and Han, S. HAQ: Hardware-Aware Automated

Quantization With Mixed Precision. Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR). June 2019.

[10] Yao, Z., Dong, Z., Zheng, Z., Gholami, A., Yu, J., Tan, E., Wang, L., Huang, Q.,

Wang, Y., Mahoney, M. and Keutzer, K. HAWQ-V3: Dyadic Neural Network Quanti-

zation. Proceedings of the 38th International Conference on Machine Learning. Ed.

by M. Meila and T. Zhang. Vol. 139. Proceedings of Machine Learning Research.

https://www.tensorflow.org/lite/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://onnx.ai/
https://arxiv.org/abs/1812.00090
http://arxiv.org/abs/1812.00090
https://arxiv.org/abs/2007.02017
https://arxiv.org/abs/2007.02017
https://arxiv.org/abs/2007.02017
https://arxiv.org/abs/1902.05690
https://arxiv.org/abs/1902.05690
http://arxiv.org/abs/1902.05690

50

PMLR, 18–24 Jul 2021, pp. 11875–11886. URL: https://proceedings.mlr.
press/v139/yao21a.html.

[11] Schmidhuber, J. Deep learning in neural networks: An overview. Neural Networks

61 (2015), pp. 85–117. ISSN: 0893-6080. DOI: https://doi.org/10.1016/j.
neunet.2014.09.003. URL: https://www.sciencedirect.com/science/
article/pii/S0893608014002135.

[12] Goodfellow, I., Bengio, Y. and Courville, A. Deep Learning. MIT Press, 2016. URL:

http://www.deeplearningbook.org.

[13] Xu, L., Choy, C.-S. and Li, Y.-W. Deep sparse rectifier neural networks for speech

denoising. 2016 IEEE International Workshop on Acoustic Signal Enhancement

(IWAENC). 2016, pp. 1–5. DOI: 10.1109/IWAENC.2016.7602891.

[14] Fukushima, K. Neocognitron: A self-organizing neural network model for a mecha-

nism of pattern recognition unaffected by shift in position. Biological cybernetics 36

(Feb. 1980), pp. 193–202. DOI: 10.1007/BF00344251.

[15] Sifre, L. Rigid-Motion Scattering For Image Classification. PhD thesis. Ecole Poly-

technique, CMAP, Oct. 2014.

[16] Chollet, F. Xception: Deep learning with depthwise separable convolutions. Pro-

ceedings of the IEEE conference on computer vision and pattern recognition. 2017,

pp. 1251–1258.

[17] Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep network training

by reducing internal covariate shift. International conference on machine learning.

PMLR. 2015, pp. 448–456.

[18] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-

dreetto, M. and Adam, H. Mobilenets: Efficient convolutional neural networks for

mobile vision applications. arXiv preprint arXiv:1704.04861 (2017).

[19] Lecun, Y., Bottou, L., Bengio, Y. and Haffner, P. Gradient-based learning applied to

document recognition. Proceedings of the IEEE 86.11 (1998), pp. 2278–2324. DOI:

10.1109/5.726791.

[20] Chellapilla, K., Puri, S. and Simard, P. High Performance Convolutional Neural

Networks for Document Processing. Tenth International Workshop on Frontiers in

Handwriting Recognition. Ed. by G. Lorette. http://www.suvisoft.com. Université de

Rennes 1. La Baule (France): Suvisoft, Oct. 2006. URL: https://hal.inria.fr/
inria-00112631.

[21] Ciresan, D. C., Meier, U., Gambardella, L. M. and Schmidhuber, J. Deep, Big, Sim-

ple Neural Nets for Handwritten Digit Recognition. eng. 22.12 (2010), pp. 3207–

3220.

[22] Cireşan, D. C., Meier, U., Masci, J., Gambardella, L. M. and Schmidhuber, J. Flexi-

ble, High Performance Convolutional Neural Networks for Image Classification. Pro-

ceedings of the Twenty-Second International Joint Conference on Artificial Intelli-

https://proceedings.mlr.press/v139/yao21a.html
https://proceedings.mlr.press/v139/yao21a.html
https://doi.org/https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/https://doi.org/10.1016/j.neunet.2014.09.003
https://www.sciencedirect.com/science/article/pii/S0893608014002135
https://www.sciencedirect.com/science/article/pii/S0893608014002135
http://www.deeplearningbook.org
https://doi.org/10.1109/IWAENC.2016.7602891
https://doi.org/10.1007/BF00344251
https://doi.org/10.1109/5.726791
https://hal.inria.fr/inria-00112631
https://hal.inria.fr/inria-00112631

51

gence - Volume Volume Two. IJCAI’11. Barcelona, Catalonia, Spain: AAAI Press,

2011, pp. 1237–1242. ISBN: 9781577355144.

[23] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Jia, Y., Rafal

Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané,

Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon

Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Van-

houcke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin

Wattenberg, Martin Wicke, Yuan Yu and Xiaoqiang Zheng. TensorFlow: Large-

Scale Machine Learning on Heterogeneous Systems. Software available from ten-

sorflow.org. 2015. URL: https://www.tensorflow.org/.

[24] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-

rama, S. and Darrell, T. Caffe: Convolutional Architecture for Fast Feature Embed-

ding. eng. Proceedings of the 22nd ACM international conference on multimedia.

MM ’14. ACM, 2014, pp. 675–678. ISBN: 1450330630.

[25] He, K., Zhang, X., Ren, S. and Sun, J. Deep Residual Learning for Image Recogni-

tion. Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR). June 2016.

[26] Honkala, M., Korpi, D. and Huttunen, J. M. J. DeepRx: Fully Convolutional Deep

Learning Receiver. IEEE Transactions on Wireless Communications 20.6 (2021),

pp. 3925–3940. DOI: 10.1109/TWC.2021.3054520.

[27] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. and Chen, L.-C. MobileNetV2:

Inverted Residuals and Linear Bottlenecks. Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR). June 2018.

[28] Gong, Y., Liu, L., Yang, M. and Bourdev, L. D. Compressing Deep Convolutional

Networks using Vector Quantization. CoRR abs/1412.6115 (2014). arXiv: 1412.
6115. URL: http://arxiv.org/abs/1412.6115.

[29] Han, S., Mao, H. and Dally, W. J. Deep Compression: Compressing Deep Neural

Networks with Pruning, Trained Quantization and Huffman Coding. 2016. arXiv:

1510.00149 [cs.CV].

[30] Zhou, A., Yao, A., Guo, Y., Xu, L. and Chen, Y. Incremental Network Quantization:

Towards Lossless CNNs with Low-Precision Weights. 2017. arXiv: 1702.03044
[cs.CV].

[31] Kilgariff, E., Moreton, H., Stam, N. and Bell, B. Sept. 2018. URL: https://developer.
nvidia.com/blog/nvidia-turing-architecture-in-depth/.

[32] Salvator, D., Wu, H., Kulkarni, M. and Emmart, N. Oct. 2019. URL: https : / /
developer.nvidia.com/blog/int4-for-ai-inference/.

[33] Han, T., Zhang, T., Li, D., Liu, G., Tian, L., Xie, D. and Shan, Y. Convolutional Neural

Network with INT4 Optimization on Xilinx Device. Tech. rep. Xilinx, June 2010.

https://www.tensorflow.org/
https://doi.org/10.1109/TWC.2021.3054520
https://arxiv.org/abs/1412.6115
https://arxiv.org/abs/1412.6115
http://arxiv.org/abs/1412.6115
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1702.03044
https://arxiv.org/abs/1702.03044
https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth/
https://developer.nvidia.com/blog/int4-for-ai-inference/
https://developer.nvidia.com/blog/int4-for-ai-inference/

52

[34] Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H. and

Kalenichenko, D. Quantization and Training of Neural Networks for Efficient Integer-

Arithmetic-Only Inference. 2018 IEEE/CVF Conference on Computer Vision and

Pattern Recognition. 2018, pp. 2704–2713. DOI: 10.1109/CVPR.2018.00286.

[35] Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H. and Zou, Y. DoReFa-Net: Training Low

Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients. 2018. arXiv:

1606.06160 [cs.NE].

[36] Fan, A., Stock, P., Graham, B., Grave, E., Gribonval, R., Jégou, H. and Joulin, A.

Training with Quantization Noise for Extreme Model Compression. CoRR abs/2004.07320

(2020). arXiv: 2004.07320. URL: https://arxiv.org/abs/2004.07320.

[37] TensorFlow: Quantization aware training. https : / / www . tensorflow . org /
model_optimization/guide/quantization/training.

[38] Blalock, D. W., Ortiz, J. J. G., Frankle, J. and Guttag, J. V. What is the State of

Neural Network Pruning?: CoRR abs/2003.03033 (2020). arXiv: 2003.03033. URL:

https://arxiv.org/abs/2003.03033.

[39] Henri, K. Quantization-aware pruning for a CNN-based radio receiver model. eng.

Informaatioteknologian ja viestinnän tiedekunta - Faculty of Information Technology

and Communication Sciences, 2021.

[40] ONNX Runtime. https://onnxruntime.ai/. 2021.

[41] Donnelly, R. A. Statistics. eng. Indianapolis, Indiana, 2016.

[42] Weisstein, E. W. Bessel’s Correction. From MathWorld–A Wolfram Web Resource.

https://mathworld.wolfram.com/BesselsCorrection.html. 2017.

[43] Guglielmo, G. D., Duarte, J. M., Harris, P. C., Hoang, D., Jindariani, S., Kreinar,

E., Liu, M., Loncar, V., Ngadiuba, J., Pedro, K., Pierini, M., Rankin, D., Sagear, S.,

Summers, S., Tran, N. and Wu, Z. Compressing deep neural networks on FPGAs

to binary and ternary precision with hls4ml. eng. Machine Learning: Science and

Technology 2.1 (2020). ISSN: 2632-2153.

[44] Park, J. H., Choi, J. S. and Ko, J. H. Dual-Precision Deep Neural Network. Proceed-

ings of the 2020 3rd International Conference on Artificial Intelligence and Pattern

Recognition. AIPR 2020. Xiamen, China: Association for Computing Machinery,

2020, pp. 30–34. ISBN: 9781450375511. DOI: 10.1145/3430199.3430228. URL:

https://doi.org/10.1145/3430199.3430228.

[45] Jin, Q., Yang, L. and Liao, Z. AdaBits: Neural Network Quantization With Adap-

tive Bit-Widths. Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR). June 2020.

[46] Yu, J., Yang, L., Xu, N., Yang, J. and Huang, T. S. Slimmable Neural Networks.

CoRR abs/1812.08928 (2018). arXiv: 1812.08928. URL: http://arxiv.org/
abs/1812.08928.

[47] Choi, J., Wang, Z., Venkataramani, S., Chuang, P. I.-J., Srinivasan, V. and Gopalakr-

ishnan, K. PACT: Parameterized Clipping Activation for Quantized Neural Networks.

https://doi.org/10.1109/CVPR.2018.00286
https://arxiv.org/abs/1606.06160
https://arxiv.org/abs/2004.07320
https://arxiv.org/abs/2004.07320
https://www.tensorflow.org/model_optimization/guide/quantization/training
https://www.tensorflow.org/model_optimization/guide/quantization/training
https://arxiv.org/abs/2003.03033
https://arxiv.org/abs/2003.03033
https://onnxruntime.ai/
https://mathworld.wolfram.com/BesselsCorrection.html
https://doi.org/10.1145/3430199.3430228
https://doi.org/10.1145/3430199.3430228
https://arxiv.org/abs/1812.08928
http://arxiv.org/abs/1812.08928
http://arxiv.org/abs/1812.08928

53

CoRR abs/1805.06085 (2018). arXiv: 1805.06085. URL: http://arxiv.org/
abs/1805.06085.

[48] Naumov, M., Diril, U., Park, J., Ray, B., Jablonski, J. and Tulloch, A. On Periodic

Functions as Regularizers for Quantization of Neural Networks. 2018. arXiv: 1811.
09862 [cs.LG].

[49] Chollet, F. et al. Keras. https://keras.io. 2015.

[50] Li, L., Jamieson, K. G., DeSalvo, G., Rostamizadeh, A. and Talwalkar, A. Efficient

Hyperparameter Optimization and Infinitely Many Armed Bandits. CoRR abs/1603.06560

(2016). arXiv: 1603.06560. URL: http://arxiv.org/abs/1603.06560.

[51] Bruin, B. d., Zivkovic, Z. and Corporaal, H. Quantization of deep neural networks

for accumulator-constrained processors. eng. Microprocessors and microsystems

72 (2020), pp. 102872–. ISSN: 0141-9331.

[52] Ni, R., Chu, H.-M., Castañeda, O., Chiang, P.-Y., Studer, C. and Goldstein, T. Wrap-

Net: Neural Net Inference with Ultra-Low-Resolution Arithmetic. CoRR abs/2007.13242

(2020). arXiv: 2007.13242. URL: https://arxiv.org/abs/2007.13242.

[53] Neumann, D., Wiese, T. and Utschick, W. Learning the MMSE Channel Estimator.

IEEE Transactions on Signal Processing 66.11 (2018), pp. 2905–2917. DOI: 10.
1109/TSP.2018.2799164.

[54] Chang, Z., Wang, Y., Li, H. and Wang, Z. Complex CNN-Based Equalization for

Communication Signal. 2019 IEEE 4th International Conference on Signal and Im-

age Processing (ICSIP). 2019, pp. 513–517. DOI: 10.1109/SIPROCESS.2019.
8868708.

[55] He, H., Wen, C.-K., Jin, S. and Li, G. Y. Deep Learning-Based Channel Estimation

for Beamspace mmWave Massive MIMO Systems. IEEE Wireless Communications

Letters 7.5 (2018), pp. 852–855. DOI: 10.1109/LWC.2018.2832128.

[56] Chang, R. W. Synthesis of band-limited orthogonal signals for multichannel data

transmission. eng. Bell System Technical Journal 45.10 (1966), pp. 1775–1796.

ISSN: 0005-8580.

https://arxiv.org/abs/1805.06085
http://arxiv.org/abs/1805.06085
http://arxiv.org/abs/1805.06085
https://arxiv.org/abs/1811.09862
https://arxiv.org/abs/1811.09862
https://keras.io
https://arxiv.org/abs/1603.06560
http://arxiv.org/abs/1603.06560
https://arxiv.org/abs/2007.13242
https://arxiv.org/abs/2007.13242
https://doi.org/10.1109/TSP.2018.2799164
https://doi.org/10.1109/TSP.2018.2799164
https://doi.org/10.1109/SIPROCESS.2019.8868708
https://doi.org/10.1109/SIPROCESS.2019.8868708
https://doi.org/10.1109/LWC.2018.2832128

	Introduction
	Neural Networks
	Overview
	Quantization of Neural Networks
	Quantization Scheme
	Hardware Implementable Scaling
	Mixed Precision Quantization

	Quantization-aware Training
	Pruning
	Open Neural Network Exchange

	Iterative Correlation Coefficient Adaptation for Mixed Precision Optimization
	Algorithm
	Incremental Pearson Correlation Coefficients
	Estimating Memory Usage and Compute Latency
	Cost Function

	Related Work
	Evaluation Environment
	Quantization with Open Neural Network Exchange
	Target Hardware
	Static Quantization Configurations
	DeepRx

	Experiments
	Hyperparameters for the Proposed Method
	Baselines
	Manual Mixed Precision
	Proposed Method

	Conclusion
	References

