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ABSTRACT 

Akber Ali Khan: Deep Learning for Object Detection: Training Data Generation using Parametric 

CAD Modeling and Gazebo Simulation 

Master of Science Thesis 

Tampere University 

Master’s Programme in Automation Engineering 

November 2021 
 

Deep learning-based object detection and pose estimation methods need a large number of 

synthetic data for application in robotic assembly tasks. The acquisition of such data from real 

objects tends to be arduous, erroneous, and time-consuming. Alternatively, synthetic data can be 

generated autonomously from 3D models efficiently and relatively quickly in a simulated 

environment. These 3D models can be generated by utilizing either conventional or parametric 

approaches. Conventional approaches generate free-form mesh models that are generally 

unalterable when repetitive changes are required in the models, which is an important aspect in 

parts customization in an industrial context. This challenge is addressed by implementing a script-

based parametric modelling approach to automate the generation of 3D models of an industrial 

part via parameters. Then, the 3D models of the dataset are loaded in the simulation environment 

for synthetic data generation to train and evaluate a state-of-the-art model-based pose estimation 

network for 6DoF object pose estimation. This thesis comprehensively illustrates the 

implementation of automated parametric modelling of an industrial part to create a dataset of CAD 

models, generate synthetic data for deep learning-based object detection methods, and compute 

the 6DoF poses of the dataset objects in a cluttered scene using a state-of-the-art pose estimation 

method. The results of the computation speed for generating and rendering the models are 

analysed. Finally, the study analyses the results of the benchmark 6DoF pose estimation network 

evaluated for 6DoF poses of the custom dataset objects.  

 

Keywords: synthetic data, deep learning, parametric modelling, object detection, pose 

estimation 
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1. INTRODUCTION 

1.1 Overview 

Some of the most sophisticated and complex robotic tasks such as object 

detection, pose estimation, and robot grasping require robots to learn from data 

for the application of machine learning. These robotic tasks are presented in the 

context of Agile Manufacturing or Production where the robots are required to be 

agile and adaptable with new tasks and target objects [1]. Fortunately, 

implementation of these tasks has become possible due to the evolving and latest 

machine learning approaches, which enable robots to learn from real or simulated 

data. Usually, for training a DL-based model, a large amount of data is needed 

that can be obtained from real or simulated objects. Conventionally, the data 

obtained from real objects with real sensors, such as RGB-D cameras, is quite 

tedious, time-consuming, and impractical, at least in the context of industrial 

applications. Alternatively, to solve this issue, simulation techniques can be 

utilized to automate the generation of training data from a CAD model of a part, 

which is the objective of this thesis.  

One way of generating such an automated dataset is by utilizing parametric CAD 

models. By altering the parameters of the models, a variety of models of the same 

design can be generated. Later, each of the CAD models of a part can be loaded 

in the Gazebo simulator, simulated with a camera at a certain pose, take images, 

change the camera pose, and repeat the process to generate training data. 

Additionally, other variables can be changed iteratively such as lighting, color, or 

texture of objects. Eventually, this data set is used to train the object detection 

model.  

Traditional CAD tools capture subsequent operations on CAD design as a 

construction sequence, whereas parametric modeling aims to enable changes in 

a design on selected features or constraints. Therefore, parametric models 

enable the automation of repeated changes which is important for the 

customization of parts in industrial applications.  
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Furthermore, among the parametric modelers, many share the source file for the 

design. The key is to share the design with other software without losing important 

information [4]. Additionally, sharing the source file of a design makes it possible 

to render the script in other CAD modelers for modifying the design. For that 

purpose, analysis of different parametric modeling tools is required before 

selecting the one which best fits the purpose. 

There are two approaches to generate the training dataset. 

▪ Training Data Generation from Real Objects 

In this approach, an RGB-D camera is aimed at the real object to capture 

images from multiple angles. However, this is a conventional approach 

and does not automate data generation. Generating training data through 

this approach is quite arduous, time-consuming, and computationally 

expensive. For this reason, this approach has not been considered for this 

research as the purpose was to generate the data automatically. 

▪ Automatic Training Data Generation 

In contrast to the approach discussed above, this approach utilizes 

parametric CAD tools to create a CAD model of a part and render it into a 

simulation environment to automate the training dataset generation. 

Consequently, this approach is easier and more efficient. In addition, 

different parameters can be varied during simulation time by using 

programming scripts.  

Keeping in view the automatic training data generation approach above, this 

thesis aims to achieve the following objectives: 

▪ To analyze script-based parametric modelers and explore their 

characteristics. 

▪ To generate script-based parametric CAD models of a gear part, simple 

involute gear in this case, by looping through the parameters. 

▪ To integrate the parametric modeler with the data generation pipeline. 

▪ To evaluate the custom parametric gearset for pose estimation accuracies. 
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1.2 Thesis Structure 

This thesis comprises of six chapters.  

Chapter 1, Introduction, provides a general overview of the thesis topic, 

research objectives, and thesis organization.  

Chapter 2, Background, provides an analysis and comparison of different script-

based parametric CAD tools. In addition, state-of-the-art robotic pose-estimation 

and grasp detection methods are discussed.  

Chapter 3, Methodologies, discuss the methods to automate the parametric 

involute gear CAD modeling and integration of parametric CAD modeler with the 

data generation pipeline. It also illustrates the generation of training dataset for 

custom gearset rendered in gazebo simulation environment and training a deep 

learning network for pose-estimation. 

Chapter 4, Results, tabulates the computation time for generating and exporting 

parametric gear models. It also evaluates the pose-estimation accuracies of the 

custom gear models.  

Chapter 5, Discussion, discusses the parametric modeling, data generation, 

and pose-estimation procedures in detail. 

Chapter 6, Conclusion, concludes the thesis with conclusions and remarks. It 

discusses delimits of the thesis and future works. 
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2. BACKGROUND 

2.1 Parametric Modeling  

In manufacturing industries, modification of design models is often required 

during design exploration where regeneration of parts design is carried out 

according to need [2]. One such example is gear, where certain features should 

remain the same when the overall design is altered, for instance, the profile and 

dimension of gear teeth. Some of the parameters that can be altered in a gear 

design are the number of teeth, module size, gear height, beta (helix angle). By 

varying these parameters, a variety of gear models can be generated.  

Therefore, solid CAD modeling tools can be used to generate such alterable 

models and these modelers are of two types: Conventional or Free-form mesh 

and parametric modelers. Conventional modeler uses a direct approach, without 

utilizing parameters in their designs. Moreover, two-dimensional (2D) sketches 

are not fundamentally required to generate three-dimensional (3D) models. 

Therefore, pre-set constraints are neglected in the design. However, the later 

modeler is parameter-based and pre-defines constraints during the 2D sketching 

phase. There are at least three advantages of using parametric modeling: 

i. Geometry reusability for later stages 

ii. Propagate alteration in a design or model automatically 

iii. Knowledge of manufacturing with geometry [3] 

Such limitations force the free form mesh modelers to use parameters and 

constraints in the design and the 3D models cannot be modified by others. For 

that reason, the free form mesh modeler is not related to the research purpose of 

this thesis, so it has not been discussed in the future sections. The comparison 
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between the design process of free form mesh models and parametric models is 

shown in Figure 1.  

Figure 1 shows that parametric CAD modelers generate dynamic and flexible 

models as compared to conventional design tools and minimize the effort for 

modification. This enables the designer to make quick changes whenever 

necessary. Along with direct manipulation and custom featuring, they also 

provide scripting which can ease the alteration using transaction sequences [2] 

[4]. Moreover, some parametric modelers can export standard parametric CAD 

files, such as STEP [5] formats and it is sometimes required in other modelers for 

modification.  

Thereby, it is appropriate to only consider parametric modelers with the option to 

use scripts [6]. Some parametric CAD modelers with scripting capabilities are 

OpenSCAD [7], FreeCAD [8], Cadquery [9], PythonOCC [10], ImplicitCAD, and 

OpenJSCAD [11]. A detailed analysis of these tools is presented in the next 

section.  

2.2 Analysis of Script-based Parametric CAD Modelers 

According to Machado et al. [6], many modern CAD tools can render or export 

the standard parametric CAD file, thereby allowing the model to be opened in any 

other modeler for further modification without losing important features of the 

Figure 1. The CAD Design process comparison: Parametric versus 

Conventional modeling [50] 
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design. Next, we discuss some of the very common free-open-source script-

based parametric models. 

OpenJSCAD [11] can be used via command line, browser to generate 3D 

parametric designs; utilizes JavaScript programming language, and it is 

commonly used for 3D printing applications. Similarly, Implicit CAD also 

generates 3D models using JavaScript. However, neither of these two modelers 

can export STEP files [6].  

FreeCAD generates 3D models in boundary representation (B-rep), and it is 

completely python-based with a variety of Application Programming interfaces 

(APIs) available for 3D modeling. Apart from GUI, Solid modeling in FreeCAD, 

using python can be done in three ways: Typing commands in the FreeCAD 

python console, creating macro files, using external workbenches or scripts 

through FreeCAD API. This provides the user with flexibility and ease of usage. 

Moreover, FreeCAD can export STEP files. The official documentation provided 

by FreeCAD for python scripting is not well organized, thus it is not easy to design 

complex 3D models. However, python is easier than other programming 

languages and it provides leverage to non-expert programmers to understand it 

better as compared to the other 3D modeling languages. 

Another popular parametric 3D modeler is OpenSCAD which performs its 3D 

computation by using Constructive Solid Geometry (CSG). Geometric primitives 

such as a box, sphere, cylinder, are used by OpenSCAD script to perform 

Boolean operations to construct a 3D model. OpenSCAD programming language 

has functional language, and its syntax looks like C-language. However, like 

many other CAD tools, it is unable to export STEP. Another significant drawback 

of this tool is the lack of a GUI model editor for design modification, so the only 

way to edit models is through the script. Since OpenSCAD has inadequate 

functions and primitive objects, it is simple to learn for novices. In addition, 

OpenSCAD also provides easy-to-follow tutorials and documentations for 

beginners to learn the software with minimal effort.  

Python Open Cascade (PythonOCC) is similar to FreeCAD, and it offers 

advanced topological and geometric operations. Although, it can export STEP 
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files, but it has no GUI interface available for the user [6] [10]. Nevertheless, this 

is a disadvantage for users with limited programming experience [6].  

Ballistic Research Laboratory-CAD modeler is also based on constructive solid 

geometry (CSG) and supports numerous primitive shapes which are used 

through Boolean operations to create complex and complicated models [12]. Due 

to its complicated tools, it is quite expert-oriented software, mostly used by 

experienced CAD designers. 

The main purpose of the Cadquery library is to reduce the number of codes as 

compared to conventional FreeCAD programming. There are two versions of 

Cadquery to date: Cadquery v1.2 and Cadquery v2.0. The former version can be 

either used as a workbench through FreeCAD API. In addition, it can be 

integrated with FreeCAD’s graphical interface like normal, whereas the latter 

version is a stand-alone external tool that can be installed for project usage in 

three different ways as described in FreeCAD’s official GitHub repository. Both 

versions have the STEP export capability [9] [6].  

Table 1 below summarizes the different characteristics, such as the ability to 

export standard parametric files, 3D modeling interface type, programming 

language, and learning curve of seven different parametric CAD modelers. 

Table 1. Characteristics of some popular FOSS parametric CAD modeling tools 
[6] 

Parametric CAD 

Tool 

STEP 

Export 

3D Modeling 

Interface 

Programming 

Language 

Learning 

Curve 

OpenJSCAD No Script-based Javascript High 

Implicit CAD No Script-based OpenSCAD 

language 

interpreter 

High 

FreeCAD Yes GUI + Script-

based 

Python Medium 

PythonOCC Yes Script-based Python High 

OpenSCAD No  Script-based  Functional 

language 

Easy 

BRL-CAD Yes Script-based  Embedded  Very high 

CADQuerry v1.2 Yes Script-based  Python High 

CADQuerry v2.0 Yes Script-based  Python High 
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In Table 1, it can be observed that only FreeCAD provides both graphical and 

script-based modeling interfaces for programmers. OpenSCAD is relatively easy 

to learn, but it does not export STEP nor provides a graphical modeling interface. 

Most of the other modelers have numerous limitations except FreeCAD. Learning 

OpenSCAD is easier as compared to other script-based modeling tools, but it 

does not provide a graphical interface for modeling, nor it exports standard 

parametric files for rendering. Although learning FreeCAD is arduous as 

compared to OpenSCAD, it provides more advantages for designers [6]. 

Consequently, FreeCAD seems a more reasonable parametric modeler to fulfill 

the objective of this thesis.                          

2.3 3D Modeling Paradigm with FreeCAD 

In FreeCAD 3D parametric models can be generated either using graphical 

interface or python scripts, even in parallel. Many 2D and 3D tools are already 

available in the FreeCAD in the form of workbenches. By default, these tools are 

integrated into every FreeCAD installation. Some common workbenches are 

sketcher, part, part design, and some GUI-based workbenches. 

Sketcher workbench is used as a starting point for generating any 3D model from 

scratch. Geometric constraints are set in the sketching phase. It is responsible 

for generating 2D geometries used for part and part design workbenches in the 

later stages. First, sketches are extruded to generate 3D shapes. Later, the 3D 

shape can be further modified by using part and part design features such as an 

extrusions, holes, pockets, fillets, and chamfers. These features can be used both 

in the graphical interface as well as python scripts.  

An empty or named document needs to be created before writing python codes 

for a new 3D model. This can be done by simply typing the following commands 

in the python console or macro python scripts: 

>> 𝐷𝑂𝐶 = 𝐹𝑟𝑒𝑒𝐶𝐴𝐷. 𝑛𝑒𝑤𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡(“𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑁𝑎𝑚𝑒”) 
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>> 𝐷𝑂𝐶. 𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒() 
 

This command creates a new FreeCAD document and all 2D or 3D objects are 

attached to this document for further operations. To render the model in the 

graphical interface for visualization it is important to recompute the document. 

 

Figure 2 shows a simple 3D model for a cube with a cylindrical hole. As one can 

notice that the first step is to generate a 2D geometry for a cube that is square 

with constraints such as length and distance from the origin. This shape is then 

extruded to form a cube. In the next step, a circle with constraints, radius, is 

created on the top face of the cube. Using a hole feature from the part design 

workbench, a cylindrical hole is created with the depth of the hole equal to the 

height of the cube. Thus, a cube with a cylindrical hole is created using sketches, 

part design, and part workbenches.  

Figure 2. FreeCAD 3D Modeling example 
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2.3.1 Using Python Console  

Python codes can be directly typed in the FreeCAD’s python console in an 

interactive way to generate immediate output on the graphical interface. This is 

not an efficient way to write codes for a 3D model but helps in debugging and 

troubleshooting.  

2.3.2 Creating Macro Script 

Apart from the python console, python scripts can be generated in FreeCAD by 

using Macros. Generally, the macro is used to record the graphical interface 

actions into python codes. This is an efficient method to generate python codes 

for complicated models through the graphical interface as well as by typing 

python codes in the macro editor to generate 3D models. All the constraints and 

parameters can be set in the graphical interface or python script to automate the 

modeling process.  

Macro scripts are generated by recording the 3D modeling process that is 

performed through the graphical user interface as shown in Figure 3. While 

modeling, every GUI command is stored in this script as python code. Each 

graphical interface command is a python code and can be visualized on the 

python console as well. After finishing the model, the macro needs to be stopped 

to avoid storing redundant codes.  

The recorded macro codes are hardcoded since constants have been used to set 

the 2D geometries and constraints. Variables can be introduced to substitute 

constant values. By this approach the number of codes in the script is reduced, 

as well as parameters are included which can be altered to modify the model 

quickly.  

Figure 3. Macro script generation in FreeCAD. 



11 
 

2.3.3 Integrating External Workbenches 

External workbenches can also be used in FreeCAD. For instance, Cadquery 

v1.2 can be used in FreeCAD API as a workbench with its own code editor and 

the graphical interface of FreeCAD thus becomes available for visualizing the 

models.  

However, the latest version Cadquery v2.0 is stand-alone software with a 

graphical interface for displaying 3D objects. Since it is based on pythonOCC, it 

does not work in FreeCAD API. 

2.4 Vision-based Pose-Estimation  

The purpose of vision-based pose estimation is to estimate a viable object pose 

for the robot to execute human-like object grasping. In this regard, Du et al. [13] 

have summarized the key tasks for robotic grasping as, localization, pose-

estimation, and grasp-estimation of the target objects. The taxonomy of vision-

based robotic grasping is shown in the figure below. 

Localization generally provides the target object regions within the visual input 

data [13]. Further, there are three types, each with different purposes and 

applications as shown in Figure 4. Classification-based object localization is 

category agnostic and only provides the regions with potential target objects. On 

the other hand, object detection detects all the target objects categorically and 

Figure 4. Vision based robot grasping System [13] 



12 
 

draws a bound box around them. Contrarily, object instance segmentation 

detects the points or pixel level areas of the object with the respective categories. 

The main goal of object pose estimation is to find the 6D pose to assists the robot 

to compute the target object’s 3D position and 3D orientation. The 6D object 

poses can be retrieved by three methods which are correspondence, template, 

and voting based methods. Each method has been discussed in detail in the 

subsequent sections. [13] 

In the last few years, the issue of pose estimation is dealt with as a machine 

learning-based task. All the state-of-the-art machine learning algorithms, such as 

probabilistic, reinforcement, or deep learning methods, are data-driven 

approaches. Hence, these methods learn from data, either real data or 

synthesized data, and the basic idea is to train a machine learning model with the 

data acquired from the object. The earlier approaches require object-specific 

parameter tuning for novel objects, which is a complicated and exhausting task. 

However, learning-based methods do not require object-specific parameter 

tuning, rather the learning models are trained on a huge number of synthetic data 

generated in simulations to get the optimum 6DoF pose estimation further 

extended to grasp manipulation for robotic tasks. [14].  

Based on the previous knowledge about the object, learning-based methods fall 

into two categories explained in the next sections. 

2.5 Model-based Learning  

Model-based learning for grasp-estimation requires an appropriate CAD model 

of the target object to learn object features. The grasp detection is computed from 

the pose estimation of the CAD models in the reference camera coordinate [14].  

These methods have proven to be robust to occlusions, lighting, and occasionally 

scale invariant as discussed in various studies [15] [16] [17]. Based on various 

techniques, the model-based learning method can be further extended to the 

following. 
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2.5.1 Correspondence-based Learning 

Correspondence-based learning aims to find out the correspondences between 

the input images and the CAD model of the known target object. For RGB images, 

taken from various angles, the correspondence is determined between the two-

dimensional pixels of the images and the three-dimensional points on the CAD 

model of a known object [13]. In contrast, for input depth images, the 

correspondence is between 3D points on the point cloud and a partial or complete 

3D model. Such correspondences are called descriptors. The correspondence-

based learning is described in Figure 5 below. 

 

 

 

 

 

 

Some typical 2D descriptors, such as SIFT [18], SURF [19], FAST [20], and ORB 

[21], have been extensively used in various literature to compute 2D feature 

matching. Later, perspective-n-point techniques are used to compute the pose of 

the object. Since this learning approach is applicable for objects with rich texture 

(a) 2D-3D correspondence 
 

(b) 3D-3D correspondence 

 
Figure 5. Correspondence-based learning methods [12] 
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and geometrical details to identify local features, it becomes susceptible to 

lighting conditions, cluttered arrangements, and occlusions [13].  

To provide robustness against textures, 3D descriptors such as CVFH [22] and 

SHOT [23], used 3D correspondences between the partial and full point cloud of 

the object to recover the object pose. Such methods used least-square instead 

of perspective-n-point to retrieve the object pose. Nevertheless, sensitivity to 

detailed object geometry was still an issue with these techniques. [13] 

Recently, several other studies have been conducted based on deep learning 

methods. Some of the methods [24] [25] are based on finding discriminative 

feature points and comparing them with representative convolutional neural 

network features. These methods can address occlusions and texture-less 

objects.     

2.5.2 Template-based Learning 

Template-based learning methods are used to estimate the object pose-

estimation by recovering an identical template from the templates with predefined 

ground truth poses. For 2D templates circumstances, 2D images are retrieved 

from the seen 3D models and this problem is more like an image retrieval task. 

These methods are appropriate for texture-less objects in an occluded and lightly 

cluttered environment, which is not dealt with by correspondence-based methods 

[13]. 

Several methods suggest utilizing point cloud from a 3D model, without projecting 

2D images from the 3D models. This is done by comparing the partial point cloud 

from a target object with the complete point clouds of the known models and 

retrieve the best matching template for determining the object pose. Nonetheless, 

this method tends to be tedious.  

There has been a lot of work done in the case of 2D template-based learning by 

using the machine learning techniques. Hinterstoisser et al. [26] proposed the 

idea of automatically generating templates, using hemisphere sampling, from 3D 

models of multiple objects. Their method used image gradients on the 2D images 

for object pose estimation. This technique was tested on the LIMOD dataset 

which contained fifteen household objects of different sizes, colors, and shapes. 
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Another study that was conducted by Hodaň et al. worked on the pose estimation 

using RGB-D images regressed from numerous texture-less objects in the scene. 

However, the number of templates was inadequate for deep learning. The 

functional workflows of template-based learning are shown in the figure below.  

 

 

PoseCNN [27] computes the 6D pose of an object by predicting its 3D translation 

and rotation. The 3D translation refers to the distance of the localized object from 

the camera, and object rotation corresponds to the regressed quaternion 

representation. This method has proven results on symmetric objects again 

clutters and occlusion. ConvPoseCNN [28] improves the results of earlier 

approach by considering region-of-interest (RoI). This method applies pooling 

feature-extraction in a fully connected convolutional network to extract interesting 

regions. It also combines translation and rotation into a single regression task 

with improved accuracy, reduced inference time, and complexity. 

Figure 6. Template-based learning methods [12] 
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2.5.3 Voting-based Learning 

Contrary to the previous methods, voting-based learning determines the object 

pose using the votes from every pixel value or 3D point on the target object. In 

this regard the voting-based learning assumes two approaches. Indirect voting 

approaches consider the individual pixel votes for a certain feature point via 

correspondences such as 2D-3D, whereas direct voting-based techniques  

contemplate the votes for a certain ground truth pose. The general layout of both 

indirect and direct voting-based methods is shown in the figure below. 

PVNet [29] is an example of an indirect voting-based technique and outperforms 

some of the earlier methods. This method utilizes pixel-wise voting for detecting 

2D keypoint features in the images. Moreover, the network identifies uncertain 

keypoint locations addressed by correspondence-based methods to enhance 

robustness against occlusions. A similar network, PVN3D [30], was developed 

later to deal with 3D key points which has been discussed in the next chapter. 

Figure 7. Voting-based learning methods 
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2.6 Model-free Learning 

Model-free methods differ from the above-mentioned methods as these methods 

are normally suitable for novel objects, without having any previous information 

about the object model instances. Consequently, the pose estimation step is not 

needed in this case. Also, object placement is ignored, and the object grasped is 

unfamiliar.  

Most of these methods utilize object geometry, retrieved from visual sensors, to 

perform grasp manipulation. The model is trained with perceptual sensory data 

of the object in an end-to-end manner and evaluation of grasps is carried out 

using grasp metrics. Based on the differing approaches, modeling-based learning 

is further categorized into discriminative and generative approaches [14]. 

Discriminative approaches involve extensive grasp sampling around the target 

object. In addition, the sampled grasp candidates are evaluated and ranked using 

a neural network. [14] Despite high runtime, these methods are advantageous 

due to multiple grasping capabilities. Levine et al. utilized this approach by 

implementing hand-eye correspondence for grasping with input RGB images. 

They carried out this experiment with fourteen robots and gathered around 0.8 

million sampled grasps over two months. However, for any changing 

environmental setup, the data collection and training need to be done again.  

Robotic grasp candidates can be retrieved directly when using a generative 

approach, analogous to an object detection task. In this method, oriented 

rectangles [Section 2.5] are detected in the RGB images, which explicitly 

computes the grasp candidates for the robot gripper. Redmon et al. proposed the 

concept of a single grasp that can estimate an oriented rectangle and 

classification in an input 2D image. Moreover, they also proposed the MultiGrasp 

approach for the detection of multiple grasps for the same object from different 

angles. [14] 

2.7 Point Cloud-based Approaches  

Since point clouds store detailed and rich object geometrical representations of 

3D models, their application in object detection with deep learning methods has 

become inevitable during the last few years. Widely available depth sensors, such 
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as Kinect, Apple 3D, and RealSense, can easily capture RGB-D images from 

objects of interest [13]. RGB-D images are RGB images with corresponding depth 

information. The robotic grasping system deploys depth sensors to project point 

clouds from depth images for 6DoF pose estimation, grasp detection, and grasp 

manipulation.  

As discussed earlier, 2D image-based techniques tend to be lossy in terms of 

feature learning. With 3D key-point learning ability, point clouds eliminate losses, 

as well as handle texture-less objects. However, some of the challenges faced 

by point-cloud-based methods are the lack of sufficient datasets and the need for 

high computational requirements.  

Point cloud-based 6DoF grasp manipulation can be extended to approaches 

considering a partial point cloud or complete shape as shown in Figure 8.  

(b) Partial point-cloud based grasp estimation 
 

(a) Complete shape-based grasp estimation 
 

Figure 8. Workflow diagram of point cloud-based grasp estimation [13] 
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Further, the partial point cloud is based on two approaches: One approach is 

evaluating grasps qualities from the candidate grasps database and another is 

retrieving grasp from current grasps. In the case of complete shape, grasps are 

predefined for known objects and the problem is analogous to object pose 

estimation. [13] The major advantage of using point cloud in 6D pose estimation 

is their improved performance in adapting unseen objects, due to the rich object 

geometrical features in point clouds.  

Point cloud-based approaches can be classified into point cloud-based feature 

extraction, pose estimation, and grasp detection steps. Each step has been 

elaborately discussed in the next sections.  

2.7.1 Point Cloud-based Feature Extraction 

The 2D image-based techniques can be expanded to 3D space with the 

additional depth information available in RGB-D images to enhance grasp 

estimation accuracy [30]. Such methods allow utilizing 3D keypoint features from 

point clouds. Many methods such as Pointfusion [31], Votenet [32], and Pointnet 

[33] have achieved better results using 3D keypoints instead of the traditional 2D 

keypoints. In their paper, Guo et.al presented three different point-cloud-based 

feature extraction methods for classification tasks applied in several grasp 

detection methods. Initially, these methods get individual points on the point cloud 

and subsequently collectively retrieve 3D feature points in the form of 3D shape. 

In the last stage of the process, these points are given as input in deep learning 

algorithms for classification tasks. [34]  

Based on the type of 3D feature points extracted, these classification methods 

can be differentiated into four other techniques. Multi-view classification methods 

take various views of the point cloud, retrieve the multi-view 3D features from 

them, and combine those features to perform classification. Another technique, 

called Volumetric-based techniques, extracts 3D features from the point cloud in 

the form of voxelized 3D grids. This point cloud-based classification techniques, 

along with two other techniques, are described in Figure 9. 
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Using multi-view as the basic approach, Su et al. [35] proposed 3D shape 

recognition from a set of images taken from various views and fed into a neural 

network. However, the process of max pooling in the neural network causes loss 

of information. Similarly, Yang et al. used the relationships between images that 

were based either on view or region matching and combined them to retrieve the 

3D representation. But again, such methods tend to cause loss of information. 

Point-based feature extraction approaches have gained significant importance 

due to better efficiency and these approaches are preferred by researchers. Guo 

et al. [34] have introduced a few sub-methods under point-based approaches. 

These methods are graph, convolutional, and point-wise multi-layered 

perceptron-based approaches as shown in Figure 10. 

 

 

 

Figure 9. Point cloud-based feature-extraction techniques [34] 
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Features in graph-based methods are learned over multi-layered perceptron 

(MLPs) either in the spatial or spectral domain. In the case of the spatial domain, 

the graph network is generated first. Each vertex represents a coordinate point 

or intensities (laser or color). Vertices are connected to their neighboring vertices 

through edges, and the edges store the object’s geometric elements. 

Convolutional layers operate on spatial neighbors using multi-layer perceptron, 

while pooling coarsens the graph by gathering data from neighboring points [34]. 

Two renowned studies [36] [37] have used the above-mentioned graph neural 

network and achieved encouraging results for object detection tasks using 

unstructured point clouds.  

Unlike 2D image-based feature extraction that uses 2D kernels, 3D kernels are 

difficult to implement because of the unstructured nature of the point clouds. 

However, this problem can be resolved by utilizing two different techniques. The 

first technique is to apply continuous 3D kernels on continuous space and the 

corresponding nearby vertices are spatially distributed from the center. On the 

other hand, the second technique considers weights of the nearby vertices at an 

offset from the center [34].  

Lastly, pointwise MLP is a point-based technique that feeds individual points as 

an input with multiple shared MLPs to summate global features for classification 

and segmentation tasks. Two prominent methodologies used pointwise MLP. 

PointNet's [38] approach claims to be the first method using unordered point sets 

from a point cloud, as the earlier methods were based on multi-view and 

volumetric techniques. Pointnet is a network consisting of shared MLP and max-

pooling layers computing global feature extraction for classification tasks. A 

Figure 10. Extraction of features using point-based approaches [37] 



22 
 

significant feature of PointNet is invariance to permutation which means the 

unordered point sets do not alter the geometric features of the object, thereby 

allowing direct input of point clouds in deep learning networks.  

Since, the point-wise features are learned individually in PointNet, the local 

Euclidean metrics do not exist between the setpoints. For this reason, the network 

is unable to generalize to local features. PointNet++ [39] addresses this issue by 

implementing a hierarchical network. The overall architecture constitutes 

sampling, grouping, and point net layers. Sampling and grouping layers filter the 

setpoints and group the overlapping input setpoints based on Euclidean metrics. 

These grouped points are fed into PointNet layer to extract feature vectors from 

the localized regions. Set abstraction refers to the process of sampling, grouping, 

and PointNet feature extraction in an end-to-end manner. The set abstraction 

process can be repeated until the whole point set is processed for features 

retrieval. The general workflows of PointNet and PointNet++ network 

architectures are illustrated in Figure 11. 

 

 

   

 

 

 

(a) PointNet Architecture [38] 
 

(b) PointNet++ Architecture [39] 

Figure 11. PointNet and PointNet++ architectures workflow 
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The most recent 6DoF pose estimation method, PVN3D [30], employs 

PointNet++ for retrieving object geometry information from the point cloud with 

normalized maps, so it serves as an integral part of the state-of-the-art pose 

estimation network. 

2.7.2 Point Cloud-based Pose Estimation 

Point clouds, having richer object geometry representation, can perform 

efficiently for object pose estimation tasks while implemented in the deep learning 

environment. In addition, the 6DoF object pose can be retrieved directly from the 

point cloud without the requirement of any additional procedures which were 

required in the case of 2D image-based methods, such as depth estimation in 

RGBD images, etc. Like 2D-based methods, point cloud-based pose estimation 

comprises three sub-categories: correspondence, template, and voting-based 

methods. 

Correspondences are 3D to 3D in point clouds where the pose of the object is 

computed by matching the partial point cloud with a complete shape of a 

previously seen object. 3D descriptors, discussed in section 2.5.1, are generally 

applied to find 3D-3D correspondences between the target object’s partial point 

cloud and the observed complete point clouds. Then the least square algorithm 

estimates the 6DoF object pose. There exist similar 3D descriptors such as 

3DMatch [40], 3DFeatNet based on deep learning methods which estimate 

robust pose estimation. 3DMatch detects 6DoF object pose by using a 3D 

voxelated deep learning framework [13]. 

In template-based methods, the objective estimates the 6DoF object pose for 

which the partial point cloud matches up with the full point cloud template, 

discussed in section 2.5.2. Yang et al. suggested a deep learning global 

registration method robust to pose and noise variations. However, this method 

consumes a lot of time. Other notable works using this method are PCR-net, 

DGR, and G2LNet. [13] 

Voting-based methods constitute direct and indirect voting approaches, and 

these approaches have already been discussed in section 2.5.3. From a deep 

learning perspective, only a few methods are available that estimate 6DoF pose 

estimation using voting-based approaches. Some notable works are YOLOff, 6-
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PACK, and PVN3D that use indirect voting-based methods, whereas 

DenseFusion and MoreFusion are direct voting-based methods. [13]       

2.7.3 Point Cloud-based Grasp Detection 

The point cloud-based grasping methods compute grasp directly on the point 

cloud without the requirement of object pose estimation step. A partial point cloud 

is taken as input and viable grasps are estimated. Technically, tons of random 

candidate grasps are produced, and then the viability of each candidate grasp is 

assessed. Ultimately, the learning networks detect the graspable parts of the 

point cloud. Since the graspable parts are detected irrespective of the object 

knowledge, these methods perform efficiently for novel objects [41]. 

GraspNet [42] used an efficient point-cloud-based methodology with sub-

networks to detect stable grasps. This network estimates successful 6DoF grasps 

via encoder and decoder sub-networks operated end-to-end. First, an encoder 

network generates numerous sets of 6DoF grasps (gripper poses) from the target 

object point cloud in a latent space. An encoder network simply samples the 

grasps by extracting geometrical features from the point cloud to produce a 

variety of grasps. The subsequent grasp evaluator network predicts proposed 

grasps to filter out the successful ones only and back-propagates them into the 

network. The elimination of unsuccessful grasps helps in the generation of viable 

grasps. The GraspNet network is illustrated in Figure 12. 

  

 

 

 

 

 

Figure 12. The GraspNet network [42] 
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3. METHODOLOGY 

3.1 Overview 

The two approaches of grasp detection techniques discussed in sections 2.7 and 

2.8 are model-based learning and model-free learning methods. Since the model-

based approaches require synthetic data to estimate 6DoF pose estimation of 

target objects, thereby model-based approaches are considered for the use-case 

of this thesis. This chapter reflects on the approaches taken to automate the 

parametric gear modeling, synthetic data generation from custom gear models, 

and 6-DoF pose estimation of the dataset using a state-of-the-art method, PVN3D 

[30]. The methodology to generate automated gear models and utilize the models 

for synthetic dataset generation to train and evaluate a pose-estimation network 

is illustrated in the Figure 13. 

 

As described in Figure 13, the workflow has been divided into two major parts. 

The first part provides a comprehensive illustration of the method employed to 

automate the generation of involute gear parts and integrate it with the data 

generation pipeline. The second part describes the synthetic dataset generation, 

feature extraction, training the pose estimation network with the training dataset, 

and testing on the test data set. 

Figure 13. Workflow of methodology 
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3.2 Automation of Parametric Gear Modeling 

The core objective of this thesis is to automate the generation of CAD models 

and training data for robotic tasks such as object detection, object pose 

estimation, and robot grasping. Generally, unalterable free-form CAD models are 

acquired for the data generation. However, parametric models can alternatively 

be used because of their ability to instantaneously generate iterative designs of 

a part with minimal effort.  

Among the FOSS parametric modelers, FreeCAD was chosen mainly for the 

following reasons: 

▪ Based on python with tons of libraries and workbenches available for 3D 

modeling 

▪ Provides both scripting and graphical user interface for modeling 

The basic gear module was imported from an external workbench, FGGear 

Workbench [43], that provides numerous gear types such as involute gears, 

involute rack, cycloid gear, bevel gear, worm gear, and timing/lantern gears. A 

module can be chosen for customization and a variety of the designs by altering 

the parameters in an iterative manner. Such an approach automates the design 

process. In addition to the utilization of intrinsic gear parameters, the gear bodies 

can be modified and customized parametrically by using python commands or 

through the graphical user interface in FreeCAD. The methodology for 

automating involute gear generation is illustrated in Figure 13.  

The CAD models were generated using python scripts in the macro editor. 

Following the instructions in the GitHub repository of FGGear Workbench 

https://github.com/looooo/freecad.gears, the workbench was installed and 

imported into the FreeCAD python script. From the intrinsic gear parameters, the 

number of gear teeth, gear height, helix angle, and module size were utilized for 

customization. When looping through the gear parameters, several involute gears 

were generated. To induce a sufficient complexity to the design, a cylindrical gear 

shaft was added to the gear body whose size depends on the gear module 

parameter. To keep the shaft size proportional and smaller than the gear size, 

the shaft radius was calculated by dividing the gear radius with a factor of 1.2. 
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Ultimately, the shaft size remains proportional to the changing gear sizes. The 

automated gears have either flat or upright poses which were defined in the script. 

Each gear is then exported either as STEP. 

The pseudocode of the script for automation of parametric gear modeling has 

been described in Algorithm 1. This algorithm was generated for involute gears, 

but it can generalize to other gears with similar structure: such as cycloid gears, 

bevel gears, and timing gears.  

As it can be observed in Algorithm 1, each of the parameters is provided in the 

form of a python list. A parametric gear model would have either 12 or 30 teeth, 

and the gear height would be either 20 or 60mm, and so on for each iteration. 

Similarly, the helix angle defines the gear type such as a spur or helical type. For 

ALGORITHM 1: AUTOMATION OF PARAMETRIC GEAR MODELING 

 Parameter:  

  teeth: number of gear teeth (list) 

  height: height or thickness of gear (list) 

  helix_angle: helix angle of gear teeth (list) 

  m: gear module size (float) 

 Input:        : Parametric gear module from FGGear Workbench 

 Output      : Parametric involute gear models with flat or upright 

poses 

 Function   : involuteGear ()         (Creates parametric gear with     

                                     cylindrical shaft through the gear   

                                     body) 

1 for h in height do: 

2  for t in teeth do: 

3   for h in helix_angle do: 

4    Function call → involuteGear () → Generate 

parametric gear with a cylindrical shaft. 

5    Rotation of the parametric gear about an axis. 

6    Placement of the parametric gear from the origin/axis. 

7    Export the gear as STEP. 

8   end  

9  end   

10 end    
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spur gear, the teeth angle is 0°. On the other hand, the angle has been set to 20° 

to make it a helical gear. 

Nevertheless, the gear models can be automated by plugging in different 

parameters as well. This can be merely done by updating the parameters with 

different values for teeth, gear heights, and helix angles. Eventually, parametric 

models are dynamic and automate the modeling process. These parametric 

models are required in the next step for synthetic data generation. For that 

reason, the models are exported with a suitable format and loaded in the 

simulation environment for generating synthetic data. 

Another approach can be generating varying models for one involute gear type 

only. As an example, the helix angle can be set 20 degrees and different models 

of helical gears can be generated for different height and teeth parameters. 

Similarly, only spur type models can be generated for different height and teeth 

parameters by keeping the helix angle as 0 degree. Therefore, there are many 

other combinations possible. These variations can be inducted by making the 

modification to Algorithm 1 accordingly. 

3.3 Integrating FreeCAD with Data Generation Pipeline 

The integration of FreeCAD with the data generation pipeline is rather indirect, 

which means that the CAD models generated in FreeCAD need to be imported 

to the gazebo environment for a synthetic dataset generation by utilizing the 

available Kinect_ros depth camera. Script-based modeling in FreeCAD allows 

exporting the model in only three formats: STEP, Standard-Tessellation-

Language (STL), and Boundary-Representation (BRep) formats. On the other 

hand, there are plenty of options to export models through the graphical user 

interface.  

STEP and BRep files are not supported in the gazebo which forces the usage of 

STL representation of the model or conversion to another suitable format. To 

date, only four types of CAD models can be imported into gazebo: Standard-

Tessellation-Language (stl), wavefront files (obj), and Collada files (dae). To 

overcome this barrier, the step files generated from the script are exported as 

Collada files through the graphical interface. Collada file is a richer representation 
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of a model with the texture and physics information of the model. Also, to 

generate point clouds from the CAD models, the STEP files are exported as 

wavefront files (obj) or STL files. Scaling is an issue when models are imported 

to the gazebo because of the mismatch between the gazebo and model units. 

Since the gear dimensions have been taken care of in the modeling phase, 

scaling is not required when exporting the STEP file to Collada format. This way 

the CAD model dimensioning helps in deciding a reasonable scale factor for 

importing them into the gazebo.  

3.4 Synthetic Data Generation from CAD Models 

To generate synthetic data, the CAD models of the gears are placed in a gazebo 

simulation environment around the origin to create a gazebo world. The gazebo 

world contains only the dataset models in a lightly cluttered scene. A Kinect 

sensor, integrated with a robot operating system (ROS), is also added to the 

gazebo world. Importantly, the shadow and light variations are turned off for the 

scene. Since the objects do not contain any color at this point, unique color is 

assigned to each using the model editor in the gazebo.  

The synthetic data generation utilizes a unique data collection technique 

described as hemisphere sampling [44]. This method utilizes a Kinect sensor, an 

RGB-D camera, to collect images by moving around the multi-object cluttered 

dataset in the upper hemisphere. The sensor moves around the dataset in 

incremental values of the yaw angle, pitch angle, and radius of the hemisphere. 

During the whole process, the X-axis of the camera continuously points towards 

the origin of the gazebo world coordinate, keeping the camera pointed to the 

dataset [45]. 

A concise description of the process is described below: 

▪ The camera is initially at rest, at 0° yaw angle, and starts moving around 

the dataset at increments of 10° until it reaches 360° yaw angle.  

▪ For each increment in yaw angle, the pitch angle is incremented by 10°. 

The pitch angle ranges from 0° to 90°. 

▪ For each 15° increment in the yaw angle and 10° increment in pitch angle, 

the camera generates samples from different scales while moving around 
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objects at the gazebo origin. The number of scales depend on the 

arrangement of the dataset objects around the origin and the desired 

number of synthetic data samples to be generated. 

Figure 14 shows the hemisphere sampling technique used to generate synthetic 

data from the gear’s dataset in the gazebo simulator.  

 

Figure 14. Synthetic data generation using hemisphere sampling in gazebo 

simulation 
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3.5 6-DoF Pose Estimation for Multi-Class Objects 

3.5.1 6-DoF Pose Estimation 

In this thesis study, the 6-DoF object pose for the custom gear dataset utilizes a 

recent model-based method known as PVN3D [30]. The network operates on 

object point cloud and uses Hough voting for keypoints detection to estimate the 

object pose. The 6-DoF object pose is characterized by its 3D translation and 3D 

rotation in the world coordinate frame and the purpose of the 6DoF pose 

estimation network is to transform the 6DoF object pose from world to camera 

coordinate. 

3.5.2 PVN3D Network Architecture 

For the computation of multi-class 6-DoF object pose estimation, an open free 

source deep learning network, PVN3D [30],  has been implemented by following 

the network’s official GitHub repository: https://github.com/ethnhe/PVN3D.  This 

deep learning pose estimation network is based on dense correspondence 

methods that use depth information to obtain 3D keypoints from target objects 

and ultimately estimate 6-DoF poses. Figure 15 illustrates the different sub-

blocks of the PVN3D network.  

As can be seen in Figure 15, the cascaded PVN3D network has four functional 

modules which have been discussed briefly next. 

i- Feature Extraction Module 

Figure 15. PVN3D functional diagram [30]. 

https://github.com/ethnhe/PVN3D
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Given an RGB image, this module applies the CNN-based feature extraction 

method, PSPNet [46],  to extract object features. This method performs scene 

parsing which is based on semantic segmentation. In parallel, PointNet++ [39] 

operates on the point cloud generated from an RGBD image to retrieve geometric 

features of the object. The individual points are fused together by DenseFusion 

[47] to retrieve combined features for all individual points. 

ii- 3D-keypoints Detection Module 

The task of this module is to utilize the features extracted in the previous module 

for the detection of 3D keypoints on each target object. The module first estimates 

the visible per-point offset to the keypoints on the target object within the 

Euclidean space. Then the keypoints along with the estimated offsets vote for the 

candidate keypoints.  

iii- Instance Semantic-Segmentation Module  

This module constitutes two shared multi-layered perceptron (MLPs) layers to 

perform semantic segmentation on the multi-objects dataset. The first layer 

performs semantic segmentation by predicting object class labels whereas the 

second MLP layer utilizes a center voting network to identify object instances in 

the dataset.  

iv- 6-DoF Pose Estimation using Least-Squares Fitting 

The least-squares method is implemented to estimate the correspondence and 

fitting between the network predicted keypoints and the keypoints on the object 

in world coordinate. 

3.5.3 Network Optimization  

The goal of the training network is to train the MLPs in the cascaded network 

modules while optimizing losses incurred at each stage. The network training 

initiates with the feature extraction module generating combined features from 

appearance and object geometry fed into the three parallel modules, each having 

a shared MLP layer. Eventually, the last module estimates the 6-DoF pose of the 

target objects using a least-squares algorithm. Therefore, this is a multi-tasking 

learning network trying to optimize loss function at each stage. In addition, to train 

DNN models, computational requirements are required such as a GPU-enabled 

processors to run CUDA applications.  
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The 3D keypoints detection module  ℳ𝒦 takes an input of seed points {𝑝𝑖}𝑖=1
𝑁  and 

keypoints {𝑘𝑝𝑗}
𝑗=1

𝑀
 from the same object instance I and estimates the ground truth 

translation offset {𝑜𝑓𝑖
𝑗
}

𝑗=1

𝑀
 between them. The 3D keypoints detection module 

optimizes the loss function shown in the equation as follow in equation 2   

 

Here, 𝛮 and 𝑀 are the total seed points and keypoints respectively which are 

selected from the same object instance I. Note that 𝕀 is used as an instant 

indicator function which is 1 in case, the point  𝑝𝑖 is from the same instance I, or 

0 in the other case. Interestingly, learning the predicted offsets to keypoints 

obtains the information related to the object size which helps the network to 

differentiate between similar objects with different sizes.  

The task of the semantic-segmentation module ℳ𝒮 is to estimate the per-object 

class labels by utilizing a shared MLP layer. The module is supervised by a loss 

function shown in equation 3.   

 In equation 3 above, 𝛼 denotes the 𝛼 – balancing parameter and 𝛾 represents 

the focus parameter. For the 𝑖𝑡ℎ point, 𝑞𝑖 is the dot product of predicted 

confidence 𝑐𝑖 and one-hot representation of the class label 𝑙𝑖. The value of the 

vector 𝑞𝑖 is either 0 or 1. 

Center-offset module ℳ𝑐, another shared MLP layer-based module, identifies 

different instances of the objects by voting for centers of the target objects. Similar 

 𝐿𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠  =   
1

𝑁
 ∑ ∑ ∥ 𝑜𝑓 𝑖 

𝑗
− 𝑜𝑓 𝑖 

𝑗∗
∥ 𝕀(𝑝𝑖  ∈ 𝐼)

𝑀

𝑗=1

𝑁

𝑖=1

 (1) 

 𝐿𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐  =  − 𝛼(1 − 𝑞𝑖)
𝛾 𝑙𝑜𝑔(𝑞𝑖) (2) 

 𝑤ℎ𝑒𝑟𝑒      𝑞𝑖  = 𝑐𝑖 . 𝑙𝑖   

 

 

 

𝐿𝑐𝑒𝑛𝑡𝑒𝑟  =
1

𝑁
∑‖∇𝑥𝑖 − ∇𝑥𝑖

∗‖𝐼(𝑝𝑖 ∈ 𝛪)

𝑁

𝑖=1

 (3) 
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to the keypoint detection module, this module estimates keypoints offset by 

calculating the distance between input seed points and the object center. The 

optimization loss function is given by equation 4. 

3.5.4 Network Training 

The three pvn3d network modules, discussed in the previous section, are 

supervised in a cascaded manner together to construct a multi-tasked training 

pipeline for the pose estimation network. The optimization functions from 

equations (2)(3)(4) along with their corresponding weights can be combined to 

optimize the loss in multi-tasks, as shown in equation 5.  

Here, 𝜔1, 𝜔2, 𝜔3 represent the weights for the losses in the corresponding 

modules.  

During the data collection stage, 2026 synthetic data samples were generated 

from the custom dataset in the simulation environment. The data samples were 

generated simulation only. The duplicate images were removed to avoid 

overfitting. For training the PVN3D network, the dataset was split into 80 and 20 

percent respectively for training and test validation datasets. Each synthetic 

image is 640 ×  480  pixels in size. As stated in the official article of PVN3D it has 

been recommended to sample 12288 feature points from the point cloud of 

dataset objects. In case, the feature points are insufficient, the edges of the point 

cloud are wrapped to the extent where the optimum points are generated.  

The training epoch size was set to 25, mini-batch size to 20 to meet the network 

training criteria. For evaluation, the parameters were kept same. The 

computational resources were accessed from the CSC clustering network which 

provides GPU-enabled supercomputer nodes. As recommended, 4 Nvidia GPUs 

were utilized for the training. The training process has been discussed elaborately 

in the discussion chapter. 

 𝐿𝑚𝑢𝑙𝑡𝑖−𝑡𝑎𝑠𝑘 = 𝜔1𝐿𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠 + 𝜔2𝐿𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 + 𝜔3𝐿𝑐𝑒𝑛𝑡𝑒𝑟 (4) 
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3.6 Least-Squares-Fitting for Pose Estimation  

The last module in the network is the pose estimation module which computes 

the 6-DoFobject by computing the Rotation (R) and translation (t) pose 

parameters with the help of the least square fitting algorithm. This algorithm 

establishes the relationship between the detected 3D keypoints in the images 

and corresponding points on the object to extract the pose parameters. The 

optimization function estimates R and t by minimizing the loss function shown in 

equation 6, 

𝐿𝑙𝑒𝑎𝑠𝑡−𝑠𝑞𝑢𝑎𝑟𝑒𝑠  =  ∑‖𝑘𝑝𝑗 − (𝑅. 𝑘𝑝𝑗
′ + 𝑡)‖

2
𝑀

𝑖 = 1

 (5) 

Where M is the number of selected keypoints on the object [30]. 
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4. RESULTS 

4.1 Gear Dataset Generation  

Algorithm 1 in section 3.2 provides a script-based approach to automate the 

modeling process. It generates eight different models of involute gears by 

iterating through different combinations of parameters. The module size 

parameter has been kept constant to avoid scaling issues. FreeCAD provides a 

function called Placement which can store the position and rotation of FreeCAD 

objects around any axis. While looping through the parameters, the generated 

gear models are rotated with an increment of 90° around the X-axis to produce 

flat or upright poses. The resulting CAD models generated for the parametric 

model dataset with different parameters and poses are shown in Figure 16. 

 

Helical Gear-T12/H60 Helical Gear-T30/H20 Helical Gear-T12/H20 

Helical Gear-T30/H60 Spur Gear-T12/H20 Spur Gear-T12/H60 

Spur Gear-T30/H20 Spur Gear-T30/H60 

Figure 16. Automation of parametric involute gear CAD models dataset 
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It can be observed in Figure 16 that four of the involute gears are helical type 

whereas the other four are spur type. T stands for the number of teeth and H 

stands for gear height. For example, Spur Gear-T12/H20 means Spur Gear 

having 12 teeth and 20mm height. Additionally, the gears have upright or flat 

poses. 

4.2 Training Dataset Generation Results  

A total of 2026 data samples were generated in the hemisphere sampling 

process. For each data sample, the RGB-D camera records four types of 

synthetic data: 

i. RGB image, published to ROS.  

ii. Depth image, published to ROS. 

iii. Greyscale binary mask image, with class labels of objects in the 

dataset. 

iv. Meta file, that stores the ground truth object poses with respect to 

the camera coordinates. 

The resulting data samples consisting of RGB, depth, and binary mask images 

are shown in Figure 17 below.  
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The Kinect sensor in the gazebo is already integrated with ROS which allows 

publishing the relative topics of RGB and depth images over ROS. The binary 

mask images are sampled from the point clouds that are obtained from the CAD 

model of the objects. Since the mask images are grayscale, the intensity of the 

grayscale values correspond to how far the object is located with respect to the 

camera coordinate. Therefore, the grayscale value indicates the ground truth 

label for that object in the RGB image. The range of the grayscale value is 0-255. 

The ground truth poses of the objects with respect to camera coordinate are 

recorded in a meta file with. mat extension. The data format of ground truth poses 

is python dictionary, with the values of pose coordinates stored as NumPy arrays. 

Equation 6 defines that the ground truth poses of the objects are calculated by 

computing the transformation from object coordinate frame to camera coordinate 

frame [48]. The transformations from camera to world and object to the world is 

obtained in the simulation. 

 

 

 

RGB images Mask images Depth images 

Figure 17. RGB, mask and depth image samples from 3 different viewpoints. 
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Here, 𝑇 𝑜𝑏𝑗𝑒𝑐𝑡
𝑐𝑎𝑚𝑒𝑟𝑎

 ,  𝑇 𝑐𝑎𝑚𝑒𝑟𝑎
𝑤𝑜𝑟𝑙𝑑 , 𝑎𝑛𝑑 𝑇 𝑜𝑏𝑗𝑒𝑐𝑡

𝑤𝑜𝑟𝑙𝑑   represent 4 × 4 homogenous 

transformations from object-to-camera, camera-to-world, and object-to-world 

coordinate frames respectively.   

4.3 Parametric Modeling Computation Time 

The computation time to generate and render CAD models is an important factor 

when designing complex CAD models on large-scale for industrial and 

commercial applications. The modeling tool and computational factors have a 

significant impact on the speed of the 3D modeling process. For evaluating 

involute gears modeling in FreeCAD, the speed metrics are the time taken to 

generate each model and render the STEP or mesh file. The speed is simply 

calculated by utilizing the python function datetime.now() in the gear modeling 

python script. Table 2 shows the time taken to generate the parametric involute 

gear models in FreeCAD and export them as STEP files.  

The test results of Table 2 were collected using core i7/2.7GHZ processor, 2 

cores and 16 Giga bytes RAM in Ubuntu 18.04. The FreeCAD and python 

versions were 0.19 and 3.6 respectively. The process runs on a single core for 

simple models but utilizes multiple cores for complex models. So, the processor 

speed and number of cores can improve the performance for complex 3D 

modeling in FreeCAD. The underlying technology of FreeCAD is Open-

CASCADE (OCCT) [49] kernel and currently it does not support GPU due to the 

limitation of the OCCT APIs for GPU computations.  

 

 

 

 𝑇 𝑜𝑏𝑗𝑒𝑐𝑡
𝑐𝑎𝑚𝑒𝑟𝑎  =  (𝑇 𝑐𝑎𝑚𝑒𝑟𝑎

𝑤𝑜𝑟𝑙𝑑 )−1 ×  𝑇 𝑜𝑏𝑗𝑒𝑐𝑡
𝑤𝑜𝑟𝑙𝑑

 (6) 
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Table 2. Parametric CAD Models computation time 

 

Parametric CAD models 

Computation Time (in seconds) 

3D Modeling STEP export Total time 

Gear_Helical_12Teeth_20mm 0.28 0.05 0.33 

Gear_Helical_12Teeth_60mm 0.37 0.06 0.43 

Gear_Helical_30Teeth_20mm 0.44 0.22 0.66 

Gear_Helical_30Teeth_60mm 0.62 0.21 0.83 

Gear_Spur_12Teeth_20mm 0.25 0.05 0.30 

Gear_Spur_12Teeth_60mm 0.77 0.06 0.83 

Gear_Spur_30Teeth_20mm 0.44 0.20 0.64 

Gear_Spur_30Teeth_60mm 0.92 0.23 1.15 

Total elapsed time 4.09 1.08 5.17 

 

In Table 2, it can be observed that the computation time increases with the size 

and complexity of the models. The larger the gear height and number of teeth, 

more the computation time required for model generation and rendering. In this 

case, for the spur gear with 30 teeth and 60mm height, the total computation time 

is 1.15 seconds. 

4.4 Pose Estimation Evaluation  

The synthetic dataset was divided into 80 percent training and 20 percent test 

datasets. The pose estimation network is first trained with the training data and 

then evaluated for pose estimation accuracies on the unseen test dataset. ADD 

and ADD-S are the two pose-estimation evaluation metrics used profoundly by 

researchers, therefore it is implemented for the evaluation purpose in the 

network. The evaluation metrics are briefly illustrated next. 

• Average Distance of Model Points (ADD) 
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 ADD [13] [26] generally computes and evaluates the pose estimation accuracies 

for non-symmetric objects only. It calculates the average distance between a pair 

of corresponding 3D points on the transformed and the ground truth models. The 

metric is represented in equation 7 below.  

Here m denotes the points computed from the total number of points on the model 

represented by M. Mathematically, the ground truth reference model is 

represented by M having 3D rotation 𝜃 and translation 𝑑. The projected rotation 

and translation are denoted by �̃� and �̃� respectively. [13] 

• Average Distance of Model Points (ADD) 

For correct pose estimation, the average distance between the corresponding 

points should be less than a preset threshold, generally a percentage of the 

model diameter. However, for symmetric models ADD does not fit well because 

of repeating points on the models. For such objects another method is used called 

ADD-S, which calculates the distances among the pair of points but considers 

only the minimum distance among them, neglecting all other points. ADD-S is 

represented in equation 8 [13]. 

 

 

A more general form of metric is ADD(-S) which explicitly applies either ADD or 

ADD-S, depending on the object symmetry. The network was trained on 8 and 

16 keypoints. The batch size was adjusted to 20 and Table 3 shows the results 

of the above-mentioned pose estimation metrics on the test dataset of custom 

gears models.  

The network was trained for 8-keypoints and 16-keypoints. For each setting of 

keypoints the number of epochs were set as 25 with batch sizes of 20.  

 
𝐴𝐷𝐷 =

1

𝑚
∑‖(𝜃𝑥 + 𝑑) − (�̃�𝑥 + �̃�)‖

𝑥∈𝑀

 
(7) 

 𝐴𝐷𝐷 − 𝑆 =
1

𝑚
∑ 𝑚𝑖𝑛𝑥2∈𝑀‖(𝜃𝑥 + 𝑑) − (�̃�𝑥 + �̃�)‖

𝑥1∈𝑀

 (8) 
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Table 3. 6-DoF pose estimation accuracies for custom gear test dataset 

 

 

 

 

 

 

 

 

 

 

PARAMETRIC CAD MODELS 

ADD ADDS ADD(-S) 

8-kps 16-kps 8-kps 16-kps 8-kps 16-kps 

Gear_Helical_12Teeth_20mm 90.58 89.97 90.58 89.97 90.58 89.97 

Gear_Helical_12Teeth_60mm 89.67 88.28 89.67 88.28 89.67 88.28 

Gear_Helical_30Teeth_20mm 93.90 94.39 93.90 94.39 93.90 94.39 

Gear_Helical_30Teeth_60mm 92.78 92.80 92.78 92.80 92.78 92.80 

Gear_Spur_12Teeth_20mm 89.26 88.66 89.26 88.66 89.26 88.66 

Gear_Spur_12Teeth_60mm 93.57 93.92 93.57 93.92 93.57 93.92 

Gear_Spur_30Teeth_20mm 94.61 94.28 94.61 94.28 94.61 94.28 

Gear_Spur_30Teeth_60mm 95.85 94.62 95.85 94.62 95.85 94.62 

Average Accuracies 91.27 92.31 91.27 92.31 91.27 92.31 
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5. DISCUSSION 

 

5.1 Parametric Modeling Automation 

The core purpose of implementing parametric modeling in this study was to 

automate the customization of an industrial part through parameters. Such 

technique allows to recursively generate several models for a part which can be 

used to generate synthetic data for deep learning methods. The FreeCAD 

modeler was employed to generate parametric models for an involute gear part 

iteratively through parametrization and 8 different involute gear models were 

generated. The key design features: such as pressure angle, backlash, and 

undercutting were kept intact, and other parameters were varied to produce 

varying models for the same gear design. The same models can be generated 

using a conventional approach which would require each model to be modeled 

exclusively due to varying features. Therefore, this conventional approach 

comparatively requires a lot of time and effort to generate the whole dataset. 

The parametric software was installed in Ubuntu 18.04 through the terminal. This 

installation also installs the necessary python packages for some fundamental 

inbuilt FreeCAD workbenches, but external workbenches need to be installed 

separately. The package for FC Gears workbench was also installed which is 

used as the foundation for gear modeling, therefore it eliminated the necessity to 

model the gears from scratch. The scripting interface is provided as macro editor 

and the codes are saved as macro files with FCMacro extension. These are 

regular python codes saved under macro files. The models are exported as a 

STEP file and can be rendered and modified in any modeler which supports the 

STEP file format. 

5.2 Synthetic Data Generation 

Training data is a prerequisite for deep learning methods which can be generated 

manually in a real-world environment from real objects and sensors. On the other 

hand, synthetic data can be generated in a simulated environment by viewpoint 

sampling of the target objects and this approach has the capability to generate 

thousands of dataset samples. Comparatively, the later approach tends to be 
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automatic, easier, quicker, and efficient. Regardless of the approach intended, 

any alteration in CAD models via parametric modeling requires re-sampling and 

regeneration of the whole training dataset.  

A list of dependencies for synthetic data generation algorithm were installed in a 

conda environment to create a project specific environment. The data generation 

procedure requires a computer with good computational and graphical capability. 

Nevertheless, the process does not necessitate the deployment of a GPU.  

The hemisphere sampling method generated more than 2100 samples of RGB, 

Depth, and mask images in about 2 hours. It also generated the same number of 

meta files that contain the ground truth poses of the target objects. This resulted 

in generation of more than 8000 files to be processed by the pose estimation 

network. The data generation time increases proportionally with the desired 

number of samples. The number of samples generated depends on the 

calibration of viewpoint sampling parameters, however, this must be done 

carefully to avoid replication of viewpoints. Generally, network overfitting issues 

may occur due to the duplicate images. Prior to network training, preprocessing 

of the synthetic data is also required. Some of the preprocessing tasks are 

elimination of duplicate images, point cloud generation, keypoints generation, 

surface normal computation. The preprocessing must be done before providing 

the dataset to the training network. 

5.3 Network Training in CSC 

PVN3D pose estimation method requires high computation power and GPU-

enabled processing unit for training the deep neural network. This scenario 

dictates the utilization of cluster to get access to multiple core processors for fast 

and efficient computations. In addition, multiple GPUs can be run in parallel to 

meet the training requirements.  

CSC is a Finnish company owned by Finnish government and universities. It 

provides data management and scientific solutions for the educational institutes 

for research purposes. Puhti and Mahti are the two supercomputers available in 

CSC cluster. Both have numerous CPU nodes and provide latest Nvidia GPUs 

for machine learning tasks. Some of the significant features of CSC cluster is 

listed below: 
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▪ The connection to CSC cluster can be established virtually through the 

terminal in Linux, Mac and PowerShell windows. An alternative way to 

connect in windows is via PuTTy.  

▪ The user needs to request for resources specific to project requirements. 

These resources include CPU cores, GPUs, and memory allocations. Both 

Puhti and Mahti provide several processing cores, GPUs, and temporary 

memories for computations. For this project, the access to Puhti computer 

was provided by Tampere university. 

▪ CSC also provides storage areas for project files. The storage areas are 

divided into disks. These disks are named as home, projappl and scratch. 

The PVN3D project files were transferred from local computer to projappl 

disk using bash commands. 

▪ The CSC computing resources are accessed through batch job systems. 

These batch jobs can be submitted using a batch job scripts or via an 

interactive session. The job requests are put into queue and resources are 

allocated upon availability.  

▪ A conda environment, similar to the one for data generation, was created 

in Puhti with additional packages required for deep learning tasks. These 

additional packages are PointNet++ and point cloud libraries. PointNet++ 

is required for CUDA related tasks. CUDA and GCC compilers are already 

available in CSC and needed to be loaded for every session.  

Some other considerations need to be made before initiating the training. These 

considerations include number of keypoints to train the network on, mini-batch 

size, and epoch size. The training time depends on the training data size. It took 

approximately 2 hours to train the network on 2026 data samples. 
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6. CONCLUSION  

6.1 Achieving Research Objectives 

To accomplish the first objective, a comprehensive literature review was 

conducted to analyze and compare modern FOSS parametric modelers. This 

analysis assisted in choosing FreeCAD as the 3D modeling tool for generation 

and automation of parametric gear modeling. The most important factors 

considered for this choice were the availability of python-based scripting and 

graphical modeling interface in FreeCAD. Moreover, literature studies conducted 

for pose-estimation methods identified that voting based approaches yield better 

results for pose-estimation. Therefore, PVN3D method was implemented to 

estimate the poses of gear models. 

The second objective was achieved by implementing FreeCAD script to automate 

the modeling of involute gear models. The customized involute gear models were 

generated autonomously through python scripting in FreeCAD by varying 

different parameters. A total of 8 involute gears with varying parameters were 

generated in the process which fulfilled the object of parts customization.  

The third objective was fulfilled by exporting the parametric models as STEP and 

mesh files from the script. Due to lack of support of gazebo simulator for STEP 

files, the models had to be exported as Collada files and loaded into gazebo 

simulator for synthetic data generation. The reason for exporting STEP as 

Collada was to resolve the scaling issue which occurs due to the mismatch of 

modeler and gazebo dimensions. The data generation pipeline was implemented 

to generate over 2000 data samples. Although, replicating the synthetic data 

generation pipeline for custom dataset is complex and time-consuming, 

nevertheless, it provides an efficient method to generate the data as compared 

to data generation from real objects which is a laborious task. 

The final objective was to evaluate the 6-DoF pose-estimation accuracies of the 

8 gear models using state-of-the-art PVN3D method. The accuracies were 

estimated using ADD, ADD(S) and ADD(-s) evaluation metrics. The network was 

evaluated for 8 and 16 keypoints and the results in Table 3 validate that the pose 



47 
 

estimation on 8 keypoints performs better than the estimation on higher 

keypoints. According to the author [30] of the official paper, greater number of 

keypoints is arduous for the network to learn due to larger output space, therefore 

8 keypoints is the optimum selection. 

6.2 Delimits and Future Works 

A delimit of gazebo simulator is the lack of python interface due to which the 

python based FreeCAD models are manually loaded into the simulation using 

graphical interface operations. The python interfacing with gazebo can automate 

the integration of FreeCAD with gazebo simulator for any such releases in the 

future. Furthermore, the 6DoF pose estimation tasks can be extended to real 

objects and real sensors. Also, 6DoF grasp manipulation tasks can be 

implemented for the custom gears in a simulated or real-time environment. 
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