

Akber Ali Khan

DEEP LEARNING FOR OBJECT
DETECTION

Training Data Generation using Parametric CAD
Modelling and Gazebo Simulation

Master of Science Thesis
Faculty of Engineering & Natural

Sciences
Associate Prof. Roel Pieters

Kulunu Samarawickrama
November 2021

i

ABSTRACT

Akber Ali Khan: Deep Learning for Object Detection: Training Data Generation using Parametric

CAD Modeling and Gazebo Simulation

Master of Science Thesis

Tampere University

Master’s Programme in Automation Engineering

November 2021

Deep learning-based object detection and pose estimation methods need a large number of

synthetic data for application in robotic assembly tasks. The acquisition of such data from real

objects tends to be arduous, erroneous, and time-consuming. Alternatively, synthetic data can be

generated autonomously from 3D models efficiently and relatively quickly in a simulated

environment. These 3D models can be generated by utilizing either conventional or parametric

approaches. Conventional approaches generate free-form mesh models that are generally

unalterable when repetitive changes are required in the models, which is an important aspect in

parts customization in an industrial context. This challenge is addressed by implementing a script-

based parametric modelling approach to automate the generation of 3D models of an industrial

part via parameters. Then, the 3D models of the dataset are loaded in the simulation environment

for synthetic data generation to train and evaluate a state-of-the-art model-based pose estimation

network for 6DoF object pose estimation. This thesis comprehensively illustrates the

implementation of automated parametric modelling of an industrial part to create a dataset of CAD

models, generate synthetic data for deep learning-based object detection methods, and compute

the 6DoF poses of the dataset objects in a cluttered scene using a state-of-the-art pose estimation

method. The results of the computation speed for generating and rendering the models are

analysed. Finally, the study analyses the results of the benchmark 6DoF pose estimation network

evaluated for 6DoF poses of the custom dataset objects.

Keywords: synthetic data, deep learning, parametric modelling, object detection, pose

estimation

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

PREFACE

This has been an exciting and enriched experience while pursuing my master’s degree

at Tampere university.

I am sincerely thankful to my supervisor, Associate Prof. Roel Pieters, for his consistent

support and guidance throughout this thesis work. I feel grateful to Kulunu

Samarawickrama, PhD researcher at Tampere university, for assisting me with the

troubleshooting during the entire research work.

It is worth mentioning here that it would not have been possible to complete my masters

without the support of my parents.

Tampere, 26 November 2021

Akber Ali Khan

iii

CONTENTS

1. INTRODUCTION ... 1
1.1 Overview ... 1

1.2 Thesis Structure .. 3

2. BACKGROUND ... 4
2.1 Parametric Modeling ... 4

2.2 Analysis of Script-based Parametric CAD Modelers 5

2.3 3D Modeling Paradigm with FreeCAD .. 8

2.3.1 Using Python Console ... 10

2.3.2 Creating Macro Script .. 10

2.3.3 Integrating External Workbenches ... 11

2.4 Vision-based Pose-Estimation .. 11

2.5 Model-based Learning .. 12

2.5.1 Correspondence-based Learning .. 13

2.5.2 Template-based Learning .. 14

2.5.3 Voting-based Learning .. 16

2.6 Model-free Learning .. 17

2.7 Point Cloud-based Approaches .. 17

2.7.1 Point Cloud-based Feature Extraction ... 19

2.7.2 Point Cloud-based Pose Estimation .. 23

2.7.3 Point Cloud-based Grasp Detection .. 24

3. METHODOLOGY .. 25
3.1 Overview ... 25

3.2 Automation of Parametric Gear Modeling ... 26

3.3 Integrating FreeCAD with Data Generation Pipeline 28

3.4 Synthetic Data Generation from CAD Models ... 29

3.5 6-DoF Pose Estimation for Multi-Class Objects... 31

3.5.1 6-DoF Pose Estimation .. 31

3.5.2 PVN3D Network Architecture .. 31

3.5.3 Network Optimization .. 32

3.5.4 Network Training ... 34

3.6 Least-Squares-Fitting for Pose Estimation .. 35

4. RESULTS .. 36
4.1 Gear Dataset Generation .. 36

4.2 Training Dataset Generation Results .. 37

4.3 Parametric Modeling Computation Time ... 39

4.4 Pose Estimation Evaluation .. 40

5. DISCUSSION .. 43
5.1 Parametric Modeling Automation .. 43

5.2 Synthetic Data Generation .. 43

iv

5.3 Network Training in CSC .. 44

6. CONCLUSION .. 46
6.1 Achieving Research Objectives .. 46

6.2 Delimits and Future Works .. 47

REFERENCES ... 48

v

LIST OF FIGURES

Figure 1. The CAD Design process comparison: Parametric versus Conventional

modeling [48] .. 5

Figure 2. FreeCAD 3D Modeling example ... 9

Figure 3. Macro script generation in FreeCAD. .. 10

Figure 4. Vision based robot grasping System [13] .. 11

Figure 5. Correspondence-based learning methods [12] 13

Figure 6. Template-based learning methods [12] ... 15

Figure 7. Voting-based learning methods .. 16

Figure 8. Workflow diagram of point cloud-based grasp estimation [13] 18

Figure 9. Point cloud-based feature-extraction techniques [34] 20

Figure 10. Extraction of features using point-based approaches [37] 21

Figure 11. PointNet and PointNet++ architectures workflow 22

Figure 12. The GraspNet network [42] ... 24

Figure 13. Workflow of methodology .. 25

Figure 14. Synthetic data generation using hemisphere sampling in gazebo

simulation .. 30

Figure 15. PVN3D functional diagram [30]. .. 31

Figure 16. Automation of parametric involute gear CAD models dataset 36

Figure 17. RGB, mask and depth image samples from 3 different viewpoints. 38

https://tuni-my.sharepoint.com/personal/akber_khan_tuni_fi/Documents/Masters_Thesis_KHAN_H292937.docx#_Toc89047669
https://tuni-my.sharepoint.com/personal/akber_khan_tuni_fi/Documents/Masters_Thesis_KHAN_H292937.docx#_Toc89047669
https://tuni-my.sharepoint.com/personal/akber_khan_tuni_fi/Documents/Masters_Thesis_KHAN_H292937.docx#_Toc89047670
https://tuni-my.sharepoint.com/personal/akber_khan_tuni_fi/Documents/Masters_Thesis_KHAN_H292937.docx#_Toc89047671
https://tuni-my.sharepoint.com/personal/akber_khan_tuni_fi/Documents/Masters_Thesis_KHAN_H292937.docx#_Toc89047672
https://tuni-my.sharepoint.com/personal/akber_khan_tuni_fi/Documents/Masters_Thesis_KHAN_H292937.docx#_Toc89047673
https://tuni-my.sharepoint.com/personal/akber_khan_tuni_fi/Documents/Masters_Thesis_KHAN_H292937.docx#_Toc89047674
https://tuni-my.sharepoint.com/personal/akber_khan_tuni_fi/Documents/Masters_Thesis_KHAN_H292937.docx#_Toc89047675
https://tuni-my.sharepoint.com/personal/akber_khan_tuni_fi/Documents/Masters_Thesis_KHAN_H292937.docx#_Toc89047676
https://tuni-my.sharepoint.com/personal/akber_khan_tuni_fi/Documents/Masters_Thesis_KHAN_H292937.docx#_Toc89047677
https://tuni-my.sharepoint.com/personal/akber_khan_tuni_fi/Documents/Masters_Thesis_KHAN_H292937.docx#_Toc89047678
https://tuni-my.sharepoint.com/personal/akber_khan_tuni_fi/Documents/Masters_Thesis_KHAN_H292937.docx#_Toc89047679
https://tuni-my.sharepoint.com/personal/akber_khan_tuni_fi/Documents/Masters_Thesis_KHAN_H292937.docx#_Toc89047680
https://tuni-my.sharepoint.com/personal/akber_khan_tuni_fi/Documents/Masters_Thesis_KHAN_H292937.docx#_Toc89047681
https://tuni-my.sharepoint.com/personal/akber_khan_tuni_fi/Documents/Masters_Thesis_KHAN_H292937.docx#_Toc89047682
https://tuni-my.sharepoint.com/personal/akber_khan_tuni_fi/Documents/Masters_Thesis_KHAN_H292937.docx#_Toc89047682
https://tuni-my.sharepoint.com/personal/akber_khan_tuni_fi/Documents/Masters_Thesis_KHAN_H292937.docx#_Toc89047683
https://tuni-my.sharepoint.com/personal/akber_khan_tuni_fi/Documents/Masters_Thesis_KHAN_H292937.docx#_Toc89047684
https://tuni-my.sharepoint.com/personal/akber_khan_tuni_fi/Documents/Masters_Thesis_KHAN_H292937.docx#_Toc89047685

vi

LIST OF TABLES

Table 1. Characteristics of some popular FOSS parametric CAD modeling tools

[6] .. 7

Table 2. Parametric CAD Models computation time ... 40

Table 3. 6-DoF pose estimation accuracies for custom gear test dataset 42

vii

LIST OF SYMBOLS AND ABBREVIATIONS

API Application Programming Interface

CAD Computer Aided Design

DL Deep learning

DNN Deep neural network

DoF Degrees of Freedom

FOSS Free Open-Source Software

GUI Graphic User Interface

RGB Red green blue

RGB-D Red green blue- depth (combination of RGB and depth image)

STEP Standard for Exchange of Product

2D Two dimensional

3D Three dimensional

1

1. INTRODUCTION

1.1 Overview

Some of the most sophisticated and complex robotic tasks such as object

detection, pose estimation, and robot grasping require robots to learn from data

for the application of machine learning. These robotic tasks are presented in the

context of Agile Manufacturing or Production where the robots are required to be

agile and adaptable with new tasks and target objects [1]. Fortunately,

implementation of these tasks has become possible due to the evolving and latest

machine learning approaches, which enable robots to learn from real or simulated

data. Usually, for training a DL-based model, a large amount of data is needed

that can be obtained from real or simulated objects. Conventionally, the data

obtained from real objects with real sensors, such as RGB-D cameras, is quite

tedious, time-consuming, and impractical, at least in the context of industrial

applications. Alternatively, to solve this issue, simulation techniques can be

utilized to automate the generation of training data from a CAD model of a part,

which is the objective of this thesis.

One way of generating such an automated dataset is by utilizing parametric CAD

models. By altering the parameters of the models, a variety of models of the same

design can be generated. Later, each of the CAD models of a part can be loaded

in the Gazebo simulator, simulated with a camera at a certain pose, take images,

change the camera pose, and repeat the process to generate training data.

Additionally, other variables can be changed iteratively such as lighting, color, or

texture of objects. Eventually, this data set is used to train the object detection

model.

Traditional CAD tools capture subsequent operations on CAD design as a

construction sequence, whereas parametric modeling aims to enable changes in

a design on selected features or constraints. Therefore, parametric models

enable the automation of repeated changes which is important for the

customization of parts in industrial applications.

2

Furthermore, among the parametric modelers, many share the source file for the

design. The key is to share the design with other software without losing important

information [4]. Additionally, sharing the source file of a design makes it possible

to render the script in other CAD modelers for modifying the design. For that

purpose, analysis of different parametric modeling tools is required before

selecting the one which best fits the purpose.

There are two approaches to generate the training dataset.

▪ Training Data Generation from Real Objects

In this approach, an RGB-D camera is aimed at the real object to capture

images from multiple angles. However, this is a conventional approach

and does not automate data generation. Generating training data through

this approach is quite arduous, time-consuming, and computationally

expensive. For this reason, this approach has not been considered for this

research as the purpose was to generate the data automatically.

▪ Automatic Training Data Generation

In contrast to the approach discussed above, this approach utilizes

parametric CAD tools to create a CAD model of a part and render it into a

simulation environment to automate the training dataset generation.

Consequently, this approach is easier and more efficient. In addition,

different parameters can be varied during simulation time by using

programming scripts.

Keeping in view the automatic training data generation approach above, this

thesis aims to achieve the following objectives:

▪ To analyze script-based parametric modelers and explore their

characteristics.

▪ To generate script-based parametric CAD models of a gear part, simple

involute gear in this case, by looping through the parameters.

▪ To integrate the parametric modeler with the data generation pipeline.

▪ To evaluate the custom parametric gearset for pose estimation accuracies.

3

1.2 Thesis Structure

This thesis comprises of six chapters.

Chapter 1, Introduction, provides a general overview of the thesis topic,

research objectives, and thesis organization.

Chapter 2, Background, provides an analysis and comparison of different script-

based parametric CAD tools. In addition, state-of-the-art robotic pose-estimation

and grasp detection methods are discussed.

Chapter 3, Methodologies, discuss the methods to automate the parametric

involute gear CAD modeling and integration of parametric CAD modeler with the

data generation pipeline. It also illustrates the generation of training dataset for

custom gearset rendered in gazebo simulation environment and training a deep

learning network for pose-estimation.

Chapter 4, Results, tabulates the computation time for generating and exporting

parametric gear models. It also evaluates the pose-estimation accuracies of the

custom gear models.

Chapter 5, Discussion, discusses the parametric modeling, data generation,

and pose-estimation procedures in detail.

Chapter 6, Conclusion, concludes the thesis with conclusions and remarks. It

discusses delimits of the thesis and future works.

4

2. BACKGROUND

2.1 Parametric Modeling

In manufacturing industries, modification of design models is often required

during design exploration where regeneration of parts design is carried out

according to need [2]. One such example is gear, where certain features should

remain the same when the overall design is altered, for instance, the profile and

dimension of gear teeth. Some of the parameters that can be altered in a gear

design are the number of teeth, module size, gear height, beta (helix angle). By

varying these parameters, a variety of gear models can be generated.

Therefore, solid CAD modeling tools can be used to generate such alterable

models and these modelers are of two types: Conventional or Free-form mesh

and parametric modelers. Conventional modeler uses a direct approach, without

utilizing parameters in their designs. Moreover, two-dimensional (2D) sketches

are not fundamentally required to generate three-dimensional (3D) models.

Therefore, pre-set constraints are neglected in the design. However, the later

modeler is parameter-based and pre-defines constraints during the 2D sketching

phase. There are at least three advantages of using parametric modeling:

i. Geometry reusability for later stages

ii. Propagate alteration in a design or model automatically

iii. Knowledge of manufacturing with geometry [3]

Such limitations force the free form mesh modelers to use parameters and

constraints in the design and the 3D models cannot be modified by others. For

that reason, the free form mesh modeler is not related to the research purpose of

this thesis, so it has not been discussed in the future sections. The comparison

5

between the design process of free form mesh models and parametric models is

shown in Figure 1.

Figure 1 shows that parametric CAD modelers generate dynamic and flexible

models as compared to conventional design tools and minimize the effort for

modification. This enables the designer to make quick changes whenever

necessary. Along with direct manipulation and custom featuring, they also

provide scripting which can ease the alteration using transaction sequences [2]

[4]. Moreover, some parametric modelers can export standard parametric CAD

files, such as STEP [5] formats and it is sometimes required in other modelers for

modification.

Thereby, it is appropriate to only consider parametric modelers with the option to

use scripts [6]. Some parametric CAD modelers with scripting capabilities are

OpenSCAD [7], FreeCAD [8], Cadquery [9], PythonOCC [10], ImplicitCAD, and

OpenJSCAD [11]. A detailed analysis of these tools is presented in the next

section.

2.2 Analysis of Script-based Parametric CAD Modelers

According to Machado et al. [6], many modern CAD tools can render or export

the standard parametric CAD file, thereby allowing the model to be opened in any

other modeler for further modification without losing important features of the

Figure 1. The CAD Design process comparison: Parametric versus

Conventional modeling [50]

6

design. Next, we discuss some of the very common free-open-source script-

based parametric models.

OpenJSCAD [11] can be used via command line, browser to generate 3D

parametric designs; utilizes JavaScript programming language, and it is

commonly used for 3D printing applications. Similarly, Implicit CAD also

generates 3D models using JavaScript. However, neither of these two modelers

can export STEP files [6].

FreeCAD generates 3D models in boundary representation (B-rep), and it is

completely python-based with a variety of Application Programming interfaces

(APIs) available for 3D modeling. Apart from GUI, Solid modeling in FreeCAD,

using python can be done in three ways: Typing commands in the FreeCAD

python console, creating macro files, using external workbenches or scripts

through FreeCAD API. This provides the user with flexibility and ease of usage.

Moreover, FreeCAD can export STEP files. The official documentation provided

by FreeCAD for python scripting is not well organized, thus it is not easy to design

complex 3D models. However, python is easier than other programming

languages and it provides leverage to non-expert programmers to understand it

better as compared to the other 3D modeling languages.

Another popular parametric 3D modeler is OpenSCAD which performs its 3D

computation by using Constructive Solid Geometry (CSG). Geometric primitives

such as a box, sphere, cylinder, are used by OpenSCAD script to perform

Boolean operations to construct a 3D model. OpenSCAD programming language

has functional language, and its syntax looks like C-language. However, like

many other CAD tools, it is unable to export STEP. Another significant drawback

of this tool is the lack of a GUI model editor for design modification, so the only

way to edit models is through the script. Since OpenSCAD has inadequate

functions and primitive objects, it is simple to learn for novices. In addition,

OpenSCAD also provides easy-to-follow tutorials and documentations for

beginners to learn the software with minimal effort.

Python Open Cascade (PythonOCC) is similar to FreeCAD, and it offers

advanced topological and geometric operations. Although, it can export STEP

7

files, but it has no GUI interface available for the user [6] [10]. Nevertheless, this

is a disadvantage for users with limited programming experience [6].

Ballistic Research Laboratory-CAD modeler is also based on constructive solid

geometry (CSG) and supports numerous primitive shapes which are used

through Boolean operations to create complex and complicated models [12]. Due

to its complicated tools, it is quite expert-oriented software, mostly used by

experienced CAD designers.

The main purpose of the Cadquery library is to reduce the number of codes as

compared to conventional FreeCAD programming. There are two versions of

Cadquery to date: Cadquery v1.2 and Cadquery v2.0. The former version can be

either used as a workbench through FreeCAD API. In addition, it can be

integrated with FreeCAD’s graphical interface like normal, whereas the latter

version is a stand-alone external tool that can be installed for project usage in

three different ways as described in FreeCAD’s official GitHub repository. Both

versions have the STEP export capability [9] [6].

Table 1 below summarizes the different characteristics, such as the ability to

export standard parametric files, 3D modeling interface type, programming

language, and learning curve of seven different parametric CAD modelers.

Table 1. Characteristics of some popular FOSS parametric CAD modeling tools
[6]

Parametric CAD

Tool

STEP

Export

3D Modeling

Interface

Programming

Language

Learning

Curve

OpenJSCAD No Script-based Javascript High

Implicit CAD No Script-based OpenSCAD

language

interpreter

High

FreeCAD Yes GUI + Script-

based

Python Medium

PythonOCC Yes Script-based Python High

OpenSCAD No Script-based Functional

language

Easy

BRL-CAD Yes Script-based Embedded Very high

CADQuerry v1.2 Yes Script-based Python High

CADQuerry v2.0 Yes Script-based Python High

8

In Table 1, it can be observed that only FreeCAD provides both graphical and

script-based modeling interfaces for programmers. OpenSCAD is relatively easy

to learn, but it does not export STEP nor provides a graphical modeling interface.

Most of the other modelers have numerous limitations except FreeCAD. Learning

OpenSCAD is easier as compared to other script-based modeling tools, but it

does not provide a graphical interface for modeling, nor it exports standard

parametric files for rendering. Although learning FreeCAD is arduous as

compared to OpenSCAD, it provides more advantages for designers [6].

Consequently, FreeCAD seems a more reasonable parametric modeler to fulfill

the objective of this thesis.

2.3 3D Modeling Paradigm with FreeCAD

In FreeCAD 3D parametric models can be generated either using graphical

interface or python scripts, even in parallel. Many 2D and 3D tools are already

available in the FreeCAD in the form of workbenches. By default, these tools are

integrated into every FreeCAD installation. Some common workbenches are

sketcher, part, part design, and some GUI-based workbenches.

Sketcher workbench is used as a starting point for generating any 3D model from

scratch. Geometric constraints are set in the sketching phase. It is responsible

for generating 2D geometries used for part and part design workbenches in the

later stages. First, sketches are extruded to generate 3D shapes. Later, the 3D

shape can be further modified by using part and part design features such as an

extrusions, holes, pockets, fillets, and chamfers. These features can be used both

in the graphical interface as well as python scripts.

An empty or named document needs to be created before writing python codes

for a new 3D model. This can be done by simply typing the following commands

in the python console or macro python scripts:

>> 𝐷𝑂𝐶 = 𝐹𝑟𝑒𝑒𝐶𝐴𝐷. 𝑛𝑒𝑤𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡(“𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑁𝑎𝑚𝑒”)

9

>> 𝐷𝑂𝐶. 𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒()

This command creates a new FreeCAD document and all 2D or 3D objects are

attached to this document for further operations. To render the model in the

graphical interface for visualization it is important to recompute the document.

Figure 2 shows a simple 3D model for a cube with a cylindrical hole. As one can

notice that the first step is to generate a 2D geometry for a cube that is square

with constraints such as length and distance from the origin. This shape is then

extruded to form a cube. In the next step, a circle with constraints, radius, is

created on the top face of the cube. Using a hole feature from the part design

workbench, a cylindrical hole is created with the depth of the hole equal to the

height of the cube. Thus, a cube with a cylindrical hole is created using sketches,

part design, and part workbenches.

Figure 2. FreeCAD 3D Modeling example

10

2.3.1 Using Python Console

Python codes can be directly typed in the FreeCAD’s python console in an

interactive way to generate immediate output on the graphical interface. This is

not an efficient way to write codes for a 3D model but helps in debugging and

troubleshooting.

2.3.2 Creating Macro Script

Apart from the python console, python scripts can be generated in FreeCAD by

using Macros. Generally, the macro is used to record the graphical interface

actions into python codes. This is an efficient method to generate python codes

for complicated models through the graphical interface as well as by typing

python codes in the macro editor to generate 3D models. All the constraints and

parameters can be set in the graphical interface or python script to automate the

modeling process.

Macro scripts are generated by recording the 3D modeling process that is

performed through the graphical user interface as shown in Figure 3. While

modeling, every GUI command is stored in this script as python code. Each

graphical interface command is a python code and can be visualized on the

python console as well. After finishing the model, the macro needs to be stopped

to avoid storing redundant codes.

The recorded macro codes are hardcoded since constants have been used to set

the 2D geometries and constraints. Variables can be introduced to substitute

constant values. By this approach the number of codes in the script is reduced,

as well as parameters are included which can be altered to modify the model

quickly.

Figure 3. Macro script generation in FreeCAD.

11

2.3.3 Integrating External Workbenches

External workbenches can also be used in FreeCAD. For instance, Cadquery

v1.2 can be used in FreeCAD API as a workbench with its own code editor and

the graphical interface of FreeCAD thus becomes available for visualizing the

models.

However, the latest version Cadquery v2.0 is stand-alone software with a

graphical interface for displaying 3D objects. Since it is based on pythonOCC, it

does not work in FreeCAD API.

2.4 Vision-based Pose-Estimation

The purpose of vision-based pose estimation is to estimate a viable object pose

for the robot to execute human-like object grasping. In this regard, Du et al. [13]

have summarized the key tasks for robotic grasping as, localization, pose-

estimation, and grasp-estimation of the target objects. The taxonomy of vision-

based robotic grasping is shown in the figure below.

Localization generally provides the target object regions within the visual input

data [13]. Further, there are three types, each with different purposes and

applications as shown in Figure 4. Classification-based object localization is

category agnostic and only provides the regions with potential target objects. On

the other hand, object detection detects all the target objects categorically and

Figure 4. Vision based robot grasping System [13]

12

draws a bound box around them. Contrarily, object instance segmentation

detects the points or pixel level areas of the object with the respective categories.

The main goal of object pose estimation is to find the 6D pose to assists the robot

to compute the target object’s 3D position and 3D orientation. The 6D object

poses can be retrieved by three methods which are correspondence, template,

and voting based methods. Each method has been discussed in detail in the

subsequent sections. [13]

In the last few years, the issue of pose estimation is dealt with as a machine

learning-based task. All the state-of-the-art machine learning algorithms, such as

probabilistic, reinforcement, or deep learning methods, are data-driven

approaches. Hence, these methods learn from data, either real data or

synthesized data, and the basic idea is to train a machine learning model with the

data acquired from the object. The earlier approaches require object-specific

parameter tuning for novel objects, which is a complicated and exhausting task.

However, learning-based methods do not require object-specific parameter

tuning, rather the learning models are trained on a huge number of synthetic data

generated in simulations to get the optimum 6DoF pose estimation further

extended to grasp manipulation for robotic tasks. [14].

Based on the previous knowledge about the object, learning-based methods fall

into two categories explained in the next sections.

2.5 Model-based Learning

Model-based learning for grasp-estimation requires an appropriate CAD model

of the target object to learn object features. The grasp detection is computed from

the pose estimation of the CAD models in the reference camera coordinate [14].

These methods have proven to be robust to occlusions, lighting, and occasionally

scale invariant as discussed in various studies [15] [16] [17]. Based on various

techniques, the model-based learning method can be further extended to the

following.

13

2.5.1 Correspondence-based Learning

Correspondence-based learning aims to find out the correspondences between

the input images and the CAD model of the known target object. For RGB images,

taken from various angles, the correspondence is determined between the two-

dimensional pixels of the images and the three-dimensional points on the CAD

model of a known object [13]. In contrast, for input depth images, the

correspondence is between 3D points on the point cloud and a partial or complete

3D model. Such correspondences are called descriptors. The correspondence-

based learning is described in Figure 5 below.

Some typical 2D descriptors, such as SIFT [18], SURF [19], FAST [20], and ORB

[21], have been extensively used in various literature to compute 2D feature

matching. Later, perspective-n-point techniques are used to compute the pose of

the object. Since this learning approach is applicable for objects with rich texture

(a) 2D-3D correspondence

(b) 3D-3D correspondence

Figure 5. Correspondence-based learning methods [12]

14

and geometrical details to identify local features, it becomes susceptible to

lighting conditions, cluttered arrangements, and occlusions [13].

To provide robustness against textures, 3D descriptors such as CVFH [22] and

SHOT [23], used 3D correspondences between the partial and full point cloud of

the object to recover the object pose. Such methods used least-square instead

of perspective-n-point to retrieve the object pose. Nevertheless, sensitivity to

detailed object geometry was still an issue with these techniques. [13]

Recently, several other studies have been conducted based on deep learning

methods. Some of the methods [24] [25] are based on finding discriminative

feature points and comparing them with representative convolutional neural

network features. These methods can address occlusions and texture-less

objects.

2.5.2 Template-based Learning

Template-based learning methods are used to estimate the object pose-

estimation by recovering an identical template from the templates with predefined

ground truth poses. For 2D templates circumstances, 2D images are retrieved

from the seen 3D models and this problem is more like an image retrieval task.

These methods are appropriate for texture-less objects in an occluded and lightly

cluttered environment, which is not dealt with by correspondence-based methods

[13].

Several methods suggest utilizing point cloud from a 3D model, without projecting

2D images from the 3D models. This is done by comparing the partial point cloud

from a target object with the complete point clouds of the known models and

retrieve the best matching template for determining the object pose. Nonetheless,

this method tends to be tedious.

There has been a lot of work done in the case of 2D template-based learning by

using the machine learning techniques. Hinterstoisser et al. [26] proposed the

idea of automatically generating templates, using hemisphere sampling, from 3D

models of multiple objects. Their method used image gradients on the 2D images

for object pose estimation. This technique was tested on the LIMOD dataset

which contained fifteen household objects of different sizes, colors, and shapes.

15

Another study that was conducted by Hodaň et al. worked on the pose estimation

using RGB-D images regressed from numerous texture-less objects in the scene.

However, the number of templates was inadequate for deep learning. The

functional workflows of template-based learning are shown in the figure below.

PoseCNN [27] computes the 6D pose of an object by predicting its 3D translation

and rotation. The 3D translation refers to the distance of the localized object from

the camera, and object rotation corresponds to the regressed quaternion

representation. This method has proven results on symmetric objects again

clutters and occlusion. ConvPoseCNN [28] improves the results of earlier

approach by considering region-of-interest (RoI). This method applies pooling

feature-extraction in a fully connected convolutional network to extract interesting

regions. It also combines translation and rotation into a single regression task

with improved accuracy, reduced inference time, and complexity.

Figure 6. Template-based learning methods [12]

16

2.5.3 Voting-based Learning

Contrary to the previous methods, voting-based learning determines the object

pose using the votes from every pixel value or 3D point on the target object. In

this regard the voting-based learning assumes two approaches. Indirect voting

approaches consider the individual pixel votes for a certain feature point via

correspondences such as 2D-3D, whereas direct voting-based techniques

contemplate the votes for a certain ground truth pose. The general layout of both

indirect and direct voting-based methods is shown in the figure below.

PVNet [29] is an example of an indirect voting-based technique and outperforms

some of the earlier methods. This method utilizes pixel-wise voting for detecting

2D keypoint features in the images. Moreover, the network identifies uncertain

keypoint locations addressed by correspondence-based methods to enhance

robustness against occlusions. A similar network, PVN3D [30], was developed

later to deal with 3D key points which has been discussed in the next chapter.

Figure 7. Voting-based learning methods

17

2.6 Model-free Learning

Model-free methods differ from the above-mentioned methods as these methods

are normally suitable for novel objects, without having any previous information

about the object model instances. Consequently, the pose estimation step is not

needed in this case. Also, object placement is ignored, and the object grasped is

unfamiliar.

Most of these methods utilize object geometry, retrieved from visual sensors, to

perform grasp manipulation. The model is trained with perceptual sensory data

of the object in an end-to-end manner and evaluation of grasps is carried out

using grasp metrics. Based on the differing approaches, modeling-based learning

is further categorized into discriminative and generative approaches [14].

Discriminative approaches involve extensive grasp sampling around the target

object. In addition, the sampled grasp candidates are evaluated and ranked using

a neural network. [14] Despite high runtime, these methods are advantageous

due to multiple grasping capabilities. Levine et al. utilized this approach by

implementing hand-eye correspondence for grasping with input RGB images.

They carried out this experiment with fourteen robots and gathered around 0.8

million sampled grasps over two months. However, for any changing

environmental setup, the data collection and training need to be done again.

Robotic grasp candidates can be retrieved directly when using a generative

approach, analogous to an object detection task. In this method, oriented

rectangles [Section 2.5] are detected in the RGB images, which explicitly

computes the grasp candidates for the robot gripper. Redmon et al. proposed the

concept of a single grasp that can estimate an oriented rectangle and

classification in an input 2D image. Moreover, they also proposed the MultiGrasp

approach for the detection of multiple grasps for the same object from different

angles. [14]

2.7 Point Cloud-based Approaches

Since point clouds store detailed and rich object geometrical representations of

3D models, their application in object detection with deep learning methods has

become inevitable during the last few years. Widely available depth sensors, such

18

as Kinect, Apple 3D, and RealSense, can easily capture RGB-D images from

objects of interest [13]. RGB-D images are RGB images with corresponding depth

information. The robotic grasping system deploys depth sensors to project point

clouds from depth images for 6DoF pose estimation, grasp detection, and grasp

manipulation.

As discussed earlier, 2D image-based techniques tend to be lossy in terms of

feature learning. With 3D key-point learning ability, point clouds eliminate losses,

as well as handle texture-less objects. However, some of the challenges faced

by point-cloud-based methods are the lack of sufficient datasets and the need for

high computational requirements.

Point cloud-based 6DoF grasp manipulation can be extended to approaches

considering a partial point cloud or complete shape as shown in Figure 8.

(b) Partial point-cloud based grasp estimation

(a) Complete shape-based grasp estimation

Figure 8. Workflow diagram of point cloud-based grasp estimation [13]

19

Further, the partial point cloud is based on two approaches: One approach is

evaluating grasps qualities from the candidate grasps database and another is

retrieving grasp from current grasps. In the case of complete shape, grasps are

predefined for known objects and the problem is analogous to object pose

estimation. [13] The major advantage of using point cloud in 6D pose estimation

is their improved performance in adapting unseen objects, due to the rich object

geometrical features in point clouds.

Point cloud-based approaches can be classified into point cloud-based feature

extraction, pose estimation, and grasp detection steps. Each step has been

elaborately discussed in the next sections.

2.7.1 Point Cloud-based Feature Extraction

The 2D image-based techniques can be expanded to 3D space with the

additional depth information available in RGB-D images to enhance grasp

estimation accuracy [30]. Such methods allow utilizing 3D keypoint features from

point clouds. Many methods such as Pointfusion [31], Votenet [32], and Pointnet

[33] have achieved better results using 3D keypoints instead of the traditional 2D

keypoints. In their paper, Guo et.al presented three different point-cloud-based

feature extraction methods for classification tasks applied in several grasp

detection methods. Initially, these methods get individual points on the point cloud

and subsequently collectively retrieve 3D feature points in the form of 3D shape.

In the last stage of the process, these points are given as input in deep learning

algorithms for classification tasks. [34]

Based on the type of 3D feature points extracted, these classification methods

can be differentiated into four other techniques. Multi-view classification methods

take various views of the point cloud, retrieve the multi-view 3D features from

them, and combine those features to perform classification. Another technique,

called Volumetric-based techniques, extracts 3D features from the point cloud in

the form of voxelized 3D grids. This point cloud-based classification techniques,

along with two other techniques, are described in Figure 9.

20

Using multi-view as the basic approach, Su et al. [35] proposed 3D shape

recognition from a set of images taken from various views and fed into a neural

network. However, the process of max pooling in the neural network causes loss

of information. Similarly, Yang et al. used the relationships between images that

were based either on view or region matching and combined them to retrieve the

3D representation. But again, such methods tend to cause loss of information.

Point-based feature extraction approaches have gained significant importance

due to better efficiency and these approaches are preferred by researchers. Guo

et al. [34] have introduced a few sub-methods under point-based approaches.

These methods are graph, convolutional, and point-wise multi-layered

perceptron-based approaches as shown in Figure 10.

Figure 9. Point cloud-based feature-extraction techniques [34]

21

Features in graph-based methods are learned over multi-layered perceptron

(MLPs) either in the spatial or spectral domain. In the case of the spatial domain,

the graph network is generated first. Each vertex represents a coordinate point

or intensities (laser or color). Vertices are connected to their neighboring vertices

through edges, and the edges store the object’s geometric elements.

Convolutional layers operate on spatial neighbors using multi-layer perceptron,

while pooling coarsens the graph by gathering data from neighboring points [34].

Two renowned studies [36] [37] have used the above-mentioned graph neural

network and achieved encouraging results for object detection tasks using

unstructured point clouds.

Unlike 2D image-based feature extraction that uses 2D kernels, 3D kernels are

difficult to implement because of the unstructured nature of the point clouds.

However, this problem can be resolved by utilizing two different techniques. The

first technique is to apply continuous 3D kernels on continuous space and the

corresponding nearby vertices are spatially distributed from the center. On the

other hand, the second technique considers weights of the nearby vertices at an

offset from the center [34].

Lastly, pointwise MLP is a point-based technique that feeds individual points as

an input with multiple shared MLPs to summate global features for classification

and segmentation tasks. Two prominent methodologies used pointwise MLP.

PointNet's [38] approach claims to be the first method using unordered point sets

from a point cloud, as the earlier methods were based on multi-view and

volumetric techniques. Pointnet is a network consisting of shared MLP and max-

pooling layers computing global feature extraction for classification tasks. A

Figure 10. Extraction of features using point-based approaches [37]

22

significant feature of PointNet is invariance to permutation which means the

unordered point sets do not alter the geometric features of the object, thereby

allowing direct input of point clouds in deep learning networks.

Since, the point-wise features are learned individually in PointNet, the local

Euclidean metrics do not exist between the setpoints. For this reason, the network

is unable to generalize to local features. PointNet++ [39] addresses this issue by

implementing a hierarchical network. The overall architecture constitutes

sampling, grouping, and point net layers. Sampling and grouping layers filter the

setpoints and group the overlapping input setpoints based on Euclidean metrics.

These grouped points are fed into PointNet layer to extract feature vectors from

the localized regions. Set abstraction refers to the process of sampling, grouping,

and PointNet feature extraction in an end-to-end manner. The set abstraction

process can be repeated until the whole point set is processed for features

retrieval. The general workflows of PointNet and PointNet++ network

architectures are illustrated in Figure 11.

(a) PointNet Architecture [38]

(b) PointNet++ Architecture [39]

Figure 11. PointNet and PointNet++ architectures workflow

23

The most recent 6DoF pose estimation method, PVN3D [30], employs

PointNet++ for retrieving object geometry information from the point cloud with

normalized maps, so it serves as an integral part of the state-of-the-art pose

estimation network.

2.7.2 Point Cloud-based Pose Estimation

Point clouds, having richer object geometry representation, can perform

efficiently for object pose estimation tasks while implemented in the deep learning

environment. In addition, the 6DoF object pose can be retrieved directly from the

point cloud without the requirement of any additional procedures which were

required in the case of 2D image-based methods, such as depth estimation in

RGBD images, etc. Like 2D-based methods, point cloud-based pose estimation

comprises three sub-categories: correspondence, template, and voting-based

methods.

Correspondences are 3D to 3D in point clouds where the pose of the object is

computed by matching the partial point cloud with a complete shape of a

previously seen object. 3D descriptors, discussed in section 2.5.1, are generally

applied to find 3D-3D correspondences between the target object’s partial point

cloud and the observed complete point clouds. Then the least square algorithm

estimates the 6DoF object pose. There exist similar 3D descriptors such as

3DMatch [40], 3DFeatNet based on deep learning methods which estimate

robust pose estimation. 3DMatch detects 6DoF object pose by using a 3D

voxelated deep learning framework [13].

In template-based methods, the objective estimates the 6DoF object pose for

which the partial point cloud matches up with the full point cloud template,

discussed in section 2.5.2. Yang et al. suggested a deep learning global

registration method robust to pose and noise variations. However, this method

consumes a lot of time. Other notable works using this method are PCR-net,

DGR, and G2LNet. [13]

Voting-based methods constitute direct and indirect voting approaches, and

these approaches have already been discussed in section 2.5.3. From a deep

learning perspective, only a few methods are available that estimate 6DoF pose

estimation using voting-based approaches. Some notable works are YOLOff, 6-

24

PACK, and PVN3D that use indirect voting-based methods, whereas

DenseFusion and MoreFusion are direct voting-based methods. [13]

2.7.3 Point Cloud-based Grasp Detection

The point cloud-based grasping methods compute grasp directly on the point

cloud without the requirement of object pose estimation step. A partial point cloud

is taken as input and viable grasps are estimated. Technically, tons of random

candidate grasps are produced, and then the viability of each candidate grasp is

assessed. Ultimately, the learning networks detect the graspable parts of the

point cloud. Since the graspable parts are detected irrespective of the object

knowledge, these methods perform efficiently for novel objects [41].

GraspNet [42] used an efficient point-cloud-based methodology with sub-

networks to detect stable grasps. This network estimates successful 6DoF grasps

via encoder and decoder sub-networks operated end-to-end. First, an encoder

network generates numerous sets of 6DoF grasps (gripper poses) from the target

object point cloud in a latent space. An encoder network simply samples the

grasps by extracting geometrical features from the point cloud to produce a

variety of grasps. The subsequent grasp evaluator network predicts proposed

grasps to filter out the successful ones only and back-propagates them into the

network. The elimination of unsuccessful grasps helps in the generation of viable

grasps. The GraspNet network is illustrated in Figure 12.

Figure 12. The GraspNet network [42]

25

3. METHODOLOGY

3.1 Overview

The two approaches of grasp detection techniques discussed in sections 2.7 and

2.8 are model-based learning and model-free learning methods. Since the model-

based approaches require synthetic data to estimate 6DoF pose estimation of

target objects, thereby model-based approaches are considered for the use-case

of this thesis. This chapter reflects on the approaches taken to automate the

parametric gear modeling, synthetic data generation from custom gear models,

and 6-DoF pose estimation of the dataset using a state-of-the-art method, PVN3D

[30]. The methodology to generate automated gear models and utilize the models

for synthetic dataset generation to train and evaluate a pose-estimation network

is illustrated in the Figure 13.

As described in Figure 13, the workflow has been divided into two major parts.

The first part provides a comprehensive illustration of the method employed to

automate the generation of involute gear parts and integrate it with the data

generation pipeline. The second part describes the synthetic dataset generation,

feature extraction, training the pose estimation network with the training dataset,

and testing on the test data set.

Figure 13. Workflow of methodology

26

3.2 Automation of Parametric Gear Modeling

The core objective of this thesis is to automate the generation of CAD models

and training data for robotic tasks such as object detection, object pose

estimation, and robot grasping. Generally, unalterable free-form CAD models are

acquired for the data generation. However, parametric models can alternatively

be used because of their ability to instantaneously generate iterative designs of

a part with minimal effort.

Among the FOSS parametric modelers, FreeCAD was chosen mainly for the

following reasons:

▪ Based on python with tons of libraries and workbenches available for 3D

modeling

▪ Provides both scripting and graphical user interface for modeling

The basic gear module was imported from an external workbench, FGGear

Workbench [43], that provides numerous gear types such as involute gears,

involute rack, cycloid gear, bevel gear, worm gear, and timing/lantern gears. A

module can be chosen for customization and a variety of the designs by altering

the parameters in an iterative manner. Such an approach automates the design

process. In addition to the utilization of intrinsic gear parameters, the gear bodies

can be modified and customized parametrically by using python commands or

through the graphical user interface in FreeCAD. The methodology for

automating involute gear generation is illustrated in Figure 13.

The CAD models were generated using python scripts in the macro editor.

Following the instructions in the GitHub repository of FGGear Workbench

https://github.com/looooo/freecad.gears, the workbench was installed and

imported into the FreeCAD python script. From the intrinsic gear parameters, the

number of gear teeth, gear height, helix angle, and module size were utilized for

customization. When looping through the gear parameters, several involute gears

were generated. To induce a sufficient complexity to the design, a cylindrical gear

shaft was added to the gear body whose size depends on the gear module

parameter. To keep the shaft size proportional and smaller than the gear size,

the shaft radius was calculated by dividing the gear radius with a factor of 1.2.

27

Ultimately, the shaft size remains proportional to the changing gear sizes. The

automated gears have either flat or upright poses which were defined in the script.

Each gear is then exported either as STEP.

The pseudocode of the script for automation of parametric gear modeling has

been described in Algorithm 1. This algorithm was generated for involute gears,

but it can generalize to other gears with similar structure: such as cycloid gears,

bevel gears, and timing gears.

As it can be observed in Algorithm 1, each of the parameters is provided in the

form of a python list. A parametric gear model would have either 12 or 30 teeth,

and the gear height would be either 20 or 60mm, and so on for each iteration.

Similarly, the helix angle defines the gear type such as a spur or helical type. For

ALGORITHM 1: AUTOMATION OF PARAMETRIC GEAR MODELING

 Parameter:

 teeth: number of gear teeth (list)

 height: height or thickness of gear (list)

 helix_angle: helix angle of gear teeth (list)

 m: gear module size (float)

 Input: : Parametric gear module from FGGear Workbench

 Output : Parametric involute gear models with flat or upright

poses

 Function : involuteGear () (Creates parametric gear with

 cylindrical shaft through the gear

 body)

1 for h in height do:

2 for t in teeth do:

3 for h in helix_angle do:

4 Function call → involuteGear () → Generate

parametric gear with a cylindrical shaft.

5 Rotation of the parametric gear about an axis.

6 Placement of the parametric gear from the origin/axis.

7 Export the gear as STEP.

8 end

9 end

10 end

28

spur gear, the teeth angle is 0°. On the other hand, the angle has been set to 20°

to make it a helical gear.

Nevertheless, the gear models can be automated by plugging in different

parameters as well. This can be merely done by updating the parameters with

different values for teeth, gear heights, and helix angles. Eventually, parametric

models are dynamic and automate the modeling process. These parametric

models are required in the next step for synthetic data generation. For that

reason, the models are exported with a suitable format and loaded in the

simulation environment for generating synthetic data.

Another approach can be generating varying models for one involute gear type

only. As an example, the helix angle can be set 20 degrees and different models

of helical gears can be generated for different height and teeth parameters.

Similarly, only spur type models can be generated for different height and teeth

parameters by keeping the helix angle as 0 degree. Therefore, there are many

other combinations possible. These variations can be inducted by making the

modification to Algorithm 1 accordingly.

3.3 Integrating FreeCAD with Data Generation Pipeline

The integration of FreeCAD with the data generation pipeline is rather indirect,

which means that the CAD models generated in FreeCAD need to be imported

to the gazebo environment for a synthetic dataset generation by utilizing the

available Kinect_ros depth camera. Script-based modeling in FreeCAD allows

exporting the model in only three formats: STEP, Standard-Tessellation-

Language (STL), and Boundary-Representation (BRep) formats. On the other

hand, there are plenty of options to export models through the graphical user

interface.

STEP and BRep files are not supported in the gazebo which forces the usage of

STL representation of the model or conversion to another suitable format. To

date, only four types of CAD models can be imported into gazebo: Standard-

Tessellation-Language (stl), wavefront files (obj), and Collada files (dae). To

overcome this barrier, the step files generated from the script are exported as

Collada files through the graphical interface. Collada file is a richer representation

29

of a model with the texture and physics information of the model. Also, to

generate point clouds from the CAD models, the STEP files are exported as

wavefront files (obj) or STL files. Scaling is an issue when models are imported

to the gazebo because of the mismatch between the gazebo and model units.

Since the gear dimensions have been taken care of in the modeling phase,

scaling is not required when exporting the STEP file to Collada format. This way

the CAD model dimensioning helps in deciding a reasonable scale factor for

importing them into the gazebo.

3.4 Synthetic Data Generation from CAD Models

To generate synthetic data, the CAD models of the gears are placed in a gazebo

simulation environment around the origin to create a gazebo world. The gazebo

world contains only the dataset models in a lightly cluttered scene. A Kinect

sensor, integrated with a robot operating system (ROS), is also added to the

gazebo world. Importantly, the shadow and light variations are turned off for the

scene. Since the objects do not contain any color at this point, unique color is

assigned to each using the model editor in the gazebo.

The synthetic data generation utilizes a unique data collection technique

described as hemisphere sampling [44]. This method utilizes a Kinect sensor, an

RGB-D camera, to collect images by moving around the multi-object cluttered

dataset in the upper hemisphere. The sensor moves around the dataset in

incremental values of the yaw angle, pitch angle, and radius of the hemisphere.

During the whole process, the X-axis of the camera continuously points towards

the origin of the gazebo world coordinate, keeping the camera pointed to the

dataset [45].

A concise description of the process is described below:

▪ The camera is initially at rest, at 0° yaw angle, and starts moving around

the dataset at increments of 10° until it reaches 360° yaw angle.

▪ For each increment in yaw angle, the pitch angle is incremented by 10°.

The pitch angle ranges from 0° to 90°.

▪ For each 15° increment in the yaw angle and 10° increment in pitch angle,

the camera generates samples from different scales while moving around

30

objects at the gazebo origin. The number of scales depend on the

arrangement of the dataset objects around the origin and the desired

number of synthetic data samples to be generated.

Figure 14 shows the hemisphere sampling technique used to generate synthetic

data from the gear’s dataset in the gazebo simulator.

Figure 14. Synthetic data generation using hemisphere sampling in gazebo

simulation

31

3.5 6-DoF Pose Estimation for Multi-Class Objects

3.5.1 6-DoF Pose Estimation

In this thesis study, the 6-DoF object pose for the custom gear dataset utilizes a

recent model-based method known as PVN3D [30]. The network operates on

object point cloud and uses Hough voting for keypoints detection to estimate the

object pose. The 6-DoF object pose is characterized by its 3D translation and 3D

rotation in the world coordinate frame and the purpose of the 6DoF pose

estimation network is to transform the 6DoF object pose from world to camera

coordinate.

3.5.2 PVN3D Network Architecture

For the computation of multi-class 6-DoF object pose estimation, an open free

source deep learning network, PVN3D [30], has been implemented by following

the network’s official GitHub repository: https://github.com/ethnhe/PVN3D. This

deep learning pose estimation network is based on dense correspondence

methods that use depth information to obtain 3D keypoints from target objects

and ultimately estimate 6-DoF poses. Figure 15 illustrates the different sub-

blocks of the PVN3D network.

As can be seen in Figure 15, the cascaded PVN3D network has four functional

modules which have been discussed briefly next.

i- Feature Extraction Module

Figure 15. PVN3D functional diagram [30].

https://github.com/ethnhe/PVN3D

32

Given an RGB image, this module applies the CNN-based feature extraction

method, PSPNet [46], to extract object features. This method performs scene

parsing which is based on semantic segmentation. In parallel, PointNet++ [39]

operates on the point cloud generated from an RGBD image to retrieve geometric

features of the object. The individual points are fused together by DenseFusion

[47] to retrieve combined features for all individual points.

ii- 3D-keypoints Detection Module

The task of this module is to utilize the features extracted in the previous module

for the detection of 3D keypoints on each target object. The module first estimates

the visible per-point offset to the keypoints on the target object within the

Euclidean space. Then the keypoints along with the estimated offsets vote for the

candidate keypoints.

iii- Instance Semantic-Segmentation Module

This module constitutes two shared multi-layered perceptron (MLPs) layers to

perform semantic segmentation on the multi-objects dataset. The first layer

performs semantic segmentation by predicting object class labels whereas the

second MLP layer utilizes a center voting network to identify object instances in

the dataset.

iv- 6-DoF Pose Estimation using Least-Squares Fitting

The least-squares method is implemented to estimate the correspondence and

fitting between the network predicted keypoints and the keypoints on the object

in world coordinate.

3.5.3 Network Optimization

The goal of the training network is to train the MLPs in the cascaded network

modules while optimizing losses incurred at each stage. The network training

initiates with the feature extraction module generating combined features from

appearance and object geometry fed into the three parallel modules, each having

a shared MLP layer. Eventually, the last module estimates the 6-DoF pose of the

target objects using a least-squares algorithm. Therefore, this is a multi-tasking

learning network trying to optimize loss function at each stage. In addition, to train

DNN models, computational requirements are required such as a GPU-enabled

processors to run CUDA applications.

33

The 3D keypoints detection module ℳ𝒦 takes an input of seed points {𝑝𝑖}𝑖=1
𝑁 and

keypoints {𝑘𝑝𝑗}
𝑗=1

𝑀
 from the same object instance I and estimates the ground truth

translation offset {𝑜𝑓𝑖
𝑗
}

𝑗=1

𝑀
 between them. The 3D keypoints detection module

optimizes the loss function shown in the equation as follow in equation 2

Here, 𝛮 and 𝑀 are the total seed points and keypoints respectively which are

selected from the same object instance I. Note that 𝕀 is used as an instant

indicator function which is 1 in case, the point 𝑝𝑖 is from the same instance I, or

0 in the other case. Interestingly, learning the predicted offsets to keypoints

obtains the information related to the object size which helps the network to

differentiate between similar objects with different sizes.

The task of the semantic-segmentation module ℳ𝒮 is to estimate the per-object

class labels by utilizing a shared MLP layer. The module is supervised by a loss

function shown in equation 3.

 In equation 3 above, 𝛼 denotes the 𝛼 – balancing parameter and 𝛾 represents

the focus parameter. For the 𝑖𝑡ℎ point, 𝑞𝑖 is the dot product of predicted

confidence 𝑐𝑖 and one-hot representation of the class label 𝑙𝑖. The value of the

vector 𝑞𝑖 is either 0 or 1.

Center-offset module ℳ𝑐, another shared MLP layer-based module, identifies

different instances of the objects by voting for centers of the target objects. Similar

 𝐿𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠 =
1

𝑁
 ∑ ∑ ∥ 𝑜𝑓 𝑖

𝑗
− 𝑜𝑓 𝑖

𝑗∗
∥ 𝕀(𝑝𝑖 ∈ 𝐼)

𝑀

𝑗=1

𝑁

𝑖=1

 (1)

 𝐿𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 = − 𝛼(1 − 𝑞𝑖)
𝛾 𝑙𝑜𝑔(𝑞𝑖) (2)

 𝑤ℎ𝑒𝑟𝑒 𝑞𝑖 = 𝑐𝑖 . 𝑙𝑖

𝐿𝑐𝑒𝑛𝑡𝑒𝑟 =
1

𝑁
∑‖∇𝑥𝑖 − ∇𝑥𝑖

∗‖𝐼(𝑝𝑖 ∈ 𝛪)

𝑁

𝑖=1

 (3)

34

to the keypoint detection module, this module estimates keypoints offset by

calculating the distance between input seed points and the object center. The

optimization loss function is given by equation 4.

3.5.4 Network Training

The three pvn3d network modules, discussed in the previous section, are

supervised in a cascaded manner together to construct a multi-tasked training

pipeline for the pose estimation network. The optimization functions from

equations (2)(3)(4) along with their corresponding weights can be combined to

optimize the loss in multi-tasks, as shown in equation 5.

Here, 𝜔1, 𝜔2, 𝜔3 represent the weights for the losses in the corresponding

modules.

During the data collection stage, 2026 synthetic data samples were generated

from the custom dataset in the simulation environment. The data samples were

generated simulation only. The duplicate images were removed to avoid

overfitting. For training the PVN3D network, the dataset was split into 80 and 20

percent respectively for training and test validation datasets. Each synthetic

image is 640 × 480 pixels in size. As stated in the official article of PVN3D it has

been recommended to sample 12288 feature points from the point cloud of

dataset objects. In case, the feature points are insufficient, the edges of the point

cloud are wrapped to the extent where the optimum points are generated.

The training epoch size was set to 25, mini-batch size to 20 to meet the network

training criteria. For evaluation, the parameters were kept same. The

computational resources were accessed from the CSC clustering network which

provides GPU-enabled supercomputer nodes. As recommended, 4 Nvidia GPUs

were utilized for the training. The training process has been discussed elaborately

in the discussion chapter.

 𝐿𝑚𝑢𝑙𝑡𝑖−𝑡𝑎𝑠𝑘 = 𝜔1𝐿𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠 + 𝜔2𝐿𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 + 𝜔3𝐿𝑐𝑒𝑛𝑡𝑒𝑟 (4)

35

3.6 Least-Squares-Fitting for Pose Estimation

The last module in the network is the pose estimation module which computes

the 6-DoFobject by computing the Rotation (R) and translation (t) pose

parameters with the help of the least square fitting algorithm. This algorithm

establishes the relationship between the detected 3D keypoints in the images

and corresponding points on the object to extract the pose parameters. The

optimization function estimates R and t by minimizing the loss function shown in

equation 6,

𝐿𝑙𝑒𝑎𝑠𝑡−𝑠𝑞𝑢𝑎𝑟𝑒𝑠 = ∑‖𝑘𝑝𝑗 − (𝑅. 𝑘𝑝𝑗
′ + 𝑡)‖

2
𝑀

𝑖 = 1

 (5)

Where M is the number of selected keypoints on the object [30].

36

4. RESULTS

4.1 Gear Dataset Generation

Algorithm 1 in section 3.2 provides a script-based approach to automate the

modeling process. It generates eight different models of involute gears by

iterating through different combinations of parameters. The module size

parameter has been kept constant to avoid scaling issues. FreeCAD provides a

function called Placement which can store the position and rotation of FreeCAD

objects around any axis. While looping through the parameters, the generated

gear models are rotated with an increment of 90° around the X-axis to produce

flat or upright poses. The resulting CAD models generated for the parametric

model dataset with different parameters and poses are shown in Figure 16.

Helical Gear-T12/H60 Helical Gear-T30/H20 Helical Gear-T12/H20

Helical Gear-T30/H60 Spur Gear-T12/H20 Spur Gear-T12/H60

Spur Gear-T30/H20 Spur Gear-T30/H60

Figure 16. Automation of parametric involute gear CAD models dataset

37

It can be observed in Figure 16 that four of the involute gears are helical type

whereas the other four are spur type. T stands for the number of teeth and H

stands for gear height. For example, Spur Gear-T12/H20 means Spur Gear

having 12 teeth and 20mm height. Additionally, the gears have upright or flat

poses.

4.2 Training Dataset Generation Results

A total of 2026 data samples were generated in the hemisphere sampling

process. For each data sample, the RGB-D camera records four types of

synthetic data:

i. RGB image, published to ROS.

ii. Depth image, published to ROS.

iii. Greyscale binary mask image, with class labels of objects in the

dataset.

iv. Meta file, that stores the ground truth object poses with respect to

the camera coordinates.

The resulting data samples consisting of RGB, depth, and binary mask images

are shown in Figure 17 below.

38

The Kinect sensor in the gazebo is already integrated with ROS which allows

publishing the relative topics of RGB and depth images over ROS. The binary

mask images are sampled from the point clouds that are obtained from the CAD

model of the objects. Since the mask images are grayscale, the intensity of the

grayscale values correspond to how far the object is located with respect to the

camera coordinate. Therefore, the grayscale value indicates the ground truth

label for that object in the RGB image. The range of the grayscale value is 0-255.

The ground truth poses of the objects with respect to camera coordinate are

recorded in a meta file with. mat extension. The data format of ground truth poses

is python dictionary, with the values of pose coordinates stored as NumPy arrays.

Equation 6 defines that the ground truth poses of the objects are calculated by

computing the transformation from object coordinate frame to camera coordinate

frame [48]. The transformations from camera to world and object to the world is

obtained in the simulation.

RGB images Mask images Depth images

Figure 17. RGB, mask and depth image samples from 3 different viewpoints.

39

Here, 𝑇 𝑜𝑏𝑗𝑒𝑐𝑡
𝑐𝑎𝑚𝑒𝑟𝑎

 , 𝑇 𝑐𝑎𝑚𝑒𝑟𝑎
𝑤𝑜𝑟𝑙𝑑 , 𝑎𝑛𝑑 𝑇 𝑜𝑏𝑗𝑒𝑐𝑡

𝑤𝑜𝑟𝑙𝑑 represent 4 × 4 homogenous

transformations from object-to-camera, camera-to-world, and object-to-world

coordinate frames respectively.

4.3 Parametric Modeling Computation Time

The computation time to generate and render CAD models is an important factor

when designing complex CAD models on large-scale for industrial and

commercial applications. The modeling tool and computational factors have a

significant impact on the speed of the 3D modeling process. For evaluating

involute gears modeling in FreeCAD, the speed metrics are the time taken to

generate each model and render the STEP or mesh file. The speed is simply

calculated by utilizing the python function datetime.now() in the gear modeling

python script. Table 2 shows the time taken to generate the parametric involute

gear models in FreeCAD and export them as STEP files.

The test results of Table 2 were collected using core i7/2.7GHZ processor, 2

cores and 16 Giga bytes RAM in Ubuntu 18.04. The FreeCAD and python

versions were 0.19 and 3.6 respectively. The process runs on a single core for

simple models but utilizes multiple cores for complex models. So, the processor

speed and number of cores can improve the performance for complex 3D

modeling in FreeCAD. The underlying technology of FreeCAD is Open-

CASCADE (OCCT) [49] kernel and currently it does not support GPU due to the

limitation of the OCCT APIs for GPU computations.

 𝑇 𝑜𝑏𝑗𝑒𝑐𝑡
𝑐𝑎𝑚𝑒𝑟𝑎 = (𝑇 𝑐𝑎𝑚𝑒𝑟𝑎

𝑤𝑜𝑟𝑙𝑑)−1 × 𝑇 𝑜𝑏𝑗𝑒𝑐𝑡
𝑤𝑜𝑟𝑙𝑑

 (6)

40

Table 2. Parametric CAD Models computation time

Parametric CAD models

Computation Time (in seconds)

3D Modeling STEP export Total time

Gear_Helical_12Teeth_20mm 0.28 0.05 0.33

Gear_Helical_12Teeth_60mm 0.37 0.06 0.43

Gear_Helical_30Teeth_20mm 0.44 0.22 0.66

Gear_Helical_30Teeth_60mm 0.62 0.21 0.83

Gear_Spur_12Teeth_20mm 0.25 0.05 0.30

Gear_Spur_12Teeth_60mm 0.77 0.06 0.83

Gear_Spur_30Teeth_20mm 0.44 0.20 0.64

Gear_Spur_30Teeth_60mm 0.92 0.23 1.15

Total elapsed time 4.09 1.08 5.17

In Table 2, it can be observed that the computation time increases with the size

and complexity of the models. The larger the gear height and number of teeth,

more the computation time required for model generation and rendering. In this

case, for the spur gear with 30 teeth and 60mm height, the total computation time

is 1.15 seconds.

4.4 Pose Estimation Evaluation

The synthetic dataset was divided into 80 percent training and 20 percent test

datasets. The pose estimation network is first trained with the training data and

then evaluated for pose estimation accuracies on the unseen test dataset. ADD

and ADD-S are the two pose-estimation evaluation metrics used profoundly by

researchers, therefore it is implemented for the evaluation purpose in the

network. The evaluation metrics are briefly illustrated next.

• Average Distance of Model Points (ADD)

41

 ADD [13] [26] generally computes and evaluates the pose estimation accuracies

for non-symmetric objects only. It calculates the average distance between a pair

of corresponding 3D points on the transformed and the ground truth models. The

metric is represented in equation 7 below.

Here m denotes the points computed from the total number of points on the model

represented by M. Mathematically, the ground truth reference model is

represented by M having 3D rotation 𝜃 and translation 𝑑. The projected rotation

and translation are denoted by 𝜃̃ and 𝑑̃ respectively. [13]

• Average Distance of Model Points (ADD)

For correct pose estimation, the average distance between the corresponding

points should be less than a preset threshold, generally a percentage of the

model diameter. However, for symmetric models ADD does not fit well because

of repeating points on the models. For such objects another method is used called

ADD-S, which calculates the distances among the pair of points but considers

only the minimum distance among them, neglecting all other points. ADD-S is

represented in equation 8 [13].

A more general form of metric is ADD(-S) which explicitly applies either ADD or

ADD-S, depending on the object symmetry. The network was trained on 8 and

16 keypoints. The batch size was adjusted to 20 and Table 3 shows the results

of the above-mentioned pose estimation metrics on the test dataset of custom

gears models.

The network was trained for 8-keypoints and 16-keypoints. For each setting of

keypoints the number of epochs were set as 25 with batch sizes of 20.

𝐴𝐷𝐷 =

1

𝑚
∑‖(𝜃𝑥 + 𝑑) − (𝜃̃𝑥 + 𝑑̃)‖

𝑥∈𝑀

(7)

 𝐴𝐷𝐷 − 𝑆 =
1

𝑚
∑ 𝑚𝑖𝑛𝑥2∈𝑀‖(𝜃𝑥 + 𝑑) − (𝜃̃𝑥 + 𝑑̃)‖

𝑥1∈𝑀

 (8)

42

Table 3. 6-DoF pose estimation accuracies for custom gear test dataset

PARAMETRIC CAD MODELS

ADD ADDS ADD(-S)

8-kps 16-kps 8-kps 16-kps 8-kps 16-kps

Gear_Helical_12Teeth_20mm 90.58 89.97 90.58 89.97 90.58 89.97

Gear_Helical_12Teeth_60mm 89.67 88.28 89.67 88.28 89.67 88.28

Gear_Helical_30Teeth_20mm 93.90 94.39 93.90 94.39 93.90 94.39

Gear_Helical_30Teeth_60mm 92.78 92.80 92.78 92.80 92.78 92.80

Gear_Spur_12Teeth_20mm 89.26 88.66 89.26 88.66 89.26 88.66

Gear_Spur_12Teeth_60mm 93.57 93.92 93.57 93.92 93.57 93.92

Gear_Spur_30Teeth_20mm 94.61 94.28 94.61 94.28 94.61 94.28

Gear_Spur_30Teeth_60mm 95.85 94.62 95.85 94.62 95.85 94.62

Average Accuracies 91.27 92.31 91.27 92.31 91.27 92.31

43

5. DISCUSSION

5.1 Parametric Modeling Automation

The core purpose of implementing parametric modeling in this study was to

automate the customization of an industrial part through parameters. Such

technique allows to recursively generate several models for a part which can be

used to generate synthetic data for deep learning methods. The FreeCAD

modeler was employed to generate parametric models for an involute gear part

iteratively through parametrization and 8 different involute gear models were

generated. The key design features: such as pressure angle, backlash, and

undercutting were kept intact, and other parameters were varied to produce

varying models for the same gear design. The same models can be generated

using a conventional approach which would require each model to be modeled

exclusively due to varying features. Therefore, this conventional approach

comparatively requires a lot of time and effort to generate the whole dataset.

The parametric software was installed in Ubuntu 18.04 through the terminal. This

installation also installs the necessary python packages for some fundamental

inbuilt FreeCAD workbenches, but external workbenches need to be installed

separately. The package for FC Gears workbench was also installed which is

used as the foundation for gear modeling, therefore it eliminated the necessity to

model the gears from scratch. The scripting interface is provided as macro editor

and the codes are saved as macro files with FCMacro extension. These are

regular python codes saved under macro files. The models are exported as a

STEP file and can be rendered and modified in any modeler which supports the

STEP file format.

5.2 Synthetic Data Generation

Training data is a prerequisite for deep learning methods which can be generated

manually in a real-world environment from real objects and sensors. On the other

hand, synthetic data can be generated in a simulated environment by viewpoint

sampling of the target objects and this approach has the capability to generate

thousands of dataset samples. Comparatively, the later approach tends to be

44

automatic, easier, quicker, and efficient. Regardless of the approach intended,

any alteration in CAD models via parametric modeling requires re-sampling and

regeneration of the whole training dataset.

A list of dependencies for synthetic data generation algorithm were installed in a

conda environment to create a project specific environment. The data generation

procedure requires a computer with good computational and graphical capability.

Nevertheless, the process does not necessitate the deployment of a GPU.

The hemisphere sampling method generated more than 2100 samples of RGB,

Depth, and mask images in about 2 hours. It also generated the same number of

meta files that contain the ground truth poses of the target objects. This resulted

in generation of more than 8000 files to be processed by the pose estimation

network. The data generation time increases proportionally with the desired

number of samples. The number of samples generated depends on the

calibration of viewpoint sampling parameters, however, this must be done

carefully to avoid replication of viewpoints. Generally, network overfitting issues

may occur due to the duplicate images. Prior to network training, preprocessing

of the synthetic data is also required. Some of the preprocessing tasks are

elimination of duplicate images, point cloud generation, keypoints generation,

surface normal computation. The preprocessing must be done before providing

the dataset to the training network.

5.3 Network Training in CSC

PVN3D pose estimation method requires high computation power and GPU-

enabled processing unit for training the deep neural network. This scenario

dictates the utilization of cluster to get access to multiple core processors for fast

and efficient computations. In addition, multiple GPUs can be run in parallel to

meet the training requirements.

CSC is a Finnish company owned by Finnish government and universities. It

provides data management and scientific solutions for the educational institutes

for research purposes. Puhti and Mahti are the two supercomputers available in

CSC cluster. Both have numerous CPU nodes and provide latest Nvidia GPUs

for machine learning tasks. Some of the significant features of CSC cluster is

listed below:

45

▪ The connection to CSC cluster can be established virtually through the

terminal in Linux, Mac and PowerShell windows. An alternative way to

connect in windows is via PuTTy.

▪ The user needs to request for resources specific to project requirements.

These resources include CPU cores, GPUs, and memory allocations. Both

Puhti and Mahti provide several processing cores, GPUs, and temporary

memories for computations. For this project, the access to Puhti computer

was provided by Tampere university.

▪ CSC also provides storage areas for project files. The storage areas are

divided into disks. These disks are named as home, projappl and scratch.

The PVN3D project files were transferred from local computer to projappl

disk using bash commands.

▪ The CSC computing resources are accessed through batch job systems.

These batch jobs can be submitted using a batch job scripts or via an

interactive session. The job requests are put into queue and resources are

allocated upon availability.

▪ A conda environment, similar to the one for data generation, was created

in Puhti with additional packages required for deep learning tasks. These

additional packages are PointNet++ and point cloud libraries. PointNet++

is required for CUDA related tasks. CUDA and GCC compilers are already

available in CSC and needed to be loaded for every session.

Some other considerations need to be made before initiating the training. These

considerations include number of keypoints to train the network on, mini-batch

size, and epoch size. The training time depends on the training data size. It took

approximately 2 hours to train the network on 2026 data samples.

46

6. CONCLUSION

6.1 Achieving Research Objectives

To accomplish the first objective, a comprehensive literature review was

conducted to analyze and compare modern FOSS parametric modelers. This

analysis assisted in choosing FreeCAD as the 3D modeling tool for generation

and automation of parametric gear modeling. The most important factors

considered for this choice were the availability of python-based scripting and

graphical modeling interface in FreeCAD. Moreover, literature studies conducted

for pose-estimation methods identified that voting based approaches yield better

results for pose-estimation. Therefore, PVN3D method was implemented to

estimate the poses of gear models.

The second objective was achieved by implementing FreeCAD script to automate

the modeling of involute gear models. The customized involute gear models were

generated autonomously through python scripting in FreeCAD by varying

different parameters. A total of 8 involute gears with varying parameters were

generated in the process which fulfilled the object of parts customization.

The third objective was fulfilled by exporting the parametric models as STEP and

mesh files from the script. Due to lack of support of gazebo simulator for STEP

files, the models had to be exported as Collada files and loaded into gazebo

simulator for synthetic data generation. The reason for exporting STEP as

Collada was to resolve the scaling issue which occurs due to the mismatch of

modeler and gazebo dimensions. The data generation pipeline was implemented

to generate over 2000 data samples. Although, replicating the synthetic data

generation pipeline for custom dataset is complex and time-consuming,

nevertheless, it provides an efficient method to generate the data as compared

to data generation from real objects which is a laborious task.

The final objective was to evaluate the 6-DoF pose-estimation accuracies of the

8 gear models using state-of-the-art PVN3D method. The accuracies were

estimated using ADD, ADD(S) and ADD(-s) evaluation metrics. The network was

evaluated for 8 and 16 keypoints and the results in Table 3 validate that the pose

47

estimation on 8 keypoints performs better than the estimation on higher

keypoints. According to the author [30] of the official paper, greater number of

keypoints is arduous for the network to learn due to larger output space, therefore

8 keypoints is the optimum selection.

6.2 Delimits and Future Works

A delimit of gazebo simulator is the lack of python interface due to which the

python based FreeCAD models are manually loaded into the simulation using

graphical interface operations. The python interfacing with gazebo can automate

the integration of FreeCAD with gazebo simulator for any such releases in the

future. Furthermore, the 6DoF pose estimation tasks can be extended to real

objects and real sensors. Also, 6DoF grasp manipulation tasks can be

implemented for the custom gears in a simulated or real-time environment.

48

REFERENCES

[1] Z. Kootbally, "Industrial robot capability models for agile manufacturing,"

An International Journal. 10.1108/IR-02-2016-0071, vol. 43, pp. 481- 494,

2016.

[2] N. H. S. R. W. Halil Erhan, "ViSA: A Parametric Design Modeling Method

to Enhance Visual Sensitivity Control and Analysis," International Journal

of Architectural Computing, vol. 8, no. 4, p. 461–483, 2010.

[3] J. J. Shah, "Designing with parametric CAD: Classification and comparison

of construction techniques," in IFIP Advances in Information and

Communication Technology, vol.75, pp. 53-68, 2001.

[4] R. Aish and R. Woodbury, "Multi-level Interaction in Parametric Design," in

Smart Graphics, vol. 3638, pp. 151-162, 2005.

[5] M. J. Pratt, "Introduction to ISO 10303—the STEP Standard for Product

Data Exchange," Journal of Computing and Information Science in

Engineering, https://doi.org/10.1115/1.1354995, vol. 1, no. 1, pp. 102-103,

2001.

[6] F. Machado, N. Malpica and S. A.-A. T. Borromeo, "Parametric CAD

modeling for open source scientific hardware: Comparing OpenSCAD and

FreeCAD Python scripts," PloS One, 14(12), e0225795–e0225795.

https://doi.org/10.1371/journal.pone.0225795, 2019.

[7] "OpenSCAD: The programmers Solid 3D CAD Modeller," [Online].

Available: https://openscad.org/. [Accessed 2021 09 22].

[8] "FreeCAD," [Online]. Available: https://www.freecadweb.org/. [Accessed

15 9 2021].

[9] "CadQuery," [Online]. Available: https://github.com/CadQuery/cadquery.

[Accessed 22 September 2021].

[10] T. Paviot, "pythonOCC portal," [Online]. Available:

https://github.com/tpaviot/pythonocc. [Accessed 22 September 2021].

[11] D. Hrg, "OpenJSCAD," [Online]. Available:

https://github.com/jscad/OpenJSCAD.org.

[12] M. Roberts, "Comprehensive BRL-CAD Primitive Database," 2015.

[13] G. Du, K. Wang, S. Lian and K. Zhao, "Vision-based robotic grasping from

object localization, object pose estimation to grasp estimation for parallel

49

grippers: a review," The Artificial intelligence review, 2021-03, vol. 54, no.

3, pp. 1677-1734, 2021.

[14] K. Kleeberger, R. Bormann, W. Kraus and M. Huber, "A Survey on

Learning-Based Robotic Grasping," vol. 1, pp. 239-249, 2020.

[15] K. He, G. Gkioxari, P. Dollar and R. Girshick, "Mask R-CNN," 2017 IEEE

International Conference on Computer Vision (ICCV), 2017-10, vol. 2017,

pp. 2980-2988, 2017.

[16] S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-Time

Object Detection with Region Proposal Networks," IEEE transactions on

pattern analysis and machine intelligence, 2017-06-01, vol. 39, no. 6, pp.

1137-1149, 2017.

[17] T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan and S. Belongie,

"Feature Pyramid Networks for Object Detection," in 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). vol.

2017, pp. 936-944, 2017.

[18] D. Lowe, "Object recognition from local scale-invariant features," in

Proceedings of the IEEE International Conference on Computer Vision,

1999, Vol.2, p.1150-1157, 1999.

[19] H. Bay, T. Tuytelaars and L. Van Gool, "SURF: Speeded Up Robust

Features," in Computer Vision – ECCV 2006, 2006, Vol.3951, p.404-417,

2006.

[20] E. Rosten and T. Drummond, "Fusing points and lines for high

performance tracking," in Tenth IEEE International Conference on

Computer Vision (ICCV'05) Volume 1, 2005, Vol.2, p.1508-1515 Vol. 2,

2005.

[21] E. Rublee, V. Rabaud, K. Konolige and G. Bradski, "ORB: An efficient

alternative to SIFT or SURF," in 2011 International Conference on

Computer Vision, 2011-11, p.2564-2571, 2011.

[22] A. Aldoma, M. Vincze, N. Blodow, D. Gossow, S. Gedikli, R. B. Rusu and

G. Bradski, "CAD-model recognition and 6DOF pose estimation using 3D

cues," in 2011 IEEE International Conference on Computer Vision

Workshops (ICCV Workshops), 2011-11, pp.585-592, 2011.

[23] S. Salti, F. Tombari and L. Di Stefano, "SHOT: Unique signatures of

histograms for surface and texture description," Computer vision and

image understanding, 2014-08, vol. 125, pp. 251-264, 2014.

[24] K. M. Yi, E. Trulls, V. Lepetit and P. Fua, "LIFT: Learned Invariant Feature

Transform," European Conference on Computer Vision,, p. 467–483,

2016.

50

[25] P. Truong, S. Apostolopoulos, A. Mosinska, S. Stucky, C. Ciller and S. De

Zanet, "GLAMpoints: Greedily Learned Accurate Match points," In the

IEEE International Conference on Computer Vision (ICCV), pp. 10732-

10741, 2019.

[26] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige and

N. Navab, "Model Based Training, Detection and Pose Estimation of

Texture-Less 3D Objects in Heavily Cluttered Scenes," Computer Vision –

ACCV 2012, vol. 7724, no. 1, pp. 548-562, 2013.

[27] Y. Xiang, T. Schmidt, V. Narayanan and D. Fox, "PoseCNN: A

Convolutional Neural Network for 6D Object Pose Estimation in Cluttered,"

https://arxiv.org/abs/1711.00199, 2017.

[28] C. Capellen, M. Schwarz and S. Behnke, "ConvPoseCNN: Dense

Convolutional 6D Object Pose Estimation,"

https://arxiv.org/abs/1912.07333, 2019.

[29] S. Peng, Y. Liu, Q. Huang, X. Zhou and H. Bao, "PVNET: Pixel-wise voting

network for 6dof pose estimation," in Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, 2019-

06-01, vol. 2019, pp. 4556–4565, 2019.

[30] Y. He, W. Sun, H. Huang, J. Liu, H. Fan and J. Sun, "PVN3D: A deep point-

wise 3D keypoints voting network for 6DoF pose estimation," in

Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, pp. 11629-11638, 2020.

[31] D. Xu, D. Anguelov and A. Jain, "PointFusion: Deep Sensor Fusion for 3D

Bounding Box Estimation," in Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 2018-12-14, pp.

244-253, 2018.

[32] C. R. Qi, O. Litany, K. He and L. Guibas, "Deep Hough Voting for 3D Object

Detection in Point Clouds," in 2019 IEEE/CVF International Conference on

Computer Vision (ICCV), 2019-10, vol. 2019, pp. 9276-9285, 2019.

[33] C. R. Qi, W. Liu, C. Wu, H. Su and L. J. Guibas, "Frustum PointNets for 3D

Object Detection from RGB-D Data," in Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, 2018-

12-14, pp. 918-927, 2018.

[34] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu and M. Bennamoun, "Deep Learning

for 3D Point Clouds: A Survey," in IEEE transactions on pattern analysis

and machine intelligence, 2021-12-01, Vol.43 (12), pp. 4338-4364, 2020.

[35] H. Su, S. Maji, E. Kalogerakis and E. Learned-Miller, "Multi-view

Convolutional Neural Networks for 3D Shape Recognition," in 2015 IEEE

51

International Conference on Computer Vision (ICCV), 2015-12, vol. 2015,

pp. 945-953, 2015.

[36] Y. Wang, Y. Sun, Z. Liu, S. Sarma, M. Bronstein and J. Solomon, "Dynamic

Graph CNN for Learning on Point Clouds," ACM transactions on graphics,

2019-11-05, vol. 38, no. 5, pp. 1-12, 2018.

[37] W. Shi and R. Rajkumar, "Point-GNN: Graph neural network for 3D object

detection in a point cloud," in Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, pp. 1708-1716,

2020.

[38] R. Q. Charles, H. Su, M. Kaichun and L. J. Guibas, "PointNet: Deep

Learning on Point Sets for 3D Classification and Segmentation," in 2017

IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2017-07, pp. 1708-1716, 2017.

[39] C. R. Qi, L. Yi, H. Su and L. J. Guibas, "PointNet++: Deep Hierarchical

Feature Learning on Point Sets in a Metric Space," in Advances in Neural

Information Processing Systems, 2017, Vol.2017-, p.5100-5109,

https://arxiv.org/abs/1706.02413, 2017.

[40] A. Zeng, S. Song, M. Niessner, M. Fisher, J. Xiao and T. Funkhouser,

"3DMatch: Learning Local Geometric Descriptors from RGB-D," 2017

IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2017-07, vol. 2017, pp. 199-208, 2017.

[41] A. ten Pas, M. Gualtieri, K. Saenko and R. Platt, "Grasp Pose Detection in

Point Clouds," The International journal of robotics research, 2017-12,

Vol.36 (13-14), pp. 1455-1473, 2017.

[42] A. Mousavian, C. Eppner and D. Fox, "6-DOF GraspNet: Variational Grasp

Generation for Object Manipulation," in 2019 IEEE/CVF International

Conference on Computer Vision (ICCV), 2019-10, Vol.2019-, p.2901-

2910, 2019.

[43] looooo, "FGGear Workbench," [Online]. Available:

https://wiki.freecadweb.org/FCGear_Workbench. [Accessed 2021 07 10].

[44] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige and

N. Navab, "Model Based Training, Detection and Pose Estimation of

Texture-Less 3D Objects in Heavily Cluttered Scenes," in Computer Vision

– ACCV 2012, Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp.

548-562.

[45] K. Samarawickrama, "MSc Thesis-RGB-D Based Deep Learning Methods

for Robotic Perception and Grasping," Faculty of Information Technology

52

and Communication Sciences, Tampere University, 2021. [Online].

Available: https://urn.fi/URN:NBN:fi:tuni-202105185131.

[46] H. Zhao, J. Shi, X. Qi, X. Wang and J. Jia, "Pyramid Scene Parsing

Network," in 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2017-07, vol. 2017, pp. 6230-6239, 2017.

[47] C. Wang, D. Xu, Y. Zhu, R. Martin-Martin, C. Lu, L. Fei-Fei and S.

Savarese, "DenseFusion: 6D object pose estimation by iterative dense

fusion," in Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 2019-06-01, pp. 3338-3347,

2019.

[48] M. Tian, L. Pan, M. H. Ang and G. Hee Lee, "Robust 6D Object Pose

Estimation by Learning RGB-D Features," in Proceedings - IEEE

International Conference on Robotics and Automation, 2020-05-01,

p.6218-6224.

[49] "Open CASCAD Technology," [Online]. Available:

https://dev.opencascade.org/doc/overview/html/index.html. [Accessed

2021 11 26].

[50] A. Eltaweel and Y. SU, "Parametric design and daylighting: A literature

review," Renewable & Sustainable Energy Reviews, 73, 1086–1103, p.

1087, 2017.

